1
|
Zommara MA, Swelam S, Raya-Álvarez E, Imaizumi K, Elmahdy A, Alkhudhayri DA, Aljehani AA, Agil A, Elmahallawy EK. Nutritional and potential health benefits of chufa oil, olive oil, and anhydrous milk fat against gallstone disease in a C57BL/6N mouse model. Front Nutr 2024; 11:1445484. [PMID: 39391681 PMCID: PMC11464469 DOI: 10.3389/fnut.2024.1445484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024] Open
Abstract
Dietary lipids play a major role in many diseases, particularly cardiovascular diseases. Recently, the health value of plant oils, particularly heart health, has been recognized. Despite these facts, limited information is available on the potential nutritional and anti-arteriolosclerosis effects of chufa oil, olive oil, and anhydrous milk fat in C57BL/6N mice. In the present study, the effects of olive oil (OO), chufa oil (CO), and anhydrous milk fat (AMF) on 4-week-old C57BL/6N male mice, a model for studies of diet-induced atherosclerosis, were investigated. The AIN-93G-based diet was supplemented with 15% of either OO, CO, or AMF. The final mixture of the diets contained 15% fat, approximately 1.25% cholesterol, and 0.5% sodium cholate. The data obtained showed that most mice had gallstone disease. The highest percentage of the gallstones formed were found in AMF groups (approximately 85.7% of the mice). However, the lowest one was found in the chufa oil group (42.9%), followed by the olive oil group (57.1%). Although the mice's food intake significantly differed, their body weights did not change during the feeding period. The diet supplemented with CO resulted in a significant reduction in serum cholesterol compared with the other groups. Livers from the CO-fed group showed higher triglyceride levels than those from the AMF group. No significant differences were found in atherosclerotic lesions in the aortic valve between the groups. Collectively, our results show no deleterious nutritional effects of the fats used on C57BL/6N mice fed cholesterol-rich diets. Chufa oil improved cholesterol metabolism and atherogenic index in mice. However, the major issue is the formation of gallstones in all mice, which is most prominent in AMF, followed by olive oil and chufa oil diets.
Collapse
Affiliation(s)
- Mohsen A. Zommara
- Department of Dairy Science, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| | - Seham Swelam
- Department of Dairy Science, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| | | | - Katsumi Imaizumi
- Laboratory of Nutrition Chemistry, Division of Bioresource and Bioenvironmental Sciences, Graduate School, Kyushu University, Fukuoka, Japan
| | - Ahmed Elmahdy
- Department of Dairy Science, Faculty of Desert and Environmental Agriculture, Matrouh University, Matrouh, Egypt
| | - Dalal A. Alkhudhayri
- Department of Home Economics, Prince Sattam Bin Abdul Aziz University, Al-Kharj, Saudi Arabia
| | - Abeer A. Aljehani
- Department of Food and Nutrition, Faculty of Human Sciences and Design, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmad Agil
- Department of Pharmacology, School of Medicine, Biohealth Institute Granada (IBs Granada) and Neuroscience Institute, University of Granada, Granada, Spain
| | - Ehab Kotb Elmahallawy
- Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de Córdoba, Córdoba, Spain
- Department of Zoonoses, Faculty of Veterinary Medicine, Sohag University, Sohag, Egypt
| |
Collapse
|
2
|
Simmen FA, Pabona JMP, Al-Dwairi A, Alhallak I, Montales MTE, Simmen RCM. Malic Enzyme 1 (ME1) Promotes Adiposity and Hepatic Steatosis and Induces Circulating Insulin and Leptin in Obese Female Mice. Int J Mol Sci 2023; 24:ijms24076613. [PMID: 37047583 PMCID: PMC10095602 DOI: 10.3390/ijms24076613] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/21/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Malic Enzyme 1 (ME1) supports lipogenesis, cholesterol synthesis, and cellular redox potential by catalyzing the decarboxylation of L-malate to pyruvate, and the concomitant reduction of NADP to NADPH. We examined the contribution of ME1 to the development of obesity by provision of an obesogenic diet to C57BL/6 wild type (WT) and MOD-1 (lack ME1 protein) female mice. Adiposity, serum hormone levels, and adipose, mammary gland, liver, and small intestine gene expression patterns were compared between experimental groups after 10 weeks on a diet. Relative to WT female mice, MOD-1 female mice exhibited lower body weights and less adiposity; decreased concentrations of insulin, leptin, and estrogen; higher concentrations of adiponectin and progesterone; smaller-sized mammary gland adipocytes; and reduced hepatosteatosis. MOD-1 mice had diminished expression of Lep gene in abdominal fat; Lep, Pparg, Klf9, and Acaca genes in mammary glands; Pparg and Cdkn1a genes in liver; and Tlr9 and Ffar3 genes in the small intestine. By contrast, liver expression of Cdkn2a and Lepr genes was augmented in MOD-1, relative to WT mice. Results document an integrative role for ME1 in development of female obesity, suggest novel linkages with specific pathways/genes, and further support the therapeutic targeting of ME1 for obesity, diabetes, and fatty liver disease.
Collapse
Affiliation(s)
- Frank A. Simmen
- Department of Physiology & Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- The Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - John Mark P. Pabona
- Department of Physiology & Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Ahmed Al-Dwairi
- Department of Physiology and Biochemistry, College of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Iad Alhallak
- Department of Physiology & Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Maria Theresa E. Montales
- Department of Physiology & Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Rosalia C. M. Simmen
- Department of Physiology & Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- The Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
3
|
Zeng H, Chen P, Wang Z, Hu X, Zhang Y, Zheng B. Porphyra haitanensis Polysaccharides Attenuates Blood Lipid via Gut-Liver Axis in Diet-Induced High-Fat Mesocricetus auratus through Multiple Integrated Omics. Mol Nutr Food Res 2023; 67:e2200638. [PMID: 36517709 DOI: 10.1002/mnfr.202200638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/05/2022] [Indexed: 12/23/2022]
Abstract
SCOPE Hyperlipidemia is currently a global public health problem severely affecting people's physical and mental health, as well as their quality of life. METHODS AND RESULTS The present study is aimed at revealing the mechanism of Porphyra haitanensis polysaccharide (PHP) in decreasing blood lipids by acting through gut-liver axis in Mesocricetus auratus fed a high-fat diet. PHP significantly prevented increases in serum total cholesterol, triglycerides and low-density lipoprotein cholesterol, and alleviated damage to liver cells induced by a high-fat diet M. auratus, in a dose-dependent manner. PHP promotes proliferation of Muribaculaceae and Faecalibaculum, thereby enhancing the production of butyric acid both in the colon and liver, particularly high-dose PHP (HPHP). Low-dose PHP (LPHP) promotes the expression of phosphatidylcholine metabolites and fatty acid transport genes, and inhibits the expression of genes involved in fat degradation (Abhd5), adipogenesis (Me1), fatty acid synthesis (Fasn and Pnpla3), and fatty acid chain elongation (Elovl6) in the liver. However, HPHP inhibits the expression of triglyceride metabolites and promotes the expression of fatty acid transporter (CD36), fatty acid oxidation (Acacb), and peroxisome proliferator-activated receptor gamma (PPARg) genes in the liver. CONCLUSION PHP regulates lipid metabolism through the gut microbiota, and the gut-liver axis plays an important role in its hypolipidemic effects.
Collapse
Affiliation(s)
- Hongliang Zeng
- Engineering Research Center of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian, 350002, China.,College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China.,Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Peilin Chen
- Engineering Research Center of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian, 350002, China.,College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Zhiyun Wang
- Engineering Research Center of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian, 350002, China.,College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Xiaoke Hu
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| | - Yi Zhang
- Engineering Research Center of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian, 350002, China.,College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China.,Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Baodong Zheng
- Engineering Research Center of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian, 350002, China.,College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China.,Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
4
|
Louie AY, Tingling J, Dray E, Hussain J, McKim DB, Swanson KS, Steelman AJ. Dietary Cholesterol Causes Inflammatory Imbalance and Exacerbates Morbidity in Mice Infected with Influenza A Virus. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:2523-2539. [PMID: 35577367 DOI: 10.4049/jimmunol.2100927] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 03/21/2022] [Indexed: 12/27/2022]
Abstract
Influenza is a common cause of pneumonia-induced hospitalization and death, but how host factors function to influence disease susceptibility or severity has not been fully elucidated. Cellular cholesterol levels may affect the pathogenesis of influenza infection, as cholesterol is crucial for viral entry and replication, as well as immune cell proliferation and function. However, there is still conflicting evidence on the extent to which dietary cholesterol influences cholesterol metabolism. In this study, we examined the effects of a high-cholesterol diet in modulating the immune response to influenza A virus (IAV) infection in mice. Mice were fed a standard or a high-cholesterol diet for 5 wk before inoculation with mouse-adapted human IAV (Puerto Rico/8/1934), and tissues were collected at days 0, 4, 8, and 16 postinfection. Cholesterol-fed mice exhibited dyslipidemia characterized by increased levels of total serum cholesterol prior to infection and decreased triglycerides postinfection. Cholesterol-fed mice also displayed increased morbidity compared with control-fed mice, which was neither a result of immunosuppression nor changes in viral load. Instead, transcriptomic analysis of the lungs revealed that dietary cholesterol caused upregulation of genes involved in viral-response pathways and leukocyte trafficking, which coincided with increased numbers of cytokine-producing CD4+ and CD8+ T cells and infiltrating dendritic cells. Morbidity as determined by percent weight loss was highly correlated with numbers of cytokine-producing CD4+ and CD8+ T cells as well as granulocytes. Taken together, dietary cholesterol promoted IAV morbidity via exaggerated cellular immune responses that were independent of viral load.
Collapse
Affiliation(s)
- Allison Y Louie
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Joseph Tingling
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Evan Dray
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Jamal Hussain
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Daniel B McKim
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL.,Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL.,Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL; and
| | - Kelly S Swanson
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL.,Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL; and
| | - Andrew J Steelman
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL; .,Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL.,Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL; and.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL
| |
Collapse
|
5
|
Fragrant rapeseed oil consumption prevents blood cholesterol accumulation via promoting fecal bile excretion and reducing oxidative stress in high cholesterol diet fed rats. J Funct Foods 2022. [DOI: 10.1016/j.jff.2021.104893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
6
|
Li W, Sun Z, Wu M, Deng Z, Zheng M, Kuang Z, Liu Y, He G. Deficiency of coiled-coil domain containing 80 increases plasma cholesterol by decreasing fecal sterols excretion in hypercholesterolemic mice. J Nutr Biochem 2021; 98:108868. [PMID: 34563664 DOI: 10.1016/j.jnutbio.2021.108868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 06/16/2021] [Accepted: 09/20/2021] [Indexed: 11/26/2022]
Abstract
Disorders in cholesterol and bile acid metabolism have been acknowledged as critical in pathogenesis of hypercholesterolemia. Coiled-coil domain containing 80 (CCDC80) has been closely linked to lipid homeostasis in mice, with its role in cholesterol metabolism yet to be fully elucidated. This study aims to uncover the regulatory mechanisms of CCDC80 in diet-induced hypercholesterolemia. We generated a CCDC80 knockout (CCDC80-/-) model in C57BL/6 mouse. The initial transcriptional and metabolic consequences of removing CCDC80 were accessed at baseline by gene expression microarrays and gas chromatography-mass spectrometry / ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry, respectively. The hepatic cholesterol was investigated in both CCDC80+/+ and CCDC80-/- male mice at baseline and after feeding a high-cholesterol diet for 12 weeks. The regulatory effects of CCDC80 on gene expressions and protein masses were measured by RT-qPCR and western blot, respectively. At baseline, the KEGG pathway enrichment analysis combining metabolomics, lipidomics and transcriptomics, revealed a down-regulation of hepatic bile acid biosynthesis by CCDC80-knockout, especially for primary bile acids. In the hypercholesterolemic models, our results showed that deficiency of CCDC80 increased plasma and liver cholesterol levels, but decreased fecal neutral and acidic sterols excretion in mice. Mechanistically, we found that such effects were partly mediated by attenuating the alternative pathway of bile acid synthesis catalyzed by oxysterol 7-alpha-hydroxylase (CYP7B1). In conclusion, our results suggest CCDC80 as a novel modulator of cholesterol homeostasis in male mice. Deficiency of CCDC80 could further impair fecal sterols excretion in diet-induced hypercholesterolemia.
Collapse
Affiliation(s)
- Wenyun Li
- School of Public Health / Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China
| | - Zhuo Sun
- School of Public Health / Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China
| | - Min Wu
- School of Public Health / Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China
| | - Zequn Deng
- School of Public Health / Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China
| | - Mengman Zheng
- School of Public Health / Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China
| | - Zhichao Kuang
- School of Public Health / Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China
| | - Yuwei Liu
- School of Public Health / Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China.
| | - Gengsheng He
- School of Public Health / Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China.
| |
Collapse
|
7
|
Ding Z, Hani A, Li W, Gao L, Ke W, Guo X. Influence of a cholesterol-lowering strain Lactobacillus plantarum LP3 isolated from traditional fermented yak milk on gut bacterial microbiota and metabolome of rats fed with a high-fat diet. Food Funct 2021; 11:8342-8353. [PMID: 32930686 DOI: 10.1039/d0fo01939a] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
L. plantarum LP3 isolated from traditinal fermented Tibetan yak milk has been identified as a potential probiotic candidate strain with high cholesterol-lowering activity. In this study, thirty Sprague-Dawley (SD) rats were randomly divided into three groups, including normal diet (NC), high-fat diet (HC), and high-fat diet + L. plantarum LP3 (HLp). The effects of L. plantarum LP3 on plasma lipid profile, gut bacterial microbiota, and metabolome induced by high-fat diet in rats were investigated. Results shown that L. plantarum LP3 administration was found to reduce the levels of total cholesterol, triglyceride, and low-density lipoprotein cholesterol (LDL-C) and atherogenic index in the serum of high-fat diet rats. It also controlled the decrease of Bacteroidetes and increase of Firmicutes at the phylum level in gut microbiota induced by high-fat diet in SD rats and increased the diversity and relative abundance of intestinal flora in obese rats. In particular, the LP3 strain controlled the changes induced by the high-fat diet in the abundance of for Lachnospiraceae and Erysipelotrichaceae. We also further observed the beneficial regulatory effects of L. plantarum LP3 on changes in the levels of obesity-related metabolites. The biosynthesis of fatty acids, steroids, and bile acids and metabolism of linoleic acid, linolenic acid, and arachidonic acid were the main metabolic pathways adjusted by L. plantarum LP3 in obese rats, and the metabolic rates were similar to those observed in normal diet rats levels. The findings of this study provided useful information on the mechanism underlying the hypocholesterolemic effects of L. plantarum LP3 in the high-fat induced SD rat model with the perspective of modulation of gut microbiota and metabolites.
Collapse
Affiliation(s)
- Zitong Ding
- State Key Laboratory of Grassland and Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China. and Probiotics and biological Feed Research Center, Lanzhou University, Lanzhou 730000, PR China
| | - Anum Hani
- State Key Laboratory of Grassland and Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China. and Probiotics and biological Feed Research Center, Lanzhou University, Lanzhou 730000, PR China
| | - Wenyuan Li
- State Key Laboratory of Grassland and Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China. and Probiotics and biological Feed Research Center, Lanzhou University, Lanzhou 730000, PR China
| | - Li'e Gao
- State Key Laboratory of Grassland and Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China. and Probiotics and biological Feed Research Center, Lanzhou University, Lanzhou 730000, PR China
| | - Wencan Ke
- State Key Laboratory of Grassland and Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China. and Probiotics and biological Feed Research Center, Lanzhou University, Lanzhou 730000, PR China
| | - Xusheng Guo
- State Key Laboratory of Grassland and Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China. and Probiotics and biological Feed Research Center, Lanzhou University, Lanzhou 730000, PR China
| |
Collapse
|
8
|
Zhang Q, Xiao X, Zheng J, Li M, Yu M, Ping F, Wang T, Wang X. Maternal sitagliptin treatment attenuates offspring glucose metabolism and intestinal proinflammatory cytokines IL-6 and TNF-α expression in male rats. PeerJ 2020; 8:e10310. [PMID: 33240638 PMCID: PMC7666563 DOI: 10.7717/peerj.10310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 10/15/2020] [Indexed: 12/28/2022] Open
Abstract
Increasing evidence shows that maternal overnutrition may increase the risk of diabetes in offspring. We hypothesized that maternal sitagliptin intervention may improve glucose intolerance through gut targeting. Female Sprague-Dawley (SD) rats were fed a normal diet (ND) or a high-fat diet (HFD) for 4 weeks before mating. ND pregnant rats were divided into two subgroups: ND group (ND alone) and the ND-sitagliptin group (ND combined with 10 mg/kg/day sitagliptin treatment). HFD pregnant rats were randomized to one of two groups: HFD group (HFD alone) and the HFD-sitagliptin group (HFD combined with 10 mg/kg/day sitagliptin treatment) during pregnancy and lactation. Glucose metabolism was assessed in offspring at weaning. Intestinal gene expression levels were investigated. Maternal sitagliptin intervention moderated glucose intolerance and insulin resistance in male pups. Moreover, maternal sitagliptin treatment inhibited offspring disordered intestinal expression of proinflammatory markers, including interleukin-6 (Il6), ll1b, and tumor necrosis factor (Tnf), at weaning and reduced intestinal IL-6, TNF-α expression by immunohistochemical staining and serum IL-6, TNF-α levels. However, maternal sitagliptin intervention did not affect offspring serum anti-inflammatory cytokine IL-10 level. Our results are the first to show that maternal sitagliptin intervention moderated glucose metabolism in male offspring. It may be involved with moderating intestinal IL-6 and TNF-α expression in male rat offspring.
Collapse
Affiliation(s)
- Qian Zhang
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xinhua Xiao
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jia Zheng
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Ming Li
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Miao Yu
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Fan Ping
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Tong Wang
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaojing Wang
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
9
|
Simmen FA, Alhallak I, Simmen RCM. Malic enzyme 1 (ME1) in the biology of cancer: it is not just intermediary metabolism. J Mol Endocrinol 2020; 65:R77-R90. [PMID: 33064660 PMCID: PMC7577320 DOI: 10.1530/jme-20-0176] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 09/11/2020] [Indexed: 12/25/2022]
Abstract
Malic enzyme 1 (ME1) is a cytosolic protein that catalyzes the conversion of malate to pyruvate while concomitantly generating NADPH from NADP. Early studies identified ME1 as a mediator of intermediary metabolism primarily through its participatory roles in lipid and cholesterol biosynthesis. ME1 was one of the first identified insulin-regulated genes in liver and adipose and is a transcriptional target of thyroxine. Multiple studies have since documented that ME1 is pro-oncogenic in numerous epithelial cancers. In tumor cells, the reduction of ME1 gene expression or the inhibition of its activity resulted in decreases in proliferation, epithelial-to-mesenchymal transition and in vitro migration, and conversely, in promotion of oxidative stress, apoptosis and/or cellular senescence. Here, we integrate recent findings to highlight ME1's role in oncogenesis, provide a rationale for its nexus with metabolic syndrome and diabetes, and raise the prospects of targeting the cytosolic NADPH network to improve therapeutic approaches against multiple cancers.
Collapse
Affiliation(s)
- Frank A Simmen
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- The Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Iad Alhallak
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Rosalia C M Simmen
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- The Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
10
|
Shinozaki F, Kamei A, Watanabe Y, Yasuoka A, Shimada K, Kondo K, Arai S, Kondo T, Abe K. Propagule Powder of Japanese Yam (Dioscorea Japonica) Reduces High-Fat Diet-Induced Metabolic Stress in Mice through the Regulation of Hepatic Gene Expression. Mol Nutr Food Res 2020; 64:e2000284. [PMID: 32730687 DOI: 10.1002/mnfr.202000284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 07/13/2020] [Indexed: 11/06/2022]
Abstract
SCOPE Japanese yam propagules are supposed to have high potential as a functional food. However, there are almost no studies examining their physiological function. This study aims to elucidate the physiological function of Japanese yam propagules that are heated, freeze-dried, and powdered. METHODS AND RESULTS A high-fat diet with Japanese yam propagules is administered to mice for 4 weeks. High-fat loading induces a decline in respiratory quotient, and a high-fat diet with propagules reduces it more. This result suggests that propagules increase fat oxidation, indicating fat utilization. The hepatic transcriptome is analyzed using a DNA microarray. Some of the genes affected by high-fat loading are reversed by simultaneous ingestion of propagules. Such genes are mainly involved in the immune system and fat metabolism. High-fat loading induces hepatic inflammation, which is repressed by simultaneous ingestion of propagules. For lipid metabolism, propagules repress an increase in cholesterol biosynthesis and catabolism by high-fat loading. Regarding carbohydrate metabolism, propagules decrease glycolysis and glycogen synthesis and increase gluconeogenesis. Moreover, amino acids are converted into pyruvate and then used for gluconeogenesis. CONCLUSION Propagules act to delay the occurrence of hepatic disease by suppressing carbohydrate and fat metabolism disorders in high-fat loaded mice.
Collapse
Affiliation(s)
- Fumika Shinozaki
- Group for Food functionality Assessment, Kanagawa Institute of Industrial Science and Technology, Life Science & Environment Research Center (LiSE) 4F C-4, 3-25-13 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-0821, Japan
| | - Asuka Kamei
- Group for Food functionality Assessment, Kanagawa Institute of Industrial Science and Technology, Life Science & Environment Research Center (LiSE) 4F C-4, 3-25-13 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-0821, Japan
| | - Yuki Watanabe
- Group for Food functionality Assessment, Kanagawa Institute of Industrial Science and Technology, Life Science & Environment Research Center (LiSE) 4F C-4, 3-25-13 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-0821, Japan
| | - Akihito Yasuoka
- Group for Food functionality Assessment, Kanagawa Institute of Industrial Science and Technology, Life Science & Environment Research Center (LiSE) 4F C-4, 3-25-13 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-0821, Japan.,Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Kousuke Shimada
- Group for Food functionality Assessment, Kanagawa Institute of Industrial Science and Technology, Life Science & Environment Research Center (LiSE) 4F C-4, 3-25-13 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-0821, Japan
| | - Kaori Kondo
- Group for Food functionality Assessment, Kanagawa Institute of Industrial Science and Technology, Life Science & Environment Research Center (LiSE) 4F C-4, 3-25-13 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-0821, Japan.,RIKEN, Tsurumi-ku, 1-7-22 Suehiro-cho, Yokohama, Kanagawa, 230-0045, Japan
| | - Soichi Arai
- Group for Food functionality Assessment, Kanagawa Institute of Industrial Science and Technology, Life Science & Environment Research Center (LiSE) 4F C-4, 3-25-13 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-0821, Japan.,NODAI Research Institute, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-8502, Japan
| | - Takashi Kondo
- Group for Food functionality Assessment, Kanagawa Institute of Industrial Science and Technology, Life Science & Environment Research Center (LiSE) 4F C-4, 3-25-13 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-0821, Japan.,RIKEN, Tsurumi-ku, 1-7-22 Suehiro-cho, Yokohama, Kanagawa, 230-0045, Japan
| | - Keiko Abe
- Group for Food functionality Assessment, Kanagawa Institute of Industrial Science and Technology, Life Science & Environment Research Center (LiSE) 4F C-4, 3-25-13 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-0821, Japan.,Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| |
Collapse
|
11
|
Markovic MA, Srikrishnaraj A, Tsang D, Brubaker PL. Requirement for the intestinal epithelial insulin-like growth factor-1 receptor in the intestinal responses to glucagon-like peptide-2 and dietary fat. FASEB J 2020; 34:6628-6640. [PMID: 32212202 DOI: 10.1096/fj.202000169r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/28/2020] [Accepted: 03/10/2020] [Indexed: 12/13/2022]
Abstract
The intestinal hormone, glucagon-like peptide-2 (GLP-2), enhances the enterocyte chylomicron production. However, GLP-2 is known to require the intestinal-epithelial insulin-like growth factor-1 receptor (IE-IGF-1R) for its other actions to increase intestinal growth and barrier function. The role of the IE-IGF-1R in enterocyte lipid handling was thus tested in the GLP-2 signaling pathway, as well as in response to a Western diet (WD). IE-IGF-1R knockout (KO) and control mice were treated for 11 days with h(GLY2 )GLP-2 or fed a WD for 18 weeks followed by a duodenal fat tolerance test with C14 -labeled triolein. Human Caco-2BBE cells were treated with an IGF-1R antagonist or signaling inhibitors to determine triglyceride-associated protein expression. The IE-IGF-1R was required for GLP-2-induced increases in CD36 and FATP-4 in chow-fed mice, and for expression in vitro; FATP-4 also required PI3K/Akt. Although WD-fed IE-IGF-1R KO mice demonstrated normal CD36 expression, the protein was incorrectly localized 2h post-duodenal fat administration. IE-IGF-1R KO also prevented the WD-induced increase in MTP and decrease in APOC3, increased jejunal mucosal C14 -fat accumulation, and elevated plasma triglyceride and C14 -fat levels. Collectively, these studies elucidate new roles for the IE-IGF-1R in enterocyte lipid handling, under basal conditions and in response to GLP-2 and WD-feeding.
Collapse
Affiliation(s)
| | | | - Derek Tsang
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Patricia L Brubaker
- Department of Physiology, University of Toronto, Toronto, ON, Canada.,Department of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
12
|
Andreadou I, Schulz R, Badimon L, Adameová A, Kleinbongard P, Lecour S, Nikolaou PE, Falcão-Pires I, Vilahur G, Woudberg N, Heusch G, Ferdinandy P. Hyperlipidaemia and cardioprotection: Animal models for translational studies. Br J Pharmacol 2020; 177:5287-5311. [PMID: 31769007 DOI: 10.1111/bph.14931] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/30/2019] [Accepted: 11/06/2019] [Indexed: 12/12/2022] Open
Abstract
Hyperlipidaemia is a well-established risk factor for cardiovascular diseases and therefore, many animal model have been developed to mimic the human abnormal elevation of blood lipid levels. In parallel, extensive research for the alleviation of ischaemia/reperfusion injury has revealed that hyperlipidaemia is a major co-morbidity that attenuates the cardioprotective effect of conditioning strategies (preconditioning, postconditioning and remote conditioning) and that of pharmacological interventions by interfering with cardioprotective signalling pathways. In the present review article, we summarize the existing data on animal models of hypercholesterolaemia (total, low density and HDL abnormalities) and hypertriglyceridaemia used in ischaemia/reperfusion injury and protection from it. We also provide recommendations on preclinical animal models to be used for translations of the cardioprotective strategies into clinical practice. LINKED ARTICLES: This article is part of a themed issue on Risk factors, comorbidities, and comedications in cardioprotection. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.23/issuetoc.
Collapse
Affiliation(s)
- Ioanna Andreadou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Rainer Schulz
- Institute for Physiology, Justus-Liebig University Giessen, Giessen, Germany
| | - Lina Badimon
- Cardiovascular Program ICCC, Research Institute-Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain.,CIBERCV, Instituto Salud Carlos III, Madrid, Spain.,Cardiovascular Research Chair Autonomous University of Barcelona (UAB), Barcelona, Spain
| | - Adriana Adameová
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovak Republic.,Center of Experimental Medicine, Slovak Academy of Sciences, Institute for Heart Research, Bratislava, Slovak Republic
| | - Petra Kleinbongard
- Institut für Pathophysiologie, Westdeutsches Herz- und Gefäßzentrum, Universitätsklinikum Essen, Essen, Germany
| | - Sandrine Lecour
- Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | | | - Ines Falcão-Pires
- Unidade de Investigação Cardiovascular, Departamento de Cirurgia e Fisiologia, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| | - Gemma Vilahur
- Cardiovascular Program ICCC, Research Institute-Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain.,CIBERCV, Instituto Salud Carlos III, Madrid, Spain
| | - Nicholas Woudberg
- Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Gerd Heusch
- Institut für Pathophysiologie, Westdeutsches Herz- und Gefäßzentrum, Universitätsklinikum Essen, Essen, Germany
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary.,Pharmahungary Group, Szeged, Hungary
| |
Collapse
|
13
|
Benis N, Wells JM, Smits MA, Kar SK, van der Hee B, Dos Santos VAPM, Suarez-Diez M, Schokker D. High-level integration of murine intestinal transcriptomics data highlights the importance of the complement system in mucosal homeostasis. BMC Genomics 2019; 20:1028. [PMID: 31888466 PMCID: PMC6937694 DOI: 10.1186/s12864-019-6390-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 12/12/2019] [Indexed: 12/25/2022] Open
Abstract
Background The mammalian intestine is a complex biological system that exhibits functional plasticity in its response to diverse stimuli to maintain homeostasis. To improve our understanding of this plasticity, we performed a high-level data integration of 14 whole-genome transcriptomics datasets from samples of intestinal mouse mucosa. We used the tool Centrality based Pathway Analysis (CePa), along with information from the Reactome database. Results The results show an integrated response of the mouse intestinal mucosa to challenges with agents introduced orally that were expected to perturb homeostasis. We observed that a common set of pathways respond to different stimuli, of which the most reactive was the Regulation of Complement Cascade pathway. Altered expression of the Regulation of Complement Cascade pathway was verified in mouse organoids challenged with different stimuli in vitro. Conclusions Results of the integrated transcriptomics analysis and data driven experiment suggest an important role of epithelial production of complement and host complement defence factors in the maintenance of homeostasis.
Collapse
Affiliation(s)
- Nirupama Benis
- Host Microbe Interactomics, Wageningen University & Research, Wageningen, The Netherlands. .,Systems and Synthetic Biology, Wageningen University & Research, Wageningen, The Netherlands.
| | - Jerry M Wells
- Host Microbe Interactomics, Wageningen University & Research, Wageningen, The Netherlands
| | - Mari A Smits
- Host Microbe Interactomics, Wageningen University & Research, Wageningen, The Netherlands.,Wageningen Livestock Research, Wageningen University & Research, Wageningen, The Netherlands.,Wageningen Bioveterinary Research, Wageningen University, Wageningen, The Netherlands
| | - Soumya Kanti Kar
- Host Microbe Interactomics, Wageningen University & Research, Wageningen, The Netherlands.,Wageningen Livestock Research, Wageningen University & Research, Wageningen, The Netherlands
| | - Bart van der Hee
- Host Microbe Interactomics, Wageningen University & Research, Wageningen, The Netherlands
| | - Vitor A P Martins Dos Santos
- Systems and Synthetic Biology, Wageningen University & Research, Wageningen, The Netherlands.,LifeGlimmer GmbH, Berlin, Germany
| | - Maria Suarez-Diez
- Systems and Synthetic Biology, Wageningen University & Research, Wageningen, The Netherlands
| | - Dirkjan Schokker
- Wageningen Livestock Research, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
14
|
Western diet regulates immune status and the response to LPS-driven sepsis independent of diet-associated microbiome. Proc Natl Acad Sci U S A 2019; 116:3688-3694. [PMID: 30808756 DOI: 10.1073/pnas.1814273116] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Sepsis is a deleterious immune response to infection that leads to organ failure and is the 11th most common cause of death worldwide. Despite plaguing humanity for thousands of years, the host factors that regulate this immunological response and subsequent sepsis severity and outcome are not fully understood. Here we describe how the Western diet (WD), a diet high in fat and sucrose and low in fiber, found rampant in industrialized countries, leads to worse disease and poorer outcomes in an LPS-driven sepsis model in WD-fed mice compared with mice fed standard fiber-rich chow (SC). We find that WD-fed mice have higher baseline inflammation (metaflammation) and signs of sepsis-associated immunoparalysis compared with SC-fed mice. WD mice also have an increased frequency of neutrophils, some with an "aged" phenotype, in the blood during sepsis compared with SC mice. Importantly, we found that the WD-dependent increase in sepsis severity and higher mortality is independent of the microbiome, suggesting that the diet may be directly regulating the innate immune system through an unknown mechanism. Strikingly, we could predict LPS-driven sepsis outcome by tracking specific WD-dependent disease factors (e.g., hypothermia and frequency of neutrophils in the blood) during disease progression and recovery. We conclude that the WD is reprogramming the basal immune status and acute response to LPS-driven sepsis and that this correlates with alternative disease paths that lead to more severe disease and poorer outcomes.
Collapse
|
15
|
Li X, Wang Z, Klaunig JE. Modulation of xenobiotic nuclear receptors in high-fat diet induced non-alcoholic fatty liver disease. Toxicology 2018; 410:199-213. [DOI: 10.1016/j.tox.2018.08.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/06/2018] [Accepted: 08/13/2018] [Indexed: 02/07/2023]
|
16
|
Klaunig JE, Li X, Wang Z. Role of xenobiotics in the induction and progression of fatty liver disease. Toxicol Res (Camb) 2018; 7:664-680. [PMID: 30090613 PMCID: PMC6062016 DOI: 10.1039/c7tx00326a] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 05/09/2018] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease is a major cause of chronic liver pathology in humans. Fatty liver disease involves the accumulation of hepatocellular fat in hepatocytes that can progress to hepatitis. Steatohepatitis is categorized into alcoholic (ASH) or non-alcoholic (NASH) steatohepatitis based on the etiology of the insult. Both pathologies involve an initial steatosis followed by a progressive inflammation of the liver and eventual hepatic fibrosis (steatohepatitis) and cirrhosis. The involvement of pharmaceuticals and other chemicals in the initiation and progression of fatty liver disease has received increased study. This review will examine not only how xenobiotics initiate hepatic steatosis and steatohepatitis but also how the presence of fatty liver may modify the metabolism and pathologic effects of xenobiotics. The feeding of a high fat diet results in changes in the expression of nuclear receptors that are involved in adaptive and adverse liver effects following xenobiotic exposure. High fat diets also modulate cellular and molecular pathways involved in inflammation, metabolism, oxidative phosphorylation and cell growth. Understanding the role of hepatic steatosis and steatohepatitis on the sequelae of toxic and pathologic changes seen following xenobiotic exposure has importance in defining proper and meaningful human risk characterization of the drugs and other chemical agents.
Collapse
Affiliation(s)
- James E Klaunig
- Indiana University , School of Public Health , Bloomington , Indiana , USA .
| | - Xilin Li
- Indiana University , School of Public Health , Bloomington , Indiana , USA .
| | - Zemin Wang
- Indiana University , School of Public Health , Bloomington , Indiana , USA .
| |
Collapse
|
17
|
Wong TY, Tan YQ, Lin SM, Leung LK. Apigenin and luteolin display differential hypocholesterolemic mechanisms in mice fed a high-fat diet. Biomed Pharmacother 2017; 96:1000-1007. [DOI: 10.1016/j.biopha.2017.11.131] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 11/16/2017] [Accepted: 11/27/2017] [Indexed: 12/21/2022] Open
|
18
|
Identification of the principal transcriptional regulators for low-fat and high-fat meal responsive genes in small intestine. Nutr Metab (Lond) 2017; 14:66. [PMID: 29075307 PMCID: PMC5654052 DOI: 10.1186/s12986-017-0221-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 10/16/2017] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND High-fat (HF) diet is a well-known cause of obesity. To identify principle transcriptional regulators that could be therapeutic targets of obesity, we investigated transcriptomic modulation in the duodenal mucosa following low-fat (LF) and HF meal ingestion. METHODS Whereas one group of mice was sacrificed after fasting, the others were fed ad libitum with LF or HF meal, and sacrificed 30 min, 1 h and 3 h after the beginning of the meal. A transcriptome analysis of the duodenal mucosa of the 7 groups was conducted using both microarray and serial analysis of gene expression (SAGE) method followed by an Ingenuity Pathways Analysis (IPA). RESULTS SAGE and microarray showed that the modulation of a total of 896 transcripts in the duodenal mucosa after LF and/or HF meal, compared to the fasting condition. The IPA identified lipid metabolism, molecular transport, and small molecule biochemistry as top three molecular and cellular functions for the HF-responsive, HF-specific, HF-delay, and LF-HF different genes. Moreover, the top transcriptional regulator for the HF-responsive and HF-specific genes was peroxisome proliferator-activated receptor alpha (PPARα). On the other hand, the LF-responsive and LF-specific genes were related to carbohydrate metabolism, cellular function and maintenance, and cell death/cellular growth and proliferation, and the top transcriptional regulators were forkhead box protein O1 (FOXO1) and cAMP response element binding protein 1 (CREB1), respectively. CONCLUSIONS These results will help to understand the molecular mechanisms of intestinal response after LF and HF ingestions, and contribute to identify therapeutic targets for obesity and obesity-related diseases.
Collapse
|
19
|
Krysa JA, Ooi TC, Proctor SD, Vine DF. Nutritional and Lipid Modulation of PCSK9: Effects on Cardiometabolic Risk Factors. J Nutr 2017; 147:473-481. [PMID: 28179493 DOI: 10.3945/jn.116.235069] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 12/13/2016] [Accepted: 01/10/2017] [Indexed: 11/14/2022] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a serine protease involved in the regulation of LDL receptor (LDLR) expression and apolipoprotein B lipoprotein cholesterol metabolism. Hepatic PCSK9 protein expression, activity, and secretion have been shown to affect cholesterol homeostasis. An upregulation of hepatic PSCK9 protein leads to increased LDLR degradation, resulting in decreased uptake of apoB lipoproteins and a consequent increase in the plasma concentration of these lipoproteins, including LDL and chylomicron remnants. Hence, PCSK9 has become a novel target for lipid-lowering therapies. The aim of this review is to outline current findings on the metabolic and dietary regulation of PCSK9 and effects on cholesterol, apoB lipoprotein metabolism, and cardiovascular disease (CVD) risk. PCSK9 gene and protein expression have been shown to be regulated by metabolic status and the diurnal pattern. In the fasting state, plasma PCSK9 is reduced via modulation of the nuclear transcriptional factors, including sterol regulatory element-binding protein (SREBP) 1c, SREBP2, and hepatocyte nuclear factor 1α. Plasma PCSK9 concentrations are also known to be positively associated with plasma insulin and homeostasis model assessment of insulin resistance, and appear to be regulated by SREBP1c independently of glucose status. Plasma PCSK9 concentrations are stable in response to high-fat or high-protein diets in healthy individuals; however, this response may differ in altered metabolic conditions. Dietary n-3 polyunsaturated fatty acids have been shown to reduce plasma PCSK9 concentration and hepatic PCSK9 mRNA expression, consistent with their lipid-lowering effects, whereas dietary fructose appears to upregulate PCSK9 mRNA expression and plasma PCSK9 concentrations. Further studies are needed to elucidate the mechanisms of how dietary components regulate PCSK9 and effects on cholesterol and apoB lipoprotein metabolism, as well as to delineate the clinical impact of diet on PCSK9 in terms of CVD risk.
Collapse
Affiliation(s)
- Jacqueline A Krysa
- Metabolic and Cardiovascular Diseases Laboratory, University of Alberta, Edmonton, Canada
| | - Teik Chye Ooi
- Department of Medicine, University of Ottawa, Ottawa, Canada; and.,Chronic Disease Program, Ottawa Hospital Research Institute, The Ottawa Hospital, Ottawa, Canada
| | - Spencer D Proctor
- Metabolic and Cardiovascular Diseases Laboratory, University of Alberta, Edmonton, Canada
| | - Donna F Vine
- Metabolic and Cardiovascular Diseases Laboratory, University of Alberta, Edmonton, Canada;
| |
Collapse
|
20
|
Andersson KE, Chawade A, Thuresson N, Rascon A, Öste R, Sterner O, Olsson O, Hellstrand P. Wholegrain oat diet changes the expression of genes associated with intestinal bile acid transport. Mol Nutr Food Res 2017; 61. [DOI: 10.1002/mnfr.201600874] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 02/02/2017] [Accepted: 02/05/2017] [Indexed: 12/25/2022]
Affiliation(s)
| | - Aakash Chawade
- Department of Plant Breeding; Swedish University of Agricultural Sciences; Alnarp Sweden
| | | | - Ana Rascon
- Food for Health Science Centre; Lund University; Sweden
| | - Rickard Öste
- Food for Health Science Centre; Lund University; Sweden
| | - Olov Sterner
- Department of Chemistry; Lund University; Sweden
| | - Olof Olsson
- Department of Pure and Applied Biochemistry; Lund University; Sweden
| | - Per Hellstrand
- Department of Experimental Medical Science; Lund University; Sweden
| |
Collapse
|
21
|
Deori M, Devi D, Kumari S, Hazarika A, Kalita H, Sarma R, Devi R. Antioxidant Effect of Sericin in Brain and Peripheral Tissues of Oxidative Stress Induced Hypercholesterolemic Rats. Front Pharmacol 2016; 7:319. [PMID: 27695419 PMCID: PMC5024675 DOI: 10.3389/fphar.2016.00319] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 09/02/2016] [Indexed: 01/22/2023] Open
Abstract
This study evaluated the antioxidant effect of crude sericin extract (CSE) from Antheraea assamensis in high cholesterol fed rats. Investigation was conducted by administering graded oral dose of 0.25 and 0.5 gm/kg body weight (b.w.)/day of CSE for a period of 28 days. Experiments were conducted in 30 rats and were divided into five groups: normal control, high cholesterol fed (HCF), HCF + 0.065 gm/kg b.w./day fenofibrate (FF), HCF + sericin 0.25 gm/kg b.w./day (LSD), and HCF + sericin 0.5 gm/kg b.w./day (HSD). In brain, heart, liver, serum, and kidney homogenates nitric oxide (NO), thiobarbituric acid reactive substances (TBARS), protein carbonyl content (PCC), superoxide dismutase, reduced glutathione (GSH) was measured. LSD treatment prevented the alterations in GSH and PCC levels in hypercholesterolemic (HyC) brain tissue homogenates of rats. CSE lowers the serum total cholesterol level in HyC rats by promoting fecal cholesterol (FC) excretion. CSE increases FC level by promoting inhibition of cholesterol absorption in intestine. The endogenous antioxidant reduced significantly and the oxidative stress marker TBARS level increases significantly in the peripheral tissue of HCF rats. However, the administration of LSD and HSD exhibited a good antioxidant activity by reducing the TBARS level and increasing the endogenous antioxidant in peripheral tissue. In addition, a histological examination revealed loss of normal liver and kidney architecture in cholesterol fed rats which were retained in sericin treated groups. The findings of this study suggested that CSE improves hypercholesterolemia in rats fed a HyC diet. Clinical relevance of this effect of CSE seems worthy of further studies.
Collapse
Affiliation(s)
- Meetali Deori
- Department of Zoology, Nalbari College Nalbari, India
| | - Dipali Devi
- Life Sciences Division, Institute of Advanced Study in Science and Technology Guwahati, India
| | - Sima Kumari
- Life Sciences Division, Institute of Advanced Study in Science and Technology Guwahati, India
| | - Ankita Hazarika
- Life Sciences Division, Institute of Advanced Study in Science and Technology Guwahati, India
| | - Himadri Kalita
- Life Sciences Division, Institute of Advanced Study in Science and Technology Guwahati, India
| | - Rahul Sarma
- Life Sciences Division, Institute of Advanced Study in Science and Technology Guwahati, India
| | - Rajlakshmi Devi
- Life Sciences Division, Institute of Advanced Study in Science and Technology Guwahati, India
| |
Collapse
|
22
|
Steegenga WT, Mischke M, Lute C, Boekschoten MV, Lendvai A, Pruis MGM, Verkade HJ, van de Heijning BJM, Boekhorst J, Timmerman HM, Plösch T, Müller M, Hooiveld GJEJ. Maternal exposure to a Western-style diet causes differences in intestinal microbiota composition and gene expression of suckling mouse pups. Mol Nutr Food Res 2016; 61. [PMID: 27129739 PMCID: PMC5215441 DOI: 10.1002/mnfr.201600141] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 03/25/2016] [Accepted: 04/13/2016] [Indexed: 12/14/2022]
Abstract
Scope The long‐lasting consequences of nutritional programming during the early phase of life have become increasingly evident. The effects of maternal nutrition on the developing intestine are still underexplored. Methods and results In this study, we observed (1) altered microbiota composition of the colonic luminal content, and (2) differential gene expression in the intestinal wall in 2‐week‐old mouse pups born from dams exposed to a Western‐style (WS) diet during the perinatal period. A sexually dimorphic effect was found for the differentially expressed genes in the offspring of WS diet‐exposed dams but no differences between male and female pups were found for the microbiota composition. Integrative analysis of the microbiota and gene expression data revealed that the maternal WS diet independently affected gene expression and microbiota composition. However, the abundance of bacterial families not affected by the WS diet (Bacteroidaceae, Porphyromonadaceae, and Lachnospiraceae) correlated with the expression of genes playing a key role in intestinal development and functioning (e.g. Pitx2 and Ace2). Conclusion Our data reveal that maternal consumption of a WS diet during the perinatal period alters both gene expression and microbiota composition in the intestinal tract of 2‐week‐old offspring.
Collapse
Affiliation(s)
- Wilma T Steegenga
- Nutrition, Metabolism, and Genomics Group, Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| | - Mona Mischke
- Nutrition, Metabolism, and Genomics Group, Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| | - Carolien Lute
- Nutrition, Metabolism, and Genomics Group, Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| | - Mark V Boekschoten
- Nutrition, Metabolism, and Genomics Group, Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| | - Agnes Lendvai
- Center for Liver, Digestive and Metabolic Diseases, Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Maurien G M Pruis
- Center for Liver, Digestive and Metabolic Diseases, Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Henkjan J Verkade
- Center for Liver, Digestive and Metabolic Diseases, Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | | | | | - Torsten Plösch
- Department of Obstetrics and Gynaecology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Michael Müller
- Nutrigenomics and Systems Nutrition, Norwich Medical School, University of East Anglia, Norwich, UK
| | - Guido J E J Hooiveld
- Nutrition, Metabolism, and Genomics Group, Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
23
|
Nyima T, Müller M, Hooiveld GJEJ, Morine MJ, Scotti M. Nonlinear transcriptomic response to dietary fat intake in the small intestine of C57BL/6J mice. BMC Genomics 2016; 17:106. [PMID: 26861690 PMCID: PMC4748552 DOI: 10.1186/s12864-016-2424-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 02/02/2016] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND A high caloric diet, in conjunction with low levels of physical activity, promotes obesity. Many studies are available regarding the relation between dietary saturated fats and the etiology of obesity, but most focus on liver, muscle and white adipose tissue. Furthermore, the majority of transcriptomic studies seek to identify linear effects of an external stimulus on gene expression, although such an assumption does not necessarily hold. Our work assesses the dose-dependent effects of dietary fat intake on differential gene expression in the proximal, middle and distal sections of the small intestine in C57BL/6J mice. Gene expression is analyzed in terms of either linear or nonlinear responses to fat intake. RESULTS The highest number of differentially expressed genes was observed in the middle section. In all intestine sections, most of the identified processes exhibited a linear response to increasing fat intake. The relative importance of logarithmic and exponential responses was higher in the proximal and distal sections, respectively. Functional enrichment analysis highlighted a constantly linear regulation of acute-phase response along the whole small intestine, with up-regulation of Serpina1b. The study of gene expression showed that exponential down-regulation of cholesterol transport in the middle section is coupled with logarithmic up-regulation of cholesterol homeostasis. A shift from linear to exponential response was observed in genes involved in the negative regulation of caspase activity, from middle to distal section (e.g., Birc5, up-regulated). CONCLUSIONS The transcriptomic signature associated with inflammatory processes preserved a linear response in the whole small intestine (e.g., up-regulation of Serpina1b). Processes related to cholesterol homeostasis were particularly active in the middle small intestine and only the highest fat intake down-regulated cholesterol transport and efflux (with a key role played by the down-regulation of ATP binding cassette transporters). Characterization of nonlinear patterns of gene expression triggered by different levels of dietary fat is an absolute novelty in intestinal studies. This approach helps identifying which processes are overloaded (i.e., positive, logarithmic regulation) or arrested (i.e., negative, exponential regulation) in response to excessive fat intake, and can shed light on the relationships linking lipid intake to obesity and its associated molecular disturbances.
Collapse
Affiliation(s)
- Tenzin Nyima
- The Microsoft Research - University of Trento Centre for Computational and Systems Biology, Rovereto, Italy.
| | - Michael Müller
- Nutrition, Metabolism and Genomics group, Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands. .,Norwich Medical School, University of East Anglia, Norwich, UK.
| | - Guido J E J Hooiveld
- Nutrition, Metabolism and Genomics group, Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands.
| | - Melissa J Morine
- The Microsoft Research - University of Trento Centre for Computational and Systems Biology, Rovereto, Italy.
| | - Marco Scotti
- The Microsoft Research - University of Trento Centre for Computational and Systems Biology, Rovereto, Italy. .,GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany.
| |
Collapse
|
24
|
Müller VM, Zietek T, Rohm F, Fiamoncini J, Lagkouvardos I, Haller D, Clavel T, Daniel H. Gut barrier impairment by high-fat diet in mice depends on housing conditions. Mol Nutr Food Res 2016; 60:897-908. [DOI: 10.1002/mnfr.201500775] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Revised: 12/03/2015] [Accepted: 12/04/2015] [Indexed: 12/12/2022]
Affiliation(s)
- Veronika Maria Müller
- Chair of Nutritional Physiology; Technische Universität München; Freising Germany
- ZIEL - Institute for Food & Health; Freising Germany
| | - Tamara Zietek
- Chair of Nutritional Physiology; Technische Universität München; Freising Germany
- ZIEL - Institute for Food & Health; Freising Germany
| | - Florian Rohm
- Chair of Nutritional Physiology; Technische Universität München; Freising Germany
- ZIEL - Institute for Food & Health; Freising Germany
| | - Jarlei Fiamoncini
- Chair of Nutritional Physiology; Technische Universität München; Freising Germany
- ZIEL - Institute for Food & Health; Freising Germany
| | - Ilias Lagkouvardos
- ZIEL - Institute for Food & Health; Freising Germany
- Chair of Nutrition and Immunology; Technische Universität München; Freising Germany
| | - Dirk Haller
- ZIEL - Institute for Food & Health; Freising Germany
- Chair of Nutrition and Immunology; Technische Universität München; Freising Germany
| | - Thomas Clavel
- ZIEL - Institute for Food & Health; Freising Germany
- Chair of Nutrition and Immunology; Technische Universität München; Freising Germany
| | - Hannelore Daniel
- Chair of Nutritional Physiology; Technische Universität München; Freising Germany
- ZIEL - Institute for Food & Health; Freising Germany
| |
Collapse
|
25
|
Korean Pine Nut Oil Attenuated Hepatic Triacylglycerol Accumulation in High-Fat Diet-Induced Obese Mice. Nutrients 2016; 8:nu8010059. [PMID: 26805879 PMCID: PMC4728670 DOI: 10.3390/nu8010059] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 01/06/2016] [Accepted: 01/15/2016] [Indexed: 02/06/2023] Open
Abstract
Korean pine nut oil (PNO) has been reported to influence weight gain and lipid metabolism. We examined whether PNO replacement in a high-fat diet (HFD) can ameliorate HFD-induced hepatic steatosis. Five-week-old male C57BL mice were fed control diets containing 10% of the energy from fat from PNO or soybean oil (SBO) (PC, SC) or HFDs with 45% of the energy from fat, with 10% from PNO or SBO and 35% from lard (PHFD, SHFD), for 12 weeks. Body weight gain and amount of white adipose tissue were lower in PHFD (10% and 18% lower, respectively) compared with SHFD. Hepatic triacylglycerol (TG) level was significantly lower in PHFD than the SHFD (26% lower). PNO consumption upregulated hepatic ACADL mRNA levels. The hepatic PPARG mRNA level was lower in the PC than in the SC. Expression of the sirtuin (SIRT) 3 protein in white adipose tissue was down-regulated in the SHFD and restored in the PHFD to the level in the lean control mice. SIRT 3 was reported to be upregulated under conditions of caloric restriction (CR) and plays a role in regulating mitochondrial function. PNO consumption resulted in lower body fat and hepatic TG accumulation in HFD-induced obesity, which seemed to be associated with the CR-mimetic response.
Collapse
|
26
|
Nuotio-Antar AM, Poungvarin N, Li M, Schupp M, Mohammad M, Gerard S, Zou F, Chan L. FABP4-Cre Mediated Expression of Constitutively Active ChREBP Protects Against Obesity, Fatty Liver, and Insulin Resistance. Endocrinology 2015; 156:4020-32. [PMID: 26248218 PMCID: PMC4606753 DOI: 10.1210/en.2015-1210] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Carbohydrate response element binding protein (ChREBP) regulates cellular glucose and lipid homeostasis. Although ChREBP is highly expressed in many key metabolic tissues, the role of ChREBP in most of those tissues and the consequent effects on whole-body glucose and lipid metabolism are not well understood. Therefore, we generated a transgenic mouse that overexpresses a constitutively active ChREBP isoform under the control of the fatty acid binding protein 4-Cre-driven promoter (FaChOX). Weight gain was blunted in male, but not female, FaChOX mice when placed on either a normal chow diet or an obesogenic Western diet. Respiratory exchange ratios were increased in Western diet-fed FaChOX mice, indicating a shift in whole-body substrate use favoring carbohydrate metabolism. Western diet-fed FaChOX mice showed improved insulin sensitivity and glucose tolerance in comparison with controls. Hepatic triglyceride content was reduced in Western diet-fed FaChOX mice in comparison with controls, suggesting protection from fatty liver. Epididymal adipose tissue exhibited differential expression of genes involved in differentiation, browning, metabolism, lipid homeostasis, and inflammation between Western diet-fed FaChOX mice and controls. Our findings support a role for ChREBP in modulating adipocyte differentiation and adipose tissue metabolism and inflammation as well as consequent risks for obesity and insulin resistance.
Collapse
Affiliation(s)
- Alli M Nuotio-Antar
- Diabetes and Endocrinology Research Center (A.M.N.-A., N.P., M.L., L.C.), Department of Medicine, and Children's Nutrition Research Center (A.M.N.-A., M.M., S.G., F.Z.), Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030; and Charité University School of Medicine (M.S.), Institute of Pharmacology, Center for Cardiovascular Research, 10115 Berlin, Germany
| | - Naravat Poungvarin
- Diabetes and Endocrinology Research Center (A.M.N.-A., N.P., M.L., L.C.), Department of Medicine, and Children's Nutrition Research Center (A.M.N.-A., M.M., S.G., F.Z.), Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030; and Charité University School of Medicine (M.S.), Institute of Pharmacology, Center for Cardiovascular Research, 10115 Berlin, Germany
| | - Ming Li
- Diabetes and Endocrinology Research Center (A.M.N.-A., N.P., M.L., L.C.), Department of Medicine, and Children's Nutrition Research Center (A.M.N.-A., M.M., S.G., F.Z.), Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030; and Charité University School of Medicine (M.S.), Institute of Pharmacology, Center for Cardiovascular Research, 10115 Berlin, Germany
| | - Michael Schupp
- Diabetes and Endocrinology Research Center (A.M.N.-A., N.P., M.L., L.C.), Department of Medicine, and Children's Nutrition Research Center (A.M.N.-A., M.M., S.G., F.Z.), Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030; and Charité University School of Medicine (M.S.), Institute of Pharmacology, Center for Cardiovascular Research, 10115 Berlin, Germany
| | - Mahmoud Mohammad
- Diabetes and Endocrinology Research Center (A.M.N.-A., N.P., M.L., L.C.), Department of Medicine, and Children's Nutrition Research Center (A.M.N.-A., M.M., S.G., F.Z.), Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030; and Charité University School of Medicine (M.S.), Institute of Pharmacology, Center for Cardiovascular Research, 10115 Berlin, Germany
| | - Sarah Gerard
- Diabetes and Endocrinology Research Center (A.M.N.-A., N.P., M.L., L.C.), Department of Medicine, and Children's Nutrition Research Center (A.M.N.-A., M.M., S.G., F.Z.), Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030; and Charité University School of Medicine (M.S.), Institute of Pharmacology, Center for Cardiovascular Research, 10115 Berlin, Germany
| | - Fang Zou
- Diabetes and Endocrinology Research Center (A.M.N.-A., N.P., M.L., L.C.), Department of Medicine, and Children's Nutrition Research Center (A.M.N.-A., M.M., S.G., F.Z.), Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030; and Charité University School of Medicine (M.S.), Institute of Pharmacology, Center for Cardiovascular Research, 10115 Berlin, Germany
| | - Lawrence Chan
- Diabetes and Endocrinology Research Center (A.M.N.-A., N.P., M.L., L.C.), Department of Medicine, and Children's Nutrition Research Center (A.M.N.-A., M.M., S.G., F.Z.), Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030; and Charité University School of Medicine (M.S.), Institute of Pharmacology, Center for Cardiovascular Research, 10115 Berlin, Germany
| |
Collapse
|
27
|
Lorbek G, Perše M, Jeruc J, Juvan P, Gutierrez-Mariscal FM, Lewinska M, Gebhardt R, Keber R, Horvat S, Björkhem I, Rozman D. Lessons from hepatocyte-specific Cyp51 knockout mice: impaired cholesterol synthesis leads to oval cell-driven liver injury. Sci Rep 2015; 5:8777. [PMID: 25739789 PMCID: PMC4350092 DOI: 10.1038/srep08777] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 02/02/2015] [Indexed: 12/22/2022] Open
Abstract
We demonstrate unequivocally that defective cholesterol synthesis is an independent determinant of liver inflammation and fibrosis. We prepared a mouse hepatocyte-specific knockout (LKO) of lanosterol 14α-demethylase (CYP51) from the part of cholesterol synthesis that is already committed to cholesterol. LKO mice developed hepatomegaly with oval cell proliferation, fibrosis and inflammation, but without steatosis. The key trigger was reduced cholesterol esters that provoked cell cycle arrest, senescence-associated secretory phenotype and ultimately the oval cell response, while elevated CYP51 substrates promoted the integrated stress response. In spite of the oval cell-driven fibrosis being histologically similar in both sexes, data indicates a female-biased down-regulation of primary metabolism pathways and a stronger immune response in males. Liver injury was ameliorated by dietary fats predominantly in females, whereas dietary cholesterol rectified fibrosis in both sexes. Our data place defective cholesterol synthesis as a focus of sex-dependent liver pathologies.
Collapse
Affiliation(s)
- Gregor Lorbek
- Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Martina Perše
- Medical Experimental Centre, Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Jera Jeruc
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Peter Juvan
- Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Francisco M Gutierrez-Mariscal
- Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Monika Lewinska
- Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Rolf Gebhardt
- Institute of Biochemistry, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Rok Keber
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Simon Horvat
- 1] Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia [2] National Institute of Chemistry, Ljubljana, Slovenia
| | - Ingemar Björkhem
- Department of Laboratory Medicine, Division of Clinical Chemistry, Karolinska Institute, Karolinska University Hospital, Huddinge, Sweden
| | - Damjana Rozman
- Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
28
|
Hammond CL, Wheeler SG, Ballatori N, Hinkle PM. Ostα-/- mice are not protected from western diet-induced weight gain. Physiol Rep 2015; 3:3/1/e12263. [PMID: 25626867 PMCID: PMC4387766 DOI: 10.14814/phy2.12263] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Organic solute transporterα‐OSTβ is a bile acid transporter important for bile acid recycling in the enterohepatic circulation. In comparison to wild‐type mice, Ostα−/− mice have a lower bile acid pool and increased fecal lipids and they are relatively resistant to age‐related weight gain and insulin resistance. These studies tested whether Ostα−/− mice are also protected from weight gain, lipid changes, and insulin resistance which are normally observed with a western‐style diet high in both fat and cholesterol (WD). Wild‐type and Ostα−/− mice were fed a WD, a control defined low‐fat diet (LF) or standard laboratory chow (CH). Surprisingly, although the Ostα−/− mice remained lighter on LF and CH diets, they weighed the same as wild‐type mice after 12 weeks on the WD even though bile acid pool levels remained low and fecal lipid excretion remained elevated. Mice of both genotypes excreted relatively less lipid when switched from CH to LF or WD. WD caused slightly greater changes in expression of genes involved in lipid transport in the small intestines of Ostα−/− mice than wild‐type, but the largest differences were between CH and defined diets. After WD feeding, Ostα−/− mice had lower serum cholesterol and hepatic lipids, but Ostα−/− and wild‐type mice had equivalent levels of muscle lipids and similar responses in glucose and insulin tolerance tests. Taken together, the results show that Ostα−/− mice are able to adapt to a western‐style diet despite low bile acid levels. Mice lacking the organic solute transporter (OST) have abnormally low bile acid pools and are resistant to age‐related weight gain. These experiments tested whether Ostα−/− mice are also resistant to western diet‐induced weight gain. Despite low bile acid pools and high fecal lipid excretion, Ostα−/− mice gained weight as rapidly as wild‐type mice.
Collapse
Affiliation(s)
- Christine L Hammond
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, New York, USA
| | - Sadie G Wheeler
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, New York, USA
| | - Nazzareno Ballatori
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, New York, USA
| | - Patricia M Hinkle
- Department of Pharmacology and Physiology, University of Rochester School of Medicine, Rochester, New York, USA
| |
Collapse
|
29
|
Enhanced gastrointestinal expression of cytosolic malic enzyme (ME1) induces intestinal and liver lipogenic gene expression and intestinal cell proliferation in mice. PLoS One 2014; 9:e113058. [PMID: 25402228 PMCID: PMC4234650 DOI: 10.1371/journal.pone.0113058] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 10/19/2014] [Indexed: 12/12/2022] Open
Abstract
The small intestine participates in lipid digestion, metabolism and transport. Cytosolic malic enzyme 1 (ME1) is an enzyme that generates NADPH used in fatty acid and cholesterol biosynthesis. Previous work has correlated liver and adipose ME1 expression with susceptibility to obesity and diabetes; however, the contributions of intestine-expressed ME1 to these conditions are unknown. We generated transgenic (Tg) mice expressing rat ME1 in the gastrointestinal epithelium under the control of the murine villin1 promoter/enhancer. Levels of intestinal ME1 protein (endogenous plus transgene) were greater in Tg than wildtype (WT) littermates. Effects of elevated intestinal ME1 on body weight, circulating insulin, select adipocytokines, blood glucose, and metabolism-related genes were examined. Male Tg mice fed a high-fat (HF) diet gained significantly more body weight than WT male littermates and had heavier livers. ME1-Tg mice had deeper intestinal and colon crypts, a greater intestinal 5-bromodeoxyuridine labeling index, and increased expression of intestinal lipogenic (Fasn, Srebf1) and cholesterol biosynthetic (Hmgcsr, Hmgcs1), genes. The livers from HF diet-fed Tg mice also exhibited an induction of cholesterol and lipogenic pathway genes and altered measures (Irs1, Irs2, Prkce) of insulin sensitivity. Results indicate that gastrointestinal ME1 via its influence on intestinal epithelial proliferation, and lipogenic and cholesterologenic genes may concomitantly impact signaling in liver to modify this tissue’s metabolic state. Our work highlights a new mouse model to address the role of intestine-expressed ME1 in whole body metabolism, hepatomegaly, and crypt cell proliferation. Intestinal ME1 may thus constitute a therapeutic target to reduce obesity-associated pathologies.
Collapse
|
30
|
Clavel T, Desmarchelier C, Haller D, Gérard P, Rohn S, Lepage P, Daniel H. Intestinal microbiota in metabolic diseases: from bacterial community structure and functions to species of pathophysiological relevance. Gut Microbes 2014; 5:544-51. [PMID: 25003516 DOI: 10.4161/gmic.29331] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The trillions of bacterial cells that colonize the mammalian digestive tract influence both host physiology and the fate of dietary compounds. Gnotobionts and fecal transplantation have been instrumental in revealing the causal role of intestinal bacteria in energy homeostasis and metabolic dysfunctions such as type-2 diabetes. However, the exact contribution of gut bacterial metabolism to host energy balance is still unclear and knowledge about underlying molecular mechanisms is scant. We have previously characterized cecal bacterial community functions and host responses in diet-induced obese mice using omics approaches. Based on these studies, we here discuss issues on the relevance of mouse models, give evidence that the metabolism of cholesterol-derived compounds by gut bacteria is of particular importance in the context of metabolic disorders and that dominant species of the family Coriobacteriaceae are good models to study these functions.
Collapse
Affiliation(s)
- Thomas Clavel
- Junior Research Group Intestinal Microbiome; ZIEL-Research Center for Nutrition and Food Sciences; Technische Universität München; Freising-Weihenstephan, Germany
| | - Charles Desmarchelier
- Molecular Nutrition Unit; ZIEL-Research Center for Nutrition and Food Sciences; Technische Universität München; Freising-Weihenstephan, Germany
| | - Dirk Haller
- Chair of Nutrition and Immunology; Biofunctionality Unit; ZIEL-Research Center for Nutrition and Food Sciences; Technische Universität München; Freising-Weihenstephan, Germany
| | - Philippe Gérard
- INRA / AgroParisTech; Micalis UMR1319; Jouy-en-Josas, France
| | - Sascha Rohn
- Institute of Food Chemistry; Hamburg School of Food Science; University of Hamburg; Hamburg, Germany
| | - Patricia Lepage
- INRA / AgroParisTech; Micalis UMR1319; Jouy-en-Josas, France
| | - Hannelore Daniel
- Molecular Nutrition Unit; ZIEL-Research Center for Nutrition and Food Sciences; Technische Universität München; Freising-Weihenstephan, Germany
| |
Collapse
|
31
|
Omega-3 phospholipids from fish suppress hepatic steatosis by integrated inhibition of biosynthetic pathways in dietary obese mice. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1841:267-78. [PMID: 24295779 DOI: 10.1016/j.bbalip.2013.11.010] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 11/14/2013] [Accepted: 11/21/2013] [Indexed: 12/25/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) accompanies obesity and insulin resistance. Recent meta-analysis suggested omega-3 polyunsaturated fatty acids DHA and EPA to decrease liver fat in NAFLD patients. Antiinflammatory, hypolipidemic, and insulin-sensitizing effects ofDHA/EPA depend on their lipid form, with marine phospholipids showing better efficacy than fish oils. We characterized the mechanisms underlying beneficial effects of DHA/EPA phospholipids, alone or combined with an antidiabetic drug, on hepatosteatosis. C57BL/6N mice were fed for 7 weeks an obesogenic high-fat diet (cHF) or cHF-based interventions: (i) cHF supplemented with phosphatidylcholine-rich concentrate from herring (replacing 10% of dietary lipids; PC), (ii) cHF containing rosiglitazone (10 mg/kg diet; R), or (iii) PC + R. Metabolic analyses, hepatic gene expression and lipidome profiling were performed. Results showed that PC and PC + R prevented cHlF-induced weight gain and glucose intolerance, while all interventions reduced abdominal fat and plasma triacylglycerols. PC and PC + R also lowered hepatic and plasma cholesterol and reduced hepatosteatosis. Microarray analysis revealed integrated downregulation of hepatic lipogenic and cholesterol biosynthesis pathways by PC, while R-induced lipogenesis was fully counteracted in PC + R Gene expression changes in PC and PC + R were associated with preferential enrichment of hepatic phosphatidylcholine and phosphatidylethanolamine fractions by DHA/EPA. The complex downregulation of hepatic lipogenic and cholesterol biosynthesis genes and the antisteatotic effects were unique to DHA/EPA-containing phospholipids, since they were absent in mice fed soy-derived phosphatidylcholine. Thus, inhibition of lipid and cholesterol biosynthesis associated with potent antisteatotic effects in the liver in response to DHA/EPA-containing phospholipids support their use in NAFLD prevention and treatment.
Collapse
|
32
|
Dahlhoff C, Worsch S, Sailer M, Hummel BA, Fiamoncini J, Uebel K, Obeid R, Scherling C, Geisel J, Bader BL, Daniel H. Methyl-donor supplementation in obese mice prevents the progression of NAFLD, activates AMPK and decreases acyl-carnitine levels. Mol Metab 2014; 3:565-80. [PMID: 25061561 PMCID: PMC4099513 DOI: 10.1016/j.molmet.2014.04.010] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 04/25/2014] [Accepted: 04/30/2014] [Indexed: 12/31/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) results from increased hepatic lipid accumulation and steatosis, and is closely linked to liver one-carbon (C1) metabolism. We assessed in C57BL6/N mice whether NAFLD induced by a high-fat (HF) diet over 8 weeks can be reversed by additional 4 weeks of a dietary methyl-donor supplementation (MDS). MDS in the obese mice failed to reverse NAFLD, but prevented the progression of hepatic steatosis associated with major changes in key hepatic C1-metabolites, e.g. S-adenosyl-methionine and S-adenosyl-homocysteine. Increased phosphorylation of AMPK-α together with enhanced β-HAD activity suggested an increased flux through fatty acid oxidation pathways. This was supported by concomitantly decreased hepatic free fatty acid and acyl-carnitines levels. Although HF diet changed the hepatic phospholipid pattern, MDS did not. Our findings suggest that dietary methyl-donors activate AMPK, a key enzyme in fatty acid β-oxidation control, that mediates increased fatty acid utilization and thereby prevents further hepatic lipid accumulation.
Collapse
Key Words
- 3-HB, β-hydroxybutyrate
- ACC, acetyl-CoA carboxylase
- AMP-activated protein kinase
- AMPK, AMP-activated protein kinase
- ANT, adenine nucleotide translocase
- Acyl-carnitines
- Bhmt, betaine-homocysteine methyltransferase
- C, control diet
- C1, one-carbon
- CACT, carnitine-acylcarnitine transporter
- CMS, methyl-donor supplemented control diet
- Cbs, cystathionine β-synthase
- Cpt1a, carnitine palmitoyltransferase-1a
- DIO, diet-induced obesity
- Fasn, fatty acid synthase
- GNMT, glycine N-methyltransferase
- Gapdh, glyceraldehyde 3-phosphate dehydrogenase
- HF, high-fat diet
- HFMS, methyl-donor supplemented high-fat diet
- HMW adiponectin, high molecular weight adiponectin
- HSP90, heat shock protein 90
- Hcy, homocysteine
- Hepatic steatosis
- Hprt1, hypoxanthine phosphoribosyltransferase 1
- LDL, low density lipoprotein
- MAT, methionine adenosyltransferase
- MCD, malonyl-CoA decarboxylase
- MDS, methyl-donor supplementation
- MTR, methionine synthase
- NAFLD, non-alcoholic fatty liver disease
- NEFA, non-esterified fatty acids
- Obesity
- One-carbon metabolism
- PC, phosphatidylcholine
- PGC1α, peroxisome proliferator-activated receptor-γ co-activator-1α
- PL, phospholipids
- PPARα, peroxisome proliferator-activated receptor-α
- Pemt, phosphatidylethanolamine methyltransferase
- SAH, S-adenosylhomocysteine
- SAM, S-adenosylmethionine
- SM, sphingomyelin
- SREBP1c, sterol regulatory element-binding protein-1c
- TG, triacylglycerol
- VAT, visceral adipose tissue
- VLDL, very low density lipoprotein
- β-HAD, β-hydroxyacyl CoA dehydrogenase
- β-oxidation
Collapse
Affiliation(s)
- Christoph Dahlhoff
- Biochemistry Unit, Research Center for Nutrition and Food Sciences (ZIEL), Technische Universität München, 85350 Freising-Weihenstephan, Germany ; PhD Group - Epigenetics, Imprinting and Nutrition, Research Center for Nutrition and Food Sciences (ZIEL), Technische Universität München, 85350 Freising-Weihenstephan, Germany
| | - Stefanie Worsch
- Nutritional Medicine Unit, Research Center for Nutrition and Food Sciences (ZIEL), Technische Universität München, 85350 Freising-Weihenstephan, Germany
| | - Manuela Sailer
- Biochemistry Unit, Research Center for Nutrition and Food Sciences (ZIEL), Technische Universität München, 85350 Freising-Weihenstephan, Germany
| | - Björn A Hummel
- Clinical Chemistry and Laboratory Medicine/Central Laboratory, University Hospital of the Saarland, 66421 Homburg, Germany ; Clinical Haemostasiology and Transfusion Medicine, University Hospital of the Saarland, 66421 Homburg, Germany
| | - Jarlei Fiamoncini
- Biochemistry Unit, Research Center for Nutrition and Food Sciences (ZIEL), Technische Universität München, 85350 Freising-Weihenstephan, Germany
| | - Kirsten Uebel
- Nutritional Medicine Unit, Research Center for Nutrition and Food Sciences (ZIEL), Technische Universität München, 85350 Freising-Weihenstephan, Germany
| | - Rima Obeid
- Clinical Chemistry and Laboratory Medicine/Central Laboratory, University Hospital of the Saarland, 66421 Homburg, Germany
| | - Christian Scherling
- Biochemistry Unit, Research Center for Nutrition and Food Sciences (ZIEL), Technische Universität München, 85350 Freising-Weihenstephan, Germany
| | - Jürgen Geisel
- Clinical Chemistry and Laboratory Medicine/Central Laboratory, University Hospital of the Saarland, 66421 Homburg, Germany
| | - Bernhard L Bader
- PhD Group - Epigenetics, Imprinting and Nutrition, Research Center for Nutrition and Food Sciences (ZIEL), Technische Universität München, 85350 Freising-Weihenstephan, Germany ; Nutritional Medicine Unit, Research Center for Nutrition and Food Sciences (ZIEL), Technische Universität München, 85350 Freising-Weihenstephan, Germany
| | - Hannelore Daniel
- Biochemistry Unit, Research Center for Nutrition and Food Sciences (ZIEL), Technische Universität München, 85350 Freising-Weihenstephan, Germany
| |
Collapse
|
33
|
Levy E, Spahis S, Garofalo C, Marcil V, Montoudis A, Sinnet D, Sanchez R, Peretti N, Beaulieu JF, Sane A. Sar1b transgenic male mice are more susceptible to high-fat diet-induced obesity, insulin insensitivity and intestinal chylomicron overproduction. J Nutr Biochem 2014; 25:540-8. [PMID: 24657056 DOI: 10.1016/j.jnutbio.2014.01.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 12/28/2013] [Accepted: 01/08/2014] [Indexed: 12/13/2022]
Abstract
In the intracellular secretory network, nascent proteins are shuttled from the endoplasmic reticulum to the Golgi by transport vesicles requiring Sar1b, a small GTPase. Mutations in this key enzyme impair intestinal lipid transport and cause chylomicron retention disease. The main aim of this study was to assess whether Sar1b overexpression under a hypercaloric diet accelerated lipid production and chylomicron (CM) secretion, thereby inducing cardiometabolic abnormalities. To this end, we generated transgenic mice overexpressing human Sar1b (Sar1b(+/+)) using pBROAD3-mcs that features the ubiquitous mouse ROSA26 promoter. In response to a high-fat diet (HFD), Sar1b(+/+) mice displayed significantly increased body weight and adiposity compared with Sar1b(+/+) mice under the same regimen or with wild-type (WT) mice exposed to chow diet or HFD. Furthermore, Sar1b(+/+) mice were prone to liver steatosis as revealed by significantly elevated hepatic triglycerides (TG) and cholesterol in comparison with WT animals. They also exhibited augmented levels of plasma TG along with alterations in fatty acid composition. Concomitantly, they showed susceptibility to develop insulin insensitivity and they responded abnormally to oral glucose tolerance test. Finally, Sar1b(+/+) mice that have been treated with Triton WR-1330 (to inhibit TG catabolism) and orotic acid (to block secretion of very low-density lipoprotein by the liver) responded more efficiently to fat meal tests as reflected by the rise in plasma TG and CM concentrations, indicating exaggerated intestinal fat absorption. These results suggest that Sar1b(+/+) under HFD can elicit cardiometabolic traits as revealed by incremental weight gain, fat deposition, dyslipidemia, hepatic steatosis, insulin insensitivity and intestinal fat absorption.
Collapse
Affiliation(s)
- Emile Levy
- Research Center, Sainte-Justine UHC, Montreal, Quebec, Canada, H3T 1C5; Department of Nutrition, Université de Montréal, Montreal, Quebec, Canada, H3T 1J4; Canadian Institutes for Health Research Team on the Digestive Epithelium, Department of Anatomy and Cellular Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada, J1H 5N4.
| | - Schohraya Spahis
- Research Center, Sainte-Justine UHC, Montreal, Quebec, Canada, H3T 1C5; Department of Nutrition, Université de Montréal, Montreal, Quebec, Canada, H3T 1J4
| | - Carole Garofalo
- Research Center, Sainte-Justine UHC, Montreal, Quebec, Canada, H3T 1C5
| | - Valérie Marcil
- Research Institute, McGill University, Montreal, Quebec, Canada, H3G 1A4
| | - Alain Montoudis
- Research Center, Sainte-Justine UHC, Montreal, Quebec, Canada, H3T 1C5
| | - Daniel Sinnet
- Department of Pediatrics, Université de Montréal, Montreal, Quebec, Canada, H3T 1C5
| | - Rocio Sanchez
- Research Center, Sainte-Justine UHC, Montreal, Quebec, Canada, H3T 1C5
| | - Noel Peretti
- Centre de recherche Rhône-Alpes en nutrition humaine, Hôpital Edouard-Herriot, Faculté de Médicine, Université de Lyon-1, France
| | - Jean-François Beaulieu
- Canadian Institutes for Health Research Team on the Digestive Epithelium, Department of Anatomy and Cellular Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada, J1H 5N4
| | - Alain Sane
- Research Center, Sainte-Justine UHC, Montreal, Quebec, Canada, H3T 1C5
| |
Collapse
|
34
|
Hirose M, Ando T, Shofiqur R, Umeda K, Kodama Y, Nguyen SV, Goto T, Shimada M, Nagaoka S. Anti-obesity activity of hen egg anti-lipase immunoglobulin yolk, a novel pancreatic lipase inhibitor. Nutr Metab (Lond) 2013; 10:70. [PMID: 24321125 PMCID: PMC4028892 DOI: 10.1186/1743-7075-10-70] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 12/02/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND There is completely no report about both hen egg anti-lipase immunoglobulin yolk (IgY) and its anti-obesity action. Thus, we tried to isolate and characterize a novel anti-lipase immunoglobulin from hen egg yolk. Moreover, we investigated whether hen egg yolk anti-lipase IgY inhibits pancreatic lipase activity in vitro, and examined its ability to prevent obesity in a murine high fat diet-induced obesity model. METHODS We determined the inhibitory action of Anti-lipase IgY on lipase activity in vitro. We also focused our evaluation on the anti-obesity properties of Anti-lipase IgY in a murine high fat diet-induced obesity model. RESULTS Anti-lipase IgY blocked porcine lipase activity with an IC50 of 0.49 μM. Supplementing the high fat diet with only 0.2% (w/w) of Anti-lipase IgY for 35 days significantly decreased the weights of intraperitoneal adipose tissues, epididymal, mesenteric, retroperitoneal and perirenal adipose tissues, and the amounts of hepatic total lipid, triglyceride, and cholesterol. This was accompanied by a significant increase in the fecal excretion of triglyceride in the absence of diarrhea. Furthermore, Anti-lipase IgY treatment restored body weight gain to levels similar to mice fed with Control IgY. CONCLUSIONS This study provides the first report of the development of anti-lipase IgY and the direct evidence that inhibition of pancreatic lipase using Anti-lipase IgY is an effective anti-obesity treatment due to the associated increase in fecal excretion of triglyceride.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Satoshi Nagaoka
- Department of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.
| |
Collapse
|
35
|
Reichold A, Brenner SA, Förster-Fromme K, Bergheim I, Mollenhauer J, Bischoff SC. Dmbt1 does not affect a Western style diet-induced liver damage in mice. J Clin Biochem Nutr 2013; 53:145-9. [PMID: 24249968 PMCID: PMC3818268 DOI: 10.3164/jcbn.13-31] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 04/02/2013] [Indexed: 12/13/2022] Open
Abstract
In the last three decades the prevalence of non-alcoholic fatty liver disease has markedly increased. Results from epidemiologic studies indicate that not only a general overnutrition but rather a diet rich in sugar, fat and cholesterol (= Western style diet) maybe a risk factor for the development of non-alcoholic fatty liver disease. Concerning liver diseases, it is known that Deleted in malignant brain tumors 1 is amongst others related to liver injury and repair. In addition Deleted in malignant brain tumors 1 seems to play a role in regard to the maintenance of the intestinal homeostasis and the regulation of food intake. Starting from this background the aim of the present study was to investigate if Dmbt1 plays a role in Western style diet-induced non-alcoholic steatohepatitis in mice. Dmbt1+/+ and Dmbt1−/− mice were fed a Western style diet or control diet ad libitum for 12 weeks. Both Western style diet fed groups gained significant more weight than the controls and developed a mild non-alcoholic steatohepatitis. The presence/absence of functional Deleted in malignant brain tumors 1 had no effect on parameters like food intake, weight gain, fasting glucose, and liver damage. These results suggest that Deleted in malignant brain tumors 1 plays a minor part on the development of a diet-induced liver damage in mice.
Collapse
Affiliation(s)
- Astrid Reichold
- Department of Nutritional Medicine, University of Hohenheim (180 a), Fruwirthstrasse 12, 70599 Stuttgart, Germany
| | | | | | | | | | | |
Collapse
|
36
|
High-fat diet alters gut microbiota physiology in mice. ISME JOURNAL 2013; 8:295-308. [PMID: 24030595 DOI: 10.1038/ismej.2013.155] [Citation(s) in RCA: 501] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 08/04/2013] [Indexed: 12/13/2022]
Abstract
The intestinal microbiota is known to regulate host energy homeostasis and can be influenced by high-calorie diets. However, changes affecting the ecosystem at the functional level are still not well characterized. We measured shifts in cecal bacterial communities in mice fed a carbohydrate or high-fat (HF) diet for 12 weeks at the level of the following: (i) diversity and taxa distribution by high-throughput 16S ribosomal RNA gene sequencing; (ii) bulk and single-cell chemical composition by Fourier-transform infrared- (FT-IR) and Raman micro-spectroscopy and (iii) metaproteome and metabolome via high-resolution mass spectrometry. High-fat diet caused shifts in the diversity of dominant gut bacteria and altered the proportion of Ruminococcaceae (decrease) and Rikenellaceae (increase). FT-IR spectroscopy revealed that the impact of the diet on cecal chemical fingerprints is greater than the impact of microbiota composition. Diet-driven changes in biochemical fingerprints of members of the Bacteroidales and Lachnospiraceae were also observed at the level of single cells, indicating that there were distinct differences in cellular composition of dominant phylotypes under different diets. Metaproteome and metabolome analyses based on the occurrence of 1760 bacterial proteins and 86 annotated metabolites revealed distinct HF diet-specific profiles. Alteration of hormonal and anti-microbial networks, bile acid and bilirubin metabolism and shifts towards amino acid and simple sugars metabolism were observed. We conclude that a HF diet markedly affects the gut bacterial ecosystem at the functional level.
Collapse
|
37
|
Dahlhoff C, Desmarchelier C, Sailer M, Fürst RW, Haag A, Ulbrich SE, Hummel B, Obeid R, Geisel J, Bader BL, Daniel H. Hepatic methionine homeostasis is conserved in C57BL/6N mice on high-fat diet despite major changes in hepatic one-carbon metabolism. PLoS One 2013; 8:e57387. [PMID: 23472083 PMCID: PMC3589430 DOI: 10.1371/journal.pone.0057387] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 01/23/2013] [Indexed: 01/29/2023] Open
Abstract
Obesity is an underlying risk factor in the development of cardiovascular disease, dyslipidemia and non-alcoholic fatty liver disease (NAFLD). Increased hepatic lipid accumulation is a hallmark in the progression of NAFLD and impairments in liver phosphatidylcholine (PC) metabolism may be central to the pathogenesis. Hepatic PC biosynthesis, which is linked to the one-carbon (C1) metabolism by phosphatidylethanolamine N-methyltransferase, is known to be important for hepatic lipid export by VLDL particles. Here, we assessed the influence of a high-fat (HF) diet and NAFLD status in mice on hepatic methyl-group expenditure and C1-metabolism by analyzing changes in gene expression, protein levels, metabolite concentrations, and nuclear epigenetic processes. In livers from HF diet induced obese mice a significant downregulation of cystathionine β-synthase (CBS) and an increased betaine-homocysteine methyltransferase (BHMT) expression were observed. Experiments in vitro, using hepatoma cells stimulated with peroxisome proliferator activated receptor alpha (PPARα) agonist WY14,643, revealed a significantly reduced Cbs mRNA expression. Moreover, metabolite measurements identified decreased hepatic cystathionine and L-α-amino-n-butyrate concentrations as part of the transsulfuration pathway and reduced hepatic betaine concentrations, but no metabolite changes in the methionine cycle in HF diet fed mice compared to controls. Furthermore, we detected diminished hepatic gene expression of de novo DNA methyltransferase 3b but no effects on hepatic global genomic DNA methylation or hepatic DNA methylation in the Cbs promoter region upon HF diet. Our data suggest that HF diet induces a PPARα-mediated downregulation of key enzymes in the hepatic transsulfuration pathway and upregulates BHMT expression in mice to accommodate to enhanced dietary fat processing while preserving the essential amino acid methionine.
Collapse
Affiliation(s)
- Christoph Dahlhoff
- Biochemistry Unit, PhD Group, Research Center for Nutrition and Food Sciences, Technische Universität München, Freising-Weihenstephan, Germany
- Epigenetics, Imprinting and Nutrition, Research Center for Nutrition and Food Sciences, Technische Universität München, Freising-Weihenstephan, Germany
| | - Charles Desmarchelier
- Biochemistry Unit, PhD Group, Research Center for Nutrition and Food Sciences, Technische Universität München, Freising-Weihenstephan, Germany
| | - Manuela Sailer
- Biochemistry Unit, PhD Group, Research Center for Nutrition and Food Sciences, Technische Universität München, Freising-Weihenstephan, Germany
| | - Rainer W. Fürst
- Epigenetics, Imprinting and Nutrition, Research Center for Nutrition and Food Sciences, Technische Universität München, Freising-Weihenstephan, Germany
- Physiology Unit, ZIEL, Research Center for Nutrition and Food Sciences, Technische Universität München, Freising-Weihenstephan, Germany
| | - Alexander Haag
- Biochemistry Unit, PhD Group, Research Center for Nutrition and Food Sciences, Technische Universität München, Freising-Weihenstephan, Germany
| | - Susanne E. Ulbrich
- Epigenetics, Imprinting and Nutrition, Research Center for Nutrition and Food Sciences, Technische Universität München, Freising-Weihenstephan, Germany
- Physiology Unit, ZIEL, Research Center for Nutrition and Food Sciences, Technische Universität München, Freising-Weihenstephan, Germany
| | - Björn Hummel
- Clinical Chemistry and Laboratory Medicine/Central Laboratory University Hospital of the Saarland, Homburg, Germany
| | - Rima Obeid
- Clinical Chemistry and Laboratory Medicine/Central Laboratory University Hospital of the Saarland, Homburg, Germany
| | - Jürgen Geisel
- Clinical Chemistry and Laboratory Medicine/Central Laboratory University Hospital of the Saarland, Homburg, Germany
| | - Bernhard L. Bader
- Epigenetics, Imprinting and Nutrition, Research Center for Nutrition and Food Sciences, Technische Universität München, Freising-Weihenstephan, Germany
- Nutritional Medicine Unit, Research Center for Nutrition and Food Sciences, Technische Universität München, Freising-Weihenstephan, Germany
- * E-mail:
| | - Hannelore Daniel
- Biochemistry Unit, PhD Group, Research Center for Nutrition and Food Sciences, Technische Universität München, Freising-Weihenstephan, Germany
| |
Collapse
|