1
|
Perez-Villalba A, Sirerol-Piquer MS, Soriano-Cantón R, Folgado V, Pérez-Cañamás A, Kirstein M, Fariñas I, Pérez-Sánchez F. Dopaminergic neuron loss in mice due to increased levels of wild-type human α-Synuclein only takes place under conditions of accelerated aging. Sci Rep 2024; 14:2490. [PMID: 38291230 PMCID: PMC10828501 DOI: 10.1038/s41598-024-53093-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/27/2024] [Indexed: 02/01/2024] Open
Abstract
Understanding the intricate pathogenic mechanisms behind Parkinson's disease (PD) and its multifactorial nature presents a significant challenge in disease modeling. To address this, we explore genetic models that better capture the disease's complexity. Given that aging is the primary risk factor for PD, this study investigates the impact of aging in conjunction with overexpression of wild-type human α-synuclein (α-Syn) in the dopaminergic system. This is achieved by introducing a novel transgenic mouse strain overexpressing α-Syn under the TH-promoter within the senescence-accelerated SAMP8 (P8) genetic background. Behavioral assessments, conducted at both 10 and 16 months of age, unveil motor impairments exclusive to P8 α-SynTg mice, a phenomenon conspicuously absent in α-SynTg mice. These findings suggest a synergistic interplay between heightened α-Syn levels and the aging process, resulting in motor deficits. These motor disturbances correlate with reduced dopamine (DA) levels, increased DA turnover, synaptic terminal loss, and notably, the depletion of dopaminergic neurons in the substantia nigra and noradrenergic neurons in the locus coeruleus. Furthermore, P8 α-SynTg mice exhibit alterations in gut transit time, mirroring early PD symptoms. In summary, P8 α-SynTg mice effectively replicate parkinsonian phenotypes by combining α-Syn transgene expression with accelerated aging. This model offers valuable insights into the understanding of PD and serves as a valuable platform for further research.
Collapse
Affiliation(s)
- Ana Perez-Villalba
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universitat de València, Valencia, Spain
- Instituto de Biotecnología y Biomedicina (BioTecMed), Universitat de València, Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Laboratory of Animal Behavior Phenotype (L.A.B.P.), Department of Neuropsychology, Faculty of Psychology, Catholic University of Valencia, Valencia, Spain
| | - María Salomé Sirerol-Piquer
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universitat de València, Valencia, Spain
- Instituto de Biotecnología y Biomedicina (BioTecMed), Universitat de València, Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Raúl Soriano-Cantón
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universitat de València, Valencia, Spain
- Instituto de Biotecnología y Biomedicina (BioTecMed), Universitat de València, Valencia, Spain
| | - Virginia Folgado
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universitat de València, Valencia, Spain
- Instituto de Biotecnología y Biomedicina (BioTecMed), Universitat de València, Valencia, Spain
| | - Azucena Pérez-Cañamás
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universitat de València, Valencia, Spain
- Instituto de Biotecnología y Biomedicina (BioTecMed), Universitat de València, Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Martina Kirstein
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universitat de València, Valencia, Spain
- Instituto de Biotecnología y Biomedicina (BioTecMed), Universitat de València, Valencia, Spain
| | - Isabel Fariñas
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universitat de València, Valencia, Spain.
- Instituto de Biotecnología y Biomedicina (BioTecMed), Universitat de València, Valencia, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| | - Francisco Pérez-Sánchez
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universitat de València, Valencia, Spain.
- Instituto de Biotecnología y Biomedicina (BioTecMed), Universitat de València, Valencia, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| |
Collapse
|
2
|
Unno K, Taguchi K, Hase T, Meguro S, Nakamura Y. DNA Mutagenicity of Hydroxyhydroquinone in Roasted Coffee Products and Its Suppression by Chlorogenic Acid, a Coffee Polyphenol, in Oxidative-Damage-Sensitive SAMP8 Mice. Int J Mol Sci 2024; 25:720. [PMID: 38255794 PMCID: PMC10815437 DOI: 10.3390/ijms25020720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/21/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Hydroxyhydroquinone (HHQ) is an oxidative component produced by roasting coffee beans and has been reported to generate relatively large amounts of reactive oxygen species (ROS). In this study, we used senescence-accelerated mouse prone 8 (SAMP8) mice to determine whether HHQ consumption increases oxidative-stress-induced injury, because in SAMP8 mice, the activity of 8-oxoguanine DNA glycosylase 1, which repairs oxidative modifications in DNA, is decreased. The results showed that two out of twelve (16.7%) HHQ-treated mice presented polyuria and glucosuria around 2 months after the start of treatment, indicating that HHQ may act as a mutagen against SAMP8 mice, which is sensitive to oxidative damage. No abnormalities were observed in the chlorogenic acid (coffee polyphenol, CPP)-treated group. The concentration of hydrogen peroxide in the serum of SAMP8 mice was significantly higher than that in SAMR1 (senescence-resistant) control mice, and the concentration was further increased in the HHQ-treated group. CPP, when coexisting with HHQ at the rate contained in roasted coffee, decreased the amount of hydrogen peroxide in the serum of SAMP8 mice. Although CPP can act both oxidatively and antioxidatively as a polyphenol, CPP acts more antioxidatively when coexisting with HHQ. Thus, the oxidative effect of HHQ was shown to be counteracted by CPP.
Collapse
Affiliation(s)
- Keiko Unno
- Tea Science Center, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan; (K.T.); (Y.N.)
| | - Kyoko Taguchi
- Tea Science Center, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan; (K.T.); (Y.N.)
| | - Tadashi Hase
- Research and Development, Kao Corporation, 2-1-3 Bunka, Sumida-ku, Tokyo 131-8501, Japan;
| | - Shinichi Meguro
- Biological Science Research, Kao Corporation, Akabane, Ichikai-machi, Haga-gun 321-3497, Japan;
| | - Yoriyuki Nakamura
- Tea Science Center, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan; (K.T.); (Y.N.)
| |
Collapse
|
3
|
Sharma H, Chang KA, Hulme J, An SSA. Mammalian Models in Alzheimer's Research: An Update. Cells 2023; 12:2459. [PMID: 37887303 PMCID: PMC10605533 DOI: 10.3390/cells12202459] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023] Open
Abstract
A form of dementia distinct from healthy cognitive aging, Alzheimer's disease (AD) is a complex multi-stage disease that currently afflicts over 50 million people worldwide. Unfortunately, previous therapeutic strategies developed from murine models emulating different aspects of AD pathogenesis were limited. Consequently, researchers are now developing models that express several aspects of pathogenesis that better reflect the clinical situation in humans. As such, this review seeks to provide insight regarding current applications of mammalian models in AD research by addressing recent developments and characterizations of prominent transgenic models and their contributions to pathogenesis as well as discuss the advantages, limitations, and application of emerging models that better capture genetic heterogeneity and mixed pathologies observed in the clinical situation.
Collapse
Affiliation(s)
- Himadri Sharma
- Department of Bionano Technology, Gachon Bionano Research Institute, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 461-701, Gyeonggi-do, Republic of Korea
| | - Keun-A Chang
- Neuroscience Research Institute, Gachon University, Incheon 21565, Republic of Korea
| | - John Hulme
- Department of Bionano Technology, Gachon Bionano Research Institute, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 461-701, Gyeonggi-do, Republic of Korea
| | - Seong Soo A. An
- Department of Bionano Technology, Gachon Bionano Research Institute, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 461-701, Gyeonggi-do, Republic of Korea
| |
Collapse
|
4
|
Sanada Y, Ikuta Y, Ding C, Shinohara M, Yimiti D, Ishitobi H, Nagira K, Lee M, Akimoto T, Shibata S, Ishikawa M, Nakasa T, Matsubara K, Lotz MK, Adachi N, Miyaki S. Senescence-accelerated mice prone 8 (SAMP8) in male as a spontaneous osteoarthritis model. Arthritis Res Ther 2022; 24:235. [PMID: 36258202 PMCID: PMC9578281 DOI: 10.1186/s13075-022-02916-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 09/24/2022] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Animal models of spontaneous osteoarthritis (OA) are sparse and not well characterized. The purpose of the present study is to examine OA-related changes and mechanisms in senescence-accelerated mouse prone 8 (SAMP8) that displays a phenotype of accelerated aging. METHODS: Knees of male SAMP8 and SAM-resistant 1 (SAMR1) mice as control from 6 to 33 weeks of age were evaluated by histological grading systems for joint tissues (cartilage, meniscus, synovium, and subchondral bone), and µCT analysis. Gene expression patterns in articular cartilage were analyzed by real-time PCR. Immunohistochemistry was performed for OA-related factors, senescence markers, and apoptosis. RESULTS Starting at 14 weeks of age, SAMP8 exhibited mild OA-like changes such as proteoglycan loss and cartilage fibrillation. From 18 to 33 weeks of age, SAMP8 progressed to partial or full-thickness defects with exposure of subchondral bone on the medial tibia and exhibited synovitis. Histological scoring indicated significantly more severe OA in SAMP8 compared with SAMR1 from 14 weeks [median (interquartile range): SAMR1: 0.89 (0.56-1.81) vs SAMP8: 1.78 (1.35-4.62)] to 33 weeks of age [SAMR1: 1.67 (1.61-1.04) vs SAMP8: 13.03 (12.26-13.57)]. Subchondral bone sclerosis in the medial tibia, bone mineral density (BMD) loss of femoral metaphysis, and meniscus degeneration occurred much earlier than the onset of cartilage degeneration in SAMP8 at 14 weeks of age. CONCLUSIONS SAMP8 are a spontaneous OA model that is useful for investigating the pathogenesis of primary OA and evaluating therapeutic interventions.
Collapse
Affiliation(s)
- Yohei Sanada
- Medical Center for Translational and Clinical Research, Hiroshima University Hospital, 1-2-3 Kasumi Minami-ku, Hiroshima, 734-8551, Japan
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yasunari Ikuta
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Chenyang Ding
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Masahiro Shinohara
- Department of Rehabilitation for the Movement Functions, National Rehabilitation Center for Persons With Disabilities, Saitama, Japan
| | - Dilimulati Yimiti
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hiroyuki Ishitobi
- Medical Center for Translational and Clinical Research, Hiroshima University Hospital, 1-2-3 Kasumi Minami-ku, Hiroshima, 734-8551, Japan
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Keita Nagira
- Department of Orthopaedic Surgery, Tottori University, Tottori, Japan
| | - Minjung Lee
- Faculty of Sport Sciences, Waseda University, Saitama, Japan
| | | | - Sachi Shibata
- Department of Human Life Science Education, Graduate School of Education, Hiroshima University, Higashi-Hiroshima, Japan
| | - Masakazu Ishikawa
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Tomoyuki Nakasa
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kiminori Matsubara
- Department of Human Life Science Education, Graduate School of Education, Hiroshima University, Higashi-Hiroshima, Japan
| | - Martin K Lotz
- Department of Molecular Medicine, Scripps Research, La Jolla, San Diego, CA, USA
| | - Nobuo Adachi
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shigeru Miyaki
- Medical Center for Translational and Clinical Research, Hiroshima University Hospital, 1-2-3 Kasumi Minami-ku, Hiroshima, 734-8551, Japan.
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.
| |
Collapse
|
5
|
Withaar C, Lam CSP, Schiattarella GG, de Boer RA, Meems LMG. Heart failure with preserved ejection fraction in humans and mice: embracing clinical complexity in mouse models. Eur Heart J 2021; 42:4420-4430. [PMID: 34414416 PMCID: PMC8599003 DOI: 10.1093/eurheartj/ehab389] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/15/2021] [Accepted: 06/02/2021] [Indexed: 02/06/2023] Open
Abstract
Heart failure (HF) with preserved ejection fraction (HFpEF) is a multifactorial disease accounting for a large and increasing proportion of all clinical HF presentations. As a clinical syndrome, HFpEF is characterized by typical signs and symptoms of HF, a distinct cardiac phenotype and raised natriuretic peptides. Non-cardiac comorbidities frequently co-exist and contribute to the pathophysiology of HFpEF. To date, no therapy has proven to improve outcomes in HFpEF, with drug development hampered, at least partly, by lack of consensus on appropriate standards for pre-clinical HFpEF models. Recently, two clinical algorithms (HFA-PEFF and H2FPEF scores) have been developed to improve and standardize the diagnosis of HFpEF. In this review, we evaluate the translational utility of HFpEF mouse models in the context of these HFpEF scores. We systematically recorded evidence of symptoms and signs of HF or clinical HFpEF features and included several cardiac and extra-cardiac parameters as well as age and sex for each HFpEF mouse model. We found that most of the pre-clinical HFpEF models do not meet the HFpEF clinical criteria, although some multifactorial models resemble human HFpEF to a reasonable extent. We therefore conclude that to optimize the translational value of mouse models to human HFpEF, a novel approach for the development of pre-clinical HFpEF models is needed, taking into account the complex HFpEF pathophysiology in humans.
Collapse
Affiliation(s)
- Coenraad Withaar
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands
| | - Carolyn S P Lam
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands.,National University Heart Centre, Singapore and Duke-National University of Singapore
| | - Gabriele G Schiattarella
- Translational Approaches in Heart Failure and Cardiometabolic Disease, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.,Department of Cardiology, Center for Cardiovascular Research (CCR), Charité - Universitätsmedizin Berlin, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany.,Division of Cardiology, Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy.,Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Rudolf A de Boer
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands
| | - Laura M G Meems
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands
| |
Collapse
|
6
|
Saeki N, Inui-Yamamoto C, Kuraki M, Itoh S, Inubushi T, Okamoto M, Akiyama S, Wakisaka S, Abe M. Senescence-accelerated mouse prone 8 (SAMP8) mice exhibit reduced entoconid in the lower second molar. Arch Oral Biol 2021; 128:105172. [PMID: 34058725 DOI: 10.1016/j.archoralbio.2021.105172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/18/2021] [Accepted: 05/24/2021] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The position and size of the major cusps in mammalian molars are arranged in a characteristic pattern that depends on taxonomy. In humans, the cusp which locates distally within each molar is smaller than the mesially located cusp, which is referred to as "distal reduction". Although this concept has been well-recognized, it is still unclear how this reduction occurs. Current study examined whether senescence-accelerating mouse prone 8 (SAMP8) mice could be a possible animal model for studying how the mammalian molar cusp size is determined. DESIGN SAMP8 mice were compared with parental control (SAMR1) mice. Microcomputed tomography images of young and aged mice were captured to observe molar cusp morphologies. Cusp height from cement-enamel junction and mesio-distal length of molars were measured. The statistical comparison of the measurements was performed by Mann-Whitney U test. RESULTS SAMP8 mice showed reduced development of the disto-lingual cusp (entoconid) of lower second molar when compared with SAMR1 mice. The enamel thickness and structure was disturbed at entoconid, and aged SAMP8 mice displayed severe wear of the entoconid in lower second molar. These phenotypes were observed on both sides of the lower second molar. CONCLUSIONS In addition to the general senescence phenotype observed in SAMP8 mice, this strain may genetically possess molar cusp phenotypes which is determined prenatally. Further, SAMP8 mice would be a potential model strain to study the genetic causes of the distal reduction of molar cusp size.
Collapse
Affiliation(s)
- Naoya Saeki
- Department of Oral Anatomy and Developmental Biology, Osaka University Graduate School of Dentistry, Yamada-oka 1-8, Suita, Osaka, Japan; Division of Special Care Dentistry, Osaka University Dental Hospital, Osaka, Japan
| | - Chizuko Inui-Yamamoto
- Department of Oral Anatomy and Developmental Biology, Osaka University Graduate School of Dentistry, Yamada-oka 1-8, Suita, Osaka, Japan
| | - Moe Kuraki
- Department of Oral Anatomy and Developmental Biology, Osaka University Graduate School of Dentistry, Yamada-oka 1-8, Suita, Osaka, Japan
| | - Shousaku Itoh
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Toshihiro Inubushi
- Department of Orthodontics and Dentofacial Orthopedics, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Motoki Okamoto
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Shigehisa Akiyama
- Division of Special Care Dentistry, Osaka University Dental Hospital, Osaka, Japan
| | - Satoshi Wakisaka
- Department of Oral Anatomy and Developmental Biology, Osaka University Graduate School of Dentistry, Yamada-oka 1-8, Suita, Osaka, Japan
| | - Makoto Abe
- Department of Oral Anatomy and Developmental Biology, Osaka University Graduate School of Dentistry, Yamada-oka 1-8, Suita, Osaka, Japan.
| |
Collapse
|
7
|
Protection of MCC950 against Alzheimer's disease via inhibiting neuronal pyroptosis in SAMP8 mice. Exp Brain Res 2020; 238:2603-2614. [DOI: 10.1007/s00221-020-05916-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 08/31/2020] [Indexed: 12/13/2022]
|
8
|
Maes T, Mascaró C, Rotllant D, Lufino MMP, Estiarte A, Guibourt N, Cavalcanti F, Griñan-Ferré C, Pallàs M, Nadal R, Armario A, Ferrer I, Ortega A, Valls N, Fyfe M, Martinell M, Castro Palomino JC, Buesa Arjol C. Modulation of KDM1A with vafidemstat rescues memory deficit and behavioral alterations. PLoS One 2020; 15:e0233468. [PMID: 32469975 PMCID: PMC7259601 DOI: 10.1371/journal.pone.0233468] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 05/05/2020] [Indexed: 12/15/2022] Open
Abstract
Transcription disequilibria are characteristic of many neurodegenerative diseases. The activity-evoked transcription of immediate early genes (IEGs), important for neuronal plasticity, memory and behavior, is altered in CNS diseases and governed by epigenetic modulation. KDM1A, a histone 3 lysine 4 demethylase that forms part of transcription regulation complexes, has been implicated in the control of IEG transcription. Here we report the development of vafidemstat (ORY-2001), a brain penetrant inhibitor of KDM1A and MAOB. ORY-2001 efficiently inhibits brain KDM1A at doses suitable for long term treatment, and corrects memory deficit as assessed in the novel object recognition testing in the Senescence Accelerated Mouse Prone 8 (SAMP8) model for accelerated aging and Alzheimer's disease. Comparison with a selective KDM1A or MAOB inhibitor reveals that KDM1A inhibition is key for efficacy. ORY-2001 further corrects behavior alterations including aggression and social interaction deficits in SAMP8 mice and social avoidance in the rat rearing isolation model. ORY-2001 increases the responsiveness of IEGs, induces genes required for cognitive function and reduces a neuroinflammatory signature in SAMP8 mice. Multiple genes modulated by ORY-2001 are differentially expressed in Late Onset Alzheimer's Disease. Most strikingly, the amplifier of inflammation S100A9 is highly expressed in LOAD and in the hippocampus of SAMP8 mice, and down-regulated by ORY-2001. ORY-2001 is currently in multiple Phase IIa studies.
Collapse
Affiliation(s)
- Tamara Maes
- Oryzon Genomics, S.A., Cornellà de Llobregat, Spain
| | | | | | | | | | | | | | - Christian Griñan-Ferré
- Faculty of Pharmacy and Food Sciences, Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Mercè Pallàs
- Faculty of Pharmacy and Food Sciences, Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Roser Nadal
- Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Antonio Armario
- Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Isidro Ferrer
- Institut de Neuropatologia, Servei Anatomia Patologica, IDIBELL-Hospital Universitari de Bellvitge, L’Hospitalet de Llobregat, Spain
| | | | - Nuria Valls
- Oryzon Genomics, S.A., Cornellà de Llobregat, Spain
| | - Matthew Fyfe
- Oryzon Genomics, S.A., Cornellà de Llobregat, Spain
| | | | | | | |
Collapse
|
9
|
Skorski M, Bamunusinghe D, Liu Q, Shaffer E, Kozak CA. Distribution of endogenous gammaretroviruses and variants of the Fv1 restriction gene in individual mouse strains and strain subgroups. PLoS One 2019; 14:e0219576. [PMID: 31291374 PMCID: PMC6619830 DOI: 10.1371/journal.pone.0219576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 06/26/2019] [Indexed: 01/16/2023] Open
Abstract
Inbred laboratory mouse strains carry endogenous retroviruses (ERVs) classed as ecotropic, xenotropic or polytropic mouse leukemia viruses (E-, X- or P-MLVs). Some of these MLV ERVs produce infectious virus and/or contribute to the generation of intersubgroup recombinants. Analyses of selected mouse strains have linked the appearance of MLVs and virus-induced disease to the strain complement of MLV E-ERVs and to host genes that restrict MLVs, particularly Fv1. Here we screened inbred strain DNAs and genome assemblies to describe the distribution patterns of 45 MLV ERVs and Fv1 alleles in 58 classical inbred strains grouped in two ways: by common ancestry to describe ERV inheritance patterns, and by incidence of MLV-associated lymphomagenesis. Each strain carries a unique set of ERVs, and individual ERVs are present in 5–96% of the strains, often showing lineage-specific distributions. Two ERVs are alternatively present as full-length proviruses or solo long terminal repeats. High disease incidence strains carry the permissive Fv1n allele, tested strains have highly expressed E-ERVs and most have the Bxv1 X-ERV; these three features are not present together in any low-moderate disease strain. The P-ERVs previously implicated in P-MLV generation are not preferentially found in high leukemia strains, but the three Fv1 alleles that restrict inbred strain E-MLVs are found only in low-moderate leukemia strains. This dataset helps define the genetic basis of strain differences in spontaneous lymphomagenesis, describes the distribution of MLV ERVs in strains with shared ancestry, and should help annotate sequenced strain genomes for these insertionally polymorphic and functionally important proviruses.
Collapse
Affiliation(s)
- Matthew Skorski
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Devinka Bamunusinghe
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Qingping Liu
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Esther Shaffer
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Christine A. Kozak
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
10
|
Wild-type and SAMP8 mice show age-dependent changes in distinct stem cell compartments of the interfollicular epidermis. PLoS One 2019; 14:e0215908. [PMID: 31091266 PMCID: PMC6519801 DOI: 10.1371/journal.pone.0215908] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 04/10/2019] [Indexed: 11/19/2022] Open
Abstract
Delayed wound healing and reduced barrier function with an increased risk of cancer are characteristics of aged skin and one possible mechanism is misregulation or dysfunction of epidermal stem cells during aging. Recent studies have identified heterogeneous stem cell populations within the mouse interfollicular epidermis that are defined by territorial distribution and cell division frequency; however, it is unknown whether the individual stem cell populations undergo distinct aging processes. Here we provide comprehensive characterization of age-related changes in the mouse epidermis within the specific territories of slow-cycling and fast-dividing stem cells using old wild-type, senescence-accelerated mouse prone 1 (SAMP1) and SAMP8 mice. During aging, the epidermis exhibits structural changes such as irregular micro-undulations and overall thinning of the tissue. We also find that, in the old epidermis, proliferation is preferentially decreased in the region where fast-dividing stem cells reside whereas the lineage differentiation marker appears to be more affected in the slow-cycling stem cell region. Furthermore, SAMP8, but not SAMP1, exhibits precocious aging similar to that of aged wild-type mice, suggesting a potential use of this model for aging study of the epidermis and its stem cells. Taken together, our study reveals distinct aging processes governing the two epidermal stem cell populations and suggests a potential mechanism in differential responses of compartmentalized stem cells and their niches to aging.
Collapse
|
11
|
Mori M, Higuchi K. [The senescence-accelerated mouse as a model for geriatrics and aging biology]. Nihon Yakurigaku Zasshi 2019; 153:179-185. [PMID: 30971658 DOI: 10.1254/fpj.153.179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Rapid expansion of aged population is predicted worldwide. To cope with problems expected from this situation and extend the period of active and healthy life of people as much as possible, it is important to elucidate not only the biological mechanisms of "aging", but also the etiology of various "age-related diseases". To attain this goal, extensive studies using excellent animal models are indispensable. Senescence-accelerated mouse (SAM) is a series of inbred mouse strains that includes SAMP1, SAMP6, SAMP8, SAMP10, and SAMR1. SAMP strains exhibit accelerated senescence and short lifespan. In addition, each strain shows specific age-related disease phenotypes which are similar to symptoms observed in humans, such as senile amyloidosis (SAMP1), senile osteoporosis (SAMP6), and age-dependent deficits in learning and memory (SAMP8), making SAM mice useful for an aging research. In this review, we introduce the characteristics and application of SAM in geriatrics and aging biology.
Collapse
Affiliation(s)
- Masayuki Mori
- Department of Advanced Medicine for Health Promotion, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University
| | - Keiichi Higuchi
- Department of Biological Sciences for Intractable Neurological Diseases, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University
| |
Collapse
|
12
|
Sasaki H, Hamatani T, Kamijo S, Iwai M, Kobanawa M, Ogawa S, Miyado K, Tanaka M. Impact of Oxidative Stress on Age-Associated Decline in Oocyte Developmental Competence. Front Endocrinol (Lausanne) 2019; 10:811. [PMID: 31824426 PMCID: PMC6882737 DOI: 10.3389/fendo.2019.00811] [Citation(s) in RCA: 160] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 11/06/2019] [Indexed: 12/20/2022] Open
Abstract
Reproductive capacity in women starts to decline beyond their mid-30s and pregnancies in older women result in higher rates of miscarriage with aneuploidy. Age-related decline in fertility is strongly attributed to ovarian aging, diminished ovarian reserves, and decreased developmental competence of oocytes. In this review, we discuss the underlying mechanisms of age-related decline in oocyte quality, focusing on oxidative stress (OS) in oocytes. The primary cause is the accumulation of spontaneous damage to the mitochondria arising from increased reactive oxygen species (ROS) in oocytes, generated by the mitochondria themselves during daily biological metabolism. Mitochondrial dysfunction reduces ATP synthesis and influences the meiotic spindle assembly responsible for chromosomal segregation. Moreover, reproductively aged oocytes produce a decline in the fidelity of the protective mechanisms against ROS, namely the ROS-scavenging metabolism, repair of ROS-damaged DNA, and the proteasome and autophagy system for ROS-damaged proteins. Accordingly, increased ROS and increased vulnerability of oocytes to ROS lead to spindle instability, chromosomal abnormalities, telomere shortening, and reduced developmental competence of aged oocytes.
Collapse
Affiliation(s)
- Hiroyuki Sasaki
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Toshio Hamatani
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
- *Correspondence: Toshio Hamatani
| | - Shintaro Kamijo
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Maki Iwai
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Masato Kobanawa
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Seiji Ogawa
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Kenji Miyado
- National Center for Child Health and Development (NCCHD), Tokyo, Japan
| | - Mamoru Tanaka
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
13
|
Almanza D, Gharaee-Kermani M, Zhilin-Roth A, Rodriguez-Nieves JA, Colaneri C, Riley T, Macoska JA. Nonalcoholic Fatty Liver Disease Demonstrates a Pre-fibrotic and Premalignant Molecular Signature. Dig Dis Sci 2019; 64:1257-1269. [PMID: 30519850 PMCID: PMC6512804 DOI: 10.1007/s10620-018-5398-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 11/27/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Metabolic syndrome contributing to nonalcoholic fatty liver disease (NAFLD) can lead to hepatic dysfunction, steatohepatitis, cirrhosis, and hepatocellular carcinoma. AIMS In this study, we tested whether diet-induced fatty liver in a mouse model physiologically mimicked human NAFLD, and whether transcriptional alterations in mouse fatty liver signified risk for the development of hepatitis, cirrhosis, and/or hepatocellular carcinoma. METHODS SAMP6 strain mice were fed a low-fat diet or high-fat diet (HFD) for 6 months. Mouse livers were isolated and subjected to histology, immunohistochemistry, and whole transcriptome RNA sequencing. Sequences were aligned to the mouse reference genome, and gene expression signatures were analyzed using bioinformatics tools including Cufflinks, Pathview, Cytoscape, ClueGO, and GOstats. RESULTS Consistent with NAFLD, livers from HFD-fed mice demonstrated steatosis, high levels of inflammation, an up-regulation of genes encoding proteins associated with the complement pathway and immune responses, and down-regulation of those associated with metabolic processes. These livers also showed an up-regulation of genes associated with fibrosis and malignant transformation but no histological evidence of either pathobiology or DNA damage. CONCLUSIONS HFD-fed mice exhibited NAFLD that had incompletely transitioned from fatty liver to NASH. Importantly, bioinformatics approaches identified pre-fibrotic and premalignant signatures, suggesting that the pathogenesis of both fibrosis and cancer may initiate in fatty livers well before associated histological changes are evident.
Collapse
Affiliation(s)
- Diego Almanza
- 0000 0004 0386 3207grid.266685.9Department of Biology, University of Massachusetts Boston, Boston, USA ,0000 0004 0386 3207grid.266685.9Center for Personalized Cancer Therapy, The University of Massachusetts Boston, Room 4601, Integrated Sciences Complex, 100 Morrissey Blvd., Boston, MA 02125 USA
| | - Mehrnaz Gharaee-Kermani
- 0000 0004 0386 3207grid.266685.9Department of Biology, University of Massachusetts Boston, Boston, USA ,0000 0004 0386 3207grid.266685.9Center for Personalized Cancer Therapy, The University of Massachusetts Boston, Room 4601, Integrated Sciences Complex, 100 Morrissey Blvd., Boston, MA 02125 USA
| | - Alisa Zhilin-Roth
- 0000 0004 0386 3207grid.266685.9Department of Biology, University of Massachusetts Boston, Boston, USA ,0000 0004 0386 3207grid.266685.9Center for Personalized Cancer Therapy, The University of Massachusetts Boston, Room 4601, Integrated Sciences Complex, 100 Morrissey Blvd., Boston, MA 02125 USA
| | - Jose A. Rodriguez-Nieves
- 0000 0004 0386 3207grid.266685.9Center for Personalized Cancer Therapy, The University of Massachusetts Boston, Room 4601, Integrated Sciences Complex, 100 Morrissey Blvd., Boston, MA 02125 USA
| | - Cory Colaneri
- 0000 0004 0386 3207grid.266685.9Department of Biology, University of Massachusetts Boston, Boston, USA
| | - Todd Riley
- 0000 0004 0386 3207grid.266685.9Department of Biology, University of Massachusetts Boston, Boston, USA ,0000 0004 0386 3207grid.266685.9Center for Personalized Cancer Therapy, The University of Massachusetts Boston, Room 4601, Integrated Sciences Complex, 100 Morrissey Blvd., Boston, MA 02125 USA
| | - Jill A. Macoska
- 0000 0004 0386 3207grid.266685.9Department of Biology, University of Massachusetts Boston, Boston, USA ,0000 0004 0386 3207grid.266685.9Center for Personalized Cancer Therapy, The University of Massachusetts Boston, Room 4601, Integrated Sciences Complex, 100 Morrissey Blvd., Boston, MA 02125 USA
| |
Collapse
|
14
|
Yanai S, Ito H, Endo S. Long-term cilostazol administration prevents age-related decline of hippocampus-dependent memory in mice. Neuropharmacology 2017; 129:57-68. [PMID: 29122629 DOI: 10.1016/j.neuropharm.2017.11.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 10/30/2017] [Accepted: 11/04/2017] [Indexed: 12/17/2022]
Abstract
Phosphodiesterases (PDEs) are enzymes that hydrolyze and inactivate 3', 5'-cyclic adenosine monophosphate (cAMP) and/or 3', 5'-cyclic guanosine monophosphate (cGMP). The regulation of intracellular signaling pathways mediated by cyclic nucleotides is imperative to synaptic plasticity and memory in animals. Because PDEs play an important role in this regulation, PDE inhibitors are considered as candidate compounds for treating cognitive and memory disorders. In the present study, we tested whether cilostazol, a selective PDE3 inhibitor, prevents the cognitive deterioration that occurs during the course of normal aging in mice. Ten months of cilostazol administration (1.5%) in 13-month-old mice improved spatial memory when tested at 23 months of age. First, it prevented the decline in the ability of these aged mice to recognize a change in an object's location in the object recognition task. Second, spatial memory of these cilostazol-treated aged mice in the Morris water maze was comparable to that of untreated middle-aged mice (13 months old). Cilostazol administration had no effect on the emotional states and physical ability of aged mice. Thus, long-term cilostazol administration prevented hippocampus-dependent memory decline in aged mice, allowing them to achieve a level of cognitive performance similar to middle-aged mice and without negative behavioral side effects. Considering its well-established safety in other medical contexts, cilostazol may be a potential therapeutic candidate drug for staving off cognitive decline in the aging human population.
Collapse
Affiliation(s)
- Shuichi Yanai
- Aging Neuroscience Research Team, Tokyo Metropolitan Institute of Gerontology, Itabashi, Tokyo 173-0015, Japan
| | - Hideki Ito
- Department of CNS Research, Otsuka Pharmaceutical Co., Ltd., Tokushima, 771-0192, Japan
| | - Shogo Endo
- Aging Neuroscience Research Team, Tokyo Metropolitan Institute of Gerontology, Itabashi, Tokyo 173-0015, Japan.
| |
Collapse
|
15
|
Senescent cells expose and secrete an oxidized form of membrane-bound vimentin as revealed by a natural polyreactive antibody. Proc Natl Acad Sci U S A 2017; 114:E1668-E1677. [PMID: 28193858 DOI: 10.1073/pnas.1614661114] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Studying the phenomenon of cellular senescence has been hindered by the lack of senescence-specific markers. As such, detection of proteins informally associated with senescence accompanies the use of senescence-associated β-galactosidase as a collection of semiselective markers to monitor the presence of senescent cells. To identify novel biomarkers of senescence, we immunized BALB/c mice with senescent mouse lung fibroblasts and screened for antibodies that recognized senescence-associated cell-surface antigens by FACS analysis and a newly developed cell-based ELISA. The majority of antibodies that we isolated, cloned, and sequenced belonged to the IgM isotype of the innate immune system. In-depth characterization of one of these monoclonal, polyreactive natural antibodies, the IgM clone 9H4, revealed its ability to recognize the intermediate filament vimentin. By using 9H4, we observed that senescent primary human fibroblasts express vimentin on their cell surface, and MS analysis revealed a posttranslational modification on cysteine 328 (C328) by the oxidative adduct malondialdehyde (MDA). Moreover, elevated levels of secreted MDA-modified vimentin were detected in the plasma of aged senescence-accelerated mouse prone 8 mice, which are known to have deregulated reactive oxygen species metabolism and accelerated aging. Based on these findings, we hypothesize that humoral innate immunity may recognize senescent cells by the presence of membrane-bound MDA-vimentin, presumably as part of a senescence eradication mechanism that may become impaired with age and result in senescent cell accumulation.
Collapse
|
16
|
Yanai S, Toyohara J, Ishiwata K, Ito H, Endo S. Long-term cilostazol administration ameliorates memory decline in senescence-accelerated mouse prone 8 (SAMP8) through a dual effect on cAMP and blood-brain barrier. Neuropharmacology 2016; 116:247-259. [PMID: 27979612 DOI: 10.1016/j.neuropharm.2016.12.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 11/18/2016] [Accepted: 12/09/2016] [Indexed: 12/12/2022]
Abstract
Phosphodiesterases (PDEs), which hydrolyze and inactivate 3', 5'-cyclic adenosine monophosphate (cAMP) and 3', 5'-cyclic guanosine monophosphate (cGMP), play an important role in synaptic plasticity that underlies memory. Recently, several PDE inhibitors were assessed for their possible therapeutic efficacy in treating cognitive disorders. Here, we examined how cilostazol, a selective PDE3 inhibitor, affects brain functions in senescence-accelerated mouse prone 8 (SAMP8), an animal model of age-related cognitive impairment. Long-term administration of cilostazol restored the impaired context-dependent conditioned fear memory of SAMP8 to match that in normal aging control substrain SAMR1. Cilostazol also increased the number of cells containing phosphorylated cAMP-responsive element binding protein (CREB), a downstream component of the cAMP pathway. Finally, cilostazol improves blood-brain barrier (BBB) integrity, demonstrated by reduced extravasation of 2-deoxy-2-18F-fluoro-d-glucose and Evans Blue dye in the brains of SAMP8. This improvement in BBB integrity was associated with an increased amount of zona occludens protein 1 (ZO-1) and occludin proteins, components of tight junctions integral to the BBB. The results suggest that long-term administration of cilostazol exerts its beneficial effects on age-related cognitive impairment through a dual mechanism: by enhancing the cAMP system in the brain and by maintaining or improving BBB integrity.
Collapse
Affiliation(s)
- Shuichi Yanai
- Aging Neuroscience Research Team, Tokyo Metropolitan Institute of Gerontology, Itabashi, Tokyo 173-0015, Japan
| | - Jun Toyohara
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, Itabashi, Tokyo 173-0015, Japan
| | - Kiichi Ishiwata
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, Itabashi, Tokyo 173-0015, Japan; Institute of Cyclotron and Drug Discovery Research, Southern TOHOKU Research Institute for Neuroscience, Koriyama, Fukushima 963-8052, Japan; Department of Biofunctional Imaging, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Hideki Ito
- Department of CNS Research, Otsuka Pharmaceutical Co., Ltd., Tokushima 771-0192, Japan
| | - Shogo Endo
- Aging Neuroscience Research Team, Tokyo Metropolitan Institute of Gerontology, Itabashi, Tokyo 173-0015, Japan.
| |
Collapse
|
17
|
Yuan L, Yi J, Lin Q, Xu H, Deng X, Xiong W, Xiao J, Jiang C, Yuan X, Chen Y, Deng H. Identification of a PRX variant in a Chinese family with congenital cataract by exome sequencing. QJM 2016; 109:731-735. [PMID: 27081207 DOI: 10.1093/qjmed/hcw058] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 03/16/2016] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Congenital cataract is a common cause of childhood vision impairment or blindness with genetic and clinical heterogeneity. The aim of this study was to identify the disease-associated gene in a Chinese family with congenital cataract. METHODS A four-generation Chinese family with three enrolled patients suffering from congenital cataract was studied. Detailed family history and clinical data of all the members were collected and recorded. Exome sequencing was applied in the proband to screen potential genetic variants, and then Sanger sequencing was used to verify the variant within the family. RESULTS A heterozygous variant, c.3673G > A (p.V1225M), in the periaxin gene (PRX) was identified in three patients and two asymptomatic individuals of the family. The variant was absent in the other three unaffected family members and in 3290 ethnically matched in-house controls from BGI-Shenzhen. CONCLUSIONS By utilizing both exome sequencing and Sanger sequencing, we identified a missense variant in the PRX gene that is possibly associated with disease in this family. Our finding may broaden the spectrum of genes associated with congenital cataract, and may provide insights into lens development, pathogenic mechanism, future clinical genetic diagnosis and therapy of congenital cataract.
Collapse
Affiliation(s)
- L Yuan
- From the Center for Experimental Medicine and Department of Neurology
| | - J Yi
- Department of Ophthalmology, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Q Lin
- BGI-Shenzhen, Shenzhen 518083, China
| | - H Xu
- From the Center for Experimental Medicine and Department of Neurology
| | - X Deng
- From the Center for Experimental Medicine and Department of Neurology
| | - W Xiong
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha 410008, China
| | - J Xiao
- BGI-Shenzhen, Shenzhen 518083, China
| | - C Jiang
- BGI-Shenzhen, Shenzhen 518083, China
| | - X Yuan
- From the Center for Experimental Medicine and Department of Neurology
| | - Y Chen
- Key Laboratory of Genetics and Birth Health of Hunan Province, Family Planning Institute of Hunan Province, Changsha 410126, China
| | - H Deng
- From the Center for Experimental Medicine and Department of Neurology
| |
Collapse
|
18
|
Early onset of behavioral alterations in senescence-accelerated mouse prone 8 (SAMP8). Behav Brain Res 2016; 308:187-95. [PMID: 27093926 DOI: 10.1016/j.bbr.2016.04.026] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 04/11/2016] [Accepted: 04/14/2016] [Indexed: 12/22/2022]
Abstract
Senescence-accelerated mouse (SAM) is inbred lines of mice originally developed from AKR/J mice. Among the six SAM prone (SAMP) substrains, 8- to 12-month-old SAMP8 have long been used as a model of age-related cognitive impairments. However, little is still known for younger SAMP8 mice. Here, we examined the phenotypical characteristics of 4-month-old SAMP8 using a battery of behavioral tests. Four-month-old SAMP8 mice failed to recognize spatially displaced object in an object recognition task and performed poorly in the probe test of the Morris water maze task compared to SAMR1, suggesting that SAMP8 have impaired spatial memory. In addition, young SAMP8 exhibited enhanced anxiety-like behavior in an open field test and showed depression-like behavior in the forced-swim test. Their circadian rhythm was also disrupted. These abnormal behaviors of young SAMP8 are similar to behavioral alterations also observed in aged mice. In summary, age-related behavioral alterations occur in SAMP8 as young as 4 months old.
Collapse
|
19
|
Rodriguez-Palacios A, Kodani T, Kaydo L, Pietropaoli D, Corridoni D, Howell S, Katz J, Xin W, Pizarro TT, Cominelli F. Stereomicroscopic 3D-pattern profiling of murine and human intestinal inflammation reveals unique structural phenotypes. Nat Commun 2015; 6:7577. [PMID: 26154811 PMCID: PMC4510646 DOI: 10.1038/ncomms8577] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 05/15/2015] [Indexed: 02/06/2023] Open
Abstract
Histology is fundamental to assess two-dimensional intestinal inflammation; however, inflammatory bowel diseases (IBDs) are often indistinguishable microscopically on the basis of mucosal biopsies. Here, we use stereomicroscopy (SM) to rapidly profile the entire intestinal topography and assess inflammation. We examine the mucosal surface of >700 mice (encompassing >16 strains and various IBD-models), create a profiling catalogue of 3D-stereomicroscopic abnormalities and demonstrate that mice with comparable histological scores display unique sub-clusters of 3D-structure-patterns of IBD pathology, which we call 3D-stereoenterotypes, and which are otherwise indiscernible histologically. We show that two ileal IBD-stereoenterotypes ('cobblestones' versus 'villous mini-aggregation') cluster separately within two distinct mouse lines of spontaneous ileitis, suggesting that host genetics drive unique and divergent inflammatory 3D-structural patterns in the gut. In humans, stereomicroscopy reveals 'liquefaction' lesions and hierarchical fistulous complexes, enriched with clostridia/segmented filamentous bacteria, running under healthy mucosa in Crohn's disease. We suggest that stereomicroscopic (3D-SMAPgut) profiling can be easily implemented and enable the comprehensive study of inflammatory 3D structures, genetics and flora in IBD.
Collapse
Affiliation(s)
- Alex Rodriguez-Palacios
- Division of Gastroenterology and Liver Disease, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - Tomohiro Kodani
- Division of Gastroenterology and Liver Disease, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - Lindsey Kaydo
- Division of Gastroenterology and Liver Disease, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - Davide Pietropaoli
- Division of Gastroenterology and Liver Disease, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - Daniele Corridoni
- Division of Gastroenterology and Liver Disease, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - Scott Howell
- Department of Visual Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - Jeffry Katz
- Division of Gastroenterology and Liver Disease, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
- Department of Digestive Health Institute, University Hospitals Case Medical Center, Cleveland, Ohio 44106, USA
| | - Wei Xin
- Department of Digestive Health Institute, University Hospitals Case Medical Center, Cleveland, Ohio 44106, USA
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - Theresa T. Pizarro
- Division of Gastroenterology and Liver Disease, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - Fabio Cominelli
- Division of Gastroenterology and Liver Disease, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
- Department of Digestive Health Institute, University Hospitals Case Medical Center, Cleveland, Ohio 44106, USA
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| |
Collapse
|
20
|
Soriano‐Cantón R, Perez‐Villalba A, Morante‐Redolat JM, Marqués‐Torrejón MÁ, Pallás M, Pérez‐Sánchez F, Fariñas I. Regulation of the p19(Arf)/p53 pathway by histone acetylation underlies neural stem cell behavior in senescence-prone SAMP8 mice. Aging Cell 2015; 14:453-62. [PMID: 25728253 PMCID: PMC4406674 DOI: 10.1111/acel.12328] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2015] [Indexed: 01/24/2023] Open
Abstract
Brain aging is associated with increased neurodegeneration and reduced neurogenesis. B1/neural stem cells (B1-NSCs) of the mouse subependymal zone (SEZ) support the ongoing production of olfactory bulb interneurons, but their neurogenic potential is progressively reduced as mice age. Although age-related changes in B1-NSCs may result from increased expression of tumor suppressor proteins, accumulation of DNA damage, metabolic alterations, and microenvironmental or systemic changes, the ultimate causes remain unclear. Senescence-accelerated-prone mice (SAMP8) relative to senescence-accelerated-resistant mice (SAMR1) exhibit signs of hastened senescence and can be used as a model for the study of aging. We have found that the B1-NSC compartment is transiently expanded in young SAMP8 relative to SAMR1 mice, resulting in disturbed cytoarchitecture of the SEZ, B1-NSC hyperproliferation, and higher yields of primary neurospheres. These unusual features are, however, accompanied by premature loss of B1-NSCs. Moreover, SAMP8 neurospheres lack self-renewal and enter p53-dependent senescence after only two passages. Interestingly, in vitro senescence of SAMP8 cells could be prevented by inhibition of histone acetyltransferases and mimicked in SAMR1 cells by inhibition of histone deacetylases (HDAC). Our data indicate that expression of the tumor suppressor p19, but not of p16, is increased in SAMP8 neurospheres, as well as in SAMR1 neurospheres upon HDAC inhibition, and suggest that the SAMP8 phenotype may, at least in part, be due to changes in chromatin status. Interestingly, acute HDAC inhibition in vivo resulted in changes in the SEZ of SAMR1 mice that resembled those found in young SAMP8 mice.
Collapse
Affiliation(s)
- Raúl Soriano‐Cantón
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED) Universidad de Valencia Burjassot 46100 Spain
- Departamento de Biología Celular Universidad de Valencia Burjassot 46100Spain
| | - Ana Perez‐Villalba
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED) Universidad de Valencia Burjassot 46100 Spain
- Departamento de Biología Celular Universidad de Valencia Burjassot 46100Spain
| | - José Manuel Morante‐Redolat
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED) Universidad de Valencia Burjassot 46100 Spain
- Departamento de Biología Celular Universidad de Valencia Burjassot 46100Spain
| | - María Ángeles Marqués‐Torrejón
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED) Universidad de Valencia Burjassot 46100 Spain
- Departamento de Biología Celular Universidad de Valencia Burjassot 46100Spain
| | - Mercé Pallás
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED) Universidad de Valencia Burjassot 46100 Spain
- Departamento de Farmacología y Química Terapéutica Instituto de Biomedicina de la Universidad de Barcelona Barcelona 08028Spain
| | - Francisco Pérez‐Sánchez
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED) Universidad de Valencia Burjassot 46100 Spain
- Departamento de Biología Celular Universidad de Valencia Burjassot 46100Spain
| | - Isabel Fariñas
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED) Universidad de Valencia Burjassot 46100 Spain
- Departamento de Biología Celular Universidad de Valencia Burjassot 46100Spain
| |
Collapse
|
21
|
Bernstein LR, Mackenzie ACL, Kraemer DC, Morley JE, Farr S, Chaffin CL, Merchenthaler I. Shortened estrous cycle length, increased FSH levels, FSH variance, oocyte spindle aberrations, and early declining fertility in aging senescence-accelerated mouse prone-8 (SAMP8) mice: concomitant characteristics of human midlife female reproductive aging. Endocrinology 2014; 155:2287-300. [PMID: 24654787 DOI: 10.1210/en.2013-2153] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Women experience a series of specific transitions in their reproductive function with age. Shortening of the menstrual cycle begins in the mid to late 30s and is regarded as the first sign of reproductive aging. Other early changes include elevation and increased variance of serum FSH levels, increased incidences of oocyte spindle aberrations and aneuploidy, and declining fertility. The goal of this study was to investigate whether the mouse strain senescence-accelerated mouse-prone-8 (SAMP8) is a suitable model for the study of these midlife reproductive aging characteristics. Midlife SAMP8 mice aged 6.5-7.85 months (midlife SAMP8) exhibited shortened estrous cycles compared with SAMP8 mice aged 2-3 months (young SAMP8, P = .0040). Midlife SAMP8 mice had high FSH levels compared with young SAMP8 mice, and mice with a single day of high FSH exhibited statistically elevated FSH throughout the cycle, ranging from 1.8- to 3.6-fold elevation on the days of proestrus, estrus, metestrus, and diestrus (P < .05). Midlife SAMP8 mice displayed more variance in FSH than young SAMP8 mice (P = .01). Midlife SAMP8 ovulated fewer oocytes (P = .0155). SAMP8 oocytes stained with fluorescently labeled antitubulin antibodies and scored in fluorescence microscopy exhibited increased incidence of meiotic spindle aberrations with age, from 2/126 (1.59%) in young SAMP8 to 38/139 (27.3%) in midlife SAMP8 (17.2-fold increase, P < .0001). Finally, SAMP8 exhibited declining fertility from 8.9 pups/litter in young SAMP8 to 3.5 pups/litter in midlife SAMP8 mice (P < .0001). The age at which these changes occur is younger than for most mouse strains, and their simultaneous occurrence within a single strain has not been described previously. We propose that SAMP8 mice are a model of midlife human female reproductive aging.
Collapse
Affiliation(s)
- Lori R Bernstein
- Pregmama, LLC (L.R.B.), Gaithersburg, Maryland 20886; Departments of Epidemiology and Public Health (L.R.B., A.C.L.M., I.M.) and Obstetrics, Gynecology, and Reproductive Sciences (C.L.C.), University of Maryland School of Medicine, Baltimore, Maryland 21201; Department of Gynecology and Obstetrics (L.R.B.), Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; Departments of Veterinary Integrative Biosciences (L.R.B.) and Veterinary Physiology and Pharmacology (D.C.K.), Texas A&M College of Veterinary Medicine, College Station, Texas 77843; Divisions of Geriatric Medicine and Endocrinology (J.E.M., S.F.), St. Louis University School of Medicine, St. Louis, Missouri 63103; and St. Louis Veterans Affairs Medical Center (S.F.), St. Louis, Missouri 63106
| | | | | | | | | | | | | |
Collapse
|
22
|
Niimi K, Takahashi E. Differences in saccharin preference and genetic alterations of the Tas1r3 gene among senescence-accelerated mouse strains and their parental AKR/J strain. Physiol Behav 2014; 130:108-12. [PMID: 24726396 DOI: 10.1016/j.physbeh.2014.04.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 03/14/2014] [Accepted: 04/02/2014] [Indexed: 10/25/2022]
Abstract
The senescence-accelerated mouse (SAM) is used as an animal model of senescence acceleration and age-associated disorders. SAM is derived from unexpected crosses between the AKR/J and unknown mouse strains. There are nine senescence-prone (SAMP) strains and three senescence-resistant (SAMR) strains. Although SAMP strains exhibit strain-specific and age-related pathological changes, the genes responsible for the pathologic changes in SAMP strains have not been comprehensively identified. In the present study, we evaluated sweet taste perception using the two-bottle test. We compared genotypes of the taste related gene, Tas1r3, using SAM strains and the parental AKR/J strain. The two-bottle test revealed that SAMR1 (R1), SAMP6 (P6), SAMP8 (P8), and SAMP10 (P10) mice were saccharin-preferring strains, whereas AKR/J did not prefer saccharin. All genotypes of the R1, P6, P8, and P10 strains at the polymorphic sites in Tas1r3, which is known to influence saccharin preference, were identical to those of C57BL6/J, a well-known saccharin-preferring strain, and were completely different from those of the parental AKR/J strain. These genetic alterations in SAM strains appear to arise from an unknown strain that is thought to have been crossed with AKR/J initially.
Collapse
Affiliation(s)
- Kimie Niimi
- Support Unit for Animal Resources Development, Research Resources Center, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| | - Eiki Takahashi
- Support Unit for Animal Resources Development, Research Resources Center, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
23
|
Stefanova NA, Kozhevnikova OS, Vitovtov AO, Maksimova KY, Logvinov SV, Rudnitskaya EA, Korbolina EE, Muraleva NA, Kolosova NG. Senescence-accelerated OXYS rats: a model of age-related cognitive decline with relevance to abnormalities in Alzheimer disease. Cell Cycle 2014; 13:898-909. [PMID: 24552807 DOI: 10.4161/cc.28255] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Senescence-accelerated OXYS rats are an experimental model of accelerated aging that was established from Wistar stock via selection for susceptibility to cataractogenic effects of a galactose-rich diet and via subsequent inbreeding of highly susceptible rats. Currently, we have the 102nd generation of OXYS rats with spontaneously developing cataract and accelerated senescence syndrome, which means early development of a phenotype similar to human geriatric disorders, including accelerated brain aging. In recent years, our group found strong evidence that OXYS rats are a promising model for studies of the mechanisms of brain aging and neurodegenerative processes similar to those seen in Alzheimer disease (AD). The manifestation of behavioral alterations and learning and memory deficits develop since the fourth week of age, i.e., simultaneously with first signs of neurodegeneration detectable on magnetic resonance imaging and under a light microscope. In addition, impaired long-term potentiation has been demonstrated in OXYS rats by the age of 3 months. With age, neurodegenerative changes in the brain of OXYS rats become amplified. We have shown that this deterioration happens against the background of overproduction of amyloid precursor protein (AβPP), accumulation of β-amyloid (Aβ), and hyperphosphorylation of the tau protein in the hippocampus and cortex. The development of AMD-like retinopathy in OXYS rats is also accompanied by increased accumulation of Aβ in the retina. These published data suggest that the OXYS strain may serve as a spontaneous rat model of AD-like pathology and could help to decipher the pathogenesis of AD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Nataliya G Kolosova
- Institute of Cytology and Genetics; Novosibirsk, Russia; Institute of Mitoengineering; Moscow, Russia
| |
Collapse
|
24
|
Eckert A, Nisbet R, Grimm A, Götz J. March separate, strike together--role of phosphorylated TAU in mitochondrial dysfunction in Alzheimer's disease. Biochim Biophys Acta Mol Basis Dis 2013; 1842:1258-66. [PMID: 24051203 DOI: 10.1016/j.bbadis.2013.08.013] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 08/08/2013] [Accepted: 08/12/2013] [Indexed: 12/17/2022]
Abstract
The energy demand and calcium buffering requirements of the brain are met by the high number of mitochondria in neurons and in these, especially at the synapses. Mitochondria are the major producer of reactive oxygen species (ROS); at the same time, they are damaged by ROS that are induced by abnormal protein aggregates that characterize human neurodegenerative diseases such as Alzheimer's disease (AD). Because synaptic mitochondria are long-lived, any damage exerted by these aggregates impacts severely on neuronal function. Here we review how increased TAU, a defining feature of AD and related tauopathies, impairs mitochondrial function by following the principle: 'March separate, strike together!' In the presence of amyloid-β, TAU's toxicity is augmented suggesting synergistic pathomechanisms. In order to restore mitochondrial functions in neurodegeneration as a means of therapeutic intervention it will be important to integrate the various aspects of dysfunction and get a handle on targeting distinct cell types and subcellular compartments.
Collapse
Affiliation(s)
- Anne Eckert
- Neurobiology Laboratory, Psychiatric University Clinics Basel, University of Basel, Switzerland
| | - Rebecca Nisbet
- Centre for Ageing Dementia Research (CADR), Queensland Brain Institute (QBI), The University of Queensland, Australia
| | - Amandine Grimm
- Neurobiology Laboratory, Psychiatric University Clinics Basel, University of Basel, Switzerland
| | - Jürgen Götz
- Centre for Ageing Dementia Research (CADR), Queensland Brain Institute (QBI), The University of Queensland, Australia.
| |
Collapse
|