1
|
Xue N, Sun M, Gai Z, Bai M, Sun J, Sai S, Zhang L. Genome-Wide Identification and Expression Analysis of Calmodulin (CaM) and Calmodulin-Like (CML) Genes in the Brown Algae Saccharina japonica. PLANTS (BASEL, SWITZERLAND) 2023; 12:1934. [PMID: 37653850 PMCID: PMC10222329 DOI: 10.3390/plants12101934] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/30/2023] [Accepted: 05/02/2023] [Indexed: 09/02/2023]
Abstract
Calmodulins (CaMs) and Calmodulin-like proteins (CMLs) are vital in plant growth, development, and stress responses. However, CaMs and CMLs have not been fully identified and characterized in brown algae, which has been evolving independently of the well-studied green plant lineage. In this study, whole-genome searches revealed one SjCaM and eight SjCMLs in Saccharina japonica, and one EsCaM and eleven EsCMLs in Ectocarpus sp. SjCaM and EsCaM encoded identical protein products and shared 88.59-89.93% amino acid identities with Arabidopsis thaliana AtCaMs, thereby indicating that brown algae CaMs retained a similar Ca2+ sensors function as in plants. The phylogenetic and gene structure analysis results showed that there was significant divergence in the gene sequences among brown algae CMLs. Furthermore, evolutionary analysis indicated that the function of brown alga CMLs was relatively conserved, which may be related to the fact that brown algae do not need to face complex environments like terrestrial plants. Regulatory elements prediction and the expression analysis revealed the probable functioning of SjCaM/CML genes in gametophyte development and the stress response in S. japonica. In addition, the SjCaM/SjCMLs interacting proteins and chemicals were preliminarily predicted, suggesting that SjCaM/SjCMLs might play putative roles in Ca2+/CaM-mediated growth and development processes and stimulus responses. Therefore, these results will facilitate our understanding of the evolution of brown algae CaMs/CMLs and the functional identification of SjCaM/SjCMLs.
Collapse
Affiliation(s)
- Nianchao Xue
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Minghui Sun
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Zihan Gai
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Meihan Bai
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Juan Sun
- National Engineering Science Research & Development Center of Algae and Sea Cucumbers of China, Shandong Technology Innovation Center of Algae and Sea Cucumber, Provincial Key Laboratory of Genetic Improvement & Efficient Culture of Marine Algae of Shandong, Shandong Oriental Ocean Sci-Tech Co., Ltd., Yantai 264003, China
| | - Shan Sai
- National Engineering Science Research & Development Center of Algae and Sea Cucumbers of China, Shandong Technology Innovation Center of Algae and Sea Cucumber, Provincial Key Laboratory of Genetic Improvement & Efficient Culture of Marine Algae of Shandong, Shandong Oriental Ocean Sci-Tech Co., Ltd., Yantai 264003, China
| | - Linan Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
2
|
Gueno J, Borg M, Bourdareau S, Cossard G, Godfroy O, Lipinska A, Tirichine L, Cock J, Coelho S. Chromatin landscape associated with sexual differentiation in a UV sex determination system. Nucleic Acids Res 2022; 50:3307-3322. [PMID: 35253891 PMCID: PMC8989524 DOI: 10.1093/nar/gkac145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 02/15/2022] [Accepted: 03/04/2022] [Indexed: 12/12/2022] Open
Abstract
In many eukaryotes, such as dioicous mosses and many algae, sex is determined by UV sex chromosomes and is expressed during the haploid phase of the life cycle. In these species, the male and female developmental programs are initiated by the presence of the U- or V-specific regions of the sex chromosomes but, as in XY and ZW systems, sexual differentiation is largely driven by autosomal sex-biased gene expression. The mechanisms underlying the regulation of sex-biased expression of genes during sexual differentiation remain elusive. Here, we investigated the extent and nature of epigenomic changes associated with UV sexual differentiation in the brown alga Ectocarpus, a model UV system. Six histone modifications were quantified in near-isogenic lines, leading to the identification of 16 chromatin signatures across the genome. Chromatin signatures correlated with levels of gene expression and histone PTMs changes in males versus females occurred preferentially at genes involved in sex-specific pathways. Despite the absence of chromosome scale dosage compensation and the fact that UV sex chromosomes recombine across most of their length, the chromatin landscape of these chromosomes was remarkably different to that of autosomes. Hotspots of evolutionary young genes in the pseudoautosomal regions appear to drive the exceptional chromatin features of UV sex chromosomes.
Collapse
Affiliation(s)
- Josselin Gueno
- Sorbonne Université, UPMC Univ Paris 06, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688 Roscoff, France
| | - Michael Borg
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen72076, Tübingen, Germany
| | - Simon Bourdareau
- Sorbonne Université, UPMC Univ Paris 06, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688 Roscoff, France
| | - Guillaume Cossard
- Sorbonne Université, UPMC Univ Paris 06, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688 Roscoff, France
| | - Olivier Godfroy
- Sorbonne Université, UPMC Univ Paris 06, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688 Roscoff, France
| | - Agnieszka Lipinska
- Sorbonne Université, UPMC Univ Paris 06, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688 Roscoff, France
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen72076, Tübingen, Germany
| | - Leila Tirichine
- Nantes Universite, CNRS, US2B, UMR 6286, F-44000, Nantes, France
| | - J Mark Cock
- Sorbonne Université, UPMC Univ Paris 06, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688 Roscoff, France
| | - Susana M Coelho
- Sorbonne Université, UPMC Univ Paris 06, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688 Roscoff, France
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen72076, Tübingen, Germany
| |
Collapse
|
3
|
Müller DG, Gaschet E, Godfroy O, Gueno J, Cossard G, Kunert M, Peters AF, Westermeier R, Boland W, Cock JM, Lipinska AP, Coelho SM. A partially sex-reversed giant kelp sheds light into the mechanisms of sexual differentiation in a UV sexual system. THE NEW PHYTOLOGIST 2021; 232:252-263. [PMID: 34166525 DOI: 10.1111/nph.17582] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
In UV sexual systems, sex is determined during the haploid phase of the life cycle and males have a V chromosome whereas females have a U chromosome. Previous work in the brown alga Ectocarpus revealed that the V chromosome has a dominant role in male sex determination and suggested that the female developmental programme may occur by 'default'. Here, we describe the identification of a genetically male giant kelp strain presenting phenotypic features typical of a female, despite lacking the U-specific region. The conversion to the female developmental programme is however incomplete, because gametes of this feminized male are unable to produce the sperm-attracting pheromone lamoxirene. We identify the transcriptomic patterns underlying the male and female specific developmental programmes, and show that the phenotypic feminization is associated with both feminization and de-masculinization of gene expression patterns. Importantly, the feminization phenotype was associated with dramatic downregulation of two V-specific genes including a candidate male-determining gene. Our results reveal the transcriptional changes associated with sexual differentiation in a UV system, and contribute to disentangling the role of sex-linked and autosomal gene expression in the initiation of sex-specific developmental programmes. Overall, the data presented here imply that the U-specific region is not required to initiate the female developmental programme, but is critical to produce fully functional eggs, arguing against the idea that female is the 'default' sex in this species.
Collapse
Affiliation(s)
- Dieter G Müller
- Fachbereich Biologie der Universität Konstanz, Konstanz, 78457, Germany
| | - Enora Gaschet
- UPMC Univ Paris 06, CNRS, Integrative Biology of Marine Models, Station Biologique de Roscoff, Sorbonne Université, Roscoff, CS 90074, F-29688, France
| | - Olivier Godfroy
- UPMC Univ Paris 06, CNRS, Integrative Biology of Marine Models, Station Biologique de Roscoff, Sorbonne Université, Roscoff, CS 90074, F-29688, France
| | - Josselin Gueno
- UPMC Univ Paris 06, CNRS, Integrative Biology of Marine Models, Station Biologique de Roscoff, Sorbonne Université, Roscoff, CS 90074, F-29688, France
| | - Guillaume Cossard
- UPMC Univ Paris 06, CNRS, Integrative Biology of Marine Models, Station Biologique de Roscoff, Sorbonne Université, Roscoff, CS 90074, F-29688, France
| | - Maritta Kunert
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Jena, 07745, Germany
| | | | - Renato Westermeier
- Instituto de Acuicultura, Universidad Austral de Chile, Casilla 1327, Puerto Montt, Chile
| | - Wilhelm Boland
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Jena, 07745, Germany
| | - J Mark Cock
- UPMC Univ Paris 06, CNRS, Integrative Biology of Marine Models, Station Biologique de Roscoff, Sorbonne Université, Roscoff, CS 90074, F-29688, France
| | - Agnieszka P Lipinska
- UPMC Univ Paris 06, CNRS, Integrative Biology of Marine Models, Station Biologique de Roscoff, Sorbonne Université, Roscoff, CS 90074, F-29688, France
- Max Plank Institute for Developmental Biology, Tübingen, Germany
| | - Susana M Coelho
- UPMC Univ Paris 06, CNRS, Integrative Biology of Marine Models, Station Biologique de Roscoff, Sorbonne Université, Roscoff, CS 90074, F-29688, France
- Max Plank Institute for Developmental Biology, Tübingen, Germany
| |
Collapse
|
4
|
Zhang J, Li Y, Luo S, Cao M, Zhang L, Li X. Differential gene expression patterns during gametophyte development provide insights into sex differentiation in the dioicous kelp Saccharina japonica. BMC PLANT BIOLOGY 2021; 21:335. [PMID: 34261451 PMCID: PMC8278619 DOI: 10.1186/s12870-021-03117-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND In brown algae, dioicy is the prevalent sexual system, and phenotypic differences between male and female gametophytes have been found in many dioicous species. Saccharina japonica show remarkable sexual dimorphism in gametophytes before gametogenesis. A higher level of phenotypic differentiation was also found in female and male gametes after gametogenesis. However, the patterns of differential gene expression throughout gametophyte development and how these changes might relate to sex-specific fitness at the gamete stage in S. japonica are not well known. RESULTS In this study, differences in gene expression between male and female gametophytes in different developmental stages were investigated using comparative transcriptome analysis. Among the 20,151 genes expressed in the haploid gametophyte generation, 37.53% were sex-biased. The abundance of sex-biased genes in mature gametophytes was much higher than that in immature gametophytes, and more male-biased than female-biased genes were observed in the mature stage. The predicted functions of most sex-biased genes were closely related to the sex-specific characteristics of gametes, including cell wall biosynthesis, sperm motility, and sperm and egg recognition. In addition, 51 genes were specifically expressed in males in both stages, showing great potential as candidate male sex-determining region (SDR) genes. CONCLUSIONS This study describes a thorough investigation into differential gene expression between male and female gametophytes in the dioicous kelp S. japonica. A large number of sex-biased genes in mature gametophytes may be associated with the divergence of phenotypic traits and physiological functions between female gametes (eggs) and male gametes (sperm) during sexual differentiation. These genes may mainly come from new sex-biased genes that have recently evolved in the S. japonica lineage. The duplication of sex-biased genes was detected, which may increase the number of sex-biased genes after gametogenesis in S. japonica to some extent. The excess of male-biased genes over female-biased genes in the mature stage may reflect the different levels of sexual selection across sexes. This study deepens our understanding of the regulation of sex development and differentiation in the dioicous kelp S. japonica.
Collapse
Affiliation(s)
- Jiaxun Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yan Li
- National Engineering Science Research & Development Center of Algae and Sea Cucumbers of China, Provincial Key Laboratory of Genetic Improvement & Efficient Culture of Marine Algae of Shandong, Shandong Oriental Ocean Sci-Tech Co., Ltd., Yantai, 264003, China
| | - Shiju Luo
- National Engineering Science Research & Development Center of Algae and Sea Cucumbers of China, Provincial Key Laboratory of Genetic Improvement & Efficient Culture of Marine Algae of Shandong, Shandong Oriental Ocean Sci-Tech Co., Ltd., Yantai, 264003, China
| | - Min Cao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Linan Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Xiaojie Li
- National Engineering Science Research & Development Center of Algae and Sea Cucumbers of China, Provincial Key Laboratory of Genetic Improvement & Efficient Culture of Marine Algae of Shandong, Shandong Oriental Ocean Sci-Tech Co., Ltd., Yantai, 264003, China
| |
Collapse
|
5
|
Coelho SM, Peters AF, Müller D, Cock JM. Ectocarpus: an evo-devo model for the brown algae. EvoDevo 2020; 11:19. [PMID: 32874530 PMCID: PMC7457493 DOI: 10.1186/s13227-020-00164-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 08/13/2020] [Indexed: 12/15/2022] Open
Abstract
Ectocarpus is a genus of filamentous, marine brown algae. Brown algae belong to the stramenopiles, a large supergroup of organisms that are only distantly related to animals, land plants and fungi. Brown algae are also one of only a small number of eukaryotic lineages that have evolved complex multicellularity. For many years, little information was available concerning the molecular mechanisms underlying multicellular development in the brown algae, but this situation has changed with the emergence of Ectocarpus as a model brown alga. Here we summarise some of the main questions that are being addressed and areas of study using Ectocarpus as a model organism and discuss how the genomic information, genetic tools and molecular approaches available for this organism are being employed to explore developmental questions in an evolutionary context.
Collapse
Affiliation(s)
- Susana M. Coelho
- CNRS, Sorbonne Université, UPMC University Paris 06, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, 29688 Roscoff, France
| | | | - Dieter Müller
- Fachbereich Biologie der Universitat Konstanz, 78457 Konstanz, Germany
| | - J. Mark Cock
- CNRS, Sorbonne Université, UPMC University Paris 06, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, 29688 Roscoff, France
| |
Collapse
|
6
|
Kinoshita-Terauchi N, Shiba K, Terauchi M, Romero F, Ramírez-Gómez HV, Yoshida M, Motomura T, Kawai H, Nishigaki T. High potassium seawater inhibits ascidian sperm chemotaxis, but does not affect the male gamete chemotaxis of a brown alga. ZYGOTE 2019; 27:225-231. [PMID: 31317854 DOI: 10.1017/s0967199419000224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Male gamete chemotaxis towards the female gamete is a general strategy to facilitate the sexual reproduction in many marine eukaryotes. Biochemical studies of chemoattractants for male gametes of brown algae have advanced in the 1970s and 1980s, but the molecular mechanism of male gamete responses to the attractants remains elusive. In sea urchin, a K+ channel called the tetraKCNG channel plays a fundamental role in sperm chemotaxis and inhibition of K+ efflux through this channel by high K+ seawater blocks almost all cell responses to the chemoattractant. This signalling mechanism could be conserved in marine invertebrates as tetraKCNG channels are conserved in the marine invertebrates that exhibit sperm chemotaxis. We confirmed that high K+ seawater also inhibited sperm chemotaxis in ascidian, Ciona intestinalis (robusta), in this study. Conversely, the male gamete chemotaxis towards the female gamete of a brown alga, Mutimo cylindricus, was preserved even in high K+ seawater. This result indicates that none of the K+ channels is essential for male gamete chemotaxis in the brown alga, suggesting that the signalling mechanism for chemotaxis in this brown alga is quite different from that of marine invertebrates. Correlated to this result, we revealed that the channels previously proposed as homologues of tetraKCNG in brown algae have a distinct domain composition from that of the tetraKCNG. Namely, one of them possesses two repeats of the six transmembrane segments (diKCNG) instead of four. The structural analysis suggests that diKCNG is a cyclic nucleotide-modulated and/or voltage-gated K+ channel.
Collapse
Affiliation(s)
- Nana Kinoshita-Terauchi
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda City, Shizuoka 415-0025, Japan
| | - Kogiku Shiba
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda City, Shizuoka 415-0025, Japan
- Misaki Marine Biological Station, Graduate School of Science, University of Tokyo, Miura, Kanagawa 238-0225, Japan
| | - Makoto Terauchi
- Kobe University Research Center for Inland Seas, Rokkodai, Kobe 657-8501, Japan
- Center for Genome Informatics, Joint Support-Center for Data Science Research, Research Organization of Information and Systems, Mishima, Shizuoka 411-8540, Japan
| | - Francisco Romero
- Institute of Biotechnology, National Autonomous University of Mexico (IBT-UNAM), Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Mor. 62210, Mexico
| | - Héctor Vincente Ramírez-Gómez
- Institute of Biotechnology, National Autonomous University of Mexico (IBT-UNAM), Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Mor. 62210, Mexico
| | - Manabu Yoshida
- Misaki Marine Biological Station, Graduate School of Science, University of Tokyo, Miura, Kanagawa 238-0225, Japan
| | - Taizo Motomura
- Muroran Marine Station, Field Science Center for Northern Biosphere, Hokkaido University, Muroran 051-0013, Hokkaido, Japan
| | - Hiroshi Kawai
- Kobe University Research Center for Inland Seas, Rokkodai, Kobe 657-8501, Japan
| | - Takuya Nishigaki
- Institute of Biotechnology, National Autonomous University of Mexico (IBT-UNAM), Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Mor. 62210, Mexico
| |
Collapse
|
7
|
Guillot L, Delage L, Viari A, Vandenbrouck Y, Com E, Ritter A, Lavigne R, Marie D, Peterlongo P, Potin P, Pineau C. Peptimapper: proteogenomics workflow for the expert annotation of eukaryotic genomes. BMC Genomics 2019; 20:56. [PMID: 30654742 PMCID: PMC6337836 DOI: 10.1186/s12864-019-5431-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 01/03/2019] [Indexed: 01/02/2023] Open
Abstract
Background Accurate structural annotation of genomes is still a challenge, despite the progress made over the past decade. The prediction of gene structure remains difficult, especially for eukaryotic species, and is often erroneous and incomplete. We used a proteogenomics strategy, taking advantage of the combination of proteomics datasets and bioinformatics tools, to identify novel protein coding-genes and splice isoforms, assign correct start sites, and validate predicted exons and genes. Results Our proteogenomics workflow, Peptimapper, was applied to the genome annotation of Ectocarpus sp., a key reference genome for both the brown algal lineage and stramenopiles. We generated proteomics data from various life cycle stages of Ectocarpus sp. strains and sub-cellular fractions using a shotgun approach. First, we directly generated peptide sequence tags (PSTs) from the proteomics data. Second, we mapped PSTs onto the translated genomic sequence. Closely located hits (i.e., PSTs locations on the genome) were then clustered to detect potential coding regions based on parameters optimized for the organism. Third, we evaluated each cluster and compared it to gene predictions from existing conventional genome annotation approaches. Finally, we integrated cluster locations into GFF files to use a genome viewer. We identified two potential novel genes, a ribosomal protein L22 and an aryl sulfotransferase and corrected the gene structure of a dihydrolipoamide acetyltransferase. We experimentally validated the results by RT-PCR and using transcriptomics data. Conclusions Peptimapper is a complementary tool for the expert annotation of genomes. It is suitable for any organism and is distributed through a Docker image available on two public bioinformatics docker repositories: Docker Hub and BioShaDock. This workflow is also accessible through the Galaxy framework and for use by non-computer scientists at https://galaxy.protim.eu. Data are available via ProteomeXchange under identifier PXD010618. Electronic supplementary material The online version of this article (10.1186/s12864-019-5431-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Laetitia Guillot
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35042, Rennes cedex, France.,Protim, Univ Rennes, F-35042, Rennes cedex, France
| | - Ludovic Delage
- Sorbonne Université, UPMC, CNRS, UMR 8227, Integrative Biology of Marine Models, Biological Station, CS 90074, F-29688, Roscoff, France
| | - Alain Viari
- INRIA Grenoble-Rhône-Alpes, F-38330, Montbonnot-Saint-Martin, France
| | - Yves Vandenbrouck
- University Grenoble Alpes, CEA, Inserm, BIG-BGE, 38000, Grenoble, France
| | - Emmanuelle Com
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35042, Rennes cedex, France.,Protim, Univ Rennes, F-35042, Rennes cedex, France
| | - Andrés Ritter
- Sorbonne Université, UPMC, CNRS, UMR 8227, Integrative Biology of Marine Models, Biological Station, CS 90074, F-29688, Roscoff, France.,Present address: Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Laboratory of Computational and Quantitative Biology, F-75005, Paris, France
| | - Régis Lavigne
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35042, Rennes cedex, France.,Protim, Univ Rennes, F-35042, Rennes cedex, France
| | - Dominique Marie
- Sorbonne Université, UPMC, CNRS, UMR 8227, Integrative Biology of Marine Models, Biological Station, CS 90074, F-29688, Roscoff, France
| | | | - Philippe Potin
- Sorbonne Université, UPMC, CNRS, UMR 8227, Integrative Biology of Marine Models, Biological Station, CS 90074, F-29688, Roscoff, France
| | - Charles Pineau
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35042, Rennes cedex, France. .,Protim, Univ Rennes, F-35042, Rennes cedex, France.
| |
Collapse
|
8
|
Godfroy O, Uji T, Nagasato C, Lipinska AP, Scornet D, Peters AF, Avia K, Colin S, Mignerot L, Motomura T, Cock JM, Coelho SM. DISTAG/TBCCd1 Is Required for Basal Cell Fate Determination in Ectocarpus. THE PLANT CELL 2017; 29:3102-3122. [PMID: 29208703 PMCID: PMC5757272 DOI: 10.1105/tpc.17.00440] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 11/14/2017] [Accepted: 12/04/2017] [Indexed: 05/09/2023]
Abstract
Brown algae are one of the most developmentally complex groups within the eukaryotes. As in many land plants and animals, their main body axis is established early in development, when the initial cell gives rise to two daughter cells that have apical and basal identities, equivalent to shoot and root identities in land plants, respectively. We show here that mutations in the Ectocarpus DISTAG (DIS) gene lead to loss of basal structures during both the gametophyte and the sporophyte generations. Several abnormalities were observed in the germinating initial cell in dis mutants, including increased cell size, disorganization of the Golgi apparatus, disruption of the microtubule network, and aberrant positioning of the nucleus. DIS encodes a TBCCd1 protein, which has a role in internal cell organization in animals, Chlamydomonas reinhardtii, and trypanosomes. Our study highlights the key role of subcellular events within the germinating initial cell in the determination of apical/basal cell identities in a brown alga and emphasizes the remarkable functional conservation of TBCCd1 in regulating internal cell organization across extremely distant eukaryotic groups.
Collapse
Affiliation(s)
- Olivier Godfroy
- Sorbonne Université, UPMC Université Paris 06, CNRS, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, F-29688 Roscoff, France
| | - Toshiki Uji
- Sorbonne Université, UPMC Université Paris 06, CNRS, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, F-29688 Roscoff, France
| | - Chikako Nagasato
- Muroran Marine Station, Hokkaido University, Hokkaido 060-0808, Japan
| | - Agnieszka P Lipinska
- Sorbonne Université, UPMC Université Paris 06, CNRS, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, F-29688 Roscoff, France
| | - Delphine Scornet
- Sorbonne Université, UPMC Université Paris 06, CNRS, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, F-29688 Roscoff, France
| | | | - Komlan Avia
- Sorbonne Université, UPMC Université Paris 06, CNRS, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, F-29688 Roscoff, France
- UMI 3614 Evolutionary Biology and Ecology of Algae, CNRS, Sorbonne Universités, UPMC, Pontificia Universidad Católica de Chile, Universidad Austral de Chile, Station Biologique Roscoff, 29688 Roscoff, France
| | - Sebastien Colin
- Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR7144, Station Biologique de Roscoff, 29680 Roscoff, France
| | - Laure Mignerot
- Sorbonne Université, UPMC Université Paris 06, CNRS, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, F-29688 Roscoff, France
| | - Taizo Motomura
- Muroran Marine Station, Hokkaido University, Hokkaido 060-0808, Japan
| | - J Mark Cock
- Sorbonne Université, UPMC Université Paris 06, CNRS, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, F-29688 Roscoff, France
| | - Susana M Coelho
- Sorbonne Université, UPMC Université Paris 06, CNRS, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, F-29688 Roscoff, France
| |
Collapse
|
9
|
Hadjivasiliou Z, Pomiankowski A. Gamete signalling underlies the evolution of mating types and their number. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0531. [PMID: 27619695 PMCID: PMC5031616 DOI: 10.1098/rstb.2015.0531] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2016] [Indexed: 01/02/2023] Open
Abstract
The gametes of unicellular eukaryotes are morphologically identical, but are nonetheless divided into distinct mating types. The number of mating types varies enormously and can reach several thousand, yet most species have only two. Why do morphologically identical gametes need to be differentiated into self-incompatible mating types, and why is two the most common number of mating types? In this work, we explore a neglected hypothesis that there is a need for asymmetric signalling interactions between mating partners. Our review shows that isogamous gametes always interact asymmetrically throughout sex and argue that this asymmetry is favoured because it enhances the efficiency of the mating process. We further develop a simple mathematical model that allows us to study the evolution of the number of mating types based on the strength of signalling interactions between gametes. Novel mating types have an advantage as they are compatible with all others and rarely meet their own type. But if existing mating types coevolve to have strong mutual interactions, this restricts the spread of novel types. Similarly, coevolution is likely to drive out less attractive mating types. These countervailing forces specify the number of mating types that are evolutionarily stable. This article is part of the themed issue ‘Weird sex: the underappreciated diversity of sexual reproduction’.
Collapse
Affiliation(s)
- Zena Hadjivasiliou
- Centre for Mathematics and Physics in the Life Sciences and Experimental Biology, University College London, Gower Street, London WC1E 6BT, UK Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | - Andrew Pomiankowski
- Centre for Mathematics and Physics in the Life Sciences and Experimental Biology, University College London, Gower Street, London WC1E 6BT, UK Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
10
|
Kinoshita N, Nagasato C, Motomura T. Calcium Control of the Sign of Phototaxis in Brown Algal Gametes of Mutimo cylindricus. Photochem Photobiol 2017; 93:1216-1223. [PMID: 28295378 DOI: 10.1111/php.12748] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 02/06/2017] [Indexed: 11/26/2022]
Abstract
Brown algal swarmers usually exhibit positive or negative phototaxis. Such behaviors influence the increasing or decreasing dispersal distance or colonization on the new substratum. We confirmed that the sign of phototaxis (negative or positive) in male gametes of Mutimo cylindricus was affected by extracellular Ca2+ influx through Ca2+ channels. Under the control condition (10-2 m [Ca2+ ]), male gametes swimming with a helical rotation of their cell body mostly showed positive phototaxis. At 10-3 m [Ca2+ ], more than half of the male gametes showed positive phototaxis, whereas the others showed negative phototaxis. From 10-4 -10-5 m [Ca2+ ], the phototactic sign changed to negative. When these negative phototactic gametes were transferred back to the control condition, the phototactic sign reverted to positive. At 10-6 m [Ca2+ ], some of male gametes showed negative phototaxis, but most showed no phototaxis or flagellar beating. Lanthanum, a Ca2+ channel blocker, affected the sign of phototaxis at 10-4 m [La3+ ] under 10-2 m [Ca2+ ], and male gametes mostly showed negative phototaxis. A further increase in [La3+ ] inhibited phototaxis and flagellar beating. These results pointed out the involvement of Ca2+ channels that were blocked by La3+ in phototaxis and flagellar beating.
Collapse
Affiliation(s)
- Nana Kinoshita
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Chikako Nagasato
- Muroran Marine Station, Field Science Center for Northern Biosphere, Hokkaido University, Muroran, Hokkaido, Japan
| | - Taizo Motomura
- Muroran Marine Station, Field Science Center for Northern Biosphere, Hokkaido University, Muroran, Hokkaido, Japan
| |
Collapse
|
11
|
Kinoshita N, Nagasato C, Motomura T. Phototaxis and chemotaxis of brown algal swarmers. JOURNAL OF PLANT RESEARCH 2017; 130:443-453. [PMID: 28271338 DOI: 10.1007/s10265-017-0914-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 01/08/2017] [Indexed: 06/06/2023]
Abstract
Brown algae exhibit three patterns of sexual reproduction: isogamy, anisogamy, and oogamy. Unicellular swarmers including gametes and zoospores bear two heterogenous flagella, an anterior flagellum with mastigonemes (fine tripartite hairs) and a posterior one. In seawater, these flagellates usually receive physico-chemical signals for finding partners and good habitats. It is well known that brown algal swarmers change their swimming direction depending on blue light (phototaxis), and male gametes do so, based on the sex pheromones from female gametes (chemotaxis). In recent years, the comparative analysis of chemotaxis in isogamy, anisogamy, and oogamy has been conducted. In this paper, we focused on the phototaxis and chemotaxis of brown algal gametes comparing the current knowledge with our recent studies.
Collapse
Affiliation(s)
- Nana Kinoshita
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Hokkaido, 060-0810, Japan
| | - Chikako Nagasato
- Muroran Marine Station, Field Science Center for Northern Biosphere, Hokkaido University, Muroran, Hokkaido, 051-0013, Japan
| | - Taizo Motomura
- Muroran Marine Station, Field Science Center for Northern Biosphere, Hokkaido University, Muroran, Hokkaido, 051-0013, Japan.
| |
Collapse
|
12
|
Cormier A, Avia K, Sterck L, Derrien T, Wucher V, Andres G, Monsoor M, Godfroy O, Lipinska A, Perrineau MM, Van De Peer Y, Hitte C, Corre E, Coelho SM, Cock JM. Re-annotation, improved large-scale assembly and establishment of a catalogue of noncoding loci for the genome of the model brown alga Ectocarpus. THE NEW PHYTOLOGIST 2017; 214:219-232. [PMID: 27870061 DOI: 10.1111/nph.14321] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 10/08/2016] [Indexed: 05/28/2023]
Abstract
The genome of the filamentous brown alga Ectocarpus was the first to be completely sequenced from within the brown algal group and has served as a key reference genome both for this lineage and for the stramenopiles. We present a complete structural and functional reannotation of the Ectocarpus genome. The large-scale assembly of the Ectocarpus genome was significantly improved and genome-wide gene re-annotation using extensive RNA-seq data improved the structure of 11 108 existing protein-coding genes and added 2030 new loci. A genome-wide analysis of splicing isoforms identified an average of 1.6 transcripts per locus. A large number of previously undescribed noncoding genes were identified and annotated, including 717 loci that produce long noncoding RNAs. Conservation of lncRNAs between Ectocarpus and another brown alga, the kelp Saccharina japonica, suggests that at least a proportion of these loci serve a function. Finally, a large collection of single nucleotide polymorphism-based markers was developed for genetic analyses. These resources are available through an updated and improved genome database. This study significantly improves the utility of the Ectocarpus genome as a high-quality reference for the study of many important aspects of brown algal biology and as a reference for genomic analyses across the stramenopiles.
Collapse
Affiliation(s)
- Alexandre Cormier
- Algal Genetics Group, CNRS, UMR 8227, Integrative Biology of Marine Models, Sorbonne Université, UPMC Univ Paris 06, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, France
| | - Komlan Avia
- Algal Genetics Group, CNRS, UMR 8227, Integrative Biology of Marine Models, Sorbonne Université, UPMC Univ Paris 06, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, France
| | - Lieven Sterck
- Department of Plant Systems Biology, VIB, B-9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9000, Ghent, Belgium
- Bioinformatics Institute Ghent, Technologiepark 927, 9052, Ghent, Belgium
| | | | | | - Gwendoline Andres
- Abims Platform, CNRS-UPMC, FR2424, Station Biologique de Roscoff, CS 90074, 29688, Roscoff, France
| | - Misharl Monsoor
- Abims Platform, CNRS-UPMC, FR2424, Station Biologique de Roscoff, CS 90074, 29688, Roscoff, France
| | - Olivier Godfroy
- Algal Genetics Group, CNRS, UMR 8227, Integrative Biology of Marine Models, Sorbonne Université, UPMC Univ Paris 06, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, France
| | - Agnieszka Lipinska
- Algal Genetics Group, CNRS, UMR 8227, Integrative Biology of Marine Models, Sorbonne Université, UPMC Univ Paris 06, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, France
| | - Marie-Mathilde Perrineau
- Algal Genetics Group, CNRS, UMR 8227, Integrative Biology of Marine Models, Sorbonne Université, UPMC Univ Paris 06, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, France
| | - Yves Van De Peer
- Department of Plant Systems Biology, VIB, B-9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9000, Ghent, Belgium
- Bioinformatics Institute Ghent, Technologiepark 927, 9052, Ghent, Belgium
- Department of Genetics, Genomics Research Institute, University of Pretoria, 0028, Pretoria, South Africa
| | | | - Erwan Corre
- Abims Platform, CNRS-UPMC, FR2424, Station Biologique de Roscoff, CS 90074, 29688, Roscoff, France
| | - Susana M Coelho
- Algal Genetics Group, CNRS, UMR 8227, Integrative Biology of Marine Models, Sorbonne Université, UPMC Univ Paris 06, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, France
| | - J Mark Cock
- Algal Genetics Group, CNRS, UMR 8227, Integrative Biology of Marine Models, Sorbonne Université, UPMC Univ Paris 06, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, France
| |
Collapse
|
13
|
Lipinska AP, Van Damme EJM, De Clerck O. Molecular evolution of candidate male reproductive genes in the brown algal model Ectocarpus. BMC Evol Biol 2016; 16:5. [PMID: 26728038 PMCID: PMC4700764 DOI: 10.1186/s12862-015-0577-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 12/21/2015] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Evolutionary studies of genes that mediate recognition between sperm and egg contribute to our understanding of reproductive isolation and speciation. Surface receptors involved in fertilization are targets of sexual selection, reinforcement, and other evolutionary forces including positive selection. This observation was made across different lineages of the eukaryotic tree from land plants to mammals, and is particularly evident in free-spawning animals. Here we use the brown algal model species Ectocarpus (Phaeophyceae) to investigate the evolution of candidate gamete recognition proteins in a distant major phylogenetic group of eukaryotes. RESULTS Male gamete specific genes were identified by comparing transcriptome data covering different stages of the Ectocarpus life cycle and screened for characteristics expected from gamete recognition receptors. Selected genes were sequenced in a representative number of strains from distant geographical locations and varying stages of reproductive isolation, to search for signatures of adaptive evolution. One of the genes (Esi0130_0068) showed evidence of selective pressure. Interestingly, that gene displayed domain similarities to the receptor for egg jelly (REJ) protein involved in sperm-egg recognition in sea urchins. CONCLUSIONS We have identified a male gamete specific gene with similarity to known gamete recognition receptors and signatures of adaptation. Altogether, this gene could contribute to gamete interaction during reproduction as well as reproductive isolation in Ectocarpus and is therefore a good candidate for further functional evaluation.
Collapse
Affiliation(s)
- Agnieszka P Lipinska
- Phycology Research Group and Center for Molecular Phylogenetics and Evolution, Ghent University, Krijgslaan 281, Building S8, 9000, Ghent, Belgium.
| | - Els J M Van Damme
- Department of Molecular Biotechnology, Laboratory of Biochemistry and Glycobiology, Ghent University, Coupure Links 653, 9000, Ghent, Belgium.
| | - Olivier De Clerck
- Phycology Research Group and Center for Molecular Phylogenetics and Evolution, Ghent University, Krijgslaan 281, Building S8, 9000, Ghent, Belgium.
| |
Collapse
|
14
|
Shan T, Pang S, Li J, Li X, Su L. Construction of a high-density genetic map and mapping of a sex-linked locus for the brown alga Undaria pinnatifida (Phaeophyceae) based on large scale marker development by specific length amplified fragment (SLAF) sequencing. BMC Genomics 2015; 16:902. [PMID: 26541547 PMCID: PMC4635539 DOI: 10.1186/s12864-015-2184-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 11/03/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Undaria pinnatifida is an important economic brown alga in East Asian countries. However, its genetic and genomic information is very scarce, which hinders further research in this species. A high-density genetic map is a basic tool for fundamental and applied research such as discovery of functional genes and mapping of quantitative trait loci (QTL). In this study the recently developed specific length amplified fragment sequencing (SLAF-seq) technology was employed to construct a high-density genetic linkage map and locate a sex determining locus for U. pinnatifida. RESULTS A total of 28.06 Gb data including 140.31 M pair-end reads was obtained. After linkage analysis 4626 SLAF markers were mapped onto the genetic map. After adding the sex linked simple sequence repeat (SSR) marker [GenBank:AY738602.1], the final genetic map was 1816.28 cM long, consisting of 30 linkage groups with an average distance of 0.39 cM between adjacent markers. The length of LGs ranged from 20.12 to 106.95 cM. A major sex associated QTL was mapped to LG22 within a window starting at 29.01 cM and ending at 68.81 cM with a total of 68 SLAF markers. The SSR marker and five SLAF markers (Marker6556, 19020, 43089, 60771 and 26359) were identified as tightly sex-linked markers, as indicated by the absence of recombination between them and the sex phenotype. These markers were located at the position of 59.50 cM, which was supposed to be the sex determining region. CONCLUSIONS A high-density genetic linkage map was constructed using SLAF-seq technique and F1 gametophyte population for the first time in the economically important brown alga U. pinnatifida. For the first time, a major sex associated QTL suggesting a sex determining region was mapped to a single LG. This map will facilitate the further fundamental and applied research such as QTL mapping and map-based gene clone in U. pinnatifida and provide a reference for studies in other kelp species.
Collapse
Affiliation(s)
- Tifeng Shan
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, PR China.
| | - Shaojun Pang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, PR China.
| | - Jing Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, PR China.
- Graduate University of Chinese Academy of Science, Beijing, 100049, PR China.
| | - Xia Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, PR China.
- Graduate University of Chinese Academy of Science, Beijing, 100049, PR China.
| | - Li Su
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, PR China.
- Graduate University of Chinese Academy of Science, Beijing, 100049, PR China.
| |
Collapse
|
15
|
Lipinska AP, Ahmed S, Peters AF, Faugeron S, Cock JM, Coelho SM. Development of PCR-Based Markers to Determine the Sex of Kelps. PLoS One 2015; 10:e0140535. [PMID: 26496392 PMCID: PMC4619726 DOI: 10.1371/journal.pone.0140535] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 09/28/2015] [Indexed: 11/18/2022] Open
Abstract
Sex discriminating genetic markers are commonly used to facilitate breeding programs in economically and ecologically important animal and plant species. However, despite their considerable economic and ecological value, the development of sex markers for kelp species has been very limited. In this study, we used the recently described sequence of the sex determining region (SDR) of the brown algal model Ectocarpus to develop novel DNA-based sex-markers for three commercially relevant kelps: Laminaria digitata, Undaria pinnatifida and Macrocystis pyrifera. Markers were designed within nine protein coding genes of Ectocarpus male and female (U/V) sex chromosomes and tested on gametophytes of the three kelp species. Seven primer pairs corresponding to three loci in the Ectocarpus SDR amplified sex-specific bands in the three kelp species, yielding at least one male and one female marker for each species. Our work has generated the first male sex-specific markers for L. digitata and U. pinnatifida, as well as the first sex markers developed for the genus Macrocystis. The markers and methodology presented here will not only facilitate seaweed breeding programs but also represent useful tools for population and demography studies and provide a means to investigate the evolution of sex determination across this largely understudied eukaryotic group.
Collapse
Affiliation(s)
- Agnieszka P. Lipinska
- Sorbonne Université, UPMC Univ Paris 06, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, France
- CNRS, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, France
| | - Sophia Ahmed
- Sorbonne Université, UPMC Univ Paris 06, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, France
- CNRS, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, France
| | | | - Sylvain Faugeron
- Sorbonne Universités, UPMC University Paris 06, UMI 3614, Evolutionary Biology and Ecology of Algae, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, France
- CNRS, Evolutionary Biology and Ecology of Algae, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, France
- Centro de Conservación Marina and CeBiB, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - J. Mark Cock
- Sorbonne Université, UPMC Univ Paris 06, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, France
- CNRS, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, France
| | - Susana M. Coelho
- Sorbonne Université, UPMC Univ Paris 06, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, France
- CNRS, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, France
| |
Collapse
|
16
|
Lipinska A, Cormier A, Luthringer R, Peters AF, Corre E, Gachon CMM, Cock JM, Coelho SM. Sexual dimorphism and the evolution of sex-biased gene expression in the brown alga ectocarpus. Mol Biol Evol 2015; 32:1581-97. [PMID: 25725430 DOI: 10.1093/molbev/msv049] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Males and females often have marked phenotypic differences, and the expression of these dissimilarities invariably involves sex differences in gene expression. Sex-biased gene expression has been well characterized in animal species, where a high proportion of the genome may be differentially regulated in males and females during development. Male-biased genes tend to evolve more rapidly than female-biased genes, implying differences in the strength of the selective forces acting on the two sexes. Analyses of sex-biased gene expression have focused on organisms that exhibit separate sexes during the diploid phase of the life cycle (diploid sexual systems), but the genetic nature of the sexual system is expected to influence the evolutionary trajectories of sex-biased genes. We analyze here the patterns of sex-biased gene expression in Ectocarpus, a brown alga with haploid sex determination (dioicy) and a low level of phenotypic sexual dimorphism. In Ectocarpus, female-biased genes were found to be evolving as rapidly as male-biased genes. Moreover, genes expressed at fertility showed faster rates of evolution than genes expressed in immature gametophytes. Both male- and female-biased genes had a greater proportion of sites experiencing positive selection, suggesting that their accelerated evolution is at least partly driven by adaptive evolution. Gene duplication appears to have played a significant role in the generation of sex-biased genes in Ectocarpus, expanding previous models that propose this mechanism for the resolution of sexual antagonism in diploid systems. The patterns of sex-biased gene expression in Ectocarpus are consistent both with predicted characteristics of UV (haploid) sexual systems and with the distinctive aspects of this organism's reproductive biology.
Collapse
Affiliation(s)
- Agnieszka Lipinska
- Sorbonne Université, UPMC Univ Paris 06, CNRS, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, France
| | - Alexandre Cormier
- Sorbonne Université, UPMC Univ Paris 06, CNRS, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, France
| | - Rémy Luthringer
- Sorbonne Université, UPMC Univ Paris 06, CNRS, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, France
| | | | - Erwan Corre
- Abims Platform, CNRS-UPMC, FR2424, Station Biologique de Roscoff, Roscoff, France
| | - Claire M M Gachon
- Microbial and Molecular Biology Department, Scottish Marine Institute, Scottish Association for Marine Science, Oban, United Kingdom
| | - J Mark Cock
- Sorbonne Université, UPMC Univ Paris 06, CNRS, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, France
| | - Susana M Coelho
- Sorbonne Université, UPMC Univ Paris 06, CNRS, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, France
| |
Collapse
|
17
|
Ultrastructure and composition of the Nannochloropsis gaditana cell wall. EUKARYOTIC CELL 2014; 13:1450-64. [PMID: 25239976 DOI: 10.1128/ec.00183-14] [Citation(s) in RCA: 200] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Marine algae of the genus Nannochloropsis are promising producers of biofuel precursors and nutraceuticals and are also harvested commercially for aquaculture feed. We have used quick-freeze, deep-etch electron microscopy, Fourier transform infrared spectroscopy, and carbohydrate analyses to characterize the architecture of the Nannochloropsis gaditana (strain CCMP 526) cell wall, whose recalcitrance presents a significant barrier to biocommodity extraction. The data indicate a bilayer structure consisting of a cellulosic inner wall (~75% of the mass balance) protected by an outer hydrophobic algaenan layer. Cellulase treatment of walls purified after cell lysis generates highly enriched algaenan preparations without using the harsh chemical treatments typically used in algaenan isolation and characterization. Nannochloropsis algaenan was determined to comprise long, straight-chain, saturated aliphatics with ether cross-links, which closely resembles the cutan of vascular plants. Chemical identification of >85% of the isolated cell wall mass is detailed, and genome analysis is used to identify candidate biosynthetic enzymes.
Collapse
|