1
|
Rossi M, Galetto L, Bodino N, Beltramo J, Gamalero S, Pegoraro M, Bosco D, Marzachì C. Competition among Flavescence Dorée Phytoplasma Strains in the Experimental Insect Vector Euscelidius variegatus. INSECTS 2023; 14:575. [PMID: 37504582 PMCID: PMC10380400 DOI: 10.3390/insects14070575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 07/29/2023]
Abstract
Phytoplasmas are plant pathogenic wall-less bacteria transmitted in a persistent propagative manner by hemipteran insects, mainly belonging to the suborder Auchenorrhyncha (Fulgoromorpha and Cicadomorpha). Flavescence dorée (FD) is a quarantine disease of grapevine, causing great damage to European viticulture and associated with phytoplasmas belonging to 16SrV-C (FD-C) and -D (FD-D) subgroups. FD-C and FD-D strains share similar pathogenicity, but mixed infections are rare in nature. To investigate the competition among FDp strains, specimens of the laboratory vector Euscelidius variegatus (Hemiptera: Cicadellidae) were forced to acquire both phytoplasma haplotypes upon feeding on FD-C- and FD-D-infected plants or after the injection of both strains. The pathogen colonization of insect bodies and heads was monitored with multiplex qPCR, and the efficiencies of phytoplasma transmission were estimated. Single infection, irrespective of strain type, was more frequent than expected, indicating that competition among FD strains occurs. Hypotheses of competition for resources and/or host active sites or the direct antibiosis of one strain against the other are discussed, based on the genetic complexity of FDp populations and on the high genome variability of the FD-D strain. As FD management still mainly relies on insecticides against vectors, the characterization of FDp haplotypes and the description of their epidemiology also have practical implications.
Collapse
Affiliation(s)
- Marika Rossi
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, IPSP-CNR, Strada delle Cacce 73, 10135 Torino, Italy
| | - Luciana Galetto
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, IPSP-CNR, Strada delle Cacce 73, 10135 Torino, Italy
| | - Nicola Bodino
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, IPSP-CNR, Strada delle Cacce 73, 10135 Torino, Italy
- Dipartimento di Scienze Agrarie, Forestali ed Alimentari DISAFA, Università degli Studi di Torino, Largo Paolo Braccini 2, 10095 Grugliasco, Italy
| | - Jessica Beltramo
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, IPSP-CNR, Strada delle Cacce 73, 10135 Torino, Italy
- Dipartimento di Scienze Agrarie, Forestali ed Alimentari DISAFA, Università degli Studi di Torino, Largo Paolo Braccini 2, 10095 Grugliasco, Italy
| | - Silvia Gamalero
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, IPSP-CNR, Strada delle Cacce 73, 10135 Torino, Italy
- Dipartimento di Scienze dell'Ambiente e della Vita, Università del Piemonte Orientale "Amedeo Avogadro", Viale Teresa Michel 11, 15121 Alessandria, Italy
| | - Mattia Pegoraro
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, IPSP-CNR, Strada delle Cacce 73, 10135 Torino, Italy
- Metrologia dei Materiali Innovativi e Scienze della Vita, Istituto Nazionale di Ricerca Metrologica, INRiM, Strada delle Cacce 91, 10135 Torino, Italy
| | - Domenico Bosco
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, IPSP-CNR, Strada delle Cacce 73, 10135 Torino, Italy
- Dipartimento di Scienze Agrarie, Forestali ed Alimentari DISAFA, Università degli Studi di Torino, Largo Paolo Braccini 2, 10095 Grugliasco, Italy
| | - Cristina Marzachì
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, IPSP-CNR, Strada delle Cacce 73, 10135 Torino, Italy
| |
Collapse
|
2
|
Darolt JC, Bento FDMM, Merlin BL, Peña L, Cônsoli FL, Wulff NA. The Genome of " Candidatus Liberibacter asiaticus" Is Highly Transcribed When Infecting the Gut of Diaphorina citri. Front Microbiol 2021; 12:687725. [PMID: 34322103 PMCID: PMC8312247 DOI: 10.3389/fmicb.2021.687725] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/04/2021] [Indexed: 11/13/2022] Open
Abstract
The Asian citrus psyllid, Diaphorina citri, is the vector of the bacterium "Candidatus Liberibacter asiaticus" (Las), associated with the devastating, worldwide citrus disease huanglongbing. In order to explore the molecular interactions of this bacterium with D. citri during the vector acquisition process, cDNA libraries were sequenced on an Illumina platform, obtained from the gut of adult psyllids confined in healthy (H) and in Las-infected young shoots (Las) for different periods of times (I = 1/2 days, II = 3/4 days, and III = 5/6 days). In each sampling time, three biological replicates were collected, containing 100 guts each, totaling 18 libraries depleted in ribosomal RNA. Reads were quality-filtered and mapped against the Chinese JXGC Las strain and the Floridian strain UF506 for the analysis of the activity of Las genome and SC1, SC2, and type 3 (P-JXGC-3) prophages of the studied Las strain. Gene activity was considered only if reads of at least two replicates for each acquisition access period mapped against the selected genomes, which resulted in coverages of 44.4, 79.9, and 94.5% of the JXGC predicted coding sequences in Las I, Las II, and Las III, respectively. These genes indicate an active metabolism and increased expression according to the feeding time in the following functional categories: energy production, amino acid metabolism, signal translation, cell wall, and replication and repair of genetic material. Pilins were among the most highly expressed genes regardless of the acquisition time, while only a few genes from cluster I of flagella were not expressed. Furthermore, the prophage region had a greater coverage of reads for SC1 and P-JXGC-3 prophages and low coverage in SC2 and no indication of activity for the lysis cycle. This research presents the first descriptive analysis of Las transcriptome in the initial steps of the D. citri gut colonization, where 95% of Las genes were active.
Collapse
Affiliation(s)
- Josiane Cecília Darolt
- Instituto de Química, Universidade Estadual Paulista “Julio de Mesquita Filho” – UNESP, Araraquara, Brazil
- Departamento de Pesquisa & Desenvolvimento, Fundo de Defesa da Citricultura – Fundecitrus, Araraquara, Brazil
| | - Flavia de Moura Manoel Bento
- Laboratório de Interações em Insetos, Departamento de Entomologia e Acarologia, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, Brazil
| | - Bruna Laís Merlin
- Laboratório de Interações em Insetos, Departamento de Entomologia e Acarologia, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, Brazil
| | - Leandro Peña
- Departamento de Pesquisa & Desenvolvimento, Fundo de Defesa da Citricultura – Fundecitrus, Araraquara, Brazil
- Instituto de Biologia Molecular y Celular de Plantas – Consejo Superior de Investigaciones Científicas, Universidade Politécnica de Valencia, Valencia, Spain
| | - Fernando Luis Cônsoli
- Laboratório de Interações em Insetos, Departamento de Entomologia e Acarologia, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, Brazil
| | - Nelson Arno Wulff
- Instituto de Química, Universidade Estadual Paulista “Julio de Mesquita Filho” – UNESP, Araraquara, Brazil
- Departamento de Pesquisa & Desenvolvimento, Fundo de Defesa da Citricultura – Fundecitrus, Araraquara, Brazil
| |
Collapse
|
3
|
Phytoplasma diseases of plants: molecular diagnostics and way forward. World J Microbiol Biotechnol 2021; 37:102. [PMID: 34009500 DOI: 10.1007/s11274-021-03061-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 04/21/2021] [Indexed: 10/21/2022]
Abstract
Phytoplasmas are obligate phytopathogenic bacteria associated with devastating diseases in hundreds of crops across the world. They have been responsible for huge economic losses in many crop plants for decades now. Isolation and establishment of axenic culture of phytoplasma in complex media is a recent progress in phytoplasma research. Earlier methods for phytoplasma disease detection included symptom profiling, microscopy, serology and dodder transmission studies. With advancement in the field of molecular biology, phytoplasma diagnostics and characterisation witnessed radical improvement. Starting from PCR amplification which often necessities a nested PCR on account of low titre of phytoplasmas, to the closed tube quantitative PCR assays and then the ddPCR, an array of diagnostics have been developed for phytoplasma. The isothermal diagnostic platforms are the latest addition to this and the Loop Mediated Isothermal Amplification (LAMP) assay has been applied for the detection of phytoplasma from several hosts. The futuristic approach in phytoplasma detection will be very likely provided by an integration of nanotechnology and molecular diagnostics. Phytoplasma disease management majorly relies on early detection, vector control, use of disease free planting materials and cultivation of resistant varieties. Hence understanding the molecular mechanism of phytoplasma-host interaction is as important as timely and accurate detection, in the management of phytoplasma diseases. Further, the changing climatic scenario and global warming may lead to an upsurge in the phytoplasma diseases spread and severity across the world, making disease management even more challenging.
Collapse
|
4
|
Rossi M, Vallino M, Galetto L, Marzachì C. Competitive Exclusion of Flavescence dorée Phytoplasma Strains in Catharanthus roseus Plants. PLANTS 2020; 9:plants9111594. [PMID: 33213006 PMCID: PMC7698599 DOI: 10.3390/plants9111594] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 12/25/2022]
Abstract
Flavescence dorée phytoplasmas (FDp, 16SrV-C and -D) are plant pathogenic non-cultivable bacteria associated with a severe grapevine disease. The incidence of the two reference strains on cultivated grapevines is unbalanced, and mixed infections are rare. To investigate the interaction between the two strains, Catharanthus roseus plants were graft-infected with both strains, either simultaneously or sequentially. Different combinations of lateral and apical grafting were applied to avoid possible benefits due to graft position. The infection was monitored for four months through a new diagnostic protocol developed for differentiation and relative quantification of the two strains. Regardless of the temporal or spatial advantage at grafting, FD-C generally outcompeted FD-D. The prevalence of FD-C increased over time and, at the end of the experiment, FD-C was the unique strain detected in the aerial part and the roots of 74% and 90% of grafted plants, respectively. These data indicate that the interaction between the two strains results in competitive exclusion. Understanding the bases of the competition between FD-C and FD-D may contribute to explain the biology of the coexistence of different FDp strains under field conditions, aiming at identifying potential suppressor strains, which can provide alternative and environmentally sustainable solutions for FD control.
Collapse
|
5
|
Teixeira A, Martins V, Frusciante S, Cruz T, Noronha H, Diretto G, Gerós H. Flavescence Dorée-Derived Leaf Yellowing in Grapevine ( Vitis vinifera L.) Is Associated to a General Repression of Isoprenoid Biosynthetic Pathways. FRONTIERS IN PLANT SCIENCE 2020; 11:896. [PMID: 32625230 PMCID: PMC7311760 DOI: 10.3389/fpls.2020.00896] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 06/02/2020] [Indexed: 05/03/2023]
Abstract
Flavescence dorée (FD), caused by the phytoplasma Candidatus Phytoplasma vitis, is a major threat to vineyard survival in different European grape-growing areas. It has been recorded in French vineyards since the mid-1950s, and rapidly spread to other countries. In Portugal, the phytoplasma was first detected in the DOC region of 'Vinhos Verdes' in 2006, and reached the central region of the country in 2009. The infection causes strong accumulation of carbohydrates and phenolics in the mesophyll cells and a simultaneous decrease of chlorophylls, events accompanied by a down regulation of genes and proteins involved in the dark and light-dependent reactions and stabilization of the photosystem II (PSII). In the present study, to better elucidate the basis of the leaf chlorosis in infected grapevine cv. Loureiro, we studied the isoprenoid transcript-metabolite correlation in leaves from healthy and FD-infected vines. Specifically, targeted metabolome revealed that twenty-one compounds (out of thirty-two), including chlorophylls, carotenoids, quinones and tocopherols, were reduced in response to FD-infection. Thereafter, and consistently with the biochemical data, qPCR analysis highlighted a severe FD-mediated repression in key genes involved in isoprenoid biosynthetic pathways. A more diverse set of changes, on the contrary, was observed in the case of ABA metabolism. Principal component analysis (PCA) of all identified metabolites clearly separated healthy from FD-infected vines, therefore confirming that the infection strongly alters the biosynthesis of grapevine isoprenoids; additionally, forty-four genes and metabolites were identified as the components mostly explaining the variance between healthy and infected samples. Finally, transcript-metabolite network correlation analyses were exploited to display the main hubs of the infection process, which highlighted a strong role of VvCHLG, VvVTE and VvZEP genes and the chlorophylls intermediates aminolevulunic acid and porphobilinogen in response to FD infection. Overall, results indicated that the FD infection impairs the synthesis of isoprenoids, through the repression of key genes involved in the biosynthesis of chlorophylls, carotenoids, quinones and tocopherols.
Collapse
Affiliation(s)
- António Teixeira
- Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Braga, Portugal
- *Correspondence: António Teixeira,
| | - Viviana Martins
- Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Braga, Portugal
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Sarah Frusciante
- Casaccia Research Center, ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| | - Telmo Cruz
- Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Braga, Portugal
| | - Henrique Noronha
- Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Braga, Portugal
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Gianfranco Diretto
- Casaccia Research Center, ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| | - Hernâni Gerós
- Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Braga, Portugal
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
- Centre of Biological Engineering (CEB), Department of Biological Engineering, University of Minho, Braga, Portugal
| |
Collapse
|
6
|
Jollard C, Foissac X, Desqué D, Razan F, Garcion C, Beven L, Eveillard S. Flavescence Dorée Phytoplasma Has Multiple ftsH Genes that Are Differentially Expressed in Plants and Insects. Int J Mol Sci 2019; 21:E150. [PMID: 31878312 PMCID: PMC6981957 DOI: 10.3390/ijms21010150] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 12/24/2022] Open
Abstract
Flavescence dorée (FD) is a severe epidemic disease of grapevines caused by FD phytoplasma (FDP) transmitted by the leafhopper vector Scaphoideus titanus. The recent sequencing of the 647-kbp FDP genome highlighted an unusual number of genes encoding ATP-dependent zinc proteases FtsH, which have been linked to variations in the virulence of "Candidatus Phytoplasma mali" strains. The aims of the present study were to predict the FtsH repertoire of FDP, to predict the functional domains and topologies of the encoded proteins in the phytoplasma membrane and to measure the expression profiles in different hosts. Eight complete ftsH genes have been identified in the FDP genome. In addition to ftsH6, which appeared to be the original bacterial ortholog, the other seven gene copies were clustered on a common distinct phylogenetic branch, suggesting intra-genome duplication of ftsH. The expression of these proteins, quantified in plants and insect vectors in natural and experimental pathosystems, appeared to be modulated in a host-dependent manner. Two of the eight FtsH C-tails were predicted by Phobius software to be extracellular and, therefore, in direct contact with the host cellular content. As phytoplasmas cannot synthesize amino acids, our data raised questions regarding the involvement of FtsH in the adaptation to hosts via potentially enhanced recycling of phytoplasma cellular proteins and host protein degradation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Sandrine Eveillard
- UMR 1332, INRAE, Université de Bordeaux, F-33140 Villenave d’Ornon, France; (C.J.); (X.F.); (D.D.); (F.R.); (C.G.); (L.B.)
| |
Collapse
|
7
|
Trivellone V, Ripamonti M, Angelini E, Filippin L, Rossi M, Marzachí C, Galetto L. Evidence suggesting interactions between immunodominant membrane protein Imp of Flavescence dorée phytoplasma and protein extracts from distantly related insect species. J Appl Microbiol 2019; 127:1801-1813. [PMID: 31509633 DOI: 10.1111/jam.14445] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 09/03/2019] [Accepted: 09/06/2019] [Indexed: 12/14/2022]
Abstract
AIMS In this study, binding between the immunodominant membrane protein Imp of the 16SrV-D phytoplasma associated with Flavescence dorée disease (FD-Dp) and insect proteins of vectors and non-vectors of FD-Dp was tested. METHODS AND RESULTS Six Auchenorrhyncha species, from distantly related groups were selected: Scaphoideus titanus, Euscelidius variegatus, Macrosteles quadripunctulatus, Zyginidia pullula (Cicadomorpha), Ricania speculum and Metcalfa pruinosa (Fulgoromorpha). The vector status of each species was retrieved from the literature or determined by transmission trials in this study. A His-tagged partial Imp protein and a rabbit polyclonal antibody were synthesized and used for Western and Far-Western dot Blot (FWdB) experiments. Total native and membrane proteins (MP) were extracted from entire bodies and organs (gut and salivary glands) of each insect species. FWdB showed decreasing interaction intensities of Imp fusion protein with total proteins from entire bodies of S. titanus, E. variegatus (competent vectors) and M. quadripunctulatus (non-vector), while no interaction signal was detected with the other three species (non-vectors). A strong signal detected upon interaction of FD-D Imp and MP from guts of closely related insects supports the role of this organ as the first barrier to ensure successful transmission. CONCLUSIONS Our results showed that specific Imp binding, correlated with vector status, is involved in interactions between FD-Dp and insect proteins. SIGNIFICANCE AND IMPACT OF THE STUDY Integrating knowledge on host-pathogen protein-protein interactions and on insect phylogeny would help to identify the actual range of vectors of phytoplasma strains of economic importance.
Collapse
Affiliation(s)
- V Trivellone
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois at Urbana-Champaign, Champaign, IL, USA.,Council for Agricultural Research and Economics (CREA), Research Centre for Viticulture and Enology, Conegliano, TV, Italy
| | - M Ripamonti
- Institute for Sustainable Plant Protection, National Research Council, Turin, Italy.,Dipartimento di Scienze Agrarie, Forestali ed Alimentari DISAFA, Università degli Studi di Torino, Grugliasco, TO, Italy
| | - E Angelini
- Council for Agricultural Research and Economics (CREA), Research Centre for Viticulture and Enology, Conegliano, TV, Italy
| | - L Filippin
- Council for Agricultural Research and Economics (CREA), Research Centre for Viticulture and Enology, Conegliano, TV, Italy
| | - M Rossi
- Institute for Sustainable Plant Protection, National Research Council, Turin, Italy
| | - C Marzachí
- Institute for Sustainable Plant Protection, National Research Council, Turin, Italy
| | - L Galetto
- Institute for Sustainable Plant Protection, National Research Council, Turin, Italy
| |
Collapse
|
8
|
Bertazzon N, Bagnaresi P, Forte V, Mazzucotelli E, Filippin L, Guerra D, Zechini A, Cattivelli L, Angelini E. Grapevine comparative early transcriptomic profiling suggests that Flavescence dorée phytoplasma represses plant responses induced by vector feeding in susceptible varieties. BMC Genomics 2019; 20:526. [PMID: 31242866 PMCID: PMC6595628 DOI: 10.1186/s12864-019-5908-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 06/17/2019] [Indexed: 01/18/2023] Open
Abstract
Background Flavescence dorée is the most serious grapevine yellows disease in Europe. It is caused by phytoplasmas which are transmitted from grapevine to grapevine by the leafhopper Scaphoideus titanus. Differences in susceptibility among grapevine varieties suggest the existence of specific genetic features associated with resistance to the phytoplasma and/or possibly with its vector. In this work, RNA-Seq was used to compare early transcriptional changes occurring during the three-trophic interaction between the phytoplasma, its vector and the grapevine, represented by two different cultivars, one very susceptible to the disease and the other scarcely susceptible. Results The comparative analysis of the constitutive transcriptomic profiles suggests the existence of passive defense strategies against the insect and/or the phytoplasma in the scarcely-susceptible cultivar. Moreover, the attack by the infective vector on the scarcely-susceptible variety prompted immediate and substantial transcriptomic changes that led to the rapid erection of further active defenses. On the other hand, in the most susceptible variety the response was delayed and mainly consisted of the induction of phytoalexin synthesis. Surprisingly, the jasmonic acid- and ethylene-mediated defense reactions, activated by the susceptible cultivar following FD-free insect feeding, were not detected in the presence of the phytoplasma-infected vector. Conclusions The comparison of the transcriptomic response in two grapevine varieties with different levels of susceptibility to Flavescence dorèe highlighted both passive and active defense mechanisms against the vector and/or the pathogen in the scarcely-susceptible variety, as well as the capacity of the phytoplasmas to repress the defense reaction against the insect in the susceptible variety. Electronic supplementary material The online version of this article (10.1186/s12864-019-5908-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nadia Bertazzon
- CREA Research Centre for Viticulture and Enology, 31015, Conegliano (TV), Italy.
| | - Paolo Bagnaresi
- CREA Research Centre for Genomics and Bioinformatics, 29017, Fiorenzuola d'Arda (PC), Italy
| | - Vally Forte
- CREA Research Centre for Viticulture and Enology, 31015, Conegliano (TV), Italy
| | | | - Luisa Filippin
- CREA Research Centre for Viticulture and Enology, 31015, Conegliano (TV), Italy
| | - Davide Guerra
- CREA Research Centre for Genomics and Bioinformatics, 29017, Fiorenzuola d'Arda (PC), Italy
| | - Antonella Zechini
- CREA Research Centre for Genomics and Bioinformatics, 29017, Fiorenzuola d'Arda (PC), Italy
| | - Luigi Cattivelli
- CREA Research Centre for Genomics and Bioinformatics, 29017, Fiorenzuola d'Arda (PC), Italy
| | - Elisa Angelini
- CREA Research Centre for Viticulture and Enology, 31015, Conegliano (TV), Italy
| |
Collapse
|
9
|
Dermastia M. Plant Hormones in Phytoplasma Infected Plants. FRONTIERS IN PLANT SCIENCE 2019; 10:477. [PMID: 31057582 PMCID: PMC6478762 DOI: 10.3389/fpls.2019.00477] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 03/28/2019] [Indexed: 05/21/2023]
Abstract
Phytoplasmas are bacterial plant pathogens that need a plant host and an insect vector for their spread and survival. In plants, the physiological responses that phytoplasmas trigger result in symptom development through effects on hormonal, nutritional, and stress signaling pathways, and the interactions between these. In this review, recent advances on the involvement of plant hormones together with their known and deduced roles in plants infected with phytoplasmas are discussed. Several studies have directly, or in many cases indirectly, addressed plant hormone systems in phytoplasma-infected plants. These have provided accumulating evidence that phytoplasmas extensively affect plant hormone pathways. Phytoplasmas thus, with disturbing complex plant hormone networks, suppress plant immunity and modify plant structure, while optimizing their nutrient acquisition and facilitating their colonization of the plants, and their dissemination among plants by their insect vectors.
Collapse
Affiliation(s)
- Marina Dermastia
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| |
Collapse
|
10
|
Rossi M, Pesando M, Vallino M, Galetto L, Marzachì C, Balestrini R. Application of laser microdissection to study phytoplasma site-specific gene expression in the model plant Arabidopsis thaliana. Microbiol Res 2018; 217:60-68. [DOI: 10.1016/j.micres.2018.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 08/30/2018] [Accepted: 09/05/2018] [Indexed: 01/03/2023]
|
11
|
Transcriptomic Analyses of Phytoplasmas. Methods Mol Biol 2018. [PMID: 30362008 DOI: 10.1007/978-1-4939-8837-2_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Transcriptomic analyses addressed to study phytoplasma gene expression may present few difficulties due to the uncultivable nature of these intracellular, obligate pathogens. While RNA extraction from insect vectors does not imply any particular adaptation of the protocols used in most commercial kits, RNA isolation from phytoplasma-infected plants can be a challenging task, given the high levels of polyphenol contents and accumulation of sucrose and starch in the different plant tissues. Here, we describe two different transcriptomic approaches, one focused on RNA phytoplasma sequencing and the other on phytoplasma quantitative gene expression in relation to pathogen load.
Collapse
|
12
|
Gai YP, Yuan SS, Liu ZY, Zhao HN, Liu Q, Qin RL, Fang LJ, Ji XL. Integrated Phloem Sap mRNA and Protein Expression Analysis Reveals Phytoplasma-infection Responses in Mulberry. Mol Cell Proteomics 2018; 17:1702-1719. [PMID: 29848783 PMCID: PMC6126391 DOI: 10.1074/mcp.ra118.000670] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/25/2018] [Indexed: 11/06/2022] Open
Abstract
To gain insight into the response of mulberry to phytoplasma-infection, the expression profiles of mRNAs and proteins in mulberry phloem sap were examined. A total of 955 unigenes and 136 proteins were found to be differentially expressed between the healthy and infected phloem sap. These differentially expressed mRNAs and proteins are involved in signaling, hormone metabolism, stress responses, etc. Interestingly, we found that both the mRNA and protein levels of the major latex protein-like 329 (MuMLPL329) gene were increased in the infected phloem saps. Expression of the MuMLPL329 gene was induced by pathogen inoculation and was responsive to jasmonic acid. Ectopic expression of MuMLPL329 in Arabidopsis enhances transgenic plant resistance to Botrytis cinerea, Pseudomonas syringae pv tomato DC3000 (Pst. DC3000) and phytoplasma. Further analysis revealed that MuMLPL329 can enhance the expression of some defense genes and might be involved in altering flavonoid content resulting in increased resistance of plants to pathogen infection. Finally, the roles of the differentially expressed mRNAs and proteins and the potential molecular mechanisms of their changes were discussed. It was likely that the phytoplasma-responsive mRNAs and proteins in the phloem saps were involved in multiple pathways of mulberry responses to phytoplasma-infection, and their changes may be partially responsible for some symptoms in the phytoplasma infected plants.
Collapse
Affiliation(s)
- Ying-Ping Gai
- From the ‡State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China
| | - Shuo-Shuo Yuan
- §College of Forestry, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China
| | - Zhao-Yang Liu
- §College of Forestry, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China
| | - Huai-Ning Zhao
- From the ‡State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China
| | - Qi Liu
- From the ‡State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China
| | - Rong-Li Qin
- From the ‡State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China
| | - Li-Jing Fang
- §College of Forestry, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China
| | - Xian-Ling Ji
- §College of Forestry, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China
| |
Collapse
|
13
|
Two Phytoplasmas Elicit Different Responses in the Insect Vector Euscelidius variegatus Kirschbaum. Infect Immun 2018. [PMID: 29531134 DOI: 10.1128/iai.00042-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phytoplasmas are plant-pathogenic bacteria transmitted by hemipteran insects. The leafhopper Euscelidius variegatus is a natural vector of chrysanthemum yellows phytoplasma (CYp) and a laboratory vector of flavescence dorée phytoplasma (FDp). The two phytoplasmas induce different effects on this species: CYp slightly improves whereas FDp negatively affects insect fitness. To investigate the molecular bases of these different responses, transcriptome sequencing (RNA-seq) analysis of E. variegatus infected with either CYp or FDp was performed. The sequencing provided the first de novo transcriptome assembly for a phytoplasma vector and a starting point for further analyses on differentially regulated genes, mainly related to immune system and energy metabolism. Insect phenoloxidase activity, immunocompetence, and body pigmentation were measured to investigate the immune response, while respiration and movement rates were quantified to confirm the effects on energy metabolism. The activation of the insect immune response upon infection with FDp, which is not naturally transmitted by E. variegatus, confirmed that this bacterium is mostly perceived as a potential pathogen. Conversely, the acquisition of CYp, which is naturally transmitted by E. variegatus, seems to increase the insect fitness by inducing a prompt response to stress. This long-term relationship is likely to improve survival and dispersal of the infected insect, thus enhancing the opportunity of phytoplasma transmission.
Collapse
|
14
|
Nijo T, Neriya Y, Koinuma H, Iwabuchi N, Kitazawa Y, Tanno K, Okano Y, Maejima K, Yamaji Y, Oshima K, Namba S. Genome-Wide Analysis of the Transcription Start Sites and Promoter Motifs of Phytoplasmas. DNA Cell Biol 2017; 36:1081-1092. [PMID: 29039971 DOI: 10.1089/dna.2016.3616] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Phytoplasmas are obligate intracellular parasitic bacteria that infect both plants and insects. We previously identified the sigma factor RpoD-dependent consensus promoter sequence of phytoplasma. However, the genome-wide landscape of RNA transcripts, including non-coding RNAs (ncRNAs) and RpoD-independent promoter elements, was still unknown. In this study, we performed an improved RNA sequencing analysis for genome-wide identification of the transcription start sites (TSSs) and the consensus promoter sequences. We constructed cDNA libraries using a random adenine/thymine hexamer primer, in addition to a conventional random hexamer primer, for efficient sequencing of 5'-termini of AT-rich phytoplasma RNAs. We identified 231 TSSs, which were classified into four categories: mRNA TSSs, internal sense TSSs, antisense TSSs (asTSSs), and orphan TSSs (oTSSs). The presence of asTSSs and oTSSs indicated the genome-wide transcription of ncRNAs, which might act as regulatory ncRNAs in phytoplasmas. This is the first description of genome-wide phytoplasma ncRNAs. Using a de novo motif discovery program, we identified two consensus motif sequences located upstream of the TSSs. While one was almost identical to the RpoD-dependent consensus promoter sequence, the other was an unidentified novel motif, which might be recognized by another transcription initiation factor. These findings are valuable for understanding the regulatory mechanism of phytoplasma gene expression.
Collapse
Affiliation(s)
- Takamichi Nijo
- 1 Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo , Tokyo, Japan
| | - Yutaro Neriya
- 1 Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo , Tokyo, Japan
| | - Hiroaki Koinuma
- 1 Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo , Tokyo, Japan
| | - Nozomu Iwabuchi
- 1 Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo , Tokyo, Japan
| | - Yugo Kitazawa
- 1 Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo , Tokyo, Japan
| | - Kazuyuki Tanno
- 1 Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo , Tokyo, Japan
| | - Yukari Okano
- 1 Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo , Tokyo, Japan
| | - Kensaku Maejima
- 1 Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo , Tokyo, Japan
| | - Yasuyuki Yamaji
- 1 Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo , Tokyo, Japan
| | - Kenro Oshima
- 2 Department of Clinical Plant Science, Faculty of Bioscience and Applied Chemistry, Hosei University , Tokyo, Japan
| | - Shigetou Namba
- 1 Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo , Tokyo, Japan
| |
Collapse
|
15
|
Liu G, Yang X, Xu J, Zhang M, Hou Q, Zhu L, Huang Y, Xiong A. Morphological observation, RNA-Seq quantification, and expression profiling: novel insight into grafting-responsive carotenoid biosynthesis in watermelon grafted onto pumpkin rootstock. Acta Biochim Biophys Sin (Shanghai) 2017; 49:216-227. [PMID: 28040679 DOI: 10.1093/abbs/gmw132] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 12/20/2016] [Indexed: 02/06/2023] Open
Abstract
Watermelon is an important and economical horticultural crop in China, where ~20% of the plants are grafted. The development of grafted watermelon fruit involves a diverse range of gene interactions that results in dynamic changes in fruit. However, the molecular mechanisms underlying grafting-induced fruit quality change are unclear. In the present study, we measured the lycopene content by high-performance liquid chromatography and used RNA-Seq (quantification) to perform a genome-wide transcript analysis of fruits from watermelon grafted onto pumpkin rootstock (pumpkin-grafted watermelon, PGW), self-grafted watermelon (SGW), and non-grafted watermelon (NGW). The results showed variation in the lycopene content in the flesh of PGW fruits, first increasing and then decreasing in the four stages, which was different from the trend in the flesh of NGW and SGW fruits. The transcriptome profiling data provided new information on the grafting-induced gene regulation of lycopene biosynthesis during fruit growth and development. The expression levels of 33 genes from 8 gene families (GGPS, PSY, PDS, ZDS, CRTISO, LCYb, LCYe, and CHY) related to lycopene biosynthesis, which play critical roles in fruit coloration and contribute significantly to fruit phytonutrient values, were monitored during the four periods of fruit development in watermelon. Compared with those of NGW and SGW, 14 genes were differentially expressed in PGW during fruit development, suggesting that these genes possibly help to mediate lycopene biosynthesis in grafted watermelon fruit. Our work provides some novel insights into grafting-responsive carotenoid metabolism and its potential roles during PGW fruit development and ripening.
Collapse
Affiliation(s)
- Guang Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xingping Yang
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Jinhua Xu
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Man Zhang
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Qian Hou
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Lingli Zhu
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Ying Huang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Aisheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
16
|
Perilla-Henao LM, Casteel CL. Vector-Borne Bacterial Plant Pathogens: Interactions with Hemipteran Insects and Plants. FRONTIERS IN PLANT SCIENCE 2016; 7:1163. [PMID: 27555855 PMCID: PMC4977473 DOI: 10.3389/fpls.2016.01163] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 07/20/2016] [Indexed: 05/22/2023]
Abstract
Hemipteran insects are devastating pests of crops due to their wide host range, rapid reproduction, and ability to transmit numerous plant-infecting pathogens as vectors. While the field of plant-virus-vector interactions has flourished in recent years, plant-bacteria-vector interactions remain poorly understood. Leafhoppers and psyllids are by far the most important vectors of bacterial pathogens, yet there are still significant gaps in our understanding of their feeding behavior, salivary secretions, and plant responses as compared to important viral vectors, such as whiteflies and aphids. Even with an incomplete understanding of plant-bacteria-vector interactions, some common themes have emerged: (1) all known vector-borne bacteria share the ability to propagate in the plant and insect host; (2) particular hemipteran families appear to be incapable of transmitting vector-borne bacteria; (3) all known vector-borne bacteria have highly reduced genomes and coding capacity, resulting in host-dependence; and (4) vector-borne bacteria encode proteins that are essential for colonization of specific hosts, though only a few types of proteins have been investigated. Here, we review the current knowledge on important vector-borne bacterial pathogens, including Xylella fastidiosa, Spiroplasma spp., Liberibacter spp., and 'Candidatus Phytoplasma spp.'. We then highlight recent approaches used in the study of vector-borne bacteria. Finally, we discuss the application of this knowledge for control and future directions that will need to be addressed in the field of vector-plant-bacteria interactions.
Collapse
Affiliation(s)
| | - Clare L. Casteel
- Department of Plant Pathology, University of California at Davis, Davis, CAUSA
| |
Collapse
|
17
|
Jia BY, Ba HX, Wang GW, Yang Y, Cui XZ, Peng YH, Zheng JJ, Xing XM, Yang FH. Transcriptome analysis of sika deer in China. Mol Genet Genomics 2016; 291:1941-53. [PMID: 27423230 DOI: 10.1007/s00438-016-1231-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 07/11/2016] [Indexed: 12/17/2022]
Abstract
Sika deer is of great commercial value because their antlers are used in tonics and alternative medicine and their meat is healthy and delicious. The goal of this study was to generate transcript sequences from sika deer for functional genomic analyses and to identify the transcripts that demonstrate tissue-specific, age-dependent differential expression patterns. These sequences could enhance our understanding of the molecular mechanisms underlying sika deer growth and development. In the present study, we performed de novo transcriptome assembly and profiling analysis across ten tissue types and four developmental stages (juvenile, adolescent, adult, and aged) of sika deer, using Illumina paired-end tag (PET) sequencing technology. A total of 1,752,253 contigs with an average length of 799 bp were generated, from which 1,348,618 unigenes with an average length of 590 bp were defined. Approximately 33.2 % of these (447,931 unigenes) were then annotated in public protein databases. Many sika deer tissue-specific, age-dependent unigenes were identified. The testes have the largest number of tissue-enriched unigenes, and some of them were prone to develop new functions for other tissues. Additionally, our transcriptome revealed that the juvenile-adolescent transition was the most complex and important stage of the sika deer life cycle. The present work represents the first multiple tissue transcriptome analysis of sika deer across four developmental stages. The generated data not only provide a functional genomics resource for future biological research on sika deer but also guide the selection and manipulation of genes controlling growth and development.
Collapse
Affiliation(s)
- Bo-Yin Jia
- State Key Laboratory for Molecular Biology of Special Economical Animals, Institute of Special Economic Animals and Plants, Chinese Academy of Agricultural Sciences, 4899 Juye Street, Changchun, 130112, China
| | - Heng-Xing Ba
- State Key Laboratory for Molecular Biology of Special Economical Animals, Institute of Special Economic Animals and Plants, Chinese Academy of Agricultural Sciences, 4899 Juye Street, Changchun, 130112, China
| | - Gui-Wu Wang
- State Key Laboratory for Molecular Biology of Special Economical Animals, Institute of Special Economic Animals and Plants, Chinese Academy of Agricultural Sciences, 4899 Juye Street, Changchun, 130112, China
| | - Ying Yang
- State Key Laboratory for Molecular Biology of Special Economical Animals, Institute of Special Economic Animals and Plants, Chinese Academy of Agricultural Sciences, 4899 Juye Street, Changchun, 130112, China
| | - Xue-Zhe Cui
- State Key Laboratory for Molecular Biology of Special Economical Animals, Institute of Special Economic Animals and Plants, Chinese Academy of Agricultural Sciences, 4899 Juye Street, Changchun, 130112, China
| | - Ying-Hua Peng
- State Key Laboratory for Molecular Biology of Special Economical Animals, Institute of Special Economic Animals and Plants, Chinese Academy of Agricultural Sciences, 4899 Juye Street, Changchun, 130112, China
| | - Jun-Jun Zheng
- State Key Laboratory for Molecular Biology of Special Economical Animals, Institute of Special Economic Animals and Plants, Chinese Academy of Agricultural Sciences, 4899 Juye Street, Changchun, 130112, China
| | - Xiu-Mei Xing
- State Key Laboratory for Molecular Biology of Special Economical Animals, Institute of Special Economic Animals and Plants, Chinese Academy of Agricultural Sciences, 4899 Juye Street, Changchun, 130112, China
| | - Fu-He Yang
- State Key Laboratory for Molecular Biology of Special Economical Animals, Institute of Special Economic Animals and Plants, Chinese Academy of Agricultural Sciences, 4899 Juye Street, Changchun, 130112, China.
| |
Collapse
|
18
|
Shiratake K, Suzuki M. Omics studies of citrus, grape and rosaceae fruit trees. BREEDING SCIENCE 2016; 66:122-38. [PMID: 27069397 PMCID: PMC4780796 DOI: 10.1270/jsbbs.66.122] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 11/01/2015] [Indexed: 05/06/2023]
Abstract
Recent advance of bioinformatics and analytical apparatuses such as next generation DNA sequencer (NGS) and mass spectrometer (MS) has brought a big wave of comprehensive study to biology. Comprehensive study targeting all genes, transcripts (RNAs), proteins, metabolites, hormones, ions or phenotypes is called genomics, transcriptomics, proteomics, metabolomics, hormonomics, ionomics or phenomics, respectively. These omics are powerful approaches to identify key genes for important traits, to clarify events of physiological mechanisms and to reveal unknown metabolic pathways in crops. Recently, the use of omics approach has increased dramatically in fruit tree research. Although the most reported omics studies on fruit trees are transcriptomics, proteomics and metabolomics, and a few is reported on hormonomics and ionomics. In this article, we reviewed recent omics studies of major fruit trees, i.e. citrus, grapevine and rosaceae fruit trees. The effectiveness and prospects of omics in fruit tree research will as well be highlighted.
Collapse
Affiliation(s)
- Katsuhiro Shiratake
- Graduate School of Bioagricultural Sciences, Nagoya University,
Chikusa, Nagoya, Aichi 464-8601,
Japan
- Corresponding author (e-mail: )
| | - Mami Suzuki
- Graduate School of Bioagricultural Sciences, Nagoya University,
Chikusa, Nagoya, Aichi 464-8601,
Japan
| |
Collapse
|