1
|
Furmanek Ł, Czarnota P, Tekiela A, Kapusta I, Seaward MRD. A spectrophotometric analysis of extracted water-soluble phenolic metabolites of lichens. PLANTA 2024; 260:40. [PMID: 38954049 PMCID: PMC11219455 DOI: 10.1007/s00425-024-04474-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 06/24/2024] [Indexed: 07/04/2024]
Abstract
MAIN CONCLUSION Rainwater most probably constitutes a relatively effective solvent for lichen substances in nature which have the potential to provide for human and environmental needs in the future. The aims were (i) to test the hypothesis on the potential solubility of lichen phenolic compounds using rainwater under conditions that partly reflect the natural environment and (ii) to propose new and effective methods for the water extraction of lichen substances. The results of spectrophotometric analyses of total phenolic metabolites in rainwater-based extracts from epigeic and epiphytic lichens, employing the Folin-Ciocalteu (F.-C.) method, are presented. The water solvent was tested at three pH levels: natural, 3, and 9. Extraction methods were undertaken from two perspectives: the partial imitation of natural environmental conditions and the potential use of extraction for economic purposes. From an ecological perspective, room-temperature water extraction ('cold' method) was used for 10-, 60-, and 120-min extraction periods. A variant of water extraction at analogous time intervals was an 'insolation' with a 100W light bulb to simulate the heat energy of the sun. For economic purposes, the water extraction method used the Soxhlet apparatus and its modified version, the 'tea-extraction' method ('hot' ones). The results showed that those extractions without an external heat source were almost ineffective, but insolation over 60- and 120-min periods proved to be more effective. Both tested 'hot' methods also proved to be effective, especially the 'tea-extraction' one. Generally, an increase in the concentration of phenolic compounds in water extracts resulted from an increasing solvent pH. The results show the probable involvement of lichen substances in biogeochemical processes in nature and their promising use for a variety of human necessities.
Collapse
Affiliation(s)
- Łukasz Furmanek
- Department of Ecology and Environmental Protection, University of Rzeszów, Zelwerowicza 4 Street, 35-601, Rzeszów, Poland.
- Unit for Assessment of Chemical, Pharmaceutical and Biological Documentation, Department for Assessment of Medicinal Products Documentation, The Office for Registration of Medicinal Products, Medical Devices and Biocidal Products, Al. Jerozolimskie 181C, Warsaw, Poland.
| | - Paweł Czarnota
- Department of Ecology and Environmental Protection, University of Rzeszów, Zelwerowicza 4 Street, 35-601, Rzeszów, Poland
| | - Agata Tekiela
- Department of Agroecology and Forest Utilization, University of Rzeszów, Ćwiklińskiej 1A Street, 35-601, Rzeszów, Poland
| | - Ireneusz Kapusta
- Department of Food Technology and Nutrition, University of Rzeszów, Ćwiklińskiej 1 Street, 35-601, Rzeszów, Poland
| | - Mark R D Seaward
- School of Archaeological and Forensic Sciences, University of Bradford, Bradford, BD7 1DP, UK
| |
Collapse
|
2
|
Yang C, Zhou Q, Shen Y, Liu L, Cao Y, Tian H, Cao S, Liu C. The co-dispersal strategy of Endocarpon (Verrucariaceae) shapes an unusual lichen population structure. MYCOSCIENCE 2024; 65:138-150. [PMID: 39233758 PMCID: PMC11369309 DOI: 10.47371/mycosci.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 09/06/2024]
Abstract
The reproduction and dispersal strategies of lichens play a major role in shaping their population structure and photobiont diversity. Sexual reproduction, which is common, leads to high lichen genetic diversity and low photobiont selectivity. However, the lichen genus Endocarpon adopts a special co-dispersal model in which algal cells from the photobiont and ascospores from the mycobiont are released together into the environment. To explore the dispersal strategy impact on population structures, a total of 62 Endocarpon individuals and 12 related Verrucariaceae genera individuals, representing co-dispersal strategy and conventional independent dispersal mode were studied. Phylogenetic analysis revealed that Endocarpon, with a large-scale geographical distribution, showed an extremely high specificity of symbiotic associations with their photobiont. Furthermore, three types of group I intron at 1769 site have been found in most Endocarpon mycobionts, which showed a high variety of group I intron in the same insertion site even in the same species collected from one location. This study suggested that the ascospore-alga co-dispersal mode of Endocarpon resulted in this unusual mycobiont-photobiont relationship; also provided an evidence for the horizontal transfer of group I intron that may suggest the origin of the complexity and diversity of lichen symbiotic associations.
Collapse
Affiliation(s)
- ChunYan Yang
- School of Life Science and Technology, Harbin Institute of Technology
| | | | - Yue Shen
- Key Laboratory for Polar Science, State Ocean Administration, Polar Research Institute of China
| | - LuShan Liu
- Emergency Department of China Rehabilitation Research Center, Capital medical University
| | - YunShu Cao
- Inner Mongolia Vocational and Technical College of Communications
| | - HuiMin Tian
- Department of Physiology, Medical College, Chifeng University
| | - ShuNan Cao
- Key Laboratory for Polar Science, State Ocean Administration, Polar Research Institute of China
| | - ChuanPeng Liu
- School of Life Science and Technology, Harbin Institute of Technology
| |
Collapse
|
3
|
White KH, Keepers K, Kane N, Lendemer JC. Discovery of New Genomic Configuration of Mating-Type Loci in the Largest Lineage of Lichen-Forming Fungi. Genome Biol Evol 2024; 16:evae094. [PMID: 38686438 PMCID: PMC11126327 DOI: 10.1093/gbe/evae094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 05/02/2024] Open
Abstract
The genetic architecture of mating-type loci in lichen-forming fungi has been characterized in very few taxa. Despite the limited data, and in contrast to all other major fungal lineages, arrangements that have both mating-type alleles in a single haploid genome have been hypothesized to be absent from the largest lineage of lichen-forming fungi, the Lecanoromycetes. We report the discovery of both mating-type alleles from the haploid genomes of three species within this group. Our results demonstrate that Lecanoromycetes are not an outlier among Ascomycetes.
Collapse
Affiliation(s)
- Kristin H White
- Department of Ecology and Evolution, University of Colorado, Boulder, CO 80309, USA
| | - Kyle Keepers
- Department of Ecology and Evolution, University of Colorado, Boulder, CO 80309, USA
| | - Nolan Kane
- Department of Ecology and Evolution, University of Colorado, Boulder, CO 80309, USA
| | - James C Lendemer
- Department of Botany, Research and Collections, CEC 3148, The New York State Museum, Albany, NY 12230, USA
| |
Collapse
|
4
|
Wang Y, Li R, Wang D, Qian B, Bian Z, Wei J, Wei X, Xu JR. Regulation of symbiotic interactions and primitive lichen differentiation by UMP1 MAP kinase in Umbilicaria muhlenbergii. Nat Commun 2023; 14:6972. [PMID: 37914724 PMCID: PMC10620189 DOI: 10.1038/s41467-023-42675-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 10/17/2023] [Indexed: 11/03/2023] Open
Abstract
Lichens are of great ecological importance but mechanisms regulating lichen symbiosis are not clear. Umbilicaria muhlenbergii is a lichen-forming fungus amenable to molecular manipulations and dimorphic. Here, we established conditions conducive to symbiotic interactions and lichen differentiation and showed the importance of UMP1 MAP kinase in lichen development. In the initial biofilm-like symbiotic complexes, algal cells were interwoven with pseudohyphae covered with extracellular matrix. After longer incubation, fungal-algal complexes further differentiated into primitive lichen thalli with a melanized cortex-like and pseudoparenchyma-like tissues containing photoactive algal cells. Mutants deleted of UMP1 were blocked in pseudohyphal growth and development of biofilm-like complexes and primitive lichens. Invasion of dividing mother cells that contributes to algal layer organization in lichens was not observed in the ump1 mutant. Overall, these results showed regulatory roles of UMP1 in symbiotic interactions and lichen development and suitability of U. muhlenbergii as a model for studying lichen symbiosis.
Collapse
Affiliation(s)
- Yanyan Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- Dept. of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Rong Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Diwen Wang
- Dept. of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Ben Qian
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhuyun Bian
- Dept. of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Jiangchun Wei
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xinli Wei
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Jin-Rong Xu
- Dept. of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
5
|
Zhang T, Grube M, Wei X. Host selection tendency of key microbiota in arid desert lichen crusts. IMETA 2023; 2:e138. [PMID: 38868215 PMCID: PMC10989926 DOI: 10.1002/imt2.138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 09/17/2023] [Indexed: 06/14/2024]
Abstract
Lichen genus Endocarpon in biological soil crust form was chosen as a model to investigate the bacterial communities for the first time across four vertically distinct strata. Key bacterial microbiota in lichen thallus were discovered, which were gradually filtered and mainly derived from the crust soil, with clear host selection tendency. The study provided key information to better understand the homeostasis maintenance mechanism of the lichen symbiont and community assembly of desert lichen crust.
Collapse
Affiliation(s)
- Ting‐Ting Zhang
- State Key Laboratory of Mycology, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Martin Grube
- Institute of BiologyUniversity of GrazGrazAustria
| | - Xin‐Li Wei
- State Key Laboratory of Mycology, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
6
|
Abstract
Investigation of fungal biology has been frequently motivated by the fact that many fungal species are important plant and animal pathogens. Such efforts have contributed significantly toward our understanding of fungal pathogenic lifestyles (virulence factors and strategies) and the interplay with host immune systems. In parallel, work on fungal allorecognition systems leading to the characterization of fungal regulated cell death determinants and pathways, has been instrumental for the emergent concept of fungal immunity. The uncovered evolutionary trans-kingdom parallels between fungal regulated cell death pathways and innate immune systems incite us to reflect further on the concept of a fungal immune system. Here, I briefly review key findings that have shaped the fungal immunity paradigm, providing a perspective on what I consider its most glaring knowledge gaps. Undertaking to fill such gaps would establish firmly the fungal immune system inside the broader field of comparative immunology.
Collapse
Affiliation(s)
- Asen Daskalov
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- ImmunoConcEpT, CNRS UMR 5164, University of Bordeaux, Bordeaux, France
| |
Collapse
|
7
|
Pichler G, Muggia L, Carniel FC, Grube M, Kranner I. How to build a lichen: from metabolite release to symbiotic interplay. THE NEW PHYTOLOGIST 2023; 238:1362-1378. [PMID: 36710517 PMCID: PMC10952756 DOI: 10.1111/nph.18780] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/28/2022] [Indexed: 06/18/2023]
Abstract
Exposing their vegetative bodies to the light, lichens are outstanding amongst other fungal symbioses. Not requiring a pre-established host, 'lichenized fungi' build an entirely new structure together with microbial photosynthetic partners that neither can form alone. The signals involved in the transition of a fungus and a compatible photosynthetic partner from a free-living to a symbiotic state culminating in thallus formation, termed 'lichenization', and in the maintenance of the symbiosis, are poorly understood. Here, we synthesise the puzzle pieces of the scarce knowledge available into an updated concept of signalling involved in lichenization, comprising five main stages: (1) the 'pre-contact stage', (2) the 'contact stage', (3) 'envelopment' of algal cells by the fungus, (4) their 'incorporation' into a pre-thallus and (5) 'differentiation' into a complex thallus. Considering the involvement of extracellularly released metabolites in each phase, we propose that compounds such as fungal lectins and algal cyclic peptides elicit early contact between the symbionts-to-be, whereas phytohormone signalling, antioxidant protection and carbon exchange through sugars and sugar alcohols are of continued importance throughout all stages. In the fully formed lichen thallus, secondary lichen metabolites and mineral nutrition are suggested to stabilize the functionalities of the thallus, including the associated microbiota.
Collapse
Affiliation(s)
- Gregor Pichler
- Department of BotanyUniversity of InnsbruckSternwartestraße 156020InnsbruckAustria
| | - Lucia Muggia
- Department of Life SciencesUniversity of TriesteVia L. Giorgieri 1034127TriesteItaly
| | | | - Martin Grube
- Institute of BiologyUniversity of GrazHolteigasse 68010GrazAustria
| | - Ilse Kranner
- Department of BotanyUniversity of InnsbruckSternwartestraße 156020InnsbruckAustria
| |
Collapse
|
8
|
Fan D, Liu L, Cao S, Liao R, Liu C, Zhou Q. Transcriptional analysis of the dimorphic fungus Umbilicaria muehlenbergii reveals the molecular mechanism of phenotypic transition. World J Microbiol Biotechnol 2023; 39:170. [PMID: 37185920 DOI: 10.1007/s11274-023-03618-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 04/13/2023] [Indexed: 05/17/2023]
Abstract
The lichen-forming fungus Umbilicaria muehlenbergii undergoes a phenotypic transition from a yeast-like to a pseudohyphal form. However, it remains unknown if a common mechanism is involved in the phenotypic switch of U. muehlenbergii at the transcriptional level. Further, investigation of the phenotype switch molecular mechanism in U. muehlenbergii has been hindered by incomplete genomic sequencing data. Here, the phenotypic characteristics of U. muehlenbergii were investigated after cultivation on several carbon sources, revealing that oligotrophic conditions due to nutrient stress (reduced strength PDA (potato dextrose agar) media) exacerbated the pseudohyphal growth of U. muehlenbergii. Further, the addition of sorbitol, ribitol, and mannitol exacerbated the pseudohyphal growth of U. muehlenbergii regardless of PDA medium strength. Transcriptome analysis of U. muehlenbergii grown in normal and nutrient-stress conditions revealed the presence of several biological pathways with altered expression levels during nutrient stress and related to carbohydrate, protein, DNA/RNA and lipid metabolism. Further, the results demonstrated that altered biological pathways can cooperate during pseudohyphal growth, including pathways involved in the production of protectants, acquisition of other carbon sources, or adjustment of energy metabolism. Synergistic changes in the functioning of these pathways likely help U. muehlenbergii cope with dynamic stimuli. These results provide insights into the transcriptional response of U. muehlenbergii during pseudohyphal growth under oligotrophic conditions. Specifically, the transcriptomic analysis indicated that pseudohyphal growth is an adaptive mechanism of U. muehlenbergii that facilitates its use of alternative carbon sources to maintain survival.
Collapse
Affiliation(s)
- Dongjie Fan
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Lushan Liu
- Emergency Department of China Rehabilitation Research Center, Capital medical University, Fengtai District, No. 10 Jiaomen North Street, Beijing, 100068, China
| | - Shunan Cao
- Key Laboratory for Polar Science MNR, Polar Research Institute of China, NO.1000 Xuelong Road, Pudong, Shanghai, China
| | - Rui Liao
- ChosenMed Technology Company Limited, Economic and Technological Development Area, Jinghai Industrial Park, No. 156 Fourth Jinghai Road, Beijing, China
| | - Chuanpeng Liu
- School of Life Science and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Harbin, 150080, China.
| | - Qiming Zhou
- ChosenMed Technology Company Limited, Economic and Technological Development Area, Jinghai Industrial Park, No. 156 Fourth Jinghai Road, Beijing, China.
| |
Collapse
|
9
|
Valim HF, Dal Grande F, Otte J, Singh G, Merges D, Schmitt I. Identification and expression of functionally conserved circadian clock genes in lichen-forming fungi. Sci Rep 2022; 12:15884. [PMID: 36151124 PMCID: PMC9508176 DOI: 10.1038/s41598-022-19646-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/31/2022] [Indexed: 12/02/2022] Open
Abstract
Lichen-forming fungi establish stable symbioses with green algae or cyanobacteria. Many species have broad distributions, both in geographic and ecological space, making them ideal subjects to study organism-environment interactions. However, little is known about the specific mechanisms that contribute to environmental adaptation in lichen-forming fungi. The circadian clock provides a well-described mechanism that contributes to regional adaptation across a variety of species, including fungi. Here, we identify the putative circadian clock components in phylogenetically divergent lichen-forming fungi. The core circadian genes (frq, wc-1, wc-2, frh) are present across the Fungi, including 31 lichen-forming species, and their evolutionary trajectories mirror overall fungal evolution. Comparative analyses of the clock genes indicate conserved domain architecture among lichen- and non-lichen-forming taxa. We used RT-qPCR to examine the core circadian loop of two unrelated lichen-forming fungi, Umbilicaria pustulata (Lecanoromycetes) and Dermatocarpon miniatum (Eurotiomycetes), to determine that the putative frq gene is activated in a light-dependent manner similar to the model fungus Neurospora crassa. Together, these results demonstrate that lichen-forming fungi retain functional light-responsive mechanisms, including a functioning circadian clock. Our findings provide a stepping stone into investigating the circadian clock in the lichen symbiosis, e.g. its role in adaptation, and in synchronizing the symbiotic interaction.
Collapse
Affiliation(s)
- Henrique F Valim
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberganlage 25, 60325, Frankfurt am Main, Germany.
- LOEWE Center for Translational Biodiversity Genomics (TBG), Senckenberganlage 25, 60325, Frankfurt am Main, Germany.
| | - Francesco Dal Grande
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberganlage 25, 60325, Frankfurt am Main, Germany
- LOEWE Center for Translational Biodiversity Genomics (TBG), Senckenberganlage 25, 60325, Frankfurt am Main, Germany
- Department of Biology, University of Padua, Via U. Bassi 58/B, Padua, Italy
| | - Jürgen Otte
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberganlage 25, 60325, Frankfurt am Main, Germany
| | - Garima Singh
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberganlage 25, 60325, Frankfurt am Main, Germany
- LOEWE Center for Translational Biodiversity Genomics (TBG), Senckenberganlage 25, 60325, Frankfurt am Main, Germany
- Department of Biology, University of Padua, Via U. Bassi 58/B, Padua, Italy
| | - Dominik Merges
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberganlage 25, 60325, Frankfurt am Main, Germany
- LOEWE Center for Translational Biodiversity Genomics (TBG), Senckenberganlage 25, 60325, Frankfurt am Main, Germany
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, P.O. Box 7070, 750 07, Uppsala, Sweden
| | - Imke Schmitt
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberganlage 25, 60325, Frankfurt am Main, Germany.
- LOEWE Center for Translational Biodiversity Genomics (TBG), Senckenberganlage 25, 60325, Frankfurt am Main, Germany.
- Department of Biological Sciences, Institute of Ecology, Evolution and Diversity, Goethe University Frankfurt, Max-von-Laue-Straße 13, 60438, Frankfurt am Main, Germany.
| |
Collapse
|
10
|
Sánchez M, Ureña-Vacas I, González-Burgos E, Divakar PK, Gómez-Serranillos MP. The Genus Cetraria s. str.-A Review of Its Botany, Phytochemistry, Traditional Uses and Pharmacology. Molecules 2022; 27:molecules27154990. [PMID: 35956939 PMCID: PMC9370490 DOI: 10.3390/molecules27154990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/29/2022] [Accepted: 08/03/2022] [Indexed: 11/16/2022] Open
Abstract
The genus Cetraria s. str. (Parmeliaceae family, Cetrarioid clade) consists of 15 species of mostly erect brown or greenish yellow fruticose or subfoliose thallus. These Cetraria species have a cosmopolitan distribution, being primarily located in the Northern Hemisphere, in North America and in the Eurasia area. Phytochemical analysis has demonstrated the presence of dibenzofuran derivatives (usnic acid), depsidones (fumarprotocetraric and protocetraric acids) and fatty acids (lichesterinic and protolichesterinic acids). The species of Cetraria, and more particularly Cetraria islandica, has been widely employed in folk medicine for the treatment of digestive and respiratory diseases as decoctions, tinctures, aqueous extract, and infusions. Moreover, Cetraria islandica has had an important nutritional and cosmetic value. These traditional uses have been validated in in vitro and in vivo pharmacological studies. Additionally, new therapeutic activities are being investigated, such as antioxidant, immunomodulatory, cytotoxic, genotoxic and antigenotoxic. Among all Cetraria species, the most investigated by far has been Cetraria islandica, followed by Cetraria pinastri and Cetraria aculeata. The aim of the current review is to update all the knowledge about the genus Cetraria covering aspects that include taxonomy and phylogeny, morphology and distribution, ecological and environmental interest, phytochemistry, traditional uses and pharmacological properties.
Collapse
|
11
|
Furmanek Ł, Czarnota P, Seaward MRD. A review of the potential of lichen substances as antifungal agents: the effects of extracts and lichen secondary metabolites on Fusarium fungi. Arch Microbiol 2022; 204:523. [PMID: 35881248 PMCID: PMC9325835 DOI: 10.1007/s00203-022-03104-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/06/2022] [Accepted: 06/27/2022] [Indexed: 11/26/2022]
Abstract
The present meta-analysis provides literature data on the effect of lichen extracts and single secondary metabolites used against Fusarium spp. moulds. Lichen extracts were obtained from 51 corticolous, 17 terricolous and 18 saxicolous lichen species and 37 secondary compounds were tested against eight fungal species, i.e., Fusarium acuminatum, F. avenaceum, F. culmorum, F. fujikuroi, F. oxysporum, F. roseum, F. solani and F. udum. The researchers used several test methods, mostly to determine MIC and IZ. Extracts were obtained using several solvents, mainly organic ones with use of the Soxhlet apparatus. The most frequently tested species was F. oxysporum, against which lichen substances from Alectoria sarmentosa, Cladonia mitis, C. rangiferina, Flavoparmelia caperata, Hypotrachyna cirrhata, Leucodermia leucomelos, Parmotrema austrosinense, P. reticulatum, Physcia aipolia, Pseudevernia furfuracea, Roccella montagnei and Umbilicaria nylanderiana and secondary metabolites such as 2-hydroxy-4-methoxy-3,6-dimethylbenzoic acid, atranorin, lecanoric and (+)-usnic acids showed the highest antifungal potential. These agencies could compete with the potential of fungicides, such as flucytosine and fluconazole. Other species have been poorly investigated. Statistical analysis of literature data showed that the fungistatic potential of lichen extracts is significantly different from individual secondary metabolites. Similarly, the potential of secondary metabolites often differs significantly from that of non-lichen substances. This meta-analysis indicates the potential of lichen substances as future anti-fusarial agents.
Collapse
Affiliation(s)
- Łukasz Furmanek
- Department of Ecology and Environmental Protection, University of Rzeszów, ul. Zelwerowicza 4, 35-601, Rzeszow, Poland.
| | - Paweł Czarnota
- Department of Ecology and Environmental Protection, University of Rzeszów, ul. Zelwerowicza 4, 35-601, Rzeszow, Poland
| | - Mark R D Seaward
- School of Archaeological and Forensic Sciences, University of Bradford, Bradford, BD7 1DP, UK
| |
Collapse
|
12
|
A comparative genomic analysis of lichen-forming fungi reveals new insights into fungal lifestyles. Sci Rep 2022; 12:10724. [PMID: 35750715 PMCID: PMC9232553 DOI: 10.1038/s41598-022-14340-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/06/2022] [Indexed: 11/18/2022] Open
Abstract
Lichen-forming fungi are mutualistic symbionts of green algae or cyanobacteria. We report the comparative analysis of six genomes of lichen-forming fungi in classes Eurotiomycetes and Lecanoromycetes to identify genomic information related to their symbiotic lifestyle. The lichen-forming fungi exhibited genome reduction via the loss of dispensable genes encoding plant-cell-wall-degrading enzymes, sugar transporters, and transcription factors. The loss of these genes reflects the symbiotic biology of lichens, such as the absence of pectin in the algal cell wall and obtaining specific sugars from photosynthetic partners. The lichens also gained many lineage- and species-specific genes, including those encoding small secreted proteins. These genes are primarily induced during the early stage of lichen symbiosis, indicating their significant roles in the establishment of lichen symbiosis.Our findings provide comprehensive genomic information for six lichen-forming fungi and novel insights into lichen biology and the evolution of symbiosis.
Collapse
|
13
|
Identification of Fungi in Flaxseed (L. usitatissimum L.) Using the ITS1 and ITS2 Intergenic Regions. MICROBIOLOGY RESEARCH 2022. [DOI: 10.3390/microbiolres13020024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Flaxseed (Linum usitatissimum L.) displays functional properties and contains α-linolenic acid (omega-3). It also contains soluble and insoluble fiber, lignans, phenolic acids, flavonoids, phytic acid, vitamins, and minerals. However, its microbiota can cause fungal contaminations, drastically reducing its quality. The objective of this work was to identify the fungi present in bulk flaxseed through the internal transcribed spacer (ITS1) intergenic region using a metataxonomics approach. Fungal identification was performed via high-performance sequencing of the ITS1 region using ITS1 (GAACCWGCGGARGGATCA) and ITS2 (GCTGCGTTCTTCATCGATGC) as primers with 300 cycles and single-end sequencing in the MiSeq Sequencing System equipment (Illumina Inc., San Diego, CA, USA). Six genera and eight species of fungi were found in the sample. The genus Aspergillus stood out with three xerophilic species found, A. cibarius, A. Appendiculatus, and A. amstelodami, the first being the most abundant. The second most abundant genus was Wallemia, with the species W. muriae. This is one of the fungi taxa with great xerophilic potential, and some strains can produce toxins. Metataxonomics has proved to be a complete, fast, and efficient method to identify different fungi. Furthermore, high-performance genetic sequencing is an important ally in research, helping to develop novel technological advances related to food safety.
Collapse
|
14
|
Metabolite Profiling in Green Microalgae with Varying Degrees of Desiccation Tolerance. Microorganisms 2022; 10:microorganisms10050946. [PMID: 35630392 PMCID: PMC9144557 DOI: 10.3390/microorganisms10050946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/27/2022] [Accepted: 04/29/2022] [Indexed: 11/17/2022] Open
Abstract
Trebouxiophyceae are microalgae occupying even extreme environments such as polar regions or deserts, terrestrial or aquatic, and can occur free-living or as lichen photobionts. Yet, it is poorly understood how environmental factors shape their metabolism. Here, we report on responses to light and temperature, and metabolic adjustments to desiccation in Diplosphaera epiphytica, isolated from a lichen, and Edaphochlorella mirabilis, isolated from Tundra soil, assessed via growth and photosynthetic performance parameters. Metabolite profiling was conducted by GC–MS. A meta-analysis together with data from a terrestrial and an aquatic Chlorella vulgaris strain reflected elements of phylogenetic relationship, lifestyle, and relative desiccation tolerance of the four algal strains. For example, compatible solutes associated with desiccation tolerance were up-accumulated in D. epiphytica, but also sugars and sugar alcohols typically produced by lichen photobionts. The aquatic C. vulgaris, the most desiccation-sensitive strain, showed the greatest variation in metabolite accumulation after desiccation and rehydration, whereas the most desiccation-tolerant strain, D. epiphytica, showed the least, suggesting that it has a more efficient constitutive protection from desiccation and/or that desiccation disturbed the metabolic steady-state less than in the other three strains. The authors hope that this study will stimulate more research into desiccation tolerance mechanisms in these under-investigated microorganisms.
Collapse
|
15
|
Dal Grande F, Jamilloux V, Choisne N, Calchera A, Rolshausen G, Petersen M, Schulz M, Nilsson MA, Schmitt I. Transposable Elements in the Genome of the Lichen-Forming Fungus Umbilicaria pustulata and Their Distribution in Different Climate Zones along Elevation. BIOLOGY 2021; 11:biology11010024. [PMID: 35053022 PMCID: PMC8773270 DOI: 10.3390/biology11010024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/07/2021] [Accepted: 12/20/2021] [Indexed: 11/16/2022]
Abstract
Transposable elements (TEs) are an important source of genome plasticity across the tree of life. Drift and natural selection are important forces shaping TE distribution and accumulation. Fungi, with their multifaceted phenotypic diversity and relatively small genome size, are ideal models to study the role of TEs in genome evolution and their impact on the host's ecological and life history traits. Here we present an account of all TEs found in a high-quality reference genome of the lichen-forming fungus Umbilicaria pustulata, a macrolichen species comprising two climatic ecotypes: Mediterranean and cold temperate. We trace the occurrence of the newly identified TEs in populations along three elevation gradients using a Pool-Seq approach to identify TE insertions of potential adaptive significance. We found that TEs cover 21.26% of the 32.9 Mbp genome, with LTR Gypsy and Copia clades being the most common TEs. We identified 28 insertions displaying consistent insertion frequency differences between the two host ecotypes across the elevation gradients. Most of the highly differentiated insertions were located near genes, indicating a putative function. This pioneering study of the content and climate niche-specific distribution of TEs in a lichen-forming fungus contributes to understanding the roles of TEs in fungal evolution.
Collapse
Affiliation(s)
- Francesco Dal Grande
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage 25, 60325 Frankfurt am Main, Germany; (A.C.); (M.S.); (M.A.N.); (I.S.)
- LOEWE Centre for Translational Biodiversity Genomics (TBG), Senckenberganlage 25, 60325 Frankfurt am Main, Germany
- Correspondence: ; Tel.: +49-(0)69-7542-1856
| | - Véronique Jamilloux
- INRAE URGI, Centre de Versailles, Bâtiment 18, Route de Saint Cyr, 78026 Versailles, France; (V.J.); (N.C.)
| | - Nathalie Choisne
- INRAE URGI, Centre de Versailles, Bâtiment 18, Route de Saint Cyr, 78026 Versailles, France; (V.J.); (N.C.)
| | - Anjuli Calchera
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage 25, 60325 Frankfurt am Main, Germany; (A.C.); (M.S.); (M.A.N.); (I.S.)
| | - Gregor Rolshausen
- Senckenberg Center for Wildlife Genetics, Clamecystrasse 12, 63571 Gelnhausen, Germany;
| | - Malte Petersen
- Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108 Freiburg, Germany;
| | - Meike Schulz
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage 25, 60325 Frankfurt am Main, Germany; (A.C.); (M.S.); (M.A.N.); (I.S.)
| | - Maria A. Nilsson
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage 25, 60325 Frankfurt am Main, Germany; (A.C.); (M.S.); (M.A.N.); (I.S.)
- LOEWE Centre for Translational Biodiversity Genomics (TBG), Senckenberganlage 25, 60325 Frankfurt am Main, Germany
| | - Imke Schmitt
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage 25, 60325 Frankfurt am Main, Germany; (A.C.); (M.S.); (M.A.N.); (I.S.)
- LOEWE Centre for Translational Biodiversity Genomics (TBG), Senckenberganlage 25, 60325 Frankfurt am Main, Germany
- Institut für Ökologie, Evolution und Diversität, Goethe-Universität Frankfurt, Max-von-Laue-Strasse. 9, 60438 Frankfurt am Main, Germany
| |
Collapse
|
16
|
Kooij PW, Pellicer J. Genome Size Versus Genome Assemblies: Are the Genomes Truly Expanded in Polyploid Fungal Symbionts? Genome Biol Evol 2021; 12:2384-2390. [PMID: 33283863 PMCID: PMC7719231 DOI: 10.1093/gbe/evaa217] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2020] [Indexed: 12/21/2022] Open
Abstract
Each day, as the amount of genomic data and bioinformatics resources grows, researchers are increasingly challenged with selecting the most appropriate approach to analyze their data. In addition, the opportunity to undertake comparative genomic analyses is growing rapidly. This is especially true for fungi due to their small genome sizes (i.e., mean 1C = 44.2 Mb). Given these opportunities and aiming to gain novel insights into the evolution of mutualisms, we focus on comparing the quality of whole genome assemblies for fungus-growing ants cultivars (Hymenoptera: Formicidae: Attini) and a free-living relative. Our analyses reveal that currently available methodologies and pipelines for analyzing whole-genome sequence data need refining. By using different genome assemblers, we show that the genome assembly size depends on what software is used. This, in turn, impacts gene number predictions, with higher gene numbers correlating positively with genome assembly size. Furthermore, the majority of fungal genome size data currently available are based on estimates derived from whole-genome assemblies generated from short-read genome data, rather than from the more accurate technique of flow cytometry. Here, we estimated the haploid genome sizes of three ant fungal symbionts by flow cytometry using the fungus Pleurotus ostreatus (Jacq.) P. Kumm. (1871) as a calibration standard. We found that published genome sizes based on genome assemblies are 2.5- to 3-fold larger than our estimates based on flow cytometry. We, therefore, recommend that flow cytometry is used to precalibrate genome assembly pipelines, to avoid incorrect estimates of genome sizes and ensure robust assemblies.
Collapse
Affiliation(s)
- Pepijn W Kooij
- Department of Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, Richmond, United Kingdom.,Center for the Study of Social Insects, São Paulo State University (UNESP), Rio Claro, Sao Paulo, Brazil
| | - Jaume Pellicer
- Department of Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, Richmond, United Kingdom.,Institut Botànic de Barcelona (IBB, CSIC-Ajuntament de Barcelona), Barcelona, Spain
| |
Collapse
|
17
|
|
18
|
Liu YR, Eldridge DJ, Zeng XM, Wang J, Singh BK, Delgado-Baquerizo M. Global diversity and ecological drivers of lichenised soil fungi. THE NEW PHYTOLOGIST 2021; 231:1210-1219. [PMID: 33914920 DOI: 10.1111/nph.17433] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/16/2021] [Indexed: 05/26/2023]
Abstract
Lichens play crucial roles in sustaining the functioning of terrestrial ecosystems; however, the diversity and ecological factors associated with lichenised soil fungi remain poorly understood. To address this knowledge gap, we used a global field survey including information on fungal sequences of topsoils from 235 terrestrial ecosystems. We identified 880 lichenised fungal phylotypes across nine biomes ranging from deserts to tropical forests. The diversity and proportion of lichenised soil fungi peaked in shrublands and dry grasslands. Aridity index, plant cover and soil pH were the most important factors associated with the distribution of lichenised soil fungi. Furthermore, we identified Endocarpon, Verrucaria and Rinodina as some of the most dominant lichenised genera across the globe, and they had similar environmental preferences to the lichenised fungal community. In addition, precipitation seasonality and mean diurnal temperature range were also important in predicting the proportion of these dominant genera. Using this information, we were able to create the first global maps of the richness and the proportion of dominant genera of lichenised fungi. This work provides new insight into the global distribution and ecological preferences of lichenised soil fungi, and supports their dominance in drylands across the globe.
Collapse
Affiliation(s)
- Yu-Rong Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - David J Eldridge
- Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Xiao-Min Zeng
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Juntao Wang
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia
| | - Brajesh K Singh
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia
- Global Centre for Land-Based Innovation, Western Sydney University, Penrith South DC, NSW, 2751, Australia
| | - Manuel Delgado-Baquerizo
- Departamento de Sistemas Físicos, Químicos y Naturales, Universidad Pablo de Olavide, Sevilla, 41013, Spain
| |
Collapse
|
19
|
Cairns TC, Zheng X, Zheng P, Sun J, Meyer V. Turning Inside Out: Filamentous Fungal Secretion and Its Applications in Biotechnology, Agriculture, and the Clinic. J Fungi (Basel) 2021; 7:535. [PMID: 34356914 PMCID: PMC8307877 DOI: 10.3390/jof7070535] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/14/2021] [Accepted: 06/25/2021] [Indexed: 12/15/2022] Open
Abstract
Filamentous fungi are found in virtually every marine and terrestrial habitat. Vital to this success is their ability to secrete a diverse range of molecules, including hydrolytic enzymes, organic acids, and small molecular weight natural products. Industrial biotechnologists have successfully harnessed and re-engineered the secretory capacity of dozens of filamentous fungal species to make a diverse portfolio of useful molecules. The study of fungal secretion outside fermenters, e.g., during host infection or in mixed microbial communities, has also led to the development of novel and emerging technological breakthroughs, ranging from ultra-sensitive biosensors of fungal disease to the efficient bioremediation of polluted environments. In this review, we consider filamentous fungal secretion across multiple disciplinary boundaries (e.g., white, green, and red biotechnology) and product classes (protein, organic acid, and secondary metabolite). We summarize the mechanistic understanding for how various molecules are secreted and present numerous applications for extracellular products. Additionally, we discuss how the control of secretory pathways and the polar growth of filamentous hyphae can be utilized in diverse settings, including industrial biotechnology, agriculture, and the clinic.
Collapse
Affiliation(s)
- Timothy C. Cairns
- Chair of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Xiaomei Zheng
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; (X.Z.); (P.Z.); (J.S.)
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Ping Zheng
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; (X.Z.); (P.Z.); (J.S.)
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Jibin Sun
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; (X.Z.); (P.Z.); (J.S.)
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Vera Meyer
- Chair of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| |
Collapse
|
20
|
Hage H, Rosso MN, Tarrago L. Distribution of methionine sulfoxide reductases in fungi and conservation of the free-methionine-R-sulfoxide reductase in multicellular eukaryotes. Free Radic Biol Med 2021; 169:187-215. [PMID: 33865960 DOI: 10.1016/j.freeradbiomed.2021.04.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 12/17/2022]
Abstract
Methionine, either as a free amino acid or included in proteins, can be oxidized into methionine sulfoxide (MetO), which exists as R and S diastereomers. Almost all characterized organisms possess thiol-oxidoreductases named methionine sulfoxide reductase (Msr) enzymes to reduce MetO back to Met. MsrA and MsrB reduce the S and R diastereomers of MetO, respectively, with strict stereospecificity and are found in almost all organisms. Another type of thiol-oxidoreductase, the free-methionine-R-sulfoxide reductase (fRMsr), identified so far in prokaryotes and a few unicellular eukaryotes, reduces the R MetO diastereomer of the free amino acid. Moreover, some bacteria possess molybdenum-containing enzymes that reduce MetO, either in the free or protein-bound forms. All these Msrs play important roles in the protection of organisms against oxidative stress. Fungi are heterotrophic eukaryotes that colonize all niches on Earth and play fundamental functions, in organic matter recycling, as symbionts, or as pathogens of numerous organisms. However, our knowledge on fungal Msrs is still limited. Here, we performed a survey of msr genes in almost 700 genomes across the fungal kingdom. We show that most fungi possess one gene coding for each type of methionine sulfoxide reductase: MsrA, MsrB, and fRMsr. However, several fungi living in anaerobic environments or as obligate intracellular parasites were devoid of msr genes. Sequence inspection and phylogenetic analyses allowed us to identify non-canonical sequences with potentially novel enzymatic properties. Finaly, we identified several ocurences of msr horizontal gene transfer from bacteria to fungi.
Collapse
Affiliation(s)
- Hayat Hage
- Biodiversité et Biotechnologie Fongiques, UMR1163, INRAE, Aix Marseille Université, Marseille, France
| | - Marie-Noëlle Rosso
- Biodiversité et Biotechnologie Fongiques, UMR1163, INRAE, Aix Marseille Université, Marseille, France
| | - Lionel Tarrago
- Biodiversité et Biotechnologie Fongiques, UMR1163, INRAE, Aix Marseille Université, Marseille, France.
| |
Collapse
|
21
|
Carr EC, Harris SD, Herr JR, Riekhof WR. Lichens and biofilms: Common collective growth imparts similar developmental strategies. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102217] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
22
|
Muggia L, Ametrano CG, Sterflinger K, Tesei D. An Overview of Genomics, Phylogenomics and Proteomics Approaches in Ascomycota. Life (Basel) 2020; 10:E356. [PMID: 33348904 PMCID: PMC7765829 DOI: 10.3390/life10120356] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/10/2020] [Accepted: 12/12/2020] [Indexed: 12/26/2022] Open
Abstract
Fungi are among the most successful eukaryotes on Earth: they have evolved strategies to survive in the most diverse environments and stressful conditions and have been selected and exploited for multiple aims by humans. The characteristic features intrinsic of Fungi have required evolutionary changes and adaptations at deep molecular levels. Omics approaches, nowadays including genomics, metagenomics, phylogenomics, transcriptomics, metabolomics, and proteomics have enormously advanced the way to understand fungal diversity at diverse taxonomic levels, under changeable conditions and in still under-investigated environments. These approaches can be applied both on environmental communities and on individual organisms, either in nature or in axenic culture and have led the traditional morphology-based fungal systematic to increasingly implement molecular-based approaches. The advent of next-generation sequencing technologies was key to boost advances in fungal genomics and proteomics research. Much effort has also been directed towards the development of methodologies for optimal genomic DNA and protein extraction and separation. To date, the amount of proteomics investigations in Ascomycetes exceeds those carried out in any other fungal group. This is primarily due to the preponderance of their involvement in plant and animal diseases and multiple industrial applications, and therefore the need to understand the biological basis of the infectious process to develop mechanisms for biologic control, as well as to detect key proteins with roles in stress survival. Here we chose to present an overview as much comprehensive as possible of the major advances, mainly of the past decade, in the fields of genomics (including phylogenomics) and proteomics of Ascomycota, focusing particularly on those reporting on opportunistic pathogenic, extremophilic, polyextremotolerant and lichenized fungi. We also present a review of the mostly used genome sequencing technologies and methods for DNA sequence and protein analyses applied so far for fungi.
Collapse
Affiliation(s)
- Lucia Muggia
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Claudio G. Ametrano
- Grainger Bioinformatics Center, Department of Science and Education, The Field Museum, Chicago, IL 60605, USA;
| | - Katja Sterflinger
- Academy of Fine Arts Vienna, Institute of Natual Sciences and Technology in the Arts, 1090 Vienna, Austria;
| | - Donatella Tesei
- Department of Biotechnology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria;
| |
Collapse
|
23
|
Complete Genome Sequence of an Australian Strain of the Lichen-Forming Fungus Endocarpon pusillum (Hedwig). Microbiol Resour Announc 2020; 9:9/50/e01079-20. [PMID: 33303659 PMCID: PMC7729407 DOI: 10.1128/mra.01079-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cosmopolitan lichen-forming fungus Endocarpon pusillum (Hedwig) has previously been used as a model for the study of symbiosis and drought resistance. Here, we present the annotated genome of the Australian strain Endocarpon pusillum EPUS1.4. This genome sequence provides additional information on the ability of this species to produce secondary metabolites. The cosmopolitan lichen-forming fungus Endocarpon pusillum (Hedwig) has previously been used as a model for the study of symbiosis and drought resistance. Here, we present the annotated genome of the Australian strain Endocarpon pusillum EPUS1.4. This genome sequence provides additional information on the ability of this species to produce secondary metabolites.
Collapse
|
24
|
Ullah J, Khanum Z, Khan IA, Khalid AN, Musharraf SG, Ali A. Metaproteomics reveals the structural and functional diversity of Dermatocarpon miniatum (L.) W. Mann. Microbiota. Fungal Biol 2020; 125:32-38. [PMID: 33317774 DOI: 10.1016/j.funbio.2020.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/02/2020] [Accepted: 10/04/2020] [Indexed: 12/30/2022]
Abstract
Metaproteomics is a strategy to understand the taxonomy, functionality and metabolic pathways of the microbial communities. The relationship among the symbiotic microbiota in the entire lichen thallus, Dermatocarpon miniatum, was evaluated using the metaproteomic approach. Proteomic profiling using one-dimensional SDS-PAGE followed by LC-MS/MS analysis resulted in a total of 138 identified proteins via Mascot search against UniRef100 and Swiss-Prot databases. In addition to the fungal and algal partners, D. miniatum proteome encompasses proteins from prokaryotes, which is a multifarious community mainly dominated by cyanobacteria and proteobacteria. While proteins assigned to fungus were the most abundant (55 %), followed by protists (16 %), bacterial (13 %), plant (11 %), and viral (1 %) origin, whereas 4 % remained undefined. Various proteins were assigned to the different lichen symbionts by using Gene Ontology (GO) terms, e.g. fungal proteins involved in the oxidation-reduction process, protein folding and glycolytic process, while protists and bacterial proteins were involved in photosynthetic electron transport in photosystem II (PS II), ATP synthesis coupled proton transport, and carbon fixation. The presence of bacterial communities extended the traditional concept of fungal-algal lichen symbiotic interaction.
Collapse
Affiliation(s)
- Junaid Ullah
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Zainab Khanum
- Jamil Ur Rahman Center for Genome Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Ishtiaq Ahmad Khan
- Jamil Ur Rahman Center for Genome Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | | | - Syed Ghulam Musharraf
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan; Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan.
| | - Arslan Ali
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan.
| |
Collapse
|
25
|
Kono M, Kon Y, Ohmura Y, Satta Y, Terai Y. In vitro resynthesis of lichenization reveals the genetic background of symbiosis-specific fungal-algal interaction in Usnea hakonensis. BMC Genomics 2020; 21:671. [PMID: 32993496 PMCID: PMC7526373 DOI: 10.1186/s12864-020-07086-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 09/21/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Symbiosis is central to ecosystems and has been an important driving force of the diversity of life. Close and long-term interactions are known to develop cooperative molecular mechanisms between the symbiotic partners and have often given them new functions as symbiotic entities. In lichen symbiosis, mutualistic relationships between lichen-forming fungi and algae and/or cyanobacteria produce unique features that make lichens adaptive to a wide range of environments. Although the morphological, physiological, and ecological uniqueness of lichens has been described for more than a century, the genetic mechanisms underlying this symbiosis are still poorly known. RESULTS This study investigated the fungal-algal interaction specific to the lichen symbiosis using Usnea hakonensis as a model system. The whole genome of U. hakonensis, the fungal partner, was sequenced by using a culture isolated from a natural lichen thallus. Isolated cultures of the fungal and the algal partners were co-cultured in vitro for 3 months, and thalli were successfully resynthesized as visible protrusions. Transcriptomes of resynthesized and natural thalli (symbiotic states) were compared to that of isolated cultures (non-symbiotic state). Sets of fungal and algal genes up-regulated in both symbiotic states were identified as symbiosis-related genes. CONCLUSION From predicted functions of these genes, we identified genetic association with two key features fundamental to the symbiotic lifestyle in lichens. The first is establishment of a fungal symbiotic interface: (a) modification of cell walls at fungal-algal contact sites; and (b) production of a hydrophobic layer that ensheaths fungal and algal cells;. The second is symbiosis-specific nutrient flow: (a) the algal supply of photosynthetic product to the fungus; and (b) the fungal supply of phosphorous and nitrogen compounds to the alga. Since both features are widespread among lichens, our result may indicate important facets of the genetic basis of the lichen symbiosis.
Collapse
Affiliation(s)
- Mieko Kono
- SOKENDAI (The Graduate University for Advanced Studies), Department of Evolutionary Studies of Biosystems, Shonan Village, Hayama, Kanagawa, 240-0193, Japan.
- Department of Botany, Swedish Museum of Natural History, P.O. Box 50007, SE-104 05, Stockholm, Sweden.
| | - Yoshiaki Kon
- Tokyo Metropolitan Hitotsubashi High School, 1-12-13 Higashikanda, Chiyoda-ku, Tokyo, 101-0031, Japan
| | - Yoshihito Ohmura
- Department of Botany, National Museum of Nature and Science, 4-1-1 Amakubo, Tsukuba, Ibaraki, 305-0005, Japan
| | - Yoko Satta
- SOKENDAI (The Graduate University for Advanced Studies), Department of Evolutionary Studies of Biosystems, Shonan Village, Hayama, Kanagawa, 240-0193, Japan
| | - Yohey Terai
- SOKENDAI (The Graduate University for Advanced Studies), Department of Evolutionary Studies of Biosystems, Shonan Village, Hayama, Kanagawa, 240-0193, Japan
| |
Collapse
|
26
|
Phylogenomic Analyses of Non-Dikarya Fungi Supports Horizontal Gene Transfer Driving Diversification of Secondary Metabolism in the Amphibian Gastrointestinal Symbiont, Basidiobolus. G3-GENES GENOMES GENETICS 2020; 10:3417-3433. [PMID: 32727924 PMCID: PMC7466969 DOI: 10.1534/g3.120.401516] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Research into secondary metabolism (SM) production by fungi has resulted in the discovery of diverse, biologically active compounds with significant medicinal applications. The fungi rich in SM production are taxonomically concentrated in the subkingdom Dikarya, which comprises the phyla Ascomycota and Basidiomycota. Here, we explore the potential for SM production in Mucoromycota and Zoopagomycota, two phyla of nonflagellated fungi that are not members of Dikarya, by predicting and identifying core genes and gene clusters involved in SM. The majority of non-Dikarya have few genes and gene clusters involved in SM production except for the amphibian gut symbionts in the genus Basidiobolus. Basidiobolus genomes exhibit an enrichment of SM genes involved in siderophore, surfactin-like, and terpene cyclase production, all these with evidence of constitutive gene expression. Gene expression and chemical assays also confirm that Basidiobolus has significant siderophore activity. The expansion of SMs in Basidiobolus are partially due to horizontal gene transfer from bacteria, likely as a consequence of its ecology as an amphibian gut endosymbiont.
Collapse
|
27
|
Greshake Tzovaras B, Segers FHID, Bicker A, Dal Grande F, Otte J, Anvar SY, Hankeln T, Schmitt I, Ebersberger I. What Is in Umbilicaria pustulata? A Metagenomic Approach to Reconstruct the Holo-Genome of a Lichen. Genome Biol Evol 2020; 12:309-324. [PMID: 32163141 PMCID: PMC7186782 DOI: 10.1093/gbe/evaa049] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2020] [Indexed: 12/29/2022] Open
Abstract
Lichens are valuable models in symbiosis research and promising sources of biosynthetic genes for biotechnological applications. Most lichenized fungi grow slowly, resist aposymbiotic cultivation, and are poor candidates for experimentation. Obtaining contiguous, high-quality genomes for such symbiotic communities is technically challenging. Here, we present the first assembly of a lichen holo-genome from metagenomic whole-genome shotgun data comprising both PacBio long reads and Illumina short reads. The nuclear genomes of the two primary components of the lichen symbiosis-the fungus Umbilicaria pustulata (33 Mb) and the green alga Trebouxia sp. (53 Mb)-were assembled at contiguities comparable to single-species assemblies. The analysis of the read coverage pattern revealed a relative abundance of fungal to algal nuclei of ∼20:1. Gap-free, circular sequences for all organellar genomes were obtained. The bacterial community is dominated by Acidobacteriaceae and encompasses strains closely related to bacteria isolated from other lichens. Gene set analyses showed no evidence of horizontal gene transfer from algae or bacteria into the fungal genome. Our data suggest a lineage-specific loss of a putative gibberellin-20-oxidase in the fungus, a gene fusion in the fungal mitochondrion, and a relocation of an algal chloroplast gene to the algal nucleus. Major technical obstacles during reconstruction of the holo-genome were coverage differences among individual genomes surpassing three orders of magnitude. Moreover, we show that GC-rich inverted repeats paired with nonrandom sequencing error in PacBio data can result in missing gene predictions. This likely poses a general problem for genome assemblies based on long reads.
Collapse
Affiliation(s)
- Bastian Greshake Tzovaras
- Applied Bioinformatics Group, Institute of Cell Biology and Neuroscience, Goethe University Frankfurt, Germany
- Lawrence Berkeley National Laboratory, Berkeley, California
- Center for Research & Interdisciplinarity, Université de Paris, France
| | - Francisca H I D Segers
- Applied Bioinformatics Group, Institute of Cell Biology and Neuroscience, Goethe University Frankfurt, Germany
- LOEWE Center for Translational Biodiversity Genomics, Frankfurt, Germany
| | - Anne Bicker
- Institute for Organismic and Molecular Evolution, Molecular Genetics and Genome Analysis, Johannes Gutenberg University Mainz, Germany
| | - Francesco Dal Grande
- LOEWE Center for Translational Biodiversity Genomics, Frankfurt, Germany
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt, Germany
| | - Jürgen Otte
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt, Germany
| | - Seyed Yahya Anvar
- Department of Human Genetics, Leiden University Medical Center, The Netherlands
| | - Thomas Hankeln
- Institute for Organismic and Molecular Evolution, Molecular Genetics and Genome Analysis, Johannes Gutenberg University Mainz, Germany
| | - Imke Schmitt
- LOEWE Center for Translational Biodiversity Genomics, Frankfurt, Germany
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt, Germany
- Molecular Evolutionary Biology Group, Institute of Ecology, Diversity, and Evolution, Goethe University Frankfurt, Germany
| | - Ingo Ebersberger
- Applied Bioinformatics Group, Institute of Cell Biology and Neuroscience, Goethe University Frankfurt, Germany
- LOEWE Center for Translational Biodiversity Genomics, Frankfurt, Germany
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt, Germany
| |
Collapse
|
28
|
Roy R, Reinders A, Ward JM, McDonald TR. Understanding transport processes in lichen, Azolla-cyanobacteria, ectomycorrhiza, endomycorrhiza, and rhizobia-legume symbiotic interactions. F1000Res 2020; 9. [PMID: 32047609 PMCID: PMC6979478 DOI: 10.12688/f1000research.19740.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/16/2020] [Indexed: 12/20/2022] Open
Abstract
Intimate interactions between photosynthetic and non-photosynthetic organisms require the orchestrated transfer of ions and metabolites between species. We review recent progress in identifying and characterizing the transport proteins involved in five mutualistic symbiotic interactions: lichens,
Azolla–cyanobacteria, ectomycorrhiza, endomycorrhiza, and rhizobia–legumes. This review focuses on transporters for nitrogen and carbon and other solutes exchanged in the interactions. Their predicted functions are evaluated on the basis of their transport mechanism and prevailing transmembrane gradients of H
+ and transported substrates. The symbiotic interactions are presented in the assumed order from oldest to most recently evolved.
Collapse
Affiliation(s)
- Rahul Roy
- Department of Plant and Microbial Biology, University of Minnesota, Minnesota, USA
| | - Anke Reinders
- College of Continuing and Professional Studies, University of Minnesota, Minnesota, USA
| | - John M Ward
- Department of Plant and Microbial Biology, University of Minnesota, Minnesota, USA
| | - Tami R McDonald
- Biology Department, St. Catherine University, Minnesota, USA
| |
Collapse
|
29
|
Liu F, Chen S, Ferreira MA, Chang R, Sayari M, Kanzi AM, Wingfield BD, Wingfield MJ, Pizarro D, Crespo A, Divakar PK, de Beer ZW, Duong TA. Draft genome sequences of five Calonectria species from Eucalyptus plantations in China, Celoporthe dispersa, Sporothrix phasma and Alectoria sarmentosa. IMA Fungus 2019; 10:22. [PMID: 32647626 PMCID: PMC7325655 DOI: 10.1186/s43008-019-0023-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 11/11/2019] [Indexed: 12/31/2022] Open
Abstract
Draft genome sequences of five Calonectria species [including Calonectria aciculata, C. crousiana, C. fujianensis, C. honghensis and C. pseudoturangicola], Celoporthe dispersa, Sporothrix phasma and Alectoria sarmentosa are presented. Species of Calonectria are the causal agents of Eucalyptus leaf blight disease, threatening the growth and sustainability of Eucalyptus plantations in China. Celoporthe dispersa is the causal agent of stem canker in native Syzygium cordatum and exotic Tibouchina granulosa in South Africa. Sporothrix phasma was first discovered in the infructescences of Protea laurifolia and Protea neriifolia in South Africa. Alectoria sarmentosa is fruticose lichen belongs to the alectorioid clade of the family Parmeliaceae. The availability of these genome sequences will facilitate future studies on the systematics, population genetics, and genomics of these fungi.
Collapse
Affiliation(s)
- Feifei Liu
- State Key Laboratory of Tree Genetics and Breeding (SKLTGB), Chinese Academy of Forestry (CAF), Haidian District, Beijing, 100091 China.,China Eucalypt Research Centre (CERC), Chinese Academy of Forestry (CAF), ZhanJiang, 524022 GuangDong Province China.,Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028 South Africa
| | - Shuaifei Chen
- State Key Laboratory of Tree Genetics and Breeding (SKLTGB), Chinese Academy of Forestry (CAF), Haidian District, Beijing, 100091 China.,China Eucalypt Research Centre (CERC), Chinese Academy of Forestry (CAF), ZhanJiang, 524022 GuangDong Province China.,Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028 South Africa
| | - Maria A Ferreira
- Department of Plant Pathology, Universidade Federal de Lavras (Federal University of Lavras), Postal Box 3037, Lavras, 37200-000 Brazil
| | - Runlei Chang
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028 South Africa
| | - Mohammad Sayari
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028 South Africa
| | - Aquillah M Kanzi
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028 South Africa
| | - Brenda D Wingfield
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028 South Africa
| | - Michael J Wingfield
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028 South Africa
| | - David Pizarro
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Ana Crespo
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Pradeep K Divakar
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Z Wilhelm de Beer
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028 South Africa
| | - Tuan A Duong
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028 South Africa
| |
Collapse
|
30
|
Naranjo‐Ortiz MA, Gabaldón T. Fungal evolution: major ecological adaptations and evolutionary transitions. Biol Rev Camb Philos Soc 2019; 94:1443-1476. [PMID: 31021528 PMCID: PMC6850671 DOI: 10.1111/brv.12510] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 03/10/2019] [Accepted: 03/13/2019] [Indexed: 12/13/2022]
Abstract
Fungi are a highly diverse group of heterotrophic eukaryotes characterized by the absence of phagotrophy and the presence of a chitinous cell wall. While unicellular fungi are far from rare, part of the evolutionary success of the group resides in their ability to grow indefinitely as a cylindrical multinucleated cell (hypha). Armed with these morphological traits and with an extremely high metabolical diversity, fungi have conquered numerous ecological niches and have shaped a whole world of interactions with other living organisms. Herein we survey the main evolutionary and ecological processes that have guided fungal diversity. We will first review the ecology and evolution of the zoosporic lineages and the process of terrestrialization, as one of the major evolutionary transitions in this kingdom. Several plausible scenarios have been proposed for fungal terrestralization and we here propose a new scenario, which considers icy environments as a transitory niche between water and emerged land. We then focus on exploring the main ecological relationships of Fungi with other organisms (other fungi, protozoans, animals and plants), as well as the origin of adaptations to certain specialized ecological niches within the group (lichens, black fungi and yeasts). Throughout this review we use an evolutionary and comparative-genomics perspective to understand fungal ecological diversity. Finally, we highlight the importance of genome-enabled inferences to envision plausible narratives and scenarios for important transitions.
Collapse
Affiliation(s)
- Miguel A. Naranjo‐Ortiz
- Department of Genomics and Bioinformatics, Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyDr. Aiguader 88, Barcelona08003Spain
| | - Toni Gabaldón
- Department of Genomics and Bioinformatics, Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyDr. Aiguader 88, Barcelona08003Spain
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF)08003BarcelonaSpain
- ICREA, Pg. Lluís Companys 2308010BarcelonaSpain
| |
Collapse
|
31
|
Armaleo D, Müller O, Lutzoni F, Andrésson ÓS, Blanc G, Bode HB, Collart FR, Dal Grande F, Dietrich F, Grigoriev IV, Joneson S, Kuo A, Larsen PE, Logsdon JM, Lopez D, Martin F, May SP, McDonald TR, Merchant SS, Miao V, Morin E, Oono R, Pellegrini M, Rubinstein N, Sanchez-Puerta MV, Savelkoul E, Schmitt I, Slot JC, Soanes D, Szövényi P, Talbot NJ, Veneault-Fourrey C, Xavier BB. The lichen symbiosis re-viewed through the genomes of Cladonia grayi and its algal partner Asterochloris glomerata. BMC Genomics 2019; 20:605. [PMID: 31337355 PMCID: PMC6652019 DOI: 10.1186/s12864-019-5629-x] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 03/20/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Lichens, encompassing 20,000 known species, are symbioses between specialized fungi (mycobionts), mostly ascomycetes, and unicellular green algae or cyanobacteria (photobionts). Here we describe the first parallel genomic analysis of the mycobiont Cladonia grayi and of its green algal photobiont Asterochloris glomerata. We focus on genes/predicted proteins of potential symbiotic significance, sought by surveying proteins differentially activated during early stages of mycobiont and photobiont interaction in coculture, expanded or contracted protein families, and proteins with differential rates of evolution. RESULTS A) In coculture, the fungus upregulated small secreted proteins, membrane transport proteins, signal transduction components, extracellular hydrolases and, notably, a ribitol transporter and an ammonium transporter, and the alga activated DNA metabolism, signal transduction, and expression of flagellar components. B) Expanded fungal protein families include heterokaryon incompatibility proteins, polyketide synthases, and a unique set of G-protein α subunit paralogs. Expanded algal protein families include carbohydrate active enzymes and a specific subclass of cytoplasmic carbonic anhydrases. The alga also appears to have acquired by horizontal gene transfer from prokaryotes novel archaeal ATPases and Desiccation-Related Proteins. Expanded in both symbionts are signal transduction components, ankyrin domain proteins and transcription factors involved in chromatin remodeling and stress responses. The fungal transportome is contracted, as are algal nitrate assimilation genes. C) In the mycobiont, slow-evolving proteins were enriched for components involved in protein translation, translocation and sorting. CONCLUSIONS The surveyed genes affect stress resistance, signaling, genome reprogramming, nutritional and structural interactions. The alga carries many genes likely transferred horizontally through viruses, yet we found no evidence of inter-symbiont gene transfer. The presence in the photobiont of meiosis-specific genes supports the notion that sexual reproduction occurs in Asterochloris while they are free-living, a phenomenon with implications for the adaptability of lichens and the persistent autonomy of the symbionts. The diversity of the genes affecting the symbiosis suggests that lichens evolved by accretion of many scattered regulatory and structural changes rather than through introduction of a few key innovations. This predicts that paths to lichenization were variable in different phyla, which is consistent with the emerging consensus that ascolichens could have had a few independent origins.
Collapse
Affiliation(s)
| | - Olaf Müller
- Department of Biology, Duke University, Durham, USA
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, USA
| | | | - Ólafur S. Andrésson
- Faculty of Life and Environmental Sciences, University of Iceland, Reykjavík, Iceland
| | - Guillaume Blanc
- Aix Marseille University, Université de Toulon, CNRS, IRD, MIO UM 110, 13288 Marseille, France
| | - Helge B. Bode
- Molekulare Biotechnologie, Fachbereich Biowissenschaften & Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Frank R. Collart
- Argonne National Laboratory, Biosciences Division, Argonne, & Department of Bioengineering, University of Illinois at Chicago, Chicago, USA
| | - Francesco Dal Grande
- Senckenberg Biodiversity and Climate Research Center (SBiK-F), Frankfurt am Main, Germany
| | - Fred Dietrich
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, USA
| | - Igor V. Grigoriev
- US Department of Energy Joint Genome Institute, Walnut Creek, USA
- Department of Plant and Microbial Biology, University of California – Berkeley, Berkeley, USA
| | - Suzanne Joneson
- Department of Biology, Duke University, Durham, USA
- College of General Studies, University of Wisconsin - Milwaukee at Waukesha, Waukesha, USA
| | - Alan Kuo
- US Department of Energy Joint Genome Institute, Walnut Creek, USA
| | - Peter E. Larsen
- Argonne National Laboratory, Biosciences Division, Argonne, & Department of Bioengineering, University of Illinois at Chicago, Chicago, USA
| | | | | | - Francis Martin
- INRA, Université de Lorraine, Interactions Arbres-Microorganismes, INRA-Nancy, Champenoux, France
| | - Susan P. May
- Department of Biology, Duke University, Durham, USA
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, USA
| | - Tami R. McDonald
- Department of Biology, Duke University, Durham, USA
- Department of Biology, St. Catherine University, St. Paul, USA
| | - Sabeeha S. Merchant
- Department of Plant and Microbial Biology, University of California – Berkeley, Berkeley, USA
- Department of Molecular and Cell Biology, University of California – Berkeley, Berkeley, USA
| | - Vivian Miao
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| | - Emmanuelle Morin
- INRA, Université de Lorraine, Interactions Arbres-Microorganismes, INRA-Nancy, Champenoux, France
| | - Ryoko Oono
- Department of Ecology, Evolution, and Marine Biology, University of California - Santa Barbara, Santa Barbara, USA
| | - Matteo Pellegrini
- Department of Molecular, Cell, and Developmental Biology, and DOE Institute for Genomics and Proteomics, University of California, Los Angeles, USA
| | - Nimrod Rubinstein
- National Evolutionary Synthesis Center, Durham, USA
- Calico Life Sciences LLC, South San Francisco, USA
| | | | | | - Imke Schmitt
- Senckenberg Biodiversity and Climate Research Center (SBiK-F), Frankfurt am Main, Germany
- Institute of Ecology, Evolution and Diversity, Fachbereich Biowissenschaften, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Jason C. Slot
- College of Food, Agricultural, and Environmental Sciences, Department of Plant Pathology, The Ohio State University, Columbus, USA
| | - Darren Soanes
- College of Life & Environmental Sciences, University of Exeter, Exeter, UK
| | - Péter Szövényi
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
| | | | - Claire Veneault-Fourrey
- INRA, Université de Lorraine, Interactions Arbres-Microorganismes, INRA-Nancy, Champenoux, France
- Université de Lorraine, INRA, Interactions Arbres-Microorganismes, Faculté des Sciences et Technologies, Vandoeuvre les Nancy Cedex, France
| | - Basil B. Xavier
- Faculty of Life and Environmental Sciences, University of Iceland, Reykjavík, Iceland
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
32
|
Pizarro D, Dal Grande F, Leavitt SD, Dyer PS, Schmitt I, Crespo A, Thorsten Lumbsch H, Divakar PK. Whole-Genome Sequence Data Uncover Widespread Heterothallism in the Largest Group of Lichen-Forming Fungi. Genome Biol Evol 2019; 11:721-730. [PMID: 30715356 PMCID: PMC6414310 DOI: 10.1093/gbe/evz027] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2019] [Indexed: 12/20/2022] Open
Abstract
Fungal reproduction is regulated by the mating-type (MAT1) locus, which typically comprises two idiomorphic genes. The presence of one or both allelic variants at the locus determines the reproductive strategy in fungi—homothallism versus heterothallism. It has been hypothesized that self-fertility via homothallism is widespread in lichen-forming fungi. To test this hypothesis, we characterized the MAT1 locus of 41 genomes of lichen-forming fungi representing a wide range of growth forms and reproductive strategies in the class Lecanoromycetes, the largest group of lichen-forming fungi. Our results show the complete lack of genetic homothallism suggesting that lichens evolved from a heterothallic ancestor. We argue that this may be related to the symbiotic lifestyle of these fungi, and may be a key innovation that has contributed to the accelerated diversification rates in this fungal group.
Collapse
Affiliation(s)
- David Pizarro
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid, Spain
| | - Francesco Dal Grande
- Department of Biological Sciences, Institute of Ecology, Evolution and Diversity, Goethe Universität and Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt am Main, Germany
| | - Steven Don Leavitt
- Department of Biology and M.L. Bean Life Science Museum, Brigham Young University, Provo, Utah
| | | | - Imke Schmitt
- Department of Biological Sciences, Institute of Ecology, Evolution and Diversity, Goethe Universität and Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt am Main, Germany
| | - Ana Crespo
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid, Spain
| | | | - Pradeep Kumar Divakar
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid, Spain
| |
Collapse
|
33
|
Bertrand RL, Sorensen JL. Lost in Translation: Challenges with Heterologous Expression of Lichen Polyketide Synthases. ChemistrySelect 2019. [DOI: 10.1002/slct.201901762] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
34
|
Shanmugam K, Ramalingam S, Venkataraman G, Hariharan GN. The CRISPR/Cas9 System for Targeted Genome Engineering in Free-Living Fungi: Advances and Opportunities for Lichenized Fungi. Front Microbiol 2019; 10:62. [PMID: 30792699 PMCID: PMC6375251 DOI: 10.3389/fmicb.2019.00062] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 01/15/2019] [Indexed: 01/01/2023] Open
Abstract
Studies using whole genome sequencing, computational and gene expression, targeted genome engineering techniques for generating site-specific sequence alterations through non-homologous end joining (NHEJ) by genomic double-strand break (DSB) repair pathway with high precision, resulting in gene inactivation have elucidated the complexity of gene expression, and metabolic pathways in fungi. These tools and the data generated are crucial for precise generation of fungal products such as enzymes, secondary metabolites, antibiotics etc. Artificially engineered molecular scissors, zinc finger nucleases (ZFNs), Transcriptional activator-like effector nucleases (TALENs; that use protein motifs for DNA sequence recognition in the genome) and CRISPR associated protein 9 (Cas9;CRISPR/Cas9) system (RNA-DNA recognition) are being used in achieving targeted genome modifications for modifying traits in free-living fungal systems. Here, we discuss the recent research breakthroughs and developments which utilize CRISPR/Cas9 in the metabolic engineering of free-living fungi for the biosynthesis of secondary metabolites, enzyme production, antibiotics and to develop resistance against post-harvest browning of edible mushrooms and fungal pathogenesis. We also discuss the potential and advantages of using targeted genome engineering in lichenized fungal (mycobiont) cultures to enhance their growth and secondary metabolite production in vitro can be complemented by other molecular approaches.
Collapse
Affiliation(s)
- Karthik Shanmugam
- M.S. Swaminathan Research Foundation, Chennai, India
- Department of Mycology, University of Bayreuth, Bayreuth, Germany
| | | | | | | |
Collapse
|
35
|
Yoshino K, Yamamoto K, Hara K, Sonoda M, Yamamoto Y, Sakamoto K. The conservation of polyol transporter proteins and their involvement in lichenized Ascomycota. Fungal Biol 2019; 123:318-329. [PMID: 30928040 DOI: 10.1016/j.funbio.2019.01.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 12/30/2018] [Accepted: 01/21/2019] [Indexed: 01/08/2023]
Abstract
In lichen symbiosis, polyol transfer from green algae is important for acquiring the fungal carbon source. However, the existence of polyol transporter genes and their correlation with lichenization remain unclear. Here, we report candidate polyol transporter genes selected from the genome of the lichen-forming fungus (LFF) Ramalina conduplicans. A phylogenetic analysis using characterized polyol and monosaccharide transporter proteins and hypothetical polyol transporter proteins of R. conduplicans and various ascomycetous fungi suggested that the characterized yeast' polyol transporters form multiple clades with the polyol transporter-like proteins selected from the diverse ascomycetous taxa. Thus, polyol transporter genes are widely conserved among Ascomycota, regardless of lichen-forming status. In addition, the phylogenetic clusters suggested that LFFs belonging to Lecanoromycetes have duplicated proteins in each cluster. Consequently, the number of sequences similar to characterized yeast' polyol transporters were evaluated using the genomes of 472 species or strains of Ascomycota. Among these, LFFs belonging to Lecanoromycetes had greater numbers of deduced polyol transporter proteins. Thus, various polyol transporters are conserved in Ascomycota and polyol transporter genes appear to have expanded during the evolution of Lecanoromycetes.
Collapse
Affiliation(s)
- Kanami Yoshino
- Division of Environmental Horticulture, Graduate School of Horticulture, Chiba University, 648 Matsudo, Matsudo, Chiba, 271-0092, Japan.
| | - Kohei Yamamoto
- Tochigi Prefectural Museum, 2-2 Mutsumi-cho, Utsunomiya, Tochigi, 320-0865, Japan.
| | - Kojiro Hara
- Faculty of Bioresource Sciences, Akita Prefectural University, 241-438 Kaidobata-nishi, Shimoshinjo-nakano, Akita, 010-0195, Japan.
| | - Masatoshi Sonoda
- Division of Environmental Horticulture, Graduate School of Horticulture, Chiba University, 648 Matsudo, Matsudo, Chiba, 271-0092, Japan.
| | - Yoshikazu Yamamoto
- Faculty of Bioresource Sciences, Akita Prefectural University, 241-438 Kaidobata-nishi, Shimoshinjo-nakano, Akita, 010-0195, Japan.
| | - Kazunori Sakamoto
- Division of Environmental Horticulture, Graduate School of Horticulture, Chiba University, 648 Matsudo, Matsudo, Chiba, 271-0092, Japan.
| |
Collapse
|
36
|
Biosynthetic Gene Content of the 'Perfume Lichens' Evernia prunastri and Pseudevernia furfuracea. Molecules 2019; 24:molecules24010203. [PMID: 30626017 PMCID: PMC6337363 DOI: 10.3390/molecules24010203] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 12/29/2018] [Accepted: 01/04/2019] [Indexed: 12/26/2022] Open
Abstract
Lichen-forming fungi produce a vast number of unique natural products with a wide variety of biological activities and human uses. Although lichens have remarkable potential in natural product research and industry, the molecular mechanisms underlying the biosynthesis of lichen metabolites are poorly understood. Here we use genome mining and comparative genomics to assess biosynthetic gene clusters and their putative regulators in the genomes of two lichen-forming fungi, which have substantial commercial value in the perfume industry, Evernia prunastri and Pseudevernia furfuracea. We report a total of 80 biosynthetic gene clusters (polyketide synthases (PKS), non-ribosomal peptide synthetases and terpene synthases) in E. prunastri and 51 in P. furfuracea. We present an in-depth comparison of 11 clusters, which show high homology between the two species. A ketosynthase (KS) phylogeny shows that biosynthetic gene clusters from E. prunastri and P. furfuracea are widespread across the Fungi. The phylogeny includes 15 genomes of lichenized fungi and all fungal PKSs with known functions from the MIBiG database. Phylogenetically closely related KS domains predict not only similar PKS architecture but also similar cluster architecture. Our study highlights the untapped biosynthetic richness of lichen-forming fungi, provides new insights into lichen biosynthetic pathways and facilitates heterologous expression of lichen biosynthetic gene clusters.
Collapse
|
37
|
Elshobary ME, Becker MG, Kalichuk JL, Chan AC, Belmonte MF, Piercey-Normore MD. Tissue-specific localization of polyketide synthase and other associated genes in the lichen, Cladonia rangiferina, using laser microdissection. PHYTOCHEMISTRY 2018; 156:142-150. [PMID: 30296707 DOI: 10.1016/j.phytochem.2018.09.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 08/25/2018] [Accepted: 09/28/2018] [Indexed: 02/05/2023]
Abstract
The biosynthesis of two polyketides, atranorin and fumarprotocetraric acid, produced from a lichen-forming fungus, Cladonia rangiferina (L.) F. H. Wigg. was correlated with the expression of eight fungal genes (CrPKS1, CrPKS3, CrPKS16, Catalase (CAT), Sugar Transporter (MFsug), Dioxygenase (YQE1), C2H2 Transcription factor (C2H2), Transcription Factor PacC (PacC), which are thought to be involved in polyketide biosynthesis, and one algal gene, NAD-dependent deacetylase sirtuin 2 (AsNAD)), using laser microdissection (LMD). The differential gene expression levels within the thallus tissue layers demonstrate that the most active region for potential polyketide biosynthesis within the lichen is the outer apical region proximal to the photobiont but some expression also occurs in reproductive tissue. This is the first study using laser microdissection to explore gene expression of these nine genes and their location of expression; it provides a proof-of-concept for future experiments exploring tissue-specific gene expression within lichens; and it highlights the utility of LMD for use in lichen systems.
Collapse
Affiliation(s)
| | - Michael G Becker
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada.
| | - Jenna L Kalichuk
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada.
| | - Ainsley C Chan
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada.
| | - Mark F Belmonte
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada.
| | - Michele D Piercey-Normore
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada; School of Science and the Environment, Memorial University of Newfoundland (Grenfell Campus), Corner Brook, NL, A2H 5G4, Canada.
| |
Collapse
|
38
|
A comprehensive catalogue of polyketide synthase gene clusters in lichenizing fungi. J Ind Microbiol Biotechnol 2018; 45:1067-1081. [PMID: 30206732 DOI: 10.1007/s10295-018-2080-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 08/24/2018] [Indexed: 10/28/2022]
Abstract
Lichens are fungi that form symbiotic partnerships with algae. Although lichens produce diverse polyketides, difficulties in establishing and maintaining lichen cultures have prohibited detailed studies of their biosynthetic pathways. Creative, albeit non-definitive, methods have been developed to assign function to biosynthetic gene clusters in lieu of techniques such as gene knockout and heterologous expressions that are commonly applied to easily cultivatable organisms. We review a total of 81 completely sequenced polyketide synthase (PKS) genes from lichenizing fungi, comprising to our best efforts all complete and reported PKS genes in lichenizing fungi to date. This review provides an overview of the approaches used to locate and sequence PKS genes in lichen genomes, current approaches to assign function to lichen PKS gene clusters, and what polyketides are proposed to be biosynthesized by these PKS. We conclude with remarks on prospects for genomics-based natural products discovery in lichens. We hope that this review will serve as a guide to ongoing research efforts on polyketide biosynthesis in lichenizing fungi.
Collapse
|
39
|
Draft Genome Sequence of the Lichen-Forming Fungus Ramalina intermedia Strain YAF0013. GENOME ANNOUNCEMENTS 2018; 6:6/23/e00478-18. [PMID: 29880593 PMCID: PMC5992360 DOI: 10.1128/genomea.00478-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Here, we report a draft genome sequence of Ramalina intermedia strain YAF0013. The functional annotation of R. intermedia provides important information related to its ability to produce secondary metabolites. The genome sequence reported here builds the basis for further genome mining.
Collapse
|
40
|
Abstract
The kingdom Fungi is one of the more diverse clades of eukaryotes in terrestrial ecosystems, where they provide numerous ecological services ranging from decomposition of organic matter and nutrient cycling to beneficial and antagonistic associations with plants and animals. The evolutionary relationships of the kingdom have represented some of the more recalcitrant problems in systematics and phylogenetics. The advent of molecular phylogenetics, and more recently phylogenomics, has greatly advanced our understanding of the patterns and processes associated with fungal evolution, however. In this article, we review the major phyla, subphyla, and classes of the kingdom Fungi and provide brief summaries of ecologies, morphologies, and exemplar taxa. We also provide examples of how molecular phylogenetics and evolutionary genomics have advanced our understanding of fungal evolution within each of the phyla and some of the major classes. In the current classification we recognize 8 phyla, 12 subphyla, and 46 classes within the kingdom. The ancestor of fungi is inferred to be zoosporic, and zoosporic fungi comprise three lineages that are paraphyletic to the remainder of fungi. Fungi historically classified as zygomycetes do not form a monophyletic group and are paraphyletic to Ascomycota and Basidiomycota. Ascomycota and Basidiomycota are each monophyletic and collectively form the subkingdom Dikarya.
Collapse
|
41
|
Bertrand RL, Abdel-Hameed M, Sorensen JL. Lichen Biosynthetic Gene Clusters. Part I. Genome Sequencing Reveals a Rich Biosynthetic Potential. JOURNAL OF NATURAL PRODUCTS 2018; 81:723-731. [PMID: 29485276 DOI: 10.1021/acs.jnatprod.7b00769] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Lichens are symbionts of fungi and algae that produce diverse secondary metabolites with useful properties. Little is known of lichen natural product biosynthesis because of the challenges of working with lichenizing fungi. We describe the first attempt to comprehensively profile the genetic secondary metabolome of a lichenizing fungus. An Illumina platform combined with the Antibiotics and Secondary Metabolites Analysis Shell (FungiSMASH, version 4.0) was used to sequence and annotate assembled contigs of the fungal partner of Cladonia uncialis. Up to 48 putative gene clusters are described comprising type I and type III polyketide synthases (PKS), nonribosomal peptide synthetases (NRPS), hybrid PKS-NRPS, and terpene synthases. The number of gene clusters revealed by this work dwarfs the number of known secondary metabolites from C. uncialis, suggesting that lichenizing fungi have an unexplored biosynthetic potential.
Collapse
Affiliation(s)
- Robert L Bertrand
- Department of Chemistry , University of Manitoba , Winnipeg , Manitoba R3T 2N2 , Canada
| | - Mona Abdel-Hameed
- Department of Chemistry , University of Manitoba , Winnipeg , Manitoba R3T 2N2 , Canada
| | - John L Sorensen
- Department of Chemistry , University of Manitoba , Winnipeg , Manitoba R3T 2N2 , Canada
| |
Collapse
|
42
|
Bertrand RL, Abdel-Hameed M, Sorensen JL. Lichen Biosynthetic Gene Clusters Part II: Homology Mapping Suggests a Functional Diversity. JOURNAL OF NATURAL PRODUCTS 2018; 81:732-748. [PMID: 29485282 DOI: 10.1021/acs.jnatprod.7b00770] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Lichens are renowned for their diverse natural products though little is known of the genetic programming dictating lichen natural product biosynthesis. We sequenced the genome of Cladonia uncialis and profiled its secondary metabolite biosynthetic gene clusters. Through a homology searching approach, we can now propose specific functions for gene products as well as the biosynthetic pathways that are encoded in several of these gene clusters. This analysis revealed that the lichen genome encodes the required enzymes for patulin and betaenones A-C biosynthesis, fungal toxins not known to be produced by lichens. Within several gene clusters, some (but not all) genes are genetically similar to genes devoted to secondary metabolite biosynthesis in Fungi. These lichen clusters also contain accessory tailoring genes without such genetic similarity, suggesting that the encoded tailoring enzymes perform distinct chemical transformations. We hypothesize that C. uncialis gene clusters have evolved by shuffling components of ancestral fungal clusters to create new series of chemical steps, leading to the production of hitherto undiscovered derivatives of fungal secondary metabolites.
Collapse
Affiliation(s)
- Robert L Bertrand
- Department of Chemistry , University of Manitoba , Winnipeg , Manitoba Canada , R3T 2N2
| | - Mona Abdel-Hameed
- Department of Chemistry , University of Manitoba , Winnipeg , Manitoba Canada , R3T 2N2
| | - John L Sorensen
- Department of Chemistry , University of Manitoba , Winnipeg , Manitoba Canada , R3T 2N2
| |
Collapse
|
43
|
Calcott MJ, Ackerley DF, Knight A, Keyzers RA, Owen JG. Secondary metabolism in the lichen symbiosis. Chem Soc Rev 2018; 47:1730-1760. [PMID: 29094129 DOI: 10.1039/c7cs00431a] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Lichens, which are defined by a core symbiosis between a mycobiont (fungal partner) and a photobiont (photoautotrophic partner), are in fact complex assemblages of microorganisms that constitute a largely untapped source of bioactive secondary metabolites. Historically, compounds isolated from lichens have predominantly been those produced by the dominant fungal partner, and these continue to be of great interest for their unique chemistry and biotechnological potential. In recent years it has become apparent that many photobionts and lichen-associated bacteria also produce a range of potentially valuable molecules. There is evidence to suggest that the unique nature of the symbiosis has played a substantial role in shaping many aspects of lichen chemistry, for example driving bacteria to produce metabolites that do not bring them direct benefit but are useful to the lichen as a whole. This is most evident in studies of cyanobacterial photobionts, which produce compounds that differ from free living cyanobacteria and are unique to symbiotic organisms. The roles that these and other lichen-derived molecules may play in communication and maintaining the symbiosis are poorly understood at present. Nonetheless, advances in genomics, mass spectrometry and other analytical technologies are continuing to illuminate the wealth of biological and chemical diversity present within the lichen holobiome. Implementation of novel biodiscovery strategies such as metagenomic screening, coupled with synthetic biology approaches to reconstitute, re-engineer and heterologously express lichen-derived biosynthetic gene clusters in a cultivable host, offer a promising means for tapping into this hitherto inaccessible wealth of natural products.
Collapse
Affiliation(s)
- Mark J Calcott
- School of Biological Sciences, Victoria University of Wellington, New Zealand.
| | | | | | | | | |
Collapse
|
44
|
She W, Bai Y, Zhang Y, Qin S, Feng W, Sun Y, Zheng J, Wu B. Resource Availability Drives Responses of Soil Microbial Communities to Short-term Precipitation and Nitrogen Addition in a Desert Shrubland. Front Microbiol 2018; 9:186. [PMID: 29479346 PMCID: PMC5811472 DOI: 10.3389/fmicb.2018.00186] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 01/26/2018] [Indexed: 11/13/2022] Open
Abstract
Desert microbes are expected to be substantially sensitive to global environmental changes, such as precipitation changes and elevated nitrogen deposition. However, the effects of precipitation changes and nitrogen enrichment on their diversity and community composition remain poorly understood. We conducted a field experiment over 2 years with multi-level precipitation and nitrogen addition in a desert shrubland of northern China, to examine the responses of soil bacteria and fungi in terms of diversity and community composition and to explore the roles of plant and soil factors in structuring microbial communities. Water addition significantly increased soil bacterial diversity and altered the community composition by increasing the relative abundances of stress-tolerant (dormant) taxa (e.g., Acidobacteria and Planctomycetes); however, nitrogen addition had no substantial effects. Increased precipitation and nitrogen did not impact soil fungal diversity, but significantly shifted the fungal community composition. Specifically, water addition reduced the relative abundances of drought-tolerant taxa (e.g., the orders Pezizales, Verrucariales, and Agaricales), whereas nitrogen enrichment decreased those of oligotrophic taxa (e.g., the orders Agaricales and Sordariales). Shifts in microbial community composition under water and nitrogen addition occurred primarily through changing resource availability rather than plant community. Our results suggest that water and nitrogen addition affected desert microbes in different ways, with watering shifting stress-tolerant traits and fertilization altering copiotrophic/oligotrophic traits of the microbial communities. These findings highlight the importance of resource availability in driving the desert microbial responses to short-term environmental changes.
Collapse
Affiliation(s)
- Weiwei She
- Yanchi Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing, China
| | - Yuxuan Bai
- Yanchi Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing, China
| | - Yuqing Zhang
- Yanchi Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing, China.,Key Laboratory of State Forestry Administration on Soil and Water Conservation, Beijing Forestry University, Beijing, China
| | - Shugao Qin
- Yanchi Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing, China.,Engineering Research Center of Forestry Ecological Engineering, Ministry of Education, Beijing Forestry University, Beijing, China
| | - Wei Feng
- Yanchi Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing, China.,Key Laboratory of State Forestry Administration on Soil and Water Conservation, Beijing Forestry University, Beijing, China
| | - Yanfei Sun
- Yanchi Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing, China
| | - Jing Zheng
- Yanchi Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing, China
| | - Bin Wu
- Yanchi Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing, China.,Key Laboratory of State Forestry Administration on Soil and Water Conservation, Beijing Forestry University, Beijing, China
| |
Collapse
|
45
|
Meiser A, Otte J, Schmitt I, Grande FD. Sequencing genomes from mixed DNA samples - evaluating the metagenome skimming approach in lichenized fungi. Sci Rep 2017; 7:14881. [PMID: 29097759 PMCID: PMC5668418 DOI: 10.1038/s41598-017-14576-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 10/12/2017] [Indexed: 01/07/2023] Open
Abstract
The metagenome skimming approach, i.e. low coverage shotgun sequencing of multi-species assemblages and subsequent reconstruction of individual genomes, is increasingly used for in-depth genomic characterization of ecological communities. This approach is a promising tool for reconstructing genomes of facultative symbionts, such as lichen-forming fungi, from metagenomic reads. However, no study has so far tested accuracy and completeness of assemblies based on metagenomic sequences compared to assemblies based on pure culture strains of lichenized fungi. Here we assembled the genomes of Evernia prunastri and Pseudevernia furfuracea based on metagenomic sequences derived from whole lichen thalli. We extracted fungal contigs using two different taxonomic binning methods, and performed gene prediction on the fungal contig subsets. We then assessed quality and completeness of the metagenome-based assemblies using genome assemblies as reference which are based on pure culture strains of the two fungal species. Our comparison showed that we were able to reconstruct fungal genomes from uncultured lichen thalli, and also cover most of the gene space (86-90%). Metagenome skimming will facilitate genome mining, comparative (phylo)genomics, and population genetics of lichen-forming fungi by circumventing the time-consuming, sometimes unfeasible, step of aposymbiotic cultivation.
Collapse
Affiliation(s)
- Anjuli Meiser
- Institute of Ecology, Evolution and Diversity, Goethe University Frankfurt, Max-von-Laue Str. 13, D-60438, Frankfurt, Germany
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage 25, D-60486, Frankfurt, Germany
| | - Jürgen Otte
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage 25, D-60486, Frankfurt, Germany
| | - Imke Schmitt
- Institute of Ecology, Evolution and Diversity, Goethe University Frankfurt, Max-von-Laue Str. 13, D-60438, Frankfurt, Germany.
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage 25, D-60486, Frankfurt, Germany.
| | - Francesco Dal Grande
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage 25, D-60486, Frankfurt, Germany.
| |
Collapse
|
46
|
Zhang Y, Li H, Wang Y, Wei J. The calcium-binding protein EpANN from the lichenized fungus Endocarpon pusillum enhances stress tolerance in yeast and plants. Fungal Genet Biol 2017; 108:36-43. [PMID: 28927934 DOI: 10.1016/j.fgb.2017.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 09/11/2017] [Accepted: 09/15/2017] [Indexed: 11/25/2022]
Abstract
Annexins are calcium-phospholipid binding proteins that play a significant role in the Ca2+signaling pathway. These proteins are essential for plants to effectively respond to abiotic stresses. However, their functions and mechanisms remain largely unknown in fungi. In this study, an annexin gene, Epann, was cloned from the lichenized fungus Endocarpon pusillum, a drought resistant organism. Our results showed that Epann was induced by several abiotic stresses in E. pusillum. Heterologous expression of the Epann gene enhanced the stress tolerance of Saccharomyces cerevisiae. Under heat-shock conditions, the EpANN proteins were significantly aggregated and the aggregation sites were located on peroxisomes. In heat-shocked cells, Epann reduced the reactive oxygen species level mainly through its intracellular peroxidase activity and regulation of stress-related genes. Transgenic Arabidopsis plants overexpressing Epann exhibited a higher germination rate under oxidative stress and stronger drought tolerance. Our results provide a mechanistic understanding of the role of annexins in abiotic stress responses and suggest that this lichenized fungal gene could be a promising resource to generate stress-tolerant transgenic organisms.
Collapse
Affiliation(s)
- Yongli Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 10010, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Hui Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 10010, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Yanyan Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 10010, PR China.
| | - Jiangchun Wei
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 10010, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
47
|
Zhang T, Liu M, Wang YY, Wang ZJ, Wei XL, Wei JC. Two new species of Endocarpon (Verrucariaceae, Ascomycota) from China. Sci Rep 2017; 7:7193. [PMID: 28775314 PMCID: PMC5543127 DOI: 10.1038/s41598-017-07778-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 07/03/2017] [Indexed: 11/30/2022] Open
Abstract
Endocarpon species are key components of biological soil crusts. Phenotypic and systematic molecular analyses were carried out to identify samples of Endocarpon collected from the southeast edge of the Tengger Desert in China. These morphological and molecular analyses revealed two previously undescribed species that form highly supported independent monophyletic clades within Endocarpon. The new taxa were named Endocarpon deserticola sp. nov. and E. unifoliatum sp. nov. Furthermore, our results indicated that the newly developed protein coding markers adenylate kinase (ADK) and ubiquitin-conjugating enzyme h (UCEH) are useful for assessing species boundaries in phylogenic analyses.
Collapse
Affiliation(s)
- Tao Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Meng Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Yan-Yan Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Zhi-Jun Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, PR China.,The College of Life Science, Southwest Forestry University, Kunming, 650224, PR China
| | - Xin-Li Wei
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, PR China.
| | - Jiang-Chun Wei
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, PR China. .,University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| |
Collapse
|
48
|
Abstract
ABSTRACT
Lichen symbioses comprise a fascinating relationship between algae and fungi. The lichen symbiotic lifestyle evolved early in the evolution of ascomycetes and is also known from a few basidiomycetes. The ascomycete lineages have diversified in the lichenized stage to give rise to a tremendous variety of morphologies. Their thalli are often internally complex and stratified for optimized integration of algal and fungal metabolisms. Thalli are frequently colonized by specific nonlichenized fungi and occasionally also by other lichens. Microscopy has revealed various ways these fungi interact with their hosts. Besides the morphologically recognizable diversity of the lichen mycobionts and lichenicolous (lichen-inhabiting) fungi, many other microorganisms including other fungi and bacterial communities are now detected in lichens by culture-dependent and culture-independent approaches. The application of multi-omics approaches, refined microscopic techniques, and physiological studies has added to our knowledge of lichens, not only about the taxa involved in the lichen interactions, but also about their functions.
Collapse
|
49
|
Steinhäuser SS, Andrésson ÓS, Pálsson A, Werth S. Fungal and cyanobacterial gene expression in a lichen symbiosis: Effect of temperature and location. Fungal Biol 2016; 120:1194-208. [PMID: 27647237 DOI: 10.1016/j.funbio.2016.07.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 05/27/2016] [Accepted: 07/07/2016] [Indexed: 10/21/2022]
Abstract
Organisms have evolved different cellular mechanisms to deal with environmental stress, primarily through complex molecular mechanisms including protein refolding and DNA repair. As mutualistic symbioses, lichens offer the possibility of analyzing molecular stress responses in a particularly tight interspecific relationship. We study the widespread cyanolichen Peltigera membranacea, a key player in carbon and nitrogen cycling in terrestrial ecosystems at northern latitudes. We ask whether increased temperature is reflected in mRNA levels of selected damage control genes, and do the response patterns show geographical associations? Using real-time PCR quantification of 38 transcripts, differential expression was demonstrated for nine cyanobacterial and nine fungal stress response genes (plus the fungal symbiosis-related lec2 gene) when the temperature was increased from 5 °C to 15 °C and 25 °C. Principle component analysis (PCA) revealed two gene groups with different response patterns. Whereas a set of cyanobacterial DNA repair genes and the fungal lec2 (PC1 group) showed an expression drop at 15 °C vs. 5 °C, most fungal candidates (PC2 group) showed increased expression at 25 °C vs. 5 °C. PC1 responses also correlated with elevation. The correlated downregulation of lec2 and cyanobacterial DNA repair genes suggests a possible interplay between the symbionts warranting further studies.
Collapse
Affiliation(s)
- Sophie S Steinhäuser
- Life and Environmental Sciences, University of Iceland, Sturlugata 7, 101 Reykjavik, Iceland
| | - Ólafur S Andrésson
- Life and Environmental Sciences, University of Iceland, Sturlugata 7, 101 Reykjavik, Iceland
| | - Arnar Pálsson
- Life and Environmental Sciences, University of Iceland, Sturlugata 7, 101 Reykjavik, Iceland
| | - Silke Werth
- Life and Environmental Sciences, University of Iceland, Sturlugata 7, 101 Reykjavik, Iceland; Institute of Plant Sciences, University of Graz, Holteigasse 6, 8010 Graz, Austria.
| |
Collapse
|
50
|
Elshobary ME, Osman ME, Abo-Shady AM, Komatsu E, Perreault H, Sorensen J, Piercey-Normore MD. Algal carbohydrates affect polyketide synthesis of the lichen-forming fungus Cladonia rangiferina. Mycologia 2016; 108:646-56. [PMID: 27091386 DOI: 10.3852/15-263] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 03/16/2016] [Indexed: 02/05/2023]
Abstract
Lichen secondary metabolites (polyketides) are produced by the fungal partner, but the role of algal carbohydrates in polyketide biosynthesis is not clear. This study examined whether the type and concentration of algal carbohydrate explained differences in polyketide production and gene transcription by a lichen fungus (Cladonia rangiferina). The carbohydrates identified from a free-living cyanobacterium (Spirulina platensis; glucose), a lichen-forming alga (Diplosphaera chodatii; sorbitol) and the lichen alga that associates with C. rangiferina (Asterochloris sp.; ribitol) were used in each of 1%, 5% and 10% concentrations to enrich malt yeast extract media for culturing the mycobiont. Polyketides were determined by high performance liquid chromatography (HPLC), and polyketide synthase (PKS) gene transcription was measured by quantitative PCR of the ketosynthase domain of four PKS genes. The lower concentrations of carbohydrates induced the PKS gene expression where ribitol up-regulated CrPKS1 and CrPKS16 gene transcription and sorbitol up-regulated CrPKS3 and CrPKS7 gene transcription. The HPLC results revealed that lower concentrations of carbon sources increased polyketide production for three carbohydrates. One polyketide from the natural lichen thallus (fumarprotocetraric acid) also was produced by the fungal culture in ribitol supplemented media only. This study provides a better understanding of the role of the type and concentration of the carbon source in fungal polyketide biosynthesis in the lichen Cladonia rangiferina.
Collapse
Affiliation(s)
- Mostafa E Elshobary
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2; and Department of Botany, University of Tanta, Egypt
| | - Mohamed E Osman
- Department of Botany, Faculty of Science, University of Tanta, Egypt
| | - Atef M Abo-Shady
- Department of Botany, Faculty of Science, University of Tanta, Egypt
| | - Emy Komatsu
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2
| | - Hélène Perreault
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2
| | - John Sorensen
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2
| | | |
Collapse
|