1
|
Espineira S, Flores-Piñas M, Chafino S, Viladés C, Negredo E, Fernández-Arroyo S, Mallolas J, Villar B, Moreno S, Vidal F, Rull A, Peraire J. Multi-omics in HIV: searching insights to understand immunological non-response in PLHIV. Front Immunol 2023; 14:1228795. [PMID: 37649488 PMCID: PMC10465175 DOI: 10.3389/fimmu.2023.1228795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/25/2023] [Indexed: 09/01/2023] Open
Abstract
Antiretroviral therapy (ART) induces persistent suppression of HIV-1 replication and gradual recovery of T-cell counts, and consequently, morbidity and mortality from HIV-related illnesses have been significantly reduced. However, in approximately 30% of people living with HIV (PLHIV) on ART, CD4+ T-cell counts fail to normalize despite ART and complete suppression of HIV viral load, resulting in severe immune dysfunction, which may represent an increased risk of clinical progression to AIDS and non-AIDS events as well as increased mortality. These patients are referred to as "immune inadequate responders", "immunodiscordant responders" or "immune nonresponders (INR)". The molecular mechanisms underlying poor CD4+ T-cell recovery are still unclear. In this sense, the use of omics sciences has shed light on possible factors involved in the activity and metabolic dysregulation of immune cells during the failure of CD4+ T-cell recovery in INR. Moreover, identification of key molecules by omics approaches allows for the proposal of potential biomarkers or therapeutic targets to improve CD4+ T-cell recovery and the quality of life of these patients. Hence, this review aimed to summarize the information obtained through different omics concerning the molecular factors and pathways associated with the INR phenotype to better understand the complexity of this immunological status in HIV infection.
Collapse
Affiliation(s)
- Sonia Espineira
- Infection and Immunity Research Group (INIM), Institut Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
- Infection and Immunity Research Group (INIM), Hospital Universitari de Tarragona Joan XXIII (HJ23), Tarragona, Spain
- Universitat Rovira i Virgili (URV), Tarragona, Spain
| | - Marina Flores-Piñas
- Infection and Immunity Research Group (INIM), Institut Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
- Infection and Immunity Research Group (INIM), Hospital Universitari de Tarragona Joan XXIII (HJ23), Tarragona, Spain
| | - Silvia Chafino
- Infection and Immunity Research Group (INIM), Hospital Universitari de Tarragona Joan XXIII (HJ23), Tarragona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Consuelo Viladés
- Infection and Immunity Research Group (INIM), Institut Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
- Infection and Immunity Research Group (INIM), Hospital Universitari de Tarragona Joan XXIII (HJ23), Tarragona, Spain
- Universitat Rovira i Virgili (URV), Tarragona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Eugenia Negredo
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Lluita contra les Infeccions, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
- Universitat Autònoma de Barcelona, Barcelona, Spain
- Universitat de Vic - Universitat Central de Catalunya, Vic, Spain
| | - Salvador Fernández-Arroyo
- Eurecat, Centre Tecnològic de Catalunya, Centre for Omic Sciences, Joint Unit Eurecat-Universitat Rovira i Virgili, Unique Scientific and Technical Infrastructure (ICTS), Reus, Spain
| | - Josep Mallolas
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- HIV Unit, Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Beatriz Villar
- Infection and Immunity Research Group (INIM), Institut Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
- Infection and Immunity Research Group (INIM), Hospital Universitari de Tarragona Joan XXIII (HJ23), Tarragona, Spain
- Universitat Rovira i Virgili (URV), Tarragona, Spain
| | - Santiago Moreno
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Department of Infectious Diseases, University Hospital Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- Universidad de Alcalá (UAH), Madrid, Spain
| | - Francesc Vidal
- Infection and Immunity Research Group (INIM), Institut Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
- Infection and Immunity Research Group (INIM), Hospital Universitari de Tarragona Joan XXIII (HJ23), Tarragona, Spain
- Universitat Rovira i Virgili (URV), Tarragona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Anna Rull
- Infection and Immunity Research Group (INIM), Institut Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
- Infection and Immunity Research Group (INIM), Hospital Universitari de Tarragona Joan XXIII (HJ23), Tarragona, Spain
- Universitat Rovira i Virgili (URV), Tarragona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Joaquim Peraire
- Infection and Immunity Research Group (INIM), Institut Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
- Infection and Immunity Research Group (INIM), Hospital Universitari de Tarragona Joan XXIII (HJ23), Tarragona, Spain
- Universitat Rovira i Virgili (URV), Tarragona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
2
|
Kachhawaha AS, Mishra S, Tiwari AK. Epigenetic control of heredity. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 198:25-60. [PMID: 37225323 DOI: 10.1016/bs.pmbts.2023.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Epigenetics is the field of science that deals with the study of changes in gene function that do not involve changes in DNA sequence and are heritable while epigenetics inheritance is the process of transmission of epigenetic modifications to the next generation. It can be transient, intergenerational, or transgenerational. There are various epigenetic modifications involving mechanisms such as DNA methylation, histone modification, and noncoding RNA expression, all of which are inheritable. In this chapter, we summarize the information on epigenetic inheritance, its mechanism, inheritance studies on various organisms, factors affecting epigenetic modifications and their inheritance, and the role of epigenetic inheritance in the heritability of diseases.
Collapse
Affiliation(s)
- Akanksha Singh Kachhawaha
- Laboratory of Forensic Chemistry & Toxicology, School of Forensic Sciences, National Forensic Sciences University (NFSU), Gandhinagar, Gujarat, India
| | - Sarita Mishra
- Laboratory of Forensic Chemistry & Toxicology, School of Forensic Sciences, National Forensic Sciences University (NFSU), Gandhinagar, Gujarat, India
| | - Anand Krishna Tiwari
- Genetics & Developmental Biology Laboratory, Department of Biotechnology & Bioengineering, Institute of Advanced Research, Gandhinagar, Gujarat, India.
| |
Collapse
|
3
|
Saini A, Rawat Y, Jain K, Mani I. State-of-the-art techniques to study epigenetics. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 197:23-50. [PMID: 37019594 DOI: 10.1016/bs.pmbts.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
The epigenome consists of all the epigenetic alterations like DNA methylation, the histone modifications and non-coding RNAs which change the gene expression and have a role in diseases like cancer and other processes. Epigenetic modifications can control gene expression through variable gene activity at various levels which affects various cellular phenomenon such as cell differentiations, variability, morphogenesis, and the adaptability of an organism. Various factors such as food, pollutants, drugs, stress etc., impact the epigenome. Epigenetic mechanisms mainly involve various post-translational alteration of histones and DNA methylation. Numerous methods have been utilized to study these epigenetic marks. Various histone modifications and binding of histone modifier proteins can be analyzed using chromatin immunoprecipitation (ChIP) which is one of broadly utilized method. Other modified forms of the ChIP have been developed such as reverse chromatin immunoprecipitation (R-ChIP); sequential ChIP (ChIP-re-ChIP) and some high-throughput modified forms of ChIP such as ChIP-seq and ChIP-on-chip. Another epigenetic mechanism is DNA methylation, in which DNA methyltransferases (DNMTs) add a methyl group to the C-5 position of the cytosine. Bisulfite sequencing is the oldest and usually utilized method to measure the DNA methylation status. Other techniques have been established are whole genome bisulfite sequencing (WGBS), methylated DNA immune-precipitation based methods (MeDIP), methylation sensitive restriction enzyme digestion followed by sequencing (MRE-seq) and methylation BeadChip to study the methylome. This chapter briefly discusses the key principles and methods used to study epigenetics in health and disease conditions.
Collapse
Affiliation(s)
- Ashok Saini
- Department of Microbiology, Institute of Home Economics, University of Delhi, New Delhi, India.
| | | | - Kritika Jain
- Department of Microbiology, Institute of Home Economics, University of Delhi, New Delhi, India
| | - Indra Mani
- Department of Microbiology, Gargi College, University of Delhi, New Delhi, India.
| |
Collapse
|
4
|
Reece AS, Hulse GK. Socioeconomic, Ethnocultural, Substance- and Cannabinoid-Related Epidemiology of Down Syndrome USA 1986-2016: Combined Geotemporospatial and Causal Inference Investigation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13340. [PMID: 36293924 PMCID: PMC9602855 DOI: 10.3390/ijerph192013340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/18/2022] [Accepted: 10/14/2022] [Indexed: 05/16/2023]
Abstract
BACKGROUND Down syndrome (DS) is the commonest of the congenital genetic defects whose incidence has been rising in recent years for unknown reasons. This study aims to assess the impact of substance and cannabinoid use on the DS Rate (DSR) and assess their possible causal involvement. METHODS An observational population-based epidemiological study 1986-2016 was performed utilizing geotemporospatial and causal inferential analysis. Participants included all patients diagnosed with DS and reported to state based registries with data obtained from National Birth Defects Prevention Network of Centers for Disease Control. Drug exposure data was from the National Survey of Drug Use and Health (NSDUH) a nationally representative sample interviewing 67,000 participants annually. Drug exposures assessed were: cigarette consumption, alcohol abuse, analgesic/opioid abuse, cocaine use and last month cannabis use. Covariates included ethnicity and median household income from US Census Bureau; maternal age of childbearing from CDC births registries; and cannabinoid concentrations from Drug Enforcement Agency. RESULTS NSDUH reports 74.1% response rate. Other data was population-wide. DSR was noted to rise over time and with cannabis use and cannabis-use quintile. In the optimal geospatial model lagged to four years terms including Δ9-tetrahydrocannabinol and cannabigerol were significant (from β-est. = 4189.96 (95%C.I. 1924.74, 6455.17), p = 2.9 × 10-4). Ethnicity, income, and maternal age covariates were not significant. DSR in states where cannabis was not illegal was higher than elsewhere (β-est. = 2.160 (1.5, 2.82), R.R. = 1.81 (1.51, 2.16), p = 4.7 × 10-10). In inverse probability-weighted mixed models terms including cannabinoids were significant (from β-estimate = 18.82 (16.82, 20.82), p < 0.0001). 62 E-value estimates ranged to infinity with median values of 303.98 (IQR 2.50, 2.75 × 107) and 95% lower bounds ranged to 1.1 × 1071 with median values of 10.92 (IQR 1.82, 7990). CONCLUSIONS Data show that the association between DSR and substance- and cannabinoid- exposure is robust to multivariable geotemporospatial adjustment, implicate particularly cannabigerol and Δ9-tetrahydrocannabinol, and fulfil quantitative epidemiological criteria for causality. Nevertheless, detailed experimental studies would be required to formally demonstrate causality. Cannabis legalization was associated with elevated DSR's at both bivariate and multivariable analysis. Findings are consistent with those from Hawaii, Colorado, Canada, Australia and Europe and concordant with several cellular mechanisms. Given that the cannabis industry is presently in a rapid growth-commercialization phase the present findings linking cannabis use with megabase scale genotoxicity suggest unrecognized DS risk factors, are of public health importance and suggest that re-focussing the cannabis debate on multigenerational health concerns is prudent.
Collapse
Affiliation(s)
- Albert Stuart Reece
- Division of Psychiatry, University of Western Australia, Crawley, WA 6009, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
| | - Gary Kenneth Hulse
- Division of Psychiatry, University of Western Australia, Crawley, WA 6009, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
| |
Collapse
|
5
|
Vogt G. Studying phenotypic variation and DNA methylation across development, ecology and evolution in the clonal marbled crayfish: a paradigm for investigating epigenotype-phenotype relationships in macro-invertebrates. Naturwissenschaften 2022; 109:16. [PMID: 35099618 DOI: 10.1007/s00114-021-01782-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 12/10/2021] [Accepted: 12/15/2021] [Indexed: 12/17/2022]
Abstract
Animals can produce different phenotypes from the same genome during development, environmental adaptation and evolution, which is mediated by epigenetic mechanisms including DNA methylation. The obligatory parthenogenetic marbled crayfish, Procambarus virginalis, whose genome and methylome are fully established, proved very suitable to study this issue in detail. Comparison between developmental stages and DNA methylation revealed low expression of Dnmt methylation and Tet demethylation enzymes from the spawned oocyte to the 256 cell embryo and considerably increased expression thereafter. The global 5-methylcytosine level was 2.78% at mid-embryonic development and decreased slightly to 2.41% in 2-year-old adults. Genetically identical clutch-mates raised in the same uniform laboratory setting showed broad variation in morphological, behavioural and life history traits and differences in DNA methylation. The invasion of diverse habitats in tropical to cold-temperate biomes in the last 20 years by the marbled crayfish was associated with the expression of significantly different phenotypic traits and DNA methylation patterns, despite extremely low genetic variation on the whole genome scale, suggesting the establishment of epigenetic ecotypes. The evolution of marbled crayfish from its parent species Procambarus fallax by autotriploidy a few decades ago was accompanied by a significant increase in body size, fertility and life span, a 20% reduction of global DNA methylation and alteration of methylation in hundreds of genes, suggesting that epigenetic mechanisms were involved in speciation and fitness enhancement. The combined analysis of phenotypic traits and DNA methylation across multiple biological contexts in the laboratory and field in marbled crayfish may serve as a blueprint for uncovering the role of epigenetic mechanisms in shaping of phenotypes in macro-invertebrates.
Collapse
Affiliation(s)
- Günter Vogt
- Faculty of Biosciences, University of Heidelberg, Im Neuenheimer Feld 234, 69120, Heidelberg, Germany.
| |
Collapse
|
6
|
Whole-genome bisulfite sequencing in systemic sclerosis provides novel targets to understand disease pathogenesis. BMC Med Genomics 2019; 12:144. [PMID: 31651337 PMCID: PMC6813992 DOI: 10.1186/s12920-019-0602-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 10/11/2019] [Indexed: 12/24/2022] Open
Abstract
Background Systemic sclerosis (SSc) is a rare autoimmune connective tissue disease whose pathogenesis remains incompletely understood. Increasing evidence suggests that both genetic susceptibilities and changes in DNA methylation influence pivotal biological pathways and thereby contribute to the disease. The role of DNA methylation in SSc has not been fully elucidated, because existing investigations of DNA methylation predominantly focused on nucleotide CpGs within restricted genic regions, and were performed on samples containing mixed cell types. Methods We performed whole-genome bisulfite sequencing on purified CD4+ T lymphocytes from nine SSc patients and nine controls in a pilot study, and then profiled genome-wide cytosine methylation as well as genetic variations. We adopted robust statistical methods to identify differentially methylated genomic regions (DMRs). We then examined pathway enrichment associated with genes located in these DMRs. We also tested whether changes in CpG methylation were associated with adjacent genetic variation. Results We profiled DNA methylation at more than three million CpG dinucleotides genome-wide. We identified 599 DMRs associated with 340 genes, among which 54 genes exhibited further associations with adjacent genetic variation. We also found these genes were associated with pathways and functions that are known to be abnormal in SSc, including Wnt/β-catenin signaling pathway, skin lesion formation and progression, and angiogenesis. Conclusion The CD4+ T cell DNA cytosine methylation landscape in SSc involves crucial genes in disease pathogenesis. Some of the methylation patterns are also associated with genetic variation. These findings provide essential foundations for future studies of epigenetic regulation and genome-epigenome interaction in SSc.
Collapse
|
7
|
Population DNA methylation studies in the Developmental Origins of Health and Disease (DOHaD) framework. J Dev Orig Health Dis 2018; 10:306-313. [PMID: 30101736 DOI: 10.1017/s2040174418000442] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Epigenetic changes represent a potential mechanism underlying associations of early-life exposures and later life health outcomes. Population-based cohort studies starting in early life are an attractive framework to study the role of such changes. DNA methylation is the most studied epigenetic mechanism in population research. We discuss the application of DNA methylation in early-life population studies, some recent findings, key challenges and recommendations for future research. Studies into DNA methylation within the Developmental Origins of Health and Disease framework generally either explore associations between prenatal exposures and offspring DNA methylation or associations between offspring DNA methylation in early life and later health outcomes. Only a few studies to date have integrated prospective exposure, epigenetic and phenotypic data in order to explicitly test the role of DNA methylation as a potential biological mediator of environmental effects on health outcomes. Population epigenetics is an emerging field which has challenges in terms of methodology and interpretation of the data. Key challenges include tissue specificity, cell type adjustment, issues of power and comparability of findings, genetic influences, and exploring causality and functional consequences. Ongoing studies are working on addressing these issues. Large collaborative efforts of prospective cohorts are emerging, with clear benefits in terms of optimizing power and use of resources, and in advancing methodology. In the future, multidisciplinary approaches, within and beyond longitudinal birth and preconception cohorts will advance this complex, but highly promising, the field of research.
Collapse
|
8
|
Barker ED, Walton E, Cecil CAM. Annual Research Review: DNA methylation as a mediator in the association between risk exposure and child and adolescent psychopathology. J Child Psychol Psychiatry 2018; 59:303-322. [PMID: 28736860 DOI: 10.1111/jcpp.12782] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/17/2017] [Indexed: 12/22/2022]
Abstract
BACKGROUND DNA methylation (DNAm) is a potential mechanism for propagating the effects of environmental exposures on child and adolescent mental health. In recent years, this field has experienced steady growth. METHODS We provide a strategic review of the current child and adolescent literature to evaluate evidence for a mediating role of DNAm in the link between environmental risks and psychopathological outcomes, with a focus on internalising and externalising difficulties. RESULTS Based on the studies presented, we conclude that there is preliminary evidence to support that (a) environmental factors, such as diet, neurotoxic exposures and stress, influence offspring DNAm, and that (b) variability in DNAm, in turn, is associated with child and adolescent psychopathology. Overall, very few studies have examined DNAm in relation to both exposures and outcomes, and almost all analyses have been correlational in nature. CONCLUSIONS DNAm holds potential as a biomarker indexing both environmental risk exposure and vulnerability for child psychopathology. However, the extent to which it may represent a causal mediator is not clear. In future, collection of prospective risk exposure, DNAm and outcomes - as well as functional characterisation of epigenetic findings - will assist in determining the role of DNAm in the link between risk exposure and psychopathology.
Collapse
Affiliation(s)
- Edward D Barker
- Department of Psychology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Esther Walton
- Department of Psychology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Charlotte A M Cecil
- Department of Psychology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
9
|
Grazioli E, Dimauro I, Mercatelli N, Wang G, Pitsiladis Y, Di Luigi L, Caporossi D. Physical activity in the prevention of human diseases: role of epigenetic modifications. BMC Genomics 2017; 18:802. [PMID: 29143608 PMCID: PMC5688489 DOI: 10.1186/s12864-017-4193-5] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Epigenetic modification refers to heritable changes in gene function that cannot be explained by alterations in the DNA sequence. The current literature clearly demonstrates that the epigenetic response is highly dynamic and influenced by different biological and environmental factors such as aging, nutrient availability and physical exercise. As such, it is well accepted that physical activity and exercise can modulate gene expression through epigenetic alternations although the type and duration of exercise eliciting specific epigenetic effects that can result in health benefits and prevent chronic diseases remains to be determined. This review highlights the most significant findings from epigenetic studies involving physical activity/exercise interventions known to benefit chronic diseases such as metabolic syndrome, diabetes, cancer, cardiovascular and neurodegenerative diseases.
Collapse
Affiliation(s)
- Elisa Grazioli
- Department of Movement, Human and Health Sciences, Unit of Biology, Genetics and Biochemistry, University of Rome "Foro Italico", Rome, Italy
| | - Ivan Dimauro
- Department of Movement, Human and Health Sciences, Unit of Biology, Genetics and Biochemistry, University of Rome "Foro Italico", Rome, Italy
| | - Neri Mercatelli
- Department of Movement, Human and Health Sciences, Unit of Biology, Genetics and Biochemistry, University of Rome "Foro Italico", Rome, Italy
| | - Guan Wang
- FIMS Reference Collaborating Centre of Sports Medicine for Anti-Doping Research, University of Brighton, Brighton, UK
| | - Yannis Pitsiladis
- Department of Movement, Human and Health Sciences, Unit of Biology, Genetics and Biochemistry, University of Rome "Foro Italico", Rome, Italy.,FIMS Reference Collaborating Centre of Sports Medicine for Anti-Doping Research, University of Brighton, Brighton, UK
| | - Luigi Di Luigi
- Department of Movement, Human and Health Sciences, Unit of Endocrinology, University of Rome "Foro Italico", Rome, Italy
| | - Daniela Caporossi
- Department of Movement, Human and Health Sciences, Unit of Biology, Genetics and Biochemistry, University of Rome "Foro Italico", Rome, Italy.
| |
Collapse
|
10
|
Rowlands H, Dhavarasa P, Cheng A, Yankulov K. Forks on the Run: Can the Stalling of DNA Replication Promote Epigenetic Changes? Front Genet 2017; 8:86. [PMID: 28690636 PMCID: PMC5479891 DOI: 10.3389/fgene.2017.00086] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 06/06/2017] [Indexed: 11/13/2022] Open
Abstract
Built of DNA polymerases and multiple associated factors, the replication fork steadily progresses along the DNA template and faithfully replicates DNA. This model can be found in practically every textbook of genetics, with the more complex situation of chromatinized DNA in eukaryotes often viewed as a variation. However, the replication-coupled disassembly/reassembly of chromatin adds significant complexity to the whole replication process. During the course of eukaryotic DNA replication the forks encounter various conditions and numerous impediments. These include nucleosomes with a variety of post-translational modifications, euchromatin and heterochromatin, differentially methylated DNA, tightly bound proteins, active gene promoters and DNA loops. At such positions the forks slow down or even stall. Dedicated factors stabilize the fork and prevent its rotation or collapse, while other factors resolve the replication block and facilitate the resumption of elongation. The fate of histones during replication stalling and resumption is not well understood. In this review we briefly describe recent advances in our understanding of histone turnover during DNA replication and focus on the possible mechanisms of nucleosome disassembly/reassembly at paused replication forks. We propose that replication pausing provides opportunities for an epigenetic change of the associated locus.
Collapse
Affiliation(s)
- Hollie Rowlands
- Department of Molecular and Cellular Biology, University of Guelph, GuelphON, Canada
| | - Piriththiv Dhavarasa
- Department of Molecular and Cellular Biology, University of Guelph, GuelphON, Canada
| | - Ashley Cheng
- Department of Molecular and Cellular Biology, University of Guelph, GuelphON, Canada
| | - Krassimir Yankulov
- Department of Molecular and Cellular Biology, University of Guelph, GuelphON, Canada
| |
Collapse
|
11
|
Wyse B, Oshidari R, Rowlands H, Abbasi S, Yankulov K. RRM3 regulates epigenetic conversions in Saccharomyces cerevisiae in conjunction with Chromatin Assembly Factor I. Nucleus 2017; 7:405-14. [PMID: 27645054 DOI: 10.1080/19491034.2016.1212796] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Chromatin structures are transmitted to daughter cells through a complex system of nucleosome disassembly and re-assembly at the advancing replication forks. However, the role of replication pausing in the transmission and perturbation of chromatin structures has not been addressed. RRM3 encodes a DNA helicase, which facilitates replication at sites covered with non-histone protein complexes (tRNA genes, active gene promoters, telomeres) in Saccharomyces cerevisiae. In this report we show that the deletion of RRM3 reduces the frequency of epigenetic conversions in the subtelomeric regions of the chromosomes. This phenotype is strongly dependent on 2 histone chaperones, CAF-I and ASF1, which are involved in the reassembly of nucleosomes behind replication forks, but not on the histone chaperone HIR1. We also show that the deletion of RRM3 increases the spontaneous mutation rates in conjunction with CAF-I and ASF1, but not HIR1. Finally, we demonstrate that Rrm3p and CAF-I compete for the binding to the DNA replication clamp PCNA (Proliferating Cell Nuclear Antigen). We propose that the stalling of DNA replication predisposes to epigenetic conversions and that RRM3 and CAF-I play key roles in this process.
Collapse
Affiliation(s)
- Brandon Wyse
- a Department of Molecular and Cellular Biology , University of Guelph , Ontario , Canada
| | - Roxanne Oshidari
- a Department of Molecular and Cellular Biology , University of Guelph , Ontario , Canada
| | - Hollie Rowlands
- a Department of Molecular and Cellular Biology , University of Guelph , Ontario , Canada
| | - Sanna Abbasi
- a Department of Molecular and Cellular Biology , University of Guelph , Ontario , Canada
| | - Krassimir Yankulov
- a Department of Molecular and Cellular Biology , University of Guelph , Ontario , Canada
| |
Collapse
|
12
|
Villota-Salazar NA, Mendoza-Mendoza A, González-Prieto JM. Epigenetics: from the past to the present. FRONTIERS IN LIFE SCIENCE 2016. [DOI: 10.1080/21553769.2016.1249033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
13
|
Yan H, Tian S, Slager SL, Sun Z, Ordog T. Genome-Wide Epigenetic Studies in Human Disease: A Primer on -Omic Technologies. Am J Epidemiol 2016; 183:96-109. [PMID: 26721890 DOI: 10.1093/aje/kwv187] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 07/09/2015] [Indexed: 12/12/2022] Open
Abstract
Epigenetic information encoded in covalent modifications of DNA and histone proteins regulates fundamental biological processes through the action of chromatin regulators, transcription factors, and noncoding RNA species. Epigenetic plasticity enables an organism to respond to developmental and environmental signals without genetic changes. However, aberrant epigenetic control plays a key role in pathogenesis of disease. Normal epigenetic states could be disrupted by detrimental mutations and expression alteration of chromatin regulators or by environmental factors. In this primer, we briefly review the epigenetic basis of human disease and discuss how recent discoveries in this field could be translated into clinical diagnosis, prevention, and treatment. We introduce platforms for mapping genome-wide chromatin accessibility, nucleosome occupancy, DNA-binding proteins, and DNA methylation, primarily focusing on the integration of DNA methylation and chromatin immunoprecipitation-sequencing technologies into disease association studies. We highlight practical considerations in applying high-throughput epigenetic assays and formulating analytical strategies. Finally, we summarize current challenges in sample acquisition, experimental procedures, data analysis, and interpretation and make recommendations on further refinement in these areas. Incorporating epigenomic testing into the clinical research arsenal will greatly facilitate our understanding of the epigenetic basis of disease and help identify novel therapeutic targets.
Collapse
|
14
|
Buckingham M, Relaix F. PAX3 and PAX7 as upstream regulators of myogenesis. Semin Cell Dev Biol 2015; 44:115-25. [PMID: 26424495 DOI: 10.1016/j.semcdb.2015.09.017] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 09/23/2015] [Indexed: 10/23/2022]
Abstract
Like other subclasses within the PAX transcription factor family, PAX3 and PAX7 play important roles in the emergence of a number of different tissues during development. PAX3 regulates neural crest and, together with its orthologue PAX7, is also expressed in parts of the central nervous system. In this chapter we will focus on their role in skeletal muscle. Both factors are key regulators of myogenesis where Pax3 plays a major role during early skeletal muscle formation in the embryo while Pax7 predominates during post-natal growth and muscle regeneration in the adult. We review the expression and functions of these factors in the myogenic context. We also discuss mechanistic aspects of PAX3/7 function and modulation of their activity by interaction with other proteins, as well as the post-transcriptional and transcriptional regulation of their expression.
Collapse
Affiliation(s)
- Margaret Buckingham
- Department of Developmental and Stem Cell Biology, CNRS URA 2578, Institut Pasteur, 28 rue du Dr Roux, 75015 Paris, France.
| | - Frédéric Relaix
- INSERM U955 IMRB, Team 10, 94000 Creteil, France; UPEC Paris Est-Creteil University, Faculty of Medicine, F-94000 Creteil, France; Etablissement Français du Sang, 94017 Creteil, France; Université Paris Est, Ecole Nationale Veterinaire d'Alfort, 94700 Maison Alfort, France.
| |
Collapse
|
15
|
Bousquet J, Anto JM, Wickman M, Keil T, Valenta R, Haahtela T, Lodrup Carlsen K, van Hage M, Akdis C, Bachert C, Akdis M, Auffray C, Annesi-Maesano I, Bindslev-Jensen C, Cambon-Thomsen A, Carlsen KH, Chatzi L, Forastiere F, Garcia-Aymerich J, Gehrig U, Guerra S, Heinrich J, Koppelman GH, Kowalski ML, Lambrecht B, Lupinek C, Maier D, Melén E, Momas I, Palkonen S, Pinart M, Postma D, Siroux V, Smit HA, Sunyer J, Wright J, Zuberbier T, Arshad SH, Nadif R, Thijs C, Andersson N, Asarnoj A, Ballardini N, Ballereau S, Bedbrook A, Benet M, Bergstrom A, Brunekreef B, Burte E, Calderon M, De Carlo G, Demoly P, Eller E, Fantini MP, Hammad H, Hohman C, Just J, Kerkhof M, Kogevinas M, Kull I, Lau S, Lemonnier N, Mommers M, Nawijn M, Neubauer A, Oddie S, Pellet J, Pin I, Porta D, Saes Y, Skrindo I, Tischer CG, Torrent M, von Hertzen L. Are allergic multimorbidities and IgE polysensitization associated with the persistence or re-occurrence of foetal type 2 signalling? The MeDALL hypothesis. Allergy 2015; 70:1062-78. [PMID: 25913421 DOI: 10.1111/all.12637] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2015] [Indexed: 12/22/2022]
Abstract
Allergic diseases [asthma, rhinitis and atopic dermatitis (AD)] are complex. They are associated with allergen-specific IgE and nonallergic mechanisms that may coexist in the same patient. In addition, these diseases tend to cluster and patients present concomitant or consecutive diseases (multimorbidity). IgE sensitization should be considered as a quantitative trait. Important clinical and immunological differences exist between mono- and polysensitized subjects. Multimorbidities of allergic diseases share common causal mechanisms that are only partly IgE-mediated. Persistence of allergic diseases over time is associated with multimorbidity and/or IgE polysensitization. The importance of the family history of allergy may decrease with age. This review puts forward the hypothesis that allergic multimorbidities and IgE polysensitization are associated and related to the persistence or re-occurrence of foetal type 2 signalling. Asthma, rhinitis and AD are manifestations of a common systemic immune imbalance (mesodermal origin) with specific patterns of remodelling (ectodermal or endodermal origin). This study proposes a new classification of IgE-mediated allergic diseases that allows the definition of novel phenotypes to (i) better understand genetic and epigenetic mechanisms, (ii) better stratify allergic preschool children for prognosis and (iii) propose novel strategies of treatment and prevention.
Collapse
Affiliation(s)
- J. Bousquet
- University Hospital; Montpellier France
- MACVIA-LR; Contre les MAladies Chroniques pour un VIeillissement Actif en Languedoc-Roussillon; European Innovation Partnership on Active and Healthy Ageing Reference Site; Paris France
- INSERM; VIMA: Ageing and Chronic Diseases Epidemiological and Public Health Approaches, U1168; Paris France
- UVSQ; UMR-S 1168; Université Versailles St-Quentin-en-Yvelines; Versailles France
| | - J. M. Anto
- Centre for Research in Environmental Epidemiology (CREAL); Barcelona Spain
- Hospital del Mar Research Institute (IMIM); Barcelona Spain
- CIBER Epidemiología y Salud Pública (CIBERESP); Barcelona Spain
- Department of Experimental and Health Sciences; University of Pompeu Fabra (UPF); Barcelona Spain
| | - M. Wickman
- Sachs’ Children's Hospital; Stockholm Sweden
- Institute of Environmental Medicine; Karolinska Institutet; Stockholm Sweden
| | - T. Keil
- Institute of Social Medicine, Epidemiology and Health Economics; Charité - Universitätsmedizin Berlin; Berlin Germany
- Institute for Clinical Epidemiology and Biometry; University of Wuerzburg; Wuerzburg Germany
| | - R. Valenta
- Division of Immunopathology; Department of Pathophysiology and Allergy Research; Center for Pathophysiology, Infectiology and Immunology; Medical University of Vienna; Vienna Austria
| | - T. Haahtela
- Skin and Allergy Hospital; Helsinki University Hospital; Helsinki Finland
| | - K. Lodrup Carlsen
- Department of Paediatrics; Oslo University Hospital; Oslo Norway
- Faculty of Medicine; Institute of Clinical Medicine; University of Oslo; Oslo Norway
| | - M. van Hage
- Clinical Immunology and Allergy Unit; Department of Medicine Solna; Karolinska Institutet and University Hospital; Stockholm Sweden
| | - C. Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF); University of Zurich; Davos Switzerland
| | - C. Bachert
- ENT Department; Ghent University Hospital; Gent Belgium
| | - M. Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF); University of Zurich; Davos Switzerland
| | - C. Auffray
- European Institute for Systems Biology and Medicine; Lyon France
| | - I. Annesi-Maesano
- EPAR U707 INSERM; Paris France
- EPAR UMR-S UPMC; Paris VI; Paris France
| | - C. Bindslev-Jensen
- Department of Dermatology and Allergy Centre; Odense University Hospital; Odense Denmark
| | - A. Cambon-Thomsen
- UMR Inserm U1027; Université de Toulouse III Paul Sabatier; Toulouse France
| | - K. H. Carlsen
- Department of Paediatrics; Oslo University Hospital; Oslo Norway
- University of Oslo; Oslo Norway
| | - L. Chatzi
- Department of Social Medicine; Faculty of Medicine; University of Crete; Heraklion Crete Greece
| | - F. Forastiere
- Department of Epidemiology; Regional Health Service Lazio Region; Rome Italy
| | - J. Garcia-Aymerich
- Centre for Research in Environmental Epidemiology (CREAL); Barcelona Spain
- Hospital del Mar Research Institute (IMIM); Barcelona Spain
- CIBER Epidemiología y Salud Pública (CIBERESP); Barcelona Spain
- Department of Experimental and Health Sciences; University of Pompeu Fabra (UPF); Barcelona Spain
| | - U. Gehrig
- Julius Center of Health Sciences and Primary Care; University Medical Center Utrecht; University of Utrecht; Utrecht the Netherlands
| | - S. Guerra
- Centre for Research in Environmental Epidemiology (CREAL); Barcelona Spain
| | - J. Heinrich
- Institute of Epidemiology; German Research Centre for Environmental Health; Helmholtz Zentrum München; Neuherberg Germany
| | - G. H. Koppelman
- Department of Pediatric Pulmonology and Pediatric Allergology; GRIAC Research Institute; University Medical Center Groningen; Beatrix Children's Hospital; University of Groningen; Groningen the Netherlands
| | - M. L. Kowalski
- Department of Immunology, Rheumatology and Allergy; Medical University of Lodz; Lodz Poland
| | - B. Lambrecht
- VIB Inflammation Research Center; Ghent University; Ghent Belgium
| | - C. Lupinek
- Division of Immunopathology; Department of Pathophysiology and Allergy Research; Center for Pathophysiology, Infectiology and Immunology; Medical University of Vienna; Vienna Austria
| | | | - E. Melén
- Institute of Environmental Medicine; Karolinska Institutet; Stockholm Sweden
| | - I. Momas
- Department of Public Health and Biostatistics, EA 4064; Paris Descartes University; Paris France
- Paris Municipal Department of Social Action, Childhood, and Health; Paris France
| | - S. Palkonen
- EFA European Federation of Allergy and Airways Diseases Patients' Associations; Brussels Belgium
| | - M. Pinart
- Centre for Research in Environmental Epidemiology (CREAL); Barcelona Spain
| | - D. Postma
- Department of Respiratory Medicine; GRIAC Research Institute; University Medical Center Groningen; Beatrix Children's Hospital; University of Groningen; Groningen the Netherlands
| | | | - H. A. Smit
- Julius Center of Health Sciences and Primary Care; University Medical Center Utrecht; University of Utrecht; Utrecht the Netherlands
| | - J. Sunyer
- Centre for Research in Environmental Epidemiology (CREAL); Barcelona Spain
- Hospital del Mar Research Institute (IMIM); Barcelona Spain
- CIBER Epidemiología y Salud Pública (CIBERESP); Barcelona Spain
- Department of Experimental and Health Sciences; University of Pompeu Fabra (UPF); Barcelona Spain
| | - J. Wright
- Bradford Institute for Health Research; Bradford Royal Infirmary; Bradford UK
| | - T. Zuberbier
- Allergy-Centre-Charité at the Department of Dermatology; Charité - Universitätsmedizin Berlin; Berlin Germany
- Secretary General of the Global Allergy and Asthma European Network (GA2LEN); Berlin Germany
| | - S. H. Arshad
- David Hide Asthma and Allergy Research Centre; Isle of Wight UK
| | - R. Nadif
- INSERM; VIMA: Ageing and Chronic Diseases Epidemiological and Public Health Approaches, U1168; Paris France
- UVSQ; UMR-S 1168; Université Versailles St-Quentin-en-Yvelines; Versailles France
| | - C. Thijs
- Department of Epidemiology; CAPHRI School of Public Health and Primary Care; Maastricht University; Maastricht the Netherlands
| | - N. Andersson
- Sachs’ Children's Hospital; Stockholm Sweden
- Institute of Environmental Medicine; Karolinska Institutet; Stockholm Sweden
| | - A. Asarnoj
- Sachs’ Children's Hospital; Stockholm Sweden
- Institute of Environmental Medicine; Karolinska Institutet; Stockholm Sweden
| | - N. Ballardini
- Sachs’ Children's Hospital; Stockholm Sweden
- Institute of Environmental Medicine; Karolinska Institutet; Stockholm Sweden
| | - S. Ballereau
- European Institute for Systems Biology and Medicine; Lyon France
| | - A. Bedbrook
- MACVIA-LR; Contre les MAladies Chroniques pour un VIeillissement Actif en Languedoc-Roussillon; European Innovation Partnership on Active and Healthy Ageing Reference Site; Paris France
| | - M. Benet
- Centre for Research in Environmental Epidemiology (CREAL); Barcelona Spain
| | - A. Bergstrom
- Sachs’ Children's Hospital; Stockholm Sweden
- Institute of Environmental Medicine; Karolinska Institutet; Stockholm Sweden
| | - B. Brunekreef
- Julius Center of Health Sciences and Primary Care; University Medical Center Utrecht; University of Utrecht; Utrecht the Netherlands
| | - E. Burte
- INSERM; VIMA: Ageing and Chronic Diseases Epidemiological and Public Health Approaches, U1168; Paris France
- UVSQ; UMR-S 1168; Université Versailles St-Quentin-en-Yvelines; Versailles France
| | - M. Calderon
- National Heart and Lung Institute; Imperial College London; Royal Brompton Hospital NHS; London UK
| | - G. De Carlo
- EFA European Federation of Allergy and Airways Diseases Patients' Associations; Brussels Belgium
| | - P. Demoly
- Department of Respiratory Diseases; Montpellier University Hospital; Montpellier France
| | - E. Eller
- Department of Dermatology and Allergy Centre; Odense University Hospital; Odense Denmark
| | - M. P. Fantini
- Department of Medicine and Public Health; Alma Mater Studiorum - University of Bologna; Bologna Italy
| | - H. Hammad
- VIB Inflammation Research Center; Ghent University; Ghent Belgium
| | - C. Hohman
- Institute of Social Medicine, Epidemiology and Health Economics; Charité - Universitätsmedizin Berlin; Berlin Germany
| | - J. Just
- Allergology Department; Centre de l'Asthme et des Allergies; Hôpital d'Enfants Armand-Trousseau (APHP); Paris France
- Institut Pierre Louis d'Epidémiologie et de Santé Publique; Equipe EPAR; Sorbonne Universités, UPMC Univ Paris 06, UMR_S 1136; Paris France
| | - M. Kerkhof
- Department of Respiratory Medicine; GRIAC Research Institute; University Medical Center Groningen; Beatrix Children's Hospital; University of Groningen; Groningen the Netherlands
| | - M. Kogevinas
- Centre for Research in Environmental Epidemiology (CREAL); Barcelona Spain
- Hospital del Mar Research Institute (IMIM); Barcelona Spain
- CIBER Epidemiología y Salud Pública (CIBERESP); Barcelona Spain
- Department of Experimental and Health Sciences; University of Pompeu Fabra (UPF); Barcelona Spain
| | - I. Kull
- Sachs’ Children's Hospital; Stockholm Sweden
- Institute of Environmental Medicine; Karolinska Institutet; Stockholm Sweden
| | - S. Lau
- Department for Pediatric Pneumology and Immunology; Charité Medical University; Berlin Germany
| | - N. Lemonnier
- European Institute for Systems Biology and Medicine; Lyon France
| | - M. Mommers
- Department of Epidemiology; CAPHRI School of Public Health and Primary Care; Maastricht University; Maastricht the Netherlands
| | - M. Nawijn
- Department of Pediatric Pulmonology and Pediatric Allergology; GRIAC Research Institute; University Medical Center Groningen; Beatrix Children's Hospital; University of Groningen; Groningen the Netherlands
| | | | - S. Oddie
- Bradford Institute for Health Research; Bradford Royal Infirmary; Bradford UK
| | - J. Pellet
- European Institute for Systems Biology and Medicine; Lyon France
| | - I. Pin
- Département de pédiatrie; CHU de Grenoble; Grenoble Cedex 9 France
| | - D. Porta
- Department of Epidemiology; Regional Health Service Lazio Region; Rome Italy
| | - Y. Saes
- VIB Inflammation Research Center; Ghent University; Ghent Belgium
| | - I. Skrindo
- Department of Paediatrics; Oslo University Hospital; Oslo Norway
- Faculty of Medicine; Institute of Clinical Medicine; University of Oslo; Oslo Norway
| | - C. G. Tischer
- Institute of Epidemiology; German Research Centre for Environmental Health; Helmholtz Zentrum München; Neuherberg Germany
| | - M. Torrent
- Centre for Research in Environmental Epidemiology (CREAL); Barcelona Spain
- Area de Salut de Menorca, ib-salut; Illes Balears Spain
| | - L. von Hertzen
- Skin and Allergy Hospital; Helsinki University Hospital; Helsinki Finland
| |
Collapse
|
16
|
Tiligada E, Ishii M, Riccardi C, Spedding M, Simon HU, Teixeira MM, Landys Chovel Cuervo M, Holgate ST, Levi-Schaffer F. The expanding role of immunopharmacology: IUPHAR Review 16. Br J Pharmacol 2015; 172:4217-27. [PMID: 26173913 PMCID: PMC4556463 DOI: 10.1111/bph.13219] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 05/05/2015] [Accepted: 05/20/2015] [Indexed: 02/06/2023] Open
Abstract
Drugs targeting the immune system such as corticosteroids, antihistamines and immunosuppressants have been widely exploited in the treatment of inflammatory, allergic and autoimmune disorders during the second half of the 20th century. The recent advances in immunopharmacological research have made available new classes of clinically relevant drugs. These comprise protein kinase inhibitors and biologics, such as monoclonal antibodies, that selectively modulate the immune response not only in cancer and autoimmunity but also in a number of other human pathologies. Likewise, more effective vaccines utilizing novel antigens and adjuvants are valuable tools for the prevention of transmissible infectious diseases and for allergen-specific immunotherapy. Consequently, immunopharmacology is presently considered as one of the expanding fields of pharmacology. Immunopharmacology addresses the selective regulation of immune responses and aims to uncover and exploit beneficial therapeutic options for typical and non-typical immune system-driven unmet clinical needs. While in the near future a number of new agents will be introduced, improving the effectiveness and safety of those currently in use is imperative for all researchers and clinicians working in the fields of immunology, pharmacology and drug discovery. The newly formed ImmuPhar (http://iuphar.us/index.php/sections-subcoms/immunopharmacology) is the Immunopharmacology Section of the International Union of Basic and Clinical Pharmacology (IUPHAR, http://iuphar.us/). ImmuPhar provides a unique international expert-lead platform that aims to dissect and promote the growing understanding of immune (patho)physiology. Moreover, it challenges the identification and validation of drug targets and lead candidates for the treatment of many forms of debilitating disorders, including, among others, cancer, allergies, autoimmune and metabolic diseases.
Collapse
Affiliation(s)
- Ekaterini Tiligada
- Department of Pharmacology, Medical School, University of AthensAthens, Greece
- Allergy Unit ‘D. Kalogeromitros’, 2nd Department of Dermatology and Venereology, ‘Attikon’ General University Hospital, Medical School, University of AthensAthens, Greece
| | - Masaru Ishii
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka UniversityOsaka, Japan
| | - Carlo Riccardi
- Department of Medicine, University of PerugiaPerugia, Italy
| | | | - Hans-Uwe Simon
- Institute of Pharmacology, University of BernBern, Switzerland
| | | | | | | | - Francesca Levi-Schaffer
- Pharmacology Unit, Faculty of Medicine, School of Pharmacy Institute for Drug Research, Hebrew University of JerusalemJerusalem, Israel
| |
Collapse
|
17
|
Madrigal P, Krajewski P. Uncovering correlated variability in epigenomic datasets using the Karhunen-Loeve transform. BioData Min 2015; 8:20. [PMID: 26140054 PMCID: PMC4488123 DOI: 10.1186/s13040-015-0051-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 06/17/2015] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Larger variation exists in epigenomes than in genomes, as a single genome shapes the identity of multiple cell types. With the advent of next-generation sequencing, one of the key problems in computational epigenomics is the poor understanding of correlations and quantitative differences between large scale data sets. RESULTS Here we bring to genomics a scenario of functional principal component analysis, a finite Karhunen-Loève transform, and explicitly decompose the variation in the coverage profiles of 27 chromatin mark ChIP-seq datasets at transcription start sites for H1, one of the most used human embryonic stem cell lines. Using this approach we identify positive correlations between H3K4me3 and H3K36me3, as well as between H3K9ac and H3K36me3, so far undetected by the most commonly used Pearson correlation between read enrichment coverages. We uncover highly negative correlations between H2A.Z, H3K4me3, and several histone acetylation marks, but these occur only between principal components of first and second order. We also demonstrate that levels of gene expression correlate significantly with scores of components of order higher than one, demonstrating that transcriptional regulation by histone marks escapes simple one-to-one relationships. This correlations were higher in significance and magnitude in protein coding genes than in non-coding RNAs. CONCLUSIONS In summary, we present a methodology to explore and uncover novel patterns of epigenomic variability and covariability in genomic data sets by using a functional eigenvalue decomposition of genomic data. R code is available at: http://github.com/pmb59/KLTepigenome.
Collapse
Affiliation(s)
- Pedro Madrigal
- Department of Biometry and Bioinformatics, Institute of Plant Genetics of the Polish Academy of Sciences, Strzeszyńska 34, Poznań, 60-479 Poland ; Present address: Wellcome Trust-MRC Cambridge Stem Cell Institute, Anne McLaren Laboratory for Regenerative Medicine, Department of Surgery, University of Cambridge, West Forvie Building, Forvie Site, Robinson Way, Cambridge, CB2 0SZ UK ; Present address: Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA UK
| | - Paweł Krajewski
- Department of Biometry and Bioinformatics, Institute of Plant Genetics of the Polish Academy of Sciences, Strzeszyńska 34, Poznań, 60-479 Poland
| |
Collapse
|
18
|
Szarc vel Szic K, Declerck K, Vidaković M, Vanden Berghe W. From inflammaging to healthy aging by dietary lifestyle choices: is epigenetics the key to personalized nutrition? Clin Epigenetics 2015; 7:33. [PMID: 25861393 PMCID: PMC4389409 DOI: 10.1186/s13148-015-0068-2] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Accepted: 03/09/2015] [Indexed: 01/12/2023] Open
Abstract
The progressively older population in developed countries is reflected in an increase in the number of people suffering from age-related chronic inflammatory diseases such as metabolic syndrome, diabetes, heart and lung diseases, cancer, osteoporosis, arthritis, and dementia. The heterogeneity in biological aging, chronological age, and aging-associated disorders in humans have been ascribed to different genetic and environmental factors (i.e., diet, pollution, stress) that are closely linked to socioeconomic factors. The common denominator of these factors is the inflammatory response. Chronic low-grade systemic inflammation during physiological aging and immunosenescence are intertwined in the pathogenesis of premature aging also defined as ‘inflammaging.’ The latter has been associated with frailty, morbidity, and mortality in elderly subjects. However, it is unknown to what extent inflammaging or longevity is controlled by epigenetic events in early life. Today, human diet is believed to have a major influence on both the development and prevention of age-related diseases. Most plant-derived dietary phytochemicals and macro- and micronutrients modulate oxidative stress and inflammatory signaling and regulate metabolic pathways and bioenergetics that can be translated into stable epigenetic patterns of gene expression. Therefore, diet interventions designed for healthy aging have become a hot topic in nutritional epigenomic research. Increasing evidence has revealed that complex interactions between food components and histone modifications, DNA methylation, non-coding RNA expression, and chromatin remodeling factors influence the inflammaging phenotype and as such may protect or predispose an individual to many age-related diseases. Remarkably, humans present a broad range of responses to similar dietary challenges due to both genetic and epigenetic modulations of the expression of target proteins and key genes involved in the metabolism and distribution of the dietary constituents. Here, we will summarize the epigenetic actions of dietary components, including phytochemicals, and macro- and micronutrients as well as metabolites, that can attenuate inflammaging. We will discuss the challenges facing personalized nutrition to translate highly variable interindividual epigenetic diet responses to potential individual health benefits/risks related to aging disease.
Collapse
Affiliation(s)
- Katarzyna Szarc vel Szic
- Lab Protein Science, Proteomics and Epigenetic Signaling, Department of Biomedical Sciences, University Antwerp, Campus Drie Eiken, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Ken Declerck
- Lab Protein Science, Proteomics and Epigenetic Signaling, Department of Biomedical Sciences, University Antwerp, Campus Drie Eiken, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Melita Vidaković
- Department of Molecular Biology, Institute for Biological Research, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia
| | - Wim Vanden Berghe
- Lab Protein Science, Proteomics and Epigenetic Signaling, Department of Biomedical Sciences, University Antwerp, Campus Drie Eiken, Universiteitsplein 1, 2610 Wilrijk, Belgium
| |
Collapse
|
19
|
D'Amato L, Dell'Aversana C, Conte M, Ciotta A, Scisciola L, Carissimo A, Nebbioso A, Altucci L. ARHGEF3 controls HDACi-induced differentiation via RhoA-dependent pathways in acute myeloid leukemias. Epigenetics 2015; 10:6-18. [PMID: 25494542 DOI: 10.4161/15592294.2014.988035] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Altered expression and activity of histone deacetylases (HDACs) have been correlated with tumorigenesis. Inhibitors of HDACs (HDACi) induce acetylation of histone and non-histone proteins affecting gene expression, cell cycle progression, cell migration, terminal differentiation and cell death. Here, we analyzed the regulation of ARHGEF3, a RhoA-specific guanine nucleotide exchange factor, by the HDACi MS275 (entinostat). MS275 is a well-known benzamide-based HDACi, which induces differentiation of the monoblastic-like human histiocytic lymphoma cell line U937 to monocytes/macrophages. Incubation of U937 cells with MS275 resulted in an up regulation of ARHGEF3, followed by a significant enhancement of the marker of macrophage differentiation CD68. ARHGEF3 protein is primarily nuclear, but MS275 treatment rapidly induced its translocation into the cytoplasm. ARHGEF3 cytoplasmic localization is associated with activation of the RhoA/Rho-associated Kinase (ROCK) pathway. In addition to cytoskeletal rearrangements orchestrated by RhoA, we showed that ARHGEF3/RhoA-dependent signals involve activation of SAPK/JNK and then Elk1 transcription factor. Importantly, MS275-induced CD68 expression was blocked by exposure of U937 cells to exoenzyme C3 transferase and Y27632, inhibitors of Rho and ROCK respectively. Moreover, ARHGEF3 silencing prevented RhoA activation leading to a reduction in SAPK/JNK phosphorylation, Elk1 activation and CD68 expression, suggesting a crucial role for ARHGEF3 in myeloid differentiation. Taken together, our results demonstrate that ARHGEF3 modulates acute myeloid leukemia differentiation through activation of RhoA and pathways directly controlled by small GTPase family proteins. The finding that GEF protein modulation by HDAC inhibition impacts on cell differentiation may be important for understanding the antitumor mechanism(s) by which HDACi treatment stimulates differentiation in cancer.
Collapse
Affiliation(s)
- Loredana D'Amato
- a Dipartimento di Biochimica, Biofisica e Patologia Generale ; Seconda Università di Napoli ; Napoli , Italy
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Howell A, Anderson AS, Clarke RB, Duffy SW, Evans DG, Garcia-Closas M, Gescher AJ, Key TJ, Saxton JM, Harvie MN. Risk determination and prevention of breast cancer. Breast Cancer Res 2014; 16:446. [PMID: 25467785 PMCID: PMC4303126 DOI: 10.1186/s13058-014-0446-2] [Citation(s) in RCA: 210] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Breast cancer is an increasing public health problem. Substantial advances have been made in the treatment of breast cancer, but the introduction of methods to predict women at elevated risk and prevent the disease has been less successful. Here, we summarize recent data on newer approaches to risk prediction, available approaches to prevention, how new approaches may be made, and the difficult problem of using what we already know to prevent breast cancer in populations. During 2012, the Breast Cancer Campaign facilitated a series of workshops, each covering a specialty area of breast cancer to identify gaps in our knowledge. The risk-and-prevention panel involved in this exercise was asked to expand and update its report and review recent relevant peer-reviewed literature. The enlarged position paper presented here highlights the key gaps in risk-and-prevention research that were identified, together with recommendations for action. The panel estimated from the relevant literature that potentially 50% of breast cancer could be prevented in the subgroup of women at high and moderate risk of breast cancer by using current chemoprevention (tamoxifen, raloxifene, exemestane, and anastrozole) and that, in all women, lifestyle measures, including weight control, exercise, and moderating alcohol intake, could reduce breast cancer risk by about 30%. Risk may be estimated by standard models potentially with the addition of, for example, mammographic density and appropriate single-nucleotide polymorphisms. This review expands on four areas: (a) the prediction of breast cancer risk, (b) the evidence for the effectiveness of preventive therapy and lifestyle approaches to prevention, (c) how understanding the biology of the breast may lead to new targets for prevention, and (d) a summary of published guidelines for preventive approaches and measures required for their implementation. We hope that efforts to fill these and other gaps will lead to considerable advances in our efforts to predict risk and prevent breast cancer over the next 10 years.
Collapse
Affiliation(s)
- Anthony Howell
- Genesis Breast Cancer Prevention Centre, University Hospital of South Manchester, Southmoor Road, Wythenshawe, M29 9LT Manchester, UK
- The Christie, NHS Foundation Trust, Wilmslow Road, Manchester, M20 2QJ UK
- Breakthrough Breast Cancer Research Unit, Institute of Cancer Sciences, University of Manchester, Wilmslow Road, Manchester, M20 2QJ UK
| | - Annie S Anderson
- Centre for Public Health Nutrition Research, Division of Cancer Research, Level 7, University of Dundee, Ninewells Hospital & Medical School, Mailbox 7, George Pirie Way, Dundee, DD1 9SY UK
| | - Robert B Clarke
- Breakthrough Breast Cancer Research Unit, Institute of Cancer Sciences, University of Manchester, Wilmslow Road, Manchester, M20 2QJ UK
| | - Stephen W Duffy
- Centre for Cancer Prevention, Wolfson Institute of Preventive Medicine, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ UK
| | - D Gareth Evans
- Genesis Breast Cancer Prevention Centre, University Hospital of South Manchester, Southmoor Road, Wythenshawe, M29 9LT Manchester, UK
- The Christie, NHS Foundation Trust, Wilmslow Road, Manchester, M20 2QJ UK
- Manchester Centre for Genomic Medicine, The University of Manchester, Manchester Academic Health Science Centre, Central Manchester Foundation Trust, St. Mary’s Hospital, Oxford Road, Manchester, M13 9WL UK
| | - Montserat Garcia-Closas
- Division of Genetics and Epidemiology, Institute of Cancer Research, Cotswold Road, Sutton, SM2 5NG London, UK
| | - Andy J Gescher
- Department of Cancer Studies and Molecular Medicine, University of Leicester, University Road, Leicester, LE2 7LX UK
| | - Timothy J Key
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Richard Doll Building, Roosevelt Drive, Oxford, OX3 7LF UK
| | - John M Saxton
- School of Health Sciences, Faculty of Medicine and Health Sciences, University of East Anglia, University Drive, Norwich, NR4 7TJ UK
| | - Michelle N Harvie
- Genesis Breast Cancer Prevention Centre, University Hospital of South Manchester, Southmoor Road, Wythenshawe, M29 9LT Manchester, UK
- The Christie, NHS Foundation Trust, Wilmslow Road, Manchester, M20 2QJ UK
| |
Collapse
|
21
|
Sun YV. The Influences of Genetic and Environmental Factors on Methylome-wide Association Studies for Human Diseases. CURRENT GENETIC MEDICINE REPORTS 2014; 2:261-270. [PMID: 25422794 DOI: 10.1007/s40142-014-0058-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
DNA methylation (DNAm) is an essential epigenetic mechanism for normal development, and its variation may be associated with diseases. High-throughput technology allows robust measurement of DNA methylome in population studies. Methylome-wide association studies (MWAS) scan DNA methylome to detect new epigenetic loci affecting disease susceptibility. MWAS is an emerging approach to unraveling the mechanism linking genetics, environment, and human diseases. Here I review the recent studies of genetic determinants and environmental modifiers of DNAm, and the concept for partitioning genetic and environmental contribution to DNAm. These studies establish the correlation maps between genome and methylome, and enable the interpretation of epigenetic association with disease traits. Recent findings suggested that MWAS was a promising genomic method to identify epigenetic predictors accounting for unexplained disease risk. However, new study designs, analytical methods and shared resources need to be implemented to address the limitations and challenges in future epigenomic epidemiologic studies.
Collapse
Affiliation(s)
- Yan V Sun
- Department of Epidemiology, Rollins School of Public Health; Department of Biomedical Informatics, School of Medicine, Emory University, Atlanta, Georgia, USA
| |
Collapse
|