1
|
Toustou C, Boulogne I, Gonzalez AA, Bardor M. Comparative RNA-Seq of Ten Phaeodactylum tricornutum Accessions: Unravelling Criteria for Robust Strain Selection from a Bioproduction Point of View. Mar Drugs 2024; 22:353. [PMID: 39195469 DOI: 10.3390/md22080353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/29/2024] Open
Abstract
The production of biologics in mammalian cells is hindered by some limitations including high production costs, prompting the exploration of other alternative expression systems that are cheaper and sustainable like microalgae. Successful productions of biologics such as monoclonal antibodies have already been demonstrated in the diatom Phaeodactylum tricornutum; however, limited production yields still remain compared to mammalian cells. Therefore, efforts are needed to make this microalga more competitive as a cell biofactory. Among the seventeen reported accessions of P. tricornutum, ten have been mainly studied so far. Among them, some have already been used to produce high-value-added molecules such as biologics. The use of "omics" is increasingly being described as useful for the improvement of both upstream and downstream steps in bioprocesses using mammalian cells. Therefore, in this context, we performed an RNA-Seq analysis of the ten most used P. tricornutum accessions (Pt1 to Pt10) and deciphered the differential gene expression in pathways that could affect bioproduction of biologics in P. tricornutum. Our results highlighted the benefits of certain accessions such as Pt9 or Pt4 for the production of biologics. Indeed, these accessions seem to be more advantageous. Moreover, these results contribute to a better understanding of the molecular and cellular biology of P. tricornutum.
Collapse
Affiliation(s)
- Charlotte Toustou
- Laboratoire GlycoMEV UR 4358, Université de Rouen Normandie, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, 76000 Rouen, France
| | - Isabelle Boulogne
- Laboratoire GlycoMEV UR 4358, Université de Rouen Normandie, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, 76000 Rouen, France
| | - Anne-Alicia Gonzalez
- MGX-Montpellier GenomiX, Univ. Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Muriel Bardor
- Laboratoire GlycoMEV UR 4358, Université de Rouen Normandie, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, 76000 Rouen, France
- ALGA BIOLOGICS, CURIB, 25 rue Tesnières, 76821 Mont-Saint-Aignan, France
| |
Collapse
|
2
|
Grypioti E, Richard H, Kryovrysanaki N, Jaubert M, Falciatore A, Verret F, Kalantidis K. Dicer-dependent heterochromatic small RNAs in the model diatom species Phaeodactylum tricornutum. THE NEW PHYTOLOGIST 2024; 241:811-826. [PMID: 38044751 DOI: 10.1111/nph.19429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/17/2023] [Indexed: 12/05/2023]
Abstract
Diatoms are eukaryotic microalgae responsible for nearly half of the marine productivity. RNA interference (RNAi) is a mechanism of regulation of gene expression mediated by small RNAs (sRNAs) processed by the endoribonuclease Dicer (DCR). To date, the mechanism and physiological role of RNAi in diatoms are unknown. We mined diatom genomes and transcriptomes for key RNAi effectors and retraced their phylogenetic history. We generated DCR knockout lines in the model diatom species Phaeodactylum tricornutum and analyzed their mRNA and sRNA populations, repression-associated histone marks, and acclimatory response to nitrogen starvation. Diatoms presented a diversification of key RNAi effectors whose distribution across species suggests the presence of distinct RNAi pathways. P. tricornutum DCR was found to process 26-31-nt-long double-stranded sRNAs originating mostly from transposons covered by repression-associated epigenetic marks. In parallel, P. tricornutum DCR was necessary for the maintenance of the repression-associated histone marks H3K9me2/3 and H3K27me3. Finally, PtDCR-KO lines presented a compromised recovery post nitrogen starvation suggesting a role for P. tricornutum DCR in the acclimation to nutrient stress. Our study characterized the molecular function of the single DCR homolog of P. tricornutum suggesting an association between RNAi and heterochromatin maintenance in this model diatom species.
Collapse
Affiliation(s)
- Emilia Grypioti
- Department of Biology, University of Crete, PO Box 2208, 70013, Heraklion, Crete, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 70013, Heraklion, Crete, Greece
- Institute of Marine Biology and Aquaculture, Hellenic Center for Marine Research, 71500, Gournes, Crete, Greece
- Institut de Biologie Paris-Seine, Laboratory of Computational and Quantitative Biology, UMR 7238 Sorbonne Université, 75005, Paris, France
| | - Hugues Richard
- Institut de Biologie Paris-Seine, Laboratory of Computational and Quantitative Biology, UMR 7238 Sorbonne Université, 75005, Paris, France
- Bioinformatics Unit, Genome Competence Center (MF1), Robert Koch Institute, 13353, Berlin, Germany
| | - Nikoleta Kryovrysanaki
- Department of Biology, University of Crete, PO Box 2208, 70013, Heraklion, Crete, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 70013, Heraklion, Crete, Greece
| | - Marianne Jaubert
- Institut de Biologie Paris-Seine, Laboratory of Computational and Quantitative Biology, UMR 7238 Sorbonne Université, 75005, Paris, France
- Institut de Biologie Physico-Chimique, Laboratory of Chloroplast Biology and Light Sensing in Microalgae, UMR7141 Centre National de la Recherche Scientifique (CNRS), Sorbonne Université, 75005, Paris, France
| | - Angela Falciatore
- Institut de Biologie Paris-Seine, Laboratory of Computational and Quantitative Biology, UMR 7238 Sorbonne Université, 75005, Paris, France
- Institut de Biologie Physico-Chimique, Laboratory of Chloroplast Biology and Light Sensing in Microalgae, UMR7141 Centre National de la Recherche Scientifique (CNRS), Sorbonne Université, 75005, Paris, France
| | - Frédéric Verret
- Department of Biology, University of Crete, PO Box 2208, 70013, Heraklion, Crete, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 70013, Heraklion, Crete, Greece
- Institute of Marine Biology and Aquaculture, Hellenic Center for Marine Research, 71500, Gournes, Crete, Greece
| | - Kriton Kalantidis
- Department of Biology, University of Crete, PO Box 2208, 70013, Heraklion, Crete, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 70013, Heraklion, Crete, Greece
| |
Collapse
|
3
|
Wan J, Zhou Y, Beardall J, Raven JA, Lin J, Huang J, Lu Y, Liang S, Ye M, Xiao M, Zhao JY, Dai X, Xia J, Jin P. DNA methylation and gene transcription act cooperatively in driving the adaptation of a marine diatom to global change. JOURNAL OF EXPERIMENTAL BOTANY 2023:erad150. [PMID: 37100754 DOI: 10.1093/jxb/erad150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Indexed: 06/19/2023]
Abstract
Genetic changes together with epigenetic modifications such as DNA methylation have been demonstrated to regulate many biological processes and thereby govern the response of organisms to environmental changes. However, how DNA methylation might act cooperatively with gene transcription and thereby mediate the long-term adaptive responses of marine microalgae to global change is virtually unknown. Here we performed a transcriptomic analysis, and a whole-genome bisulfite sequencing, along with phenotypic analysis of a model marine diatom Phaeodactylum tricornutum adapted for two years to high CO2 and/or warming conditions. Our results show that the methylated islands (peaks of methylation) mCHH were positively correlated with expression of genes in the sub-region of the gene body when the populations were grown under high CO2 or its combination with warming for ~2 years. We further identified the differentially expressed genes (DEGs) and hence the metabolic pathways in which they function, at the transcriptomics level in differentially methylated regions (DMRs). Although DEGs in DMRs contributed only 18-24% of the total DEGs, we found that those DEGs acted cooperatively with DNA methylation and then regulated key processes such as central carbon metabolism, amino acid metabolism, ribosome biogenesis, terpenoid backbone biosynthesis, and degradation of misfolded proteins. Taken together, by integrating transcriptomic, epigenetic and phenotypic analysis, our study provides evidence for DNA methylation acting cooperatively with gene transcription to contribute to the adaptation of microalgae to global changes.
Collapse
Affiliation(s)
- Jiaofeng Wan
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Yunyue Zhou
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - John Beardall
- School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia
| | - John A Raven
- Division of Plant Science, University of Dundee at the James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
- School of Biology, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
- Climate Change Cluster, University of Technology, Sydney, Ultimo, NSW 2007, Australia
| | - Jiamin Lin
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Jiali Huang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Yucong Lu
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Shiman Liang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Mengcheng Ye
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Mengting Xiao
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Jing Yuan Zhao
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Xiaoying Dai
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Jianrong Xia
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Peng Jin
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| |
Collapse
|
4
|
Krinos AI, Cohen NR, Follows MJ, Alexander H. Reverse engineering environmental metatranscriptomes clarifies best practices for eukaryotic assembly. BMC Bioinformatics 2023; 24:74. [PMID: 36869298 PMCID: PMC9983209 DOI: 10.1186/s12859-022-05121-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 12/21/2022] [Indexed: 03/05/2023] Open
Abstract
BACKGROUND Diverse communities of microbial eukaryotes in the global ocean provide a variety of essential ecosystem services, from primary production and carbon flow through trophic transfer to cooperation via symbioses. Increasingly, these communities are being understood through the lens of omics tools, which enable high-throughput processing of diverse communities. Metatranscriptomics offers an understanding of near real-time gene expression in microbial eukaryotic communities, providing a window into community metabolic activity. RESULTS Here we present a workflow for eukaryotic metatranscriptome assembly, and validate the ability of the pipeline to recapitulate real and manufactured eukaryotic community-level expression data. We also include an open-source tool for simulating environmental metatranscriptomes for testing and validation purposes. We reanalyze previously published metatranscriptomic datasets using our metatranscriptome analysis approach. CONCLUSION We determined that a multi-assembler approach improves eukaryotic metatranscriptome assembly based on recapitulated taxonomic and functional annotations from an in-silico mock community. The systematic validation of metatranscriptome assembly and annotation methods provided here is a necessary step to assess the fidelity of our community composition measurements and functional content assignments from eukaryotic metatranscriptomes.
Collapse
Affiliation(s)
- Arianna I Krinos
- MIT-WHOI Joint Program in Oceanography and Applied Ocean Science and Engineering, Cambridge and Woods Hole, MA, USA.
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA, USA.
- Department of Earth, Atmospheric, and Planetary Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Natalie R Cohen
- Skidaway Institute of Oceanography, University of Georgia, Savannah, GA, USA
| | - Michael J Follows
- Department of Earth, Atmospheric, and Planetary Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Harriet Alexander
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA, USA.
| |
Collapse
|
5
|
Rogato A, Falciatore A. Detection and Quantification of Small Noncoding RNAs in Marine Diatoms. Methods Mol Biol 2022; 2498:315-326. [PMID: 35727553 DOI: 10.1007/978-1-0716-2313-8_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Endogenous small noncoding RNAs (sRNAs) are a large family of essential regulators of gene expression in both eukaryotes and prokaryotes. Various types of sRNAs with different size and mapping to different genome locations have been recently identified in diatoms, a successful group of phytoplankton in the marine environment. However, their biogenesis and regulatory function are still largely unknown and unexplored in these microalgae, also due to the lack of methods for their experimental analysis. Herein, we present a point-by-point description of the protocols for detection and quantification of sRNAs by Northern-blot analysis and quantitative stem-loop RT-PCR, established in the diatom molecular model specie Phaeodactylum tricornutum.
Collapse
Affiliation(s)
- Alessandra Rogato
- Institute of Biosciences and BioResources, CNR, Naples, Italy.
- Integrative Marine Ecology Department, Stazione Zoologica Anton Dohrn, Naples, Italy.
| | - Angela Falciatore
- Laboratoire de Biologie du chloroplaste et perception de la lumière chez les micro-algues, UMR7141, CNRS, Sorbonne Université, Institut de Biologie Physico-Chimique, Paris, France.
| |
Collapse
|
6
|
Rastogi A, Lin X, Lombard B, Loew D, Tirichine L. Probing the evolutionary history of epigenetic mechanisms: what can we learn from marine diatoms. AIMS GENETICS 2021. [DOI: 10.3934/genet.2015.3.173] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
AbstractRecent progress made on epigenetic studies revealed the conservation of epigenetic features in deep diverse branching species including Stramenopiles, plants and animals. This suggests their fundamental role in shaping species genomes across different evolutionary time scales. Diatoms are a highly successful and diverse group of phytoplankton with a fossil record of about 190 million years ago. They are distantly related from other super-groups of Eukaryotes and have retained some of the epigenetic features found in mammals and plants suggesting their ancient origin. Phaeodactylum tricornutum and Thalassiosira pseudonana, pennate and centric diatoms, respectively, emerged as model species to address questions on the evolution of epigenetic phenomena such as what has been lost, retained or has evolved in contemporary species. In the present work, we will discuss how the study of non-model or emerging model organisms, such as diatoms, helps understand the evolutionary history of epigenetic mechanisms with a particular focus on DNA methylation and histone modifications.
Collapse
Affiliation(s)
- Achal Rastogi
- Ecology and Evolutionary Biology Section, Institut de Biologie de l'École Normale Supérieure (IBENS), CNRS UMR8197 INSERM U1024, 46 rue d’Ulm 75005 Paris, France
| | - Xin Lin
- Ecology and Evolutionary Biology Section, Institut de Biologie de l'École Normale Supérieure (IBENS), CNRS UMR8197 INSERM U1024, 46 rue d’Ulm 75005 Paris, France
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005, China
| | - Bérangère Lombard
- Institut Curie, PSL Research University, Centre de Recherche, Laboratoire de Spectrométrie de Masse Protéomique, 26 rue d’Ulm 75248 Cedex 05 Paris, France
| | - Damarys Loew
- Institut Curie, PSL Research University, Centre de Recherche, Laboratoire de Spectrométrie de Masse Protéomique, 26 rue d’Ulm 75248 Cedex 05 Paris, France
| | - Leïla Tirichine
- Ecology and Evolutionary Biology Section, Institut de Biologie de l'École Normale Supérieure (IBENS), CNRS UMR8197 INSERM U1024, 46 rue d’Ulm 75005 Paris, France
| |
Collapse
|
7
|
Zhao X, Rastogi A, Deton Cabanillas AF, Ait Mohamed O, Cantrel C, Lombard B, Murik O, Genovesio A, Bowler C, Bouyer D, Loew D, Lin X, Veluchamy A, Vieira FRJ, Tirichine L. Genome wide natural variation of H3K27me3 selectively marks genes predicted to be important for cell differentiation in Phaeodactylum tricornutum. THE NEW PHYTOLOGIST 2021; 229:3208-3220. [PMID: 33533496 DOI: 10.1111/nph.17129] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/24/2020] [Indexed: 05/28/2023]
Abstract
In multicellular organisms, Polycomb Repressive Complex2 (PRC2) is known to deposit tri-methylation of lysine 27 of histone H3 (H3K27me3) to establish and maintain gene silencing, critical for developmentally regulated processes. The PRC2 complex is absent in both widely studied model yeasts, which initially suggested that PRC2 arose with the emergence of multicellularity. However, its discovery in several unicellular species including microalgae questions its role in unicellular eukaryotes. Here, we use Phaeodactylum tricornutum enhancer of zeste E(z) knockouts and show that P. tricornutum E(z) is responsible for di- and tri-methylation of lysine 27 of histone H3. H3K27me3 depletion abolishes cell morphology in P. tricornutum providing evidence for its role in cell differentiation. Genome-wide profiling of H3K27me3 in fusiform and triradiate cells further revealed genes that may specify cell identity. These results suggest a role for PRC2 and its associated mark in cell differentiation in unicellular species, and highlight their ancestral function in a broader evolutionary context than currently is appreciated.
Collapse
Affiliation(s)
- Xue Zhao
- Institut de Biologie de l'ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, 75005, France
- CNRS UMR6286, UFIP UFR Sciences et Techniques, Université de Nantes, 2 rue de la Houssinière 44322, Nantes Cedex 03, France
| | - Achal Rastogi
- Corteva AgriscienceTM, Ascendas IT Park, 12th floor, Atria, V, Madhapur, Telangana, 500081, India
| | - Anne Flore Deton Cabanillas
- Institut de Biologie de l'ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, 75005, France
| | - Ouardia Ait Mohamed
- Institut de Biologie de l'ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, 75005, France
| | - Catherine Cantrel
- Institut de Biologie de l'ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, 75005, France
| | - Berangère Lombard
- Laboratoire de Spectrométrie de Masse Protéomique, Centre de Recherche, Institut Curie, PSL Research University, 26 rue d'Ulm, Cedex 05 Paris, 75248, France
| | - Omer Murik
- Institut de Biologie de l'ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, 75005, France
| | - Auguste Genovesio
- Institut de Biologie de l'ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, 75005, France
| | - Chris Bowler
- Institut de Biologie de l'ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, 75005, France
| | - Daniel Bouyer
- Institut de Biologie de l'ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, 75005, France
| | - Damarys Loew
- Laboratoire de Spectrométrie de Masse Protéomique, Centre de Recherche, Institut Curie, PSL Research University, 26 rue d'Ulm, Cedex 05 Paris, 75248, France
| | - Xin Lin
- State Key Laboratory of Marine Environmental Science, Centre de Recherche, College of Ocean Camp; Earth Sciences,, Xiamen University, Xiamen, 361102, China
| | - Alaguraj Veluchamy
- Laboratory of Chromatin Biochemistry, 4700 King Abdullah University of Science and Technology (KAUST), BESE Division Building 2, Level 3, Office B2-3327, Thuwal, 23955-6900, Saudi Arabia
| | - Fabio Rocha Jimenez Vieira
- Institut de Biologie de l'ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, 75005, France
| | - Leila Tirichine
- Institut de Biologie de l'ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, 75005, France
- CNRS UMR6286, UFIP UFR Sciences et Techniques, Université de Nantes, 2 rue de la Houssinière 44322, Nantes Cedex 03, France
| |
Collapse
|
8
|
Cruz de Carvalho MH, Bowler C. Global identification of a marine diatom long noncoding natural antisense transcripts (NATs) and their response to phosphate fluctuations. Sci Rep 2020; 10:14110. [PMID: 32839470 PMCID: PMC7445176 DOI: 10.1038/s41598-020-71002-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 08/06/2020] [Indexed: 11/09/2022] Open
Abstract
Often ignored and regarded as mere transcriptional noise, long noncoding RNAs (lncRNAs) are starting to be considered key regulators of gene expression across the Eukarya domain of life. In the model diatom Phaeodactylum tricornutum, we have previously reported the occurrence of 1,510 intergenic lncRNAs (lincRNAs), many of which displaying specific patterns of expression under phosphate fluctuation (Pi). Using strand-specific RNA-sequencing data we now expand the repertoire of P. tricornutum lncRNAs by identifying 2,628 novel natural antisense transcripts (NATs) that cover 21.5% of the annotated genomic loci. We found that NAT expression is tightly regulated by phosphate depletion and other naturally occurring environmental stresses. Furthermore, we identified 121 phosphate stress responsive NAT-mRNA pairs, the great majority of which showing a positive correlation (concordant pairs) and a small fraction with negative correlation (discordant pairs). Taken together our results show that NATs are highly abundant transcripts in P. tricornutum and that their expression is under tight regulation by nutrient and environmental stresses. Furthermore, our results suggest that in P. tricornutum Pi stress response NAT pairs predominantly regulate positively the expression of their cognate sense genes, the latter being involved in several biological processes underlying the control of cellular homeostasis under stress.
Collapse
Affiliation(s)
- Maria Helena Cruz de Carvalho
- Institut de Biologie de L'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, 75005, Paris, France. .,Faculté des sciences et technologie, Université Paris Est-Créteil (UPEC), 94000, Créteil, France.
| | - Chris Bowler
- Institut de Biologie de L'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, 75005, Paris, France
| |
Collapse
|
9
|
Falciatore A, Jaubert M, Bouly JP, Bailleul B, Mock T. Diatom Molecular Research Comes of Age: Model Species for Studying Phytoplankton Biology and Diversity. THE PLANT CELL 2020; 32:547-572. [PMID: 31852772 PMCID: PMC7054031 DOI: 10.1105/tpc.19.00158] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 10/18/2019] [Accepted: 12/13/2019] [Indexed: 05/08/2023]
Abstract
Diatoms are the world's most diverse group of algae, comprising at least 100,000 species. Contributing ∼20% of annual global carbon fixation, they underpin major aquatic food webs and drive global biogeochemical cycles. Over the past two decades, Thalassiosira pseudonana and Phaeodactylum tricornutum have become the most important model systems for diatom molecular research, ranging from cell biology to ecophysiology, due to their rapid growth rates, small genomes, and the cumulative wealth of associated genetic resources. To explore the evolutionary divergence of diatoms, additional model species are emerging, such as Fragilariopsis cylindrus and Pseudo-nitzschia multistriata Here, we describe how functional genomics and reverse genetics have contributed to our understanding of this important class of microalgae in the context of evolution, cell biology, and metabolic adaptations. Our review will also highlight promising areas of investigation into the diversity of these photosynthetic organisms, including the discovery of new molecular pathways governing the life of secondary plastid-bearing organisms in aquatic environments.
Collapse
Affiliation(s)
- Angela Falciatore
- Institut de Biologie Physico-Chimique, Laboratory of Chloroplast Biology and Light Sensing in Microalgae, UMR7141 Centre National de la Recherche Scientifique (CNRS), Sorbonne Université, 75005 Paris, France
- Institut de Biologie Paris-Seine, Laboratory of Computational and Quantitative Biology, UMR7238 Sorbonne Université, 75005 Paris, France
| | - Marianne Jaubert
- Institut de Biologie Physico-Chimique, Laboratory of Chloroplast Biology and Light Sensing in Microalgae, UMR7141 Centre National de la Recherche Scientifique (CNRS), Sorbonne Université, 75005 Paris, France
- Institut de Biologie Paris-Seine, Laboratory of Computational and Quantitative Biology, UMR7238 Sorbonne Université, 75005 Paris, France
| | - Jean-Pierre Bouly
- Institut de Biologie Physico-Chimique, Laboratory of Chloroplast Biology and Light Sensing in Microalgae, UMR7141 Centre National de la Recherche Scientifique (CNRS), Sorbonne Université, 75005 Paris, France
- Institut de Biologie Paris-Seine, Laboratory of Computational and Quantitative Biology, UMR7238 Sorbonne Université, 75005 Paris, France
| | - Benjamin Bailleul
- Institut de Biologie Physico-Chimique, Laboratory of Chloroplast Biology and Light Sensing in Microalgae, UMR7141 Centre National de la Recherche Scientifique (CNRS), Sorbonne Université, 75005 Paris, France
| | - Thomas Mock
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| |
Collapse
|
10
|
Moosburner MA, Gholami P, McCarthy JK, Tan M, Bielinski VA, Allen AE. Multiplexed Knockouts in the Model Diatom Phaeodactylum by Episomal Delivery of a Selectable Cas9. Front Microbiol 2020; 11:5. [PMID: 32047486 PMCID: PMC6997545 DOI: 10.3389/fmicb.2020.00005] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 01/03/2020] [Indexed: 11/13/2022] Open
Abstract
Marine diatoms are eukaryotic microalgae that play significant ecological and biogeochemical roles in oceans. They also have significant potential as organismal platforms for exploitation to address biotechnological and industrial goals. In order to address both modes of research, sophisticated molecular and genetic tools are required. We presented here new and improved methodologies for introducing CRISPR-Cas9 to the model diatom Phaeodactylum tricornutum cells and a streamlined protocol for genotyping mutant cell lines with previously unknown phenotypes. First, bacterial-conjugation was optimized for the delivery of Cas9 by transcriptionally fusing Cas9 to a selectable marker by the 2A peptide. An episome cloning strategy using both negative and positive selection was developed to streamline CRISPR-episome assembly. Next, cell line picking and genotyping strategies, that utilize manual sequencing curation, TIDE sequencing analysis, and a T7 endonuclease assay, were developed to shorten the time required to generate mutants. Following this new experimental pipeline, both single-gene and two-gene knockout cell lines were generated at mutagenesis efficiencies of 48% and 25%, respectively. Lastly, a protocol for precise gene insertions via CRISPR-Cas9 targeting was developed using particle-bombardment transformation methods. Overall, the novel Cas9 episome design and improved genotyping methods presented here allow for quick and easy genotyping and isolation of Phaeodactylum mutant cell lines (less than 3 weeks) without relying on a known phenotype to screen for mutants.
Collapse
Affiliation(s)
- Mark Andrew Moosburner
- Integrative Oceanography Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, United States.,J. Craig Venter Institute, La Jolla, CA, United States
| | | | | | - Maxine Tan
- Integrative Oceanography Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, United States.,J. Craig Venter Institute, La Jolla, CA, United States
| | | | - Andrew E Allen
- Integrative Oceanography Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, United States.,J. Craig Venter Institute, La Jolla, CA, United States
| |
Collapse
|
11
|
Butler T, Kapoore RV, Vaidyanathan S. Phaeodactylum tricornutum: A Diatom Cell Factory. Trends Biotechnol 2020; 38:606-622. [PMID: 31980300 DOI: 10.1016/j.tibtech.2019.12.023] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 01/12/2023]
Abstract
A switch from a petroleum-based to a biobased economy requires the capacity to produce both high-value low-volume and low-value high-volume products. Recent evidence supports the development of microalgae-based microbial cell factories with the objective of establishing environmentally sustainable manufacturing solutions. Diatoms display rich diversity and potential in this regard. We focus on Phaeodactylum tricornutum, a pennate diatom that is commonly found in marine ecosystems, and discuss recent trends in developing the diatom chassis for the production of a suite of natural and genetically engineered products. Both upstream and downstream developments are reviewed for the commercial development of P. tricornutum as a cell factory for a spectrum of marketable products.
Collapse
Affiliation(s)
- Thomas Butler
- Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield, S1 3JD, UK
| | - Rahul Vijay Kapoore
- Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield, S1 3JD, UK; Present address: Department of Biosciences, College of Science, Swansea University, Swansea, SA2 8PP, UK
| | - Seetharaman Vaidyanathan
- Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield, S1 3JD, UK.
| |
Collapse
|
12
|
Ovide C, Kiefer-Meyer MC, Bérard C, Vergne N, Lecroq T, Plasson C, Burel C, Bernard S, Driouich A, Lerouge P, Tournier I, Dauchel H, Bardor M. Comparative in depth RNA sequencing of P. tricornutum's morphotypes reveals specific features of the oval morphotype. Sci Rep 2018; 8:14340. [PMID: 30254372 PMCID: PMC6156597 DOI: 10.1038/s41598-018-32519-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 08/21/2018] [Indexed: 11/09/2022] Open
Abstract
Phaeodactylum tricornutum is the most studied diatom encountered principally in coastal unstable environments. It has been hypothesized that the great adaptability of P. tricornutum is probably due to its pleomorphism. Indeed, P. tricornutum is an atypical diatom since it can display three morphotypes: fusiform, triradiate and oval. Currently, little information is available regarding the physiological significance of this morphogenesis. In this study, we adapted P. tricornutum Pt3 strain to obtain algal culture particularly enriched in one dominant morphotype: fusiform, triradiate or oval. These cultures were used to run high-throughput RNA-Sequencing. The whole mRNA transcriptome of each morphotype was determined. Pairwise comparisons highlighted biological processes and molecular functions which are up- and down-regulated. Finally, intersection analysis allowed us to identify the specific features from the oval morphotype which is of particular interest as it is often described to be more resistant to stresses. This study represent the first transcriptome wide characterization of the three morphotypes from P. tricornutum performed on cultures specifically enriched issued from the same Pt3 strain. This work represents an important step for the understanding of the morphogenesis in P. tricornutum and highlights the particular features of the oval morphotype.
Collapse
Affiliation(s)
- Clément Ovide
- Normandie Univ, UNIROUEN, Laboratoire Glyco-MEV EA4358, 76000, Rouen, France
| | | | - Caroline Bérard
- Normandie Univ, UNIROUEN, LITIS EA 4108, 76000, Rouen, France
| | - Nicolas Vergne
- Normandie Univ, UNIROUEN, LMRS UMR 6085 CNRS, 76000, Rouen, France
| | - Thierry Lecroq
- Normandie Univ, UNIROUEN, LITIS EA 4108, 76000, Rouen, France
| | - Carole Plasson
- Normandie Univ, UNIROUEN, Laboratoire Glyco-MEV EA4358, 76000, Rouen, France
| | - Carole Burel
- Normandie Univ, UNIROUEN, Laboratoire Glyco-MEV EA4358, 76000, Rouen, France
| | - Sophie Bernard
- Normandie Univ, UNIROUEN, Laboratoire Glyco-MEV EA4358, 76000, Rouen, France.,Normandie Univ, UNIROUEN, Plate-forme PRIMACEN, 76000, Rouen, France
| | - Azeddine Driouich
- Normandie Univ, UNIROUEN, Laboratoire Glyco-MEV EA4358, 76000, Rouen, France.,Normandie Univ, UNIROUEN, Plate-forme PRIMACEN, 76000, Rouen, France
| | - Patrice Lerouge
- Normandie Univ, UNIROUEN, Laboratoire Glyco-MEV EA4358, 76000, Rouen, France
| | - Isabelle Tournier
- Normandie Univ, UNIROUEN, Inserm U1079, IRIB Genomic Facility, 76000, Rouen, France
| | - Hélène Dauchel
- Normandie Univ, UNIROUEN, LITIS EA 4108, 76000, Rouen, France.
| | - Muriel Bardor
- Normandie Univ, UNIROUEN, Laboratoire Glyco-MEV EA4358, 76000, Rouen, France. .,Institut Universitaire de France (IUF), Paris, France.
| |
Collapse
|
13
|
Maurer-Alcalá XX, Yan Y, Pilling OA, Knight R, Katz LA. Twisted Tales: Insights into Genome Diversity of Ciliates Using Single-Cell 'Omics. Genome Biol Evol 2018; 10:1927-1939. [PMID: 29945193 PMCID: PMC6101598 DOI: 10.1093/gbe/evy133] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2018] [Indexed: 12/30/2022] Open
Abstract
The emergence of robust single-cell 'omics techniques enables studies of uncultivable species, allowing for the (re)discovery of diverse genomic features. In this study, we combine single-cell genomics and transcriptomics to explore genome evolution in ciliates (a > 1 Gy old clade). Analysis of the data resulting from these single-cell 'omics approaches show: 1) the description of the ciliates in the class Karyorelictea as "primitive" is inaccurate because their somatic macronuclei contain loci of varying copy number (i.e., they have been processed by genome rearrangements from the zygotic nucleus); 2) gene-sized somatic chromosomes exist in the class Litostomatea, consistent with Balbiani's (1890) observation of giant chromosomes in this lineage; and 3) gene scrambling exists in the underexplored Postciliodesmatophora (the classes Heterotrichea and Karyorelictea, abbreviated here as the Po-clade), one of two major clades of ciliates. Together these data highlight the complex evolutionary patterns underlying germline genome architectures in ciliates and provide a basis for further exploration of principles of genome evolution in diverse microbial lineages.
Collapse
Affiliation(s)
- Xyrus X Maurer-Alcalá
- Program in Organismic and Evolutionary Biology, University of Massachusetts Amherst.,Department of Biological Sciences, Smith College, Northampton, Massachusetts.,Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Ying Yan
- Department of Biological Sciences, Smith College, Northampton, Massachusetts
| | - Olivia A Pilling
- Department of Biological Sciences, Smith College, Northampton, Massachusetts
| | - Rob Knight
- Department of Pediatrics, University of California San Diego, San Diego.,Department of Computer Science and Engineering, University of California San Diego, San Diego.,Center for Microbiome Innovation, University of California San Diego, San Diego
| | - Laura A Katz
- Program in Organismic and Evolutionary Biology, University of Massachusetts Amherst.,Department of Biological Sciences, Smith College, Northampton, Massachusetts
| |
Collapse
|
14
|
Waldron FM, Stone GN, Obbard DJ. Metagenomic sequencing suggests a diversity of RNA interference-like responses to viruses across multicellular eukaryotes. PLoS Genet 2018; 14:e1007533. [PMID: 30059538 PMCID: PMC6085071 DOI: 10.1371/journal.pgen.1007533] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 08/09/2018] [Accepted: 07/04/2018] [Indexed: 11/24/2022] Open
Abstract
RNA interference (RNAi)-related pathways target viruses and transposable element (TE) transcripts in plants, fungi, and ecdysozoans (nematodes and arthropods), giving protection against infection and transmission. In each case, this produces abundant TE and virus-derived 20-30nt small RNAs, which provide a characteristic signature of RNAi-mediated defence. The broad phylogenetic distribution of the Argonaute and Dicer-family genes that mediate these pathways suggests that defensive RNAi is ancient, and probably shared by most animal (metazoan) phyla. Indeed, while vertebrates had been thought an exception, it has recently been argued that mammals also possess an antiviral RNAi pathway, although its immunological relevance is currently uncertain and the viral small RNAs (viRNAs) are not easily detectable. Here we use a metagenomic approach to test for the presence of viRNAs in five species from divergent animal phyla (Porifera, Cnidaria, Echinodermata, Mollusca, and Annelida), and in a brown alga-which represents an independent origin of multicellularity from plants, fungi, and animals. We use metagenomic RNA sequencing to identify around 80 virus-like contigs in these lineages, and small RNA sequencing to identify viRNAs derived from those viruses. We identified 21U small RNAs derived from an RNA virus in the brown alga, reminiscent of plant and fungal viRNAs, despite the deep divergence between these lineages. However, contrary to our expectations, we were unable to identify canonical (i.e. Drosophila- or nematode-like) viRNAs in any of the animals, despite the widespread presence of abundant micro-RNAs, and somatic transposon-derived piwi-interacting RNAs. We did identify a distinctive group of small RNAs derived from RNA viruses in the mollusc. However, unlike ecdysozoan viRNAs, these had a piRNA-like length distribution but lacked key signatures of piRNA biogenesis. We also identified primary piRNAs derived from putatively endogenous copies of DNA viruses in the cnidarian and the echinoderm, and an endogenous RNA virus in the mollusc. The absence of canonical virus-derived small RNAs from our samples may suggest that the majority of animal phyla lack an antiviral RNAi response. Alternatively, these phyla could possess an antiviral RNAi response resembling that reported for vertebrates, with cryptic viRNAs not detectable through simple metagenomic sequencing of wild-type individuals. In either case, our findings show that the antiviral RNAi responses of arthropods and nematodes, which are highly divergent from each other and from that of plants and fungi, are also highly diverged from the most likely ancestral metazoan state.
Collapse
Affiliation(s)
- Fergal M. Waldron
- Institute of Evolutionary Biology, University of Edinburgh, Ashworth Laboratories, Edinburgh, United Kingdom
| | - Graham N. Stone
- Institute of Evolutionary Biology, University of Edinburgh, Ashworth Laboratories, Edinburgh, United Kingdom
| | - Darren J. Obbard
- Institute of Evolutionary Biology, University of Edinburgh, Ashworth Laboratories, Edinburgh, United Kingdom
- Centre for Immunity Infection and Evolution, University of Edinburgh, Ashworth Laboratories, Edinburgh, United Kingdom
| |
Collapse
|
15
|
Thiriet-Rupert S, Carrier G, Trottier C, Eveillard D, Schoefs B, Bougaran G, Cadoret JP, Chénais B, Saint-Jean B. Identification of transcription factors involved in the phenotype of a domesticated oleaginous microalgae strain of Tisochrysis lutea. ALGAL RES 2018. [DOI: 10.1016/j.algal.2017.12.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
16
|
Yadav S, Shekhawat M, Jahagirdar D, Kumar Sharma N. Natural and artificial small RNAs: a promising avenue of nucleic acid therapeutics for cancer. Cancer Biol Med 2017; 14:242-253. [PMID: 28884041 PMCID: PMC5570601 DOI: 10.20892/j.issn.2095-3941.2017.0038] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 05/22/2017] [Indexed: 01/02/2023] Open
Abstract
Since the failure of traditional therapy, gene therapy using functional DNA sequence and small RNA/DNA molecules (oligonucleotide) has become a promising avenue for cancer treatment. The discovery of RNA molecules has impelled researchers to investigate small regulatory RNA from various natural and artificial sources and determine a cogent target for controlling tumor progression. Small regulatory RNAs are used for therapeutic silencing of oncogenes and aberrant DNA repair response genes. Despite their advantages, therapies based on small RNAs exhibit limitations in terms of stability of therapeutic drugs, precision-based delivery in tissues, precision-based intercellular and intracellular targeting, and tumor heterogeneity-based responses. In this study, we summarize the potential and drawbacks of small RNAs in nucleic acid therapeutics for cancer.
Collapse
Affiliation(s)
- Sunny Yadav
- Cancer and Translational Research Lab, Dr. D.Y Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune 411033, Maharashtra, India
| | - Mamta Shekhawat
- Cancer and Translational Research Lab, Dr. D.Y Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune 411033, Maharashtra, India
| | - Devashree Jahagirdar
- Cancer and Translational Research Lab, Dr. D.Y Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune 411033, Maharashtra, India
| | - Nilesh Kumar Sharma
- Cancer and Translational Research Lab, Dr. D.Y Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune 411033, Maharashtra, India
| |
Collapse
|
17
|
Tirichine L, Rastogi A, Bowler C. Recent progress in diatom genomics and epigenomics. CURRENT OPINION IN PLANT BIOLOGY 2017; 36:46-55. [PMID: 28226268 DOI: 10.1016/j.pbi.2017.02.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 01/31/2017] [Accepted: 02/02/2017] [Indexed: 06/06/2023]
Abstract
Diatoms are one of the most diverse and successful groups of phytoplankton at the base of the food chain, sustaining life in the ocean and performing vital biogeochemical functions. The last fifteen years have witnessed the comprehensive analysis of several diatom genomes, revealing that they bear traces of their endosymbiotic origins from algal and heterotrophic ancestors, as well as significant gene transfer from bacteria. Their chimeric genomes are further regulated by a range of chromatin-based processes that are characteristic of both plant and animal genomes. We discuss the conservation of gene regulatory mechanisms in diatoms and propose that epigenetic processes may have a significant role in mediating responses to a highly dynamic and unpredictable environment in these organisms.
Collapse
Affiliation(s)
- Leila Tirichine
- Ecole Normale Supérieure, PSL Research University, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), CNRS UMR 8197, INSERM U1024, 46 rue d'Ulm, F-75005 Paris, France.
| | - Achal Rastogi
- Ecole Normale Supérieure, PSL Research University, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), CNRS UMR 8197, INSERM U1024, 46 rue d'Ulm, F-75005 Paris, France
| | - Chris Bowler
- Ecole Normale Supérieure, PSL Research University, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), CNRS UMR 8197, INSERM U1024, 46 rue d'Ulm, F-75005 Paris, France
| |
Collapse
|
18
|
Byeon B, Bilichak A, Kovalchuk I. Computational Characterization of ncRNA Fragments in Various Tissues of the Brassica rapa Plant. Noncoding RNA 2017; 3:E17. [PMID: 29657288 PMCID: PMC5831936 DOI: 10.3390/ncrna3020017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/17/2017] [Accepted: 03/20/2017] [Indexed: 12/15/2022] Open
Abstract
Recently, a novel type of non-coding RNA (ncRNA), known as ncRNA fragments or ncRFs, has been characterised in various organisms, including plants. The biogenesis mechanism, function and abundance of ncRFs stemming from various ncRNAs are poorly understood, especially in plants. In this work, we have computationally analysed the composition of ncRNAs and the fragments that derive from them in various tissues of Brassica rapa plants, including leaves, meristem tissue, pollen, unfertilized and fertilized ova, embryo and endosperm. Detailed analysis of transfer RNA (tRNA) fragments (tRFs), ribosomal RNA (rRNA) fragments (rRFs), small nucleolar RNA (snoRNA) fragments (snoRFs) and small nuclear RNA (snRNA) fragments (snRFs) showed a predominance of tRFs, with the 26 nucleotides (nt) fraction being the largest. Mapping ncRF reads to full-length mature ncRNAs showed a strong bias for one or both termini. tRFs mapped predominantly to the 5' end, whereas snRFs mapped to the 3' end, suggesting that there may be specific biogenesis and retention mechanisms. In the case of tRFs, specific isoacceptors were enriched, including tRNAGly(UCC) and tRFAsp(GUC). The analysis showed that the processing of 26-nt tRF5' occurred by cleavage at the last unpaired nucleotide of the loop between the D arm and the anticodon arm. Further support for the functionality of ncRFs comes from the analysis of binding between ncRFs and their potential targets. A higher average percentage of binding at the first half of fragments was observed, with the highest percentage being at 2-6 nt. To summarise, our analysis showed that ncRFs in B. rapa are abundantly produced in a tissue-specific manner, with bias toward a terminus, the bias toward the size of generated fragments and the bias toward the targeting of specific biological processes.
Collapse
Affiliation(s)
- Boseon Byeon
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada.
| | - Andriy Bilichak
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada.
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada.
| |
Collapse
|
19
|
Cock JM, Liu F, Duan D, Bourdareau S, Lipinska AP, Coelho SM, Tarver JE. Rapid Evolution of microRNA Loci in the Brown Algae. Genome Biol Evol 2017; 9:740-749. [PMID: 28338896 PMCID: PMC5381526 DOI: 10.1093/gbe/evx038] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2017] [Indexed: 02/06/2023] Open
Abstract
Stringent searches for microRNAs (miRNAs) have so far only identified these molecules in animals, land plants, chlorophyte green algae, slime molds and brown algae. The identification of miRNAs in brown algae was based on the analysis of a single species, the filamentous brown alga Ectocarpus sp. Here, we have used deep sequencing of small RNAs and a recently published genome sequence to identify miRNAs in a second brown alga, the kelp Saccharina japonica. S. japonica possesses a large number of miRNAs (117) and these miRNAs are highly diverse, falling into 98 different families. Surprisingly, none of the S. japonica miRNAs share significant sequence similarity with the Ectocarpus sp. miRNAs. However, the miRNA repertoires of the two species share a number of structural and genomic features indicating that they were generated by similar evolutionary processes and therefore probably evolved within the context of a common, ancestral miRNA system. This lack of sequence similarity suggests that miRNAs evolve rapidly in the brown algae (the two species are separated by ∼95 Myr of evolution). The sets of predicted targets of miRNAs in the two species were also very different suggesting that the divergence of the miRNAs may have had significant consequences for miRNA function.
Collapse
Affiliation(s)
- J. Mark Cock
- Sorbonne Universités, UPMC Université Paris 06, CNRS, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, Roscoff, France
| | - Fuli Liu
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Delin Duan
- Key Lab of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Qingdao National Laboratory for Marine Science and Technology, Lab for Marine Biology and Biotechnology, Qingdao, China
| | - Simon Bourdareau
- Sorbonne Universités, UPMC Université Paris 06, CNRS, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, Roscoff, France
| | - Agnieszka P. Lipinska
- Sorbonne Universités, UPMC Université Paris 06, CNRS, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, Roscoff, France
| | - Susana M. Coelho
- Sorbonne Universités, UPMC Université Paris 06, CNRS, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, Roscoff, France
| | - James E. Tarver
- School of Earth Sciences, Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TQ, United Kingdom
| |
Collapse
|
20
|
Åsman AKM, Fogelqvist J, Vetukuri RR, Dixelius C. Phytophthora infestans Argonaute 1 binds microRNA and small RNAs from effector genes and transposable elements. THE NEW PHYTOLOGIST 2016; 211:993-1007. [PMID: 27010746 DOI: 10.1111/nph.13946] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 02/26/2016] [Indexed: 06/05/2023]
Abstract
Phytophthora spp. encode large sets of effector proteins and distinct populations of small RNAs (sRNAs). Recent evidence has suggested that pathogen-derived sRNAs can modulate the expression of plant defense genes. Here, we studied the sRNA classes and functions associated with Phytophthora infestans Argonaute (Ago) proteins. sRNAs were co-immunoprecipitated with three PiAgo proteins and deep sequenced. Twenty- to twenty-two-nucleotide (nt) sRNAs were identified as the main interaction partners of PiAgo1 and high enrichment of 24-26-nt sRNAs was seen in the PiAgo4-bound sample. The frequencies and sizes of transposable element (TE)-derived sRNAs in the different PiAgo libraries suggested diversified roles of the PiAgo proteins in the control of different TE classes. We further provide evidence for the involvement of PiAgo1 in the P. infestans microRNA (miRNA) pathway. Protein-coding genes are probably regulated by the shared action of PiAgo1 and PiAgo5, as demonstrated by analysis of differential expression. An abundance of sRNAs from genes encoding host cell death-inducing Crinkler (CRN) effectors was bound to PiAgo1, implicating this protein in the regulation of the expanded CRN gene family. The data suggest that PiAgo1 plays an essential role in gene regulation and that at least two RNA silencing pathways regulate TEs in the plant-pathogenic oomycete P. infestans.
Collapse
Affiliation(s)
- Anna K M Åsman
- Department of Plant Biology, Swedish University of Agricultural Sciences, Uppsala BioCenter, Linnéan Center for Plant Biology, PO Box 7080, SE-75007, Uppsala, Sweden
| | - Johan Fogelqvist
- Department of Plant Biology, Swedish University of Agricultural Sciences, Uppsala BioCenter, Linnéan Center for Plant Biology, PO Box 7080, SE-75007, Uppsala, Sweden
| | - Ramesh R Vetukuri
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Resistance Biology Unit, PO Box 102, SE-23053, Alnarp, Sweden
| | - Christina Dixelius
- Department of Plant Biology, Swedish University of Agricultural Sciences, Uppsala BioCenter, Linnéan Center for Plant Biology, PO Box 7080, SE-75007, Uppsala, Sweden
| |
Collapse
|
21
|
Cruz de Carvalho MH, Sun HX, Bowler C, Chua NH. Noncoding and coding transcriptome responses of a marine diatom to phosphate fluctuations. THE NEW PHYTOLOGIST 2016; 210:497-510. [PMID: 26680538 DOI: 10.1111/nph.13787] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 10/27/2015] [Indexed: 05/20/2023]
Abstract
Phosphorus (P) is an essential element to all living cells, yet fluctuations in P concentrations are recurrent in the marine environment. Diatoms are amongst the most successful phytoplankton groups, adapting to and surviving periods of suboptimal conditions and resuming growth as soon as nutrient concentrations permit. A knowledge of the molecular underpinnings of diatom ecological success is, however, still very incomplete. By strand-specific RNA sequencing, we analyzed the global transcriptome changes of the diatom Phaeodactylum tricornutum in response to P fluctuations over a course of 8 d, defining five distinct physiological states. This study reports previously unidentified genes highly responsive to P stress in P. tricornutum. Our data also uncover the complexity of the P. tricornutum P-responsive sensory and signaling system that combines bacterial two-component systems with more complex pathways reminiscent of metazoans. Finally, we identify a multitude of novel long intergenic nonprotein coding RNAs (lincRNAs) specifically responsive to P depletion, suggesting putative regulatory roles in the regulation of P homeostasis. Our work provides additional molecular insights into the resilience of diatoms and their ecological success, and opens up novel routes to address and explore the function and regulatory roles of P. tricornutum lincRNAs in the context of nutrient stress.
Collapse
Affiliation(s)
- Maria Helena Cruz de Carvalho
- Laboratory of Plant Molecular Biology, Rockefeller University, New York, NY, 10065, USA
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Centre National de la Recherche Scientifique (CNRS) UMR 8197 INSERM U1024, 46 Rue d'Ulm, 75005, Paris, France
| | - Hai-Xi Sun
- Laboratory of Plant Molecular Biology, Rockefeller University, New York, NY, 10065, USA
| | - Chris Bowler
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Centre National de la Recherche Scientifique (CNRS) UMR 8197 INSERM U1024, 46 Rue d'Ulm, 75005, Paris, France
| | - Nam-Hai Chua
- Laboratory of Plant Molecular Biology, Rockefeller University, New York, NY, 10065, USA
| |
Collapse
|
22
|
Maurer-Alcalá XX, Katz LA. An epigenetic toolkit allows for diverse genome architectures in eukaryotes. Curr Opin Genet Dev 2015; 35:93-9. [PMID: 26649755 DOI: 10.1016/j.gde.2015.10.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Revised: 10/21/2015] [Accepted: 10/22/2015] [Indexed: 02/04/2023]
Abstract
Genome architecture varies considerably among eukaryotes in terms of both size and structure (e.g. distribution of sequences within the genome, elimination of DNA during formation of somatic nuclei). The diversity in eukaryotic genome architectures and the dynamic processes are only possible due to the well-developed epigenetic toolkit, which probably existed in the Last Eukaryotic Common Ancestor (LECA). This toolkit may have arisen as a means of navigating the genomic conflict that arose from the expansion of transposable elements within the ancestral eukaryotic genome. This toolkit has been coopted to support the dynamic nature of genomes in lineages across the eukaryotic tree of life. Here we highlight how the changes in genome architecture in diverse eukaryotes are regulated by epigenetic processes, such as DNA elimination, genome rearrangements, and adaptive changes to genome architecture. The ability to epigenetically modify and regulate genomes has contributed greatly to the diversity of eukaryotes observed today.
Collapse
Affiliation(s)
- Xyrus X Maurer-Alcalá
- Department of Biological Sciences, Smith College, Northampton, MA 01063, USA; Program in Organismic and Evolutionary Biology, University of Massachusetts, Amherst, MA 01003, USA
| | - Laura A Katz
- Department of Biological Sciences, Smith College, Northampton, MA 01063, USA; Program in Organismic and Evolutionary Biology, University of Massachusetts, Amherst, MA 01003, USA.
| |
Collapse
|
23
|
Tarver JE, Cormier A, Pinzón N, Taylor RS, Carré W, Strittmatter M, Seitz H, Coelho SM, Cock JM. microRNAs and the evolution of complex multicellularity: identification of a large, diverse complement of microRNAs in the brown alga Ectocarpus. Nucleic Acids Res 2015; 43:6384-98. [PMID: 26101255 PMCID: PMC4513859 DOI: 10.1093/nar/gkv578] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 04/19/2015] [Accepted: 05/21/2015] [Indexed: 01/02/2023] Open
Abstract
There is currently convincing evidence that microRNAs have evolved independently in at least six different eukaryotic lineages: animals, land plants, chlorophyte green algae, demosponges, slime molds and brown algae. MicroRNAs from different lineages are not homologous but some structural features are strongly conserved across the eukaryotic tree allowing the application of stringent criteria to identify novel microRNA loci. A large set of 63 microRNA families was identified in the brown alga Ectocarpus based on mapping of RNA-seq data and nine microRNAs were confirmed by northern blotting. The Ectocarpus microRNAs are highly diverse at the sequence level with few multi-gene families, and do not tend to occur in clusters but exhibit some highly conserved structural features such as the presence of a uracil at the first residue. No homologues of Ectocarpus microRNAs were found in other stramenopile genomes indicating that they emerged late in stramenopile evolution and are perhaps specific to the brown algae. The large number of microRNA loci in Ectocarpus is consistent with the developmental complexity of many brown algal species and supports a proposed link between the emergence and expansion of microRNA regulatory systems and the evolution of complex multicellularity.
Collapse
Affiliation(s)
- James E Tarver
- School of Earth Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TQ, UK Genome Evolution Laboratory, Department of Biology, The National University of Ireland, Maynooth, Kildare, Ireland
| | - Alexandre Cormier
- Sorbonne Université, UPMC Univ Paris 06, CNRS, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688 Roscoff, France
| | - Natalia Pinzón
- Institute of Human Genetics, UPR 1142, CNRS, 34396 Montpellier Cedex 5, France
| | - Richard S Taylor
- School of Earth Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Wilfrid Carré
- Sorbonne Université, UPMC Univ Paris 06, CNRS, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688 Roscoff, France
| | - Martina Strittmatter
- Sorbonne Université, UPMC Univ Paris 06, CNRS, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688 Roscoff, France
| | - Hervé Seitz
- Institute of Human Genetics, UPR 1142, CNRS, 34396 Montpellier Cedex 5, France
| | - Susana M Coelho
- Sorbonne Université, UPMC Univ Paris 06, CNRS, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688 Roscoff, France
| | - J Mark Cock
- Sorbonne Université, UPMC Univ Paris 06, CNRS, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688 Roscoff, France
| |
Collapse
|
24
|
Russo MT, Annunziata R, Sanges R, Ferrante MI, Falciatore A. The upstream regulatory sequence of the light harvesting complex Lhcf2 gene of the marine diatom Phaeodactylum tricornutum enhances transcription in an orientation- and distance-independent fashion. Mar Genomics 2015; 24 Pt 1:69-79. [PMID: 26117181 DOI: 10.1016/j.margen.2015.06.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 05/31/2015] [Accepted: 06/17/2015] [Indexed: 10/23/2022]
Abstract
Diatoms are a key phytoplankton group in the contemporary ocean, showing extraordinary adaptation capacities to rapidly changing environments. The recent availability of whole genome sequences from representative species has revealed distinct features in their genomes, like novel combinations of genes encoding distinct metabolisms and a significant number of diatom-specific genes. However, the regulatory mechanisms driving diatom gene expression are still largely uncharacterized. Considering the wide variety of fields of study orbiting diatoms, ranging from ecology, evolutionary biology to biotechnology, it is thus essential to increase our understanding of fundamental gene regulatory processes such as transcriptional regulation. To this aim, we explored the functional properties of the 5'-flanking region of the Phaeodatylum tricornutum Lhcf2 gene, encoding a member of the Light Harvesting Complex superfamily and we showed that this region enhances transcription of a GUS reporter gene in an orientation- and distance-independent fashion. This represents the first example of a cis-regulatory sequence with enhancer-like features discovered in diatoms and it is instrumental for the generation of novel genetic tools and diatom exploitation in different areas of study.
Collapse
Affiliation(s)
| | - Rossella Annunziata
- Sorbonne Universités, UPMC Univ Paris 06, Institut de Biologie Paris-Seine, UMR 7238, F-75006 Paris, France; CNRS, UMR 7238, F-75006 Paris, France
| | - Remo Sanges
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | | | - Angela Falciatore
- Sorbonne Universités, UPMC Univ Paris 06, Institut de Biologie Paris-Seine, UMR 7238, F-75006 Paris, France; CNRS, UMR 7238, F-75006 Paris, France.
| |
Collapse
|