1
|
Bourganou MV, Chatzopoulos DC, Lianou DT, Tsangaris GT, Fthenakis GC, Katsafadou AI. Scientometrics Evaluation of Published Scientific Papers on the Use of Proteomics Technologies in Mastitis Research in Ruminants. Pathogens 2024; 13:324. [PMID: 38668279 PMCID: PMC11053840 DOI: 10.3390/pathogens13040324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/30/2024] [Accepted: 04/10/2024] [Indexed: 04/29/2024] Open
Abstract
The objective of this study was the presentation of quantitative characteristics regarding the scientific content and bibliometric details of the relevant publications. In total, 156 papers were considered. Most papers presented original studies (n = 135), and fewer were reviews (n = 21). Most original articles (n = 101) referred to work involving cattle. Most original articles described work related to the diagnosis (n = 72) or pathogenesis (n = 62) of mastitis. Most original articles included field work (n = 75), whilst fewer included experimental (n = 31) or laboratory (n = 30) work. The tissue assessed most frequently in the studies was milk (n = 59). Milk was assessed more frequently in studies on the diagnosis (61.1% of relevant studies) or pathogenesis (30.6%) of the infection, but mammary tissue was assessed more frequently in studies on the treatment (31.0%). In total, 47 pathogens were included in the studies described; most were Gram-positive bacteria (n = 34). The three bacteria most frequently included in the studies were Staphylococcus aureus (n = 55 articles), Escherichia coli (n = 31) and Streptococcus uberis (n = 19). The proteomics technology employed more often in the respective studies was liquid chromatography-tandem mass spectrometry (LC-MS/MS), either on its own (n = 56) or in combination with other technologies (n = 40). The median year of publication of articles involving bioinformatics or LC-MS/MS and bioinformatics was the most recent: 2022. The 156 papers were published in 78 different journals, most frequently in the Journal of Proteomics (n = 16 papers) and the Journal of Dairy Science (n = 12). The median number of cited references in the papers was 48. In the papers, there were 1143 co-authors (mean: 7.3 ± 0.3 co-authors per paper, median: 7, min.-max.: 1-19) and 742 individual authors. Among them, 15 authors had published at least seven papers (max.: 10). Further, there were 218 individual authors who were the first or last authors in the papers. Most papers were submitted for open access (n = 79). The median number of citations received by the 156 papers was 12 (min.-max.: 0-339), and the median yearly number of citations was 2.0 (min.-max.: 0.0-29.5). The h-index of the papers was 33, and the m-index was 2. The increased number of cited references in papers and international collaboration in the respective study were the variables associated with most citations to published papers. This is the first ever scientometrics evaluation of proteomics studies, the results of which highlighted the characteristics of published papers on mastitis and proteomics. The use of proteomics in mastitis research has focused on the elucidation of pathogenesis and diagnosis of the infection; LC-MS/MS has been established as the most frequently used proteomics technology, although the use of bioinformatics has also emerged recently as a useful tool.
Collapse
Affiliation(s)
- Maria V. Bourganou
- Faculty of Public and One Health, University of Thessaly, 43100 Karditsa, Greece; (M.V.B.); (D.C.C.)
| | - Dimitris C. Chatzopoulos
- Faculty of Public and One Health, University of Thessaly, 43100 Karditsa, Greece; (M.V.B.); (D.C.C.)
| | - Daphne T. Lianou
- Veterinary Faculty, University of Thessaly, 43100 Karditsa, Greece; (D.T.L.)
| | - George Th. Tsangaris
- Proteomics Research Unit, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece;
| | - George C. Fthenakis
- Veterinary Faculty, University of Thessaly, 43100 Karditsa, Greece; (D.T.L.)
| | - Angeliki I. Katsafadou
- Faculty of Public and One Health, University of Thessaly, 43100 Karditsa, Greece; (M.V.B.); (D.C.C.)
| |
Collapse
|
2
|
Mulakala BK, Smith KM, Snider MA, Ayers A, Honan MC, Greenwood SL. Use of milk proteins as biomarkers of changes in the rumen metaproteome of Holstein cows fed low-fiber, high-starch diets. J Dairy Sci 2023; 106:9630-9643. [PMID: 37210363 DOI: 10.3168/jds.2022-22910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 04/06/2023] [Indexed: 05/22/2023]
Abstract
Dietary levels of undegraded neutral detergent fiber (uNDF240) and rumen-fermentable starch (RFS) can affect the rumen microbiome and milk composition. The objective of the study is to investigate the use of milk proteins as biomarkers of rumen microbial activity through a comparative evaluation of the rumen microbial and milk protein profiles produced by Holstein cows fed diets with varying contents of physically effective uNDF240 (peuNDF240) and RFS. Eight ruminally cannulated lactating Holstein cows were included in a larger study as part of a 4 × 4 Latin square design with 4 28-d periods to assess 4 diets varying in peuNDF240 and RFS content. For this experiment, cows received one of 2 dietary treatments: (1) low-peuNDF240, high-RFS (LNHR) diet or (2) high-peuNDF240, low-RFS (HNLR) diet. Within each period, rumen fluid samples were collected from each cow on d 26 (1400 h) and d 27 (0600 h and 1000 h), and milk samples were collected from each cow on d 25 (2030 h), d 26 (0430 h, 1230 h, and 2030 h), and d 27 (0430 h and 1230 h). Microbial proteins were isolated from each rumen fluid sample. For milk samples, milk proteins were fractionated, and the whey fraction was subsequently isolated. Isolated proteins within each rumen fluid or milk sample were isobarically labeled and analyzed by liquid chromatography-tandem mass spectrometry. Product ion spectra acquired from rumen fluid samples were searched using SEQUEST against 71 composite databases. In contrast, product ion spectra acquired from milk samples were searched against the Bos taurus database. Data were analyzed using the PROC MIXED procedure in SAS 9.4 to assess the effect of diet and time of sampling. To increase stringency, the false discovery rate-adjusted P-value (PFDR) was also calculated to account for multiple comparisons. Using the mixed procedure, a total of 129 rumen microbial proteins were quantified across 24 searched microbial species. Of these, the abundance of 14 proteins across 9 microbial species was affected due to diet and diet × time interaction, including 7 proteins associated with energetics pathways. Among the 159 quantified milk proteins, the abundance of 21 proteins was affected due to the diet and diet × time interaction. The abundance of 19 of these milk proteins was affected due to diet × time interactions. Of these, 16 proteins had the disparity across diets at the 0430 h sampling time, including proteins involved in host defense, nutrient synthesis, and transportation, suggesting that biological shifts resulting from diet-induced rumen changes are not diurnally uniform across milkings. The concentration of lipoprotein lipase (LPL) was statistically higher in the milk from the cows fed with the LNHR diet, which was numerically confirmed with an ELISA. Further, as determined by ELISA, the LPL concentration was significantly higher in the milk from the cows fed with the LNHR diet at 0430 h sampling point, suggesting that LPL concentration may indicate dietary carbohydrate-induced ruminal changes. The results of this study suggest that diet-induced rumen changes can be reflected in milk in a diurnal pattern, further highlighting the need to consider sampling time points for using milk proteins as a representative biomarker of rumen microbial activity.
Collapse
Affiliation(s)
- B K Mulakala
- Department of Animal and Veterinary Sciences, University of Vermont, Burlington, VT 05405
| | - K M Smith
- William H. Miner Agricultural Research Institute, Chazy, NY 12921
| | - M A Snider
- Department of Animal and Veterinary Sciences, University of Vermont, Burlington, VT 05405; Department of Agriculture, Southeast Missouri State University, Cape Girardeau, MO 63701
| | - A Ayers
- Department of Animal and Veterinary Sciences, University of Vermont, Burlington, VT 05405
| | - M C Honan
- Department of Animal and Veterinary Sciences, University of Vermont, Burlington, VT 05405; Department of Animal Science, University of California, Davis, Davis, CA 95616
| | - S L Greenwood
- Department of Animal and Veterinary Sciences, University of Vermont, Burlington, VT 05405.
| |
Collapse
|
3
|
Zhu XY, Wang ML, Cai M, Nan XM, Zhao YG, Xiong BH, Yang L. Protein Expression Profiles in Exosomes of Bovine Mammary Epithelial Cell Line MAC-T Infected with Staphylococcus aureus. Appl Environ Microbiol 2023; 89:e0174322. [PMID: 36939340 PMCID: PMC10132110 DOI: 10.1128/aem.01743-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 02/20/2023] [Indexed: 03/21/2023] Open
Abstract
Mastitis is a common and widespread infectious disease in dairy farms around the world, resulting in reduced milk production and quality. Staphylococcus aureus is one of the main pathogenic bacteria causing subclinical mastitis in dairy cows. S. aureus can activate inflammatory signaling pathways in bovine mammary epithelial cells. Exosomes produced by cells can directly transfer pathogen-related molecules from cell to cell, thus affecting the process of infection. Protein is the material basis of the immune defense function in the body; therefore, a comprehensive comparison of proteins in exosomes derived from S. aureus-infected (SA group) and normal (control group [C group]) bovine mammary epithelial MAC-T cells was performed using shotgun proteomics by a DIA approach. A total of 7,070 proteins were identified and quantified. Compared with the C group, there were 802 differentially expressed proteins (DEPs) identified in the SA group (absolute log2 fold change [|log2FC|] of ≥0.58; false discovery rate [FDR] of <0.05), among which 325 proteins were upregulated and 477 were downregulated. The upregulated proteins, including complement 3 (C3), integrin alpha-6 (ITGA6), apolipoprotein A1 (APOA1), annexin A2 (ANXA2), tripeptidyl peptidase II (TPP2), keratin 8 (KRT8), and recombinant desmoyokin (AHNAK), are involved mostly in host defense against pathogens, inflammation, and cell structure maintenance. KEGG enrichment analysis indicated that DEPs in S. aureus infection were involved in the complement and coagulation cascade, phagosome, extracellular matrix (ECM)-receptor interaction, and focal adhesion pathways. The results of this study provide novel information about proteins in the exosomes of MAC-T cells infected with S. aureus and could contribute to an understanding of the infectious mechanism of bovine mastitis. IMPORTANCE Mastitis is a widespread infectious disease in dairy farms, resulting in reduced milk production and quality. Staphylococcus aureus is one of the main pathogenic bacteria causing subclinical mastitis. Exosomes contain proteins, lipids, and nucleic acids, which are involved in many physiological and pathological functions. The expression of proteins in exosomes derived from bovine mammary epithelial cells infected by S. aureus is still barely understood. These results provide novel information about MAC-T-derived exosomal proteins, reveal insights into their functions, and lay a foundation for further studying the biological function of exosomes during the inflammatory response.
Collapse
Affiliation(s)
- Xiao-Yan Zhu
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Meng-Ling Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Meng Cai
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xue-Mei Nan
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yi-Guang Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ben-Hai Xiong
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Liang Yang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
4
|
Winther AR, da Silva Duarte V, Porcellato D. Metataxonomic analysis and host proteome response in dairy cows with high and low somatic cell count: a quarter level investigation. Vet Res 2023; 54:32. [PMID: 37016420 PMCID: PMC10074679 DOI: 10.1186/s13567-023-01162-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 03/01/2023] [Indexed: 04/06/2023] Open
Abstract
Host response to invasive microbes in the bovine udder has an important role on the animal health and is essential to the dairy industry to ensure production of high-quality milk and reduce the mastitis incidence. To better understand the biology behind these host-microbiome interactions, we investigated the somatic cell proteomes at quarter level for four cows (collected before and after milking) using a shotgun proteomics approach. Simultaneously, we identified the quarter microbiota by amplicon sequencing to detect presence of mastitis pathogens or other commensal taxa. In total, 32 quarter milk samples were analyzed divided in two groups depending on the somatic cell count (SCC). The high SCC group (>100,000 cell/mL) included 10 samples and significant different proteome profiles were detected. Differential abundance analysis uncovers a specific expression pattern in high SCC samples revealing pathways involved in immune responses such as inflammation, activation of the complement system, migration of immune cells, and tight junctions. Interestingly, different proteome profiles were also identified in quarter samples containing one of the two mastitis pathogens, Staphylococcus aureus and Streptococcus uberis, indicating a different response of the host depending on the pathogen. Weighted correlation network analysis identified three modules of co-expressed proteins which were correlated with the SCC in the quarters. These modules contained proteins assigned to different aspects of the immune response, but also amino sugar and nucleotide sugar metabolism, and biosynthesis of amino acids. The results of this study provide deeper insights on how the proteome expression changes at quarter level in naturally infected cows and pinpoint potential interactions and important biological functions during host-microbe interaction.
Collapse
Affiliation(s)
- Anja Ruud Winther
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, NMBU, Ås, Norway.
| | - Vinícius da Silva Duarte
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, NMBU, Ås, Norway
| | - Davide Porcellato
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, NMBU, Ås, Norway
| |
Collapse
|
5
|
Hao P, Han L, Quan Z, Jin X, Li Y, Wu Y, Zhang X, Wang W, Gao C, Wang L, Wang H, Zhang W, Chang Y, Ding J. Integrative mRNA-miRNA interaction analysis associated with the immune response of Strongylocentrotus intermedius to Vibrio harveyi infection. FISH & SHELLFISH IMMUNOLOGY 2023; 134:108577. [PMID: 36773712 DOI: 10.1016/j.fsi.2023.108577] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 11/08/2022] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Strongylocentrotus intermedius is one of the most economically valuable sea urchin species in China and has experienced mass mortality owing to outbreaks of bacterial diseases such as black mouth disease. This has caused serious economic losses to the sea urchin farming industry. To investigate the immune response mechanism of S. intermedius with different tube feet colors in response to Vibrio harveyi infection, we examined the different tube feet-colored S. intermedius under V. harveyi challenge and compared their transcriptome and microRNA (miRNA) profiles using RNA-Seq. We obtained 1813 differentially expressed genes (DEGs), 28 DE miRNAs, and 303 DE miRNA-DEG pairs in different tube feet-colored S. intermedius under V. harveyi challenge. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis showed that the most significant DEGs were associated with the Notch signaling and phagosome pathways. The target genes of immune-related miRNAs (miR-71, miR-184, miR-193) and genes (CALM1, SPSB4, DMBT, CSRP1) in S. intermedius were predicted and validated. This study provides insight into the molecular mechanisms that regulate genes involved in the immune response of S. intermedius infected with V. harveyi.
Collapse
Affiliation(s)
- Pengfei Hao
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China
| | - Lingshu Han
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China; Ningbo University, Ningbo, Zhejiang, 315832, PR China
| | - Zijiao Quan
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China
| | - Xin Jin
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China
| | - Yuanxin Li
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China
| | - Yanglei Wu
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China
| | - Xianglei Zhang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China
| | - Wenpei Wang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China
| | - Chuang Gao
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China
| | - Luo Wang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China
| | - Heng Wang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China
| | - Weijie Zhang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China
| | - Yaqing Chang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China
| | - Jun Ding
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China.
| |
Collapse
|
6
|
Bai X, Wang X, Lin T, Dong W, Gao Y, Ji P, Zhang Y, Zhao X, Zhang Q. Toll-like Receptor 2 Is Associated with the Immune Response, Apoptosis, and Angiogenesis in the Mammary Glands of Dairy Cows with Clinical Mastitis. Int J Mol Sci 2022; 23:ijms231810717. [PMID: 36142648 PMCID: PMC9504312 DOI: 10.3390/ijms231810717] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/04/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
Toll-like receptor 2 (TLR2) plays a crucial role in bacterial recognition and the host immune response during infection. However, its function and downstream biological processes (BPs) in the mammary glands (MGs) of Holstein cows with clinical mastitis (CM) are not fully understood. This study aimed to comprehensively identify the BPs and differentially expressed proteins (DEPs) associated with the bacterial response and TLR2 using data-independent acquisition (DIA) proteomic data. A possible mechanism for the action of TLR2 was proposed, and the results suggested that the expression levels of TLR2 and caspase 8 (CASP8) were positively correlated with the apoptosis of MGs. The expression patterns of TLR2 and TEK receptor tyrosine kinase 2 (Tie2) were negatively correlated with angiogenesis. These results indicated that TLR2 might promote apoptosis in mammary epithelial cells (MECs) and vascular endothelial cells (VECs) via upregulation of CASP8 expression, and inhibition of angiogenesis in VECs via downregulation of Tie2 expression in dairy cows with CM. In conclusion, TLR2 is associated with inflammation, apoptosis, and angiogenesis in the MGs of dairy cows with bacteria-induced mastitis. These results contribute to a deeper understanding of the pathogenic mechanisms and provide the knowledge needed for developing the prevention and treatment of dairy mastitis.
Collapse
Affiliation(s)
- Xu Bai
- College of Life Science and Technology, Gansu Agriculture University, Lanzhou 730070, China
- Gansu Key Laboratory of Animal Reproductive Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Xueying Wang
- Gansu Key Laboratory of Animal Reproductive Physiology and Reproductive Regulation, Lanzhou 730070, China
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou 730070, China
| | - Ting Lin
- College of Life Science and Technology, Gansu Agriculture University, Lanzhou 730070, China
- Gansu Key Laboratory of Animal Reproductive Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Weitao Dong
- Gansu Key Laboratory of Animal Reproductive Physiology and Reproductive Regulation, Lanzhou 730070, China
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou 730070, China
| | - Yuan Gao
- College of Life Science and Technology, Gansu Agriculture University, Lanzhou 730070, China
- Gansu Key Laboratory of Animal Reproductive Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Peng Ji
- Gansu Key Laboratory of Animal Reproductive Physiology and Reproductive Regulation, Lanzhou 730070, China
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou 730070, China
| | - Yong Zhang
- College of Life Science and Technology, Gansu Agriculture University, Lanzhou 730070, China
- Gansu Key Laboratory of Animal Reproductive Physiology and Reproductive Regulation, Lanzhou 730070, China
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou 730070, China
| | - Xingxu Zhao
- College of Life Science and Technology, Gansu Agriculture University, Lanzhou 730070, China
- Gansu Key Laboratory of Animal Reproductive Physiology and Reproductive Regulation, Lanzhou 730070, China
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou 730070, China
| | - Quanwei Zhang
- College of Life Science and Technology, Gansu Agriculture University, Lanzhou 730070, China
- Gansu Key Laboratory of Animal Reproductive Physiology and Reproductive Regulation, Lanzhou 730070, China
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou 730070, China
- Correspondence: ; Tel.: +86-931-763-2482
| |
Collapse
|
7
|
Zhu G, Sui S, Shi F, Wang Q. Inhibition of USP14 suppresses ferroptosis and inflammation in LPS-induced goat mammary epithelial cells through ubiquitylating the IL-6 protein. Hereditas 2022; 159:21. [PMID: 35549778 PMCID: PMC9102600 DOI: 10.1186/s41065-022-00235-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 04/23/2022] [Indexed: 12/12/2022] Open
Abstract
Background Ferroptosis, a novel manner of cell death depended on iron ion, contributed to goat mammary epithelial cell dysfunction. Interleukin-6 (IL-6) is a major pro-inflammatory factor during many inflammation-related diseases including mastitis, and a quite recently identified ferroptosis inducer. This study aims to explore the role of IL-6 in the dysfunction of goat mammary epithelial cells (GMECs) and how the level of IL-6 was regulated. Methods Primary GMECs were isolated, cultured and treated with lipopolysaccharide (LPS) alone or together with Ferrostatin-1 (Fer-1), a well-known ferroptosis inhibitor. CCK-8 was used to detect cell viability, ELISA was used to detect TNF-α content, and the levels of ROS, GSH and MDA were analyzed with DCFDA-cell ROS detection kit, GSH assay kit and MDA assay kit, respectively. The iron ion level was measured with an iron assay kit. Results The expression level of IL-6 protein in GMECs was up-regulated in response to LPS treatment, and the secretion of TNF-α, the cell oxidative stress level and the Fe2+ ion content was robustly increased, which could be reversed by Fer-1 treatment. Knockdown of IL-6 decreased cell oxidative stress level and inhibited ferroptosis in LPS-treated GMECs. Further, ubiquitin experiment and co-immunoprecipitation assay showed that USP14 upregulated IL-6 protein expression by reducing the ubiquitination of IL-6, and overexpression of IL-6 reversed the inhibitory effect of USP14 shRNA on LPS-treated GMECs ferroptosis. The NRF2 inhibitor Brusatol reversed the inhibitory effect of IL-6 shRNA on LPS-treated ferroptosis. Conclusion IL-6 protein is deubiquitinated by USP14 and upregulated in LPS-treated GMECs, further promoting ferroptosis and inflammation through the NRF2 signaling pathway. Supplementary Information The online version contains supplementary material available at 10.1186/s41065-022-00235-y.
Collapse
Affiliation(s)
- Guangqin Zhu
- Xuzhou City Key Laboratory of Modern AgroBiotechnology, Xuzhou Vocational College of Bioengineering, No. 297 of Sanhuan West Road, Quanshan District, Xuzhou City, 221006, Jiangsu Province, China.
| | - Shaopu Sui
- Xuzhou City Key Laboratory of Modern AgroBiotechnology, Xuzhou Vocational College of Bioengineering, No. 297 of Sanhuan West Road, Quanshan District, Xuzhou City, 221006, Jiangsu Province, China
| | - Fengyun Shi
- Xuzhou City Key Laboratory of Modern AgroBiotechnology, Xuzhou Vocational College of Bioengineering, No. 297 of Sanhuan West Road, Quanshan District, Xuzhou City, 221006, Jiangsu Province, China
| | - Qinglin Wang
- Xuzhou City Key Laboratory of Modern AgroBiotechnology, Xuzhou Vocational College of Bioengineering, No. 297 of Sanhuan West Road, Quanshan District, Xuzhou City, 221006, Jiangsu Province, China
| |
Collapse
|
8
|
Kim SH, Ramos SC, Valencia RA, Cho YI, Lee SS. Heat Stress: Effects on Rumen Microbes and Host Physiology, and Strategies to Alleviate the Negative Impacts on Lactating Dairy Cows. Front Microbiol 2022; 13:804562. [PMID: 35295316 PMCID: PMC8919045 DOI: 10.3389/fmicb.2022.804562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Heat stress (HS) in dairy cows causes considerable losses in the dairy industry worldwide due to reduced animal performance, increased cases of metabolic disorders, altered rumen microbiome, and other health problems. Cows subjected to HS showed decreased ruminal pH and acetate concentration and an increased concentration of ruminal lactate. Heat-stressed cows have an increased abundance of lactate-producing bacteria such as Streptococcus and unclassified Enterobacteriaceae, and soluble carbohydrate utilizers such as Ruminobacter, Treponema, and unclassified Bacteroidaceae. Cellulolytic bacteria, especially Fibrobacteres, increase during HS due to a high heat resistance. Actinobacteria and Acetobacter, both acetate-producing bacteria, decreased under HS conditions. Rumen fermentation functions, blood parameters, and metabolites are also affected by the physiological responses of the animal during HS. Isoleucine, methionine, myo-inositol, lactate, tryptophan, tyrosine, 1,5-anhydro-D-sorbitol, 3-phenylpropionic acid, urea, and valine decreased under these conditions. These responses affect feed consumption and production efficiency in milk yield, growth rate, and reproduction. At the cellular level, activation of heat shock transcription factor (HSF) (located throughout the nucleus and the cytoplasm) and increased expression of heat shock proteins (HSPs) are the usual responses to cope with homeostasis. HSP70 is the most abundant HSP family responsible for the environmental stress response, while HSF1 is essential for increasing cell temperature. The expression of bovine lymphocyte antigen and histocompatibility complex class II (DRB3) is downregulated during HS, while HSP90 beta I and HSP70 1A are upregulated. HS increases the expression of the cytosolic arginine sensor for mTORC1 subunits 1 and 2, phosphorylation of mammalian target of rapamycin and decreases the phosphorylation of Janus kinase-2 (a signal transducer and activator of transcription factor-5). These changes in physiology, metabolism, and microbiomes in heat-stressed dairy cows require urgent alleviation strategies. Establishing control measures to combat HS can be facilitated by elucidating mechanisms, including proper HS assessment, access to cooling facilities, special feeding and care, efficient water systems, and supplementation with vitamins, minerals, plant extracts, and probiotics. Understanding the relationship between HS and the rumen microbiome could contribute to the development of manipulation strategies to alleviate the influence of HS. This review comprehensively elaborates on the impact of HS in dairy cows and introduces different alleviation strategies to minimize HS.
Collapse
Affiliation(s)
- Seon Ho Kim
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon, South Korea
| | - Sonny C. Ramos
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon, South Korea
| | - Raniel A. Valencia
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon, South Korea
- Department of Animal Science, College of Agriculture, Central Luzon State University, Science City of Muñoz, Philippines
| | - Yong Il Cho
- Animal Disease and Diagnostic Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon, South Korea
| | - Sang Suk Lee
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon, South Korea
| |
Collapse
|
9
|
Gour P, Kansal S, Agarwal P, Mishra BS, Sharma D, Mathur S, Raghuvanshi S. Variety-specific transcript accumulation during reproductive stage in drought-stressed rice. PHYSIOLOGIA PLANTARUM 2022; 174:e13585. [PMID: 34652858 DOI: 10.1111/ppl.13585] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/23/2021] [Accepted: 10/04/2021] [Indexed: 06/13/2023]
Abstract
The divergence of natural stress tolerance mechanisms between species is an intriguing phenomenon. To study it in rice, a comparative transcriptome analysis was carried out in 'heading' stage tissue (flag leaf, panicles and roots) of Nagina 22 (N22; drought-tolerant) and IR64 (drought-sensitive) plants subjected to field drought. Interestingly, N22 showed almost double the number of differentially expressed genes (DEGs) than IR64. Many DEGs colocalized within drought-related QTLs responsible for grain yield and drought tolerance and also associated with drought tolerance and critical drought-related plant traits such as leaf rolling, trehalose content, sucrose and cellulose content. Besides, co-expression analysis of the DEGs revealed several 'hub' genes known to actively regulate drought stress response. Strikingly, 1366 DEGs, including 21 'hub' genes, showed a distinct opposite regulation in the two rice varieties under similar drought conditions. Annotation of these variety-specific DEGs (VS-DEGs) revealed that they are distributed in various biological pathways. Furthermore, 103 VS-DEGs were found to physically interact with over 1300 genes, including 32 that physically interact with other VS-DEGs as well. The promoter region of these genes has sequence variations among the two rice varieties, which might be in part responsible for their unique expression pattern.
Collapse
Affiliation(s)
- Pratibha Gour
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Shivani Kansal
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Priyanka Agarwal
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | | | - Deepika Sharma
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Saloni Mathur
- National Institute of Plant Genome Research, New Delhi, India
| | - Saurabh Raghuvanshi
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| |
Collapse
|
10
|
Chen Y, Yang J, Huang Z, Jing H, Yin B, Guo S, Deng G, Guo M. Exosomal lnc-AFTR as a novel translation regulator of FAS ameliorates Staphylococcus aureus-induced mastitis. Biofactors 2022; 48:148-163. [PMID: 34855261 DOI: 10.1002/biof.1806] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 11/11/2021] [Indexed: 12/12/2022]
Abstract
Although the specific expression of long noncoding RNA (lncRNA) in mastitis tissue has been reported, few studies have involved the differential expression of lncRNA in mastitis exosomes (Exo) and its mechanism and function. We screened an lncRNA associated with FAS translational regulation (lnc-AFTR) through exosomal RNA sequencing, and clarified its function and molecular mechanism. Lnc-AFTR is markedly downregulated in Staphylococcus aureus-Exo and S. aureus-induced MAC-T cell as well as mastitis tissue. Overexpression of lnc-AFTR exosomes (oe-AFTR-Exo) significantly improves cell damage induced by S. aureus, including inhibiting apoptosis, promoting proliferation, and increasing the production of pro-inflammatory cytokines (tumor necrosis factor-α [TNF-α] and interleukin-1β [IL-1β]). Oe-AFTR-Exo also suppressed the activation of Caspase-8, Caspase-3, and JNK. Dual-luciferase report analysis confirmed that lnc-AFTR interacts with FAS mRNA directly to hinder translation process, but does not degrade FAS mRNA. Overexpression of lnc-AFTR in MAC-T cells obviously reduced S. aureus-induced apoptosis and inflammation. Knockdown of lnc-AFTR significantly increased FAS and promoted the activation of Caspase-8, Caspase-3, and JNK caused by S. aureus. In summary, these results revealed the mechanism by which lnc-AFTR directly bound FAS mRNA to prevent translation, and confirmed that the exosomal lnc-AFTR exerted anti-inflammatory and anti-apoptotic effects by inhibiting the activation of TNF signaling pathway and mitogen-activated protein kinases (MAPK) signaling pathway.
Collapse
Affiliation(s)
- Yu Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jing Yang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zhi Huang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Hongyuan Jing
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Baoyi Yin
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Shuai Guo
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Ganzhen Deng
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Mengyao Guo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| |
Collapse
|
11
|
The Role of microRNAs in the Mammary Gland Development, Health, and Function of Cattle, Goats, and Sheep. Noncoding RNA 2021; 7:ncrna7040078. [PMID: 34940759 PMCID: PMC8708473 DOI: 10.3390/ncrna7040078] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/07/2021] [Accepted: 12/10/2021] [Indexed: 02/07/2023] Open
Abstract
Milk is an integral and therefore complex structural element of mammalian nutrition. Therefore, it is simple to conclude that lactation, the process of producing milk, is as complex as the mammary gland, the organ responsible for this biochemical activity. Nutrition, genetics, epigenetics, disease pathogens, climatic conditions, and other environmental variables all impact breast productivity. In the last decade, the number of studies devoted to epigenetics has increased dramatically. Reports are increasingly describing the direct participation of microRNAs (miRNAs), small noncoding RNAs that regulate gene expression post-transcriptionally, in the regulation of mammary gland development and function. This paper presents a summary of the current state of knowledge about the roles of miRNAs in mammary gland development, health, and functions, particularly during lactation. The significance of miRNAs in signaling pathways, cellular proliferation, and the lipid metabolism in agricultural ruminants, which are crucial in light of their role in the nutrition of humans as consumers of dairy products, is discussed.
Collapse
|
12
|
Epigenetic states of genes controlling immune responsiveness in bovine chronic mastitis. ANNALS OF ANIMAL SCIENCE 2021. [DOI: 10.2478/aoas-2021-0061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Mastitis is a common disease in dairy cows, causing substantial economic losses. The leading cause of elevated milk somatic cell count (SCC), which is the best indicator for detecting mastitis, is the invasion of pathogens. A major pathogen responsible for bovine mastitis is Staphylococcus aureus, a member of the coagulase-positive staphylococci. Some strains of coagulase-negative staphylococci can also be a cause of clinical or subclinical mastitis. Our study used bisulfite sequencing PCR (BSP) to detect the methylation status of nine candidate genes (CCL2, HCK, F11R, CD8A, PDIA3, LGMN, HSPA1A, IL18 and NFKBIA). We investigated the mechanisms associated with overexpression of these genes, in the mammary gland secretory tissue of cows diagnosed with mastitis and infected with coagulase-positive or coagulase-negative staphylococci. The results showed no changes at the DNA methylation level between the mastitis (CoPS and CoNS) and control groups (H), except for in the HCK region, where the observed differences between the CoPS and H groups were statistically significant. The low methylation level of the CpG sequence seems not to correspond to the previously observed increased activity of these genes, suggesting that mechanisms other than DNA methylation may control mRNA expression at the analyzed loci.
Collapse
|
13
|
Integrative Analysis of miRNA and mRNA Expression Profiles in Mammary Glands of Holstein Cows Artificially Infected with Staphylococcus aureus. Pathogens 2021; 10:pathogens10050506. [PMID: 33922375 PMCID: PMC8145100 DOI: 10.3390/pathogens10050506] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/10/2021] [Accepted: 04/21/2021] [Indexed: 12/12/2022] Open
Abstract
Staphylococcus aureus- induced mastitis is one of the most intractable problems for the dairy industry, which causes loss of milk yield and early slaughter of cows worldwide. Few studies have used a comprehensive approach based on the integrative analysis of miRNA and mRNA expression profiles to explore molecular mechanism in bovine mastitis caused by S. aureus. In this study, S. aureus (A1, B1 and C1) and sterile phosphate buffered saline (PBS) (A2, B2 and C2) were introduced to different udder quarters of three individual cows, and transcriptome sequencing and microarrays were utilized to detected miRNA and gene expression in mammary glands from the challenged and control groups. A total of 77 differentially expressed microRNAs (DE miRNAs) and 1625 differentially expressed genes (DEGs) were identified. Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that multiple DEGs were enriched in significant terms and pathways associated with immunity and inflammation. Integrative analysis between DE miRNAs and DEGs proved that miR-664b, miR-23b-3p, miR-331-5p, miR-19b and miR-2431-3p were potential factors regulating the expression levels of CD14 Molecule (CD14), G protein subunit gamma 2 (GNG2), interleukin 17A (IL17A), collagen type IV alpha 1 chain (COL4A1), microtubule associated protein RP/EB family member 2 (MAPRE2), member of RAS oncogene family (RAP1B), LDOC1 regulator of NFKB signaling (LDOC1), low-density lipoprotein receptor (LDLR) and S100 calcium binding protein A9 (S100A9) in bovine mastitis caused by S. aureus. These findings could enhance the understanding of the underlying immune response in bovine mammary glands against S. aureus infection and provide a useful foundation for future application of the miRNA–mRNA-based genetic regulatory network in the breeding cows resistant to S. aureus.
Collapse
|
14
|
Qiu Y, Zhai C, Chen L, Liu X, Yeo J. Current Insights on the Diverse Structures and Functions in Bacterial Collagen-like Proteins. ACS Biomater Sci Eng 2021. [PMID: 33871954 DOI: 10.1021/acsbiomaterials.1c00018] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The dearth of knowledge on the diverse structures and functions in bacterial collagen-like proteins is in stark contrast to the deep grasp of structures and functions in mammalian collagen, the ubiquitous triple-helical scleroprotein that plays a central role in tissue architecture, extracellular matrix organization, and signal transduction. To fill and highlight existing gaps due to the general paucity of data on bacterial CLPs, we comprehensively reviewed the latest insight into their functional and structural diversity from multiple perspectives of biology, computational simulations, and materials engineering. The origins and discovery of bacterial CLPs were explored. Their genetic distribution and molecular architecture were analyzed, and their structural and functional diversity in various bacterial genera was examined. The principal roles of computational techniques in understanding bacterial CLPs' structural stability, mechanical properties, and biological functions were also considered. This review serves to drive further interest and development of bacterial CLPs, not only for addressing fundamental biological problems in collagen but also for engineering novel biomaterials. Hence, both biology and materials communities will greatly benefit from intensified research into the diverse structures and functions in bacterial collagen-like proteins.
Collapse
Affiliation(s)
- Yimin Qiu
- National Biopesticide Engineering Technology Research Center, Hubei Biopesticide Engineering Research Center, Hubei Academy of Agricultural Sciences, Biopesticide Branch of Hubei Innovation Centre of Agricultural Science and Technology, Wuhan 430064, PR China.,State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Chenxi Zhai
- J2 Lab for Engineering Living Materials, Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York 14850, United States
| | - Ling Chen
- National Biopesticide Engineering Technology Research Center, Hubei Biopesticide Engineering Research Center, Hubei Academy of Agricultural Sciences, Biopesticide Branch of Hubei Innovation Centre of Agricultural Science and Technology, Wuhan 430064, PR China
| | - Xiaoyan Liu
- National Biopesticide Engineering Technology Research Center, Hubei Biopesticide Engineering Research Center, Hubei Academy of Agricultural Sciences, Biopesticide Branch of Hubei Innovation Centre of Agricultural Science and Technology, Wuhan 430064, PR China
| | - Jingjie Yeo
- J2 Lab for Engineering Living Materials, Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York 14850, United States
| |
Collapse
|
15
|
Proteomic profiling of milk small extracellular vesicles from bovine leukemia virus-infected cattle. Sci Rep 2021; 11:2951. [PMID: 33536533 PMCID: PMC7858626 DOI: 10.1038/s41598-021-82598-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 01/22/2021] [Indexed: 12/15/2022] Open
Abstract
Milk small extracellular vesicles (sEV) contain proteins that provide potential information of host physiology and immunology. Bovine leukemia virus (BLV) is an oncogenic virus that causes progressive B-cell lymphosarcoma in cattle. In this study, we aimed to explore the proteomic profile of milk sEV from BLV-infected cattle compared with those from uninfected cattle. Milk sEV were isolated from three BLV-infected and three uninfected cattle. Proteomic analysis was performed by using a comprehensive nanoLC-MS/MS method. Furthermore, gene ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were used to evaluate the candidates for uniquely or differentially expressed proteins in milk sEV from BLV-infected cattle. Proteomic analysis revealed a total of 1330 common proteins in milk sEV among BLV-infected cattle, whereas 118 proteins were uniquely expressed compared with those from uninfected cattle. Twenty-six proteins in milk sEV were differentially expressed proteins more than two-fold significant difference (p < 0.05) in BLV-infected cattle. GO and KEGG analyses indicated that the candidates for uniquely or differentially expressed proteins in milk sEV had been involved in diverse biological activities including metabolic processes, cellular processes, respond to stimulus, binding, catalytic activities, cancer pathways, focal adhesion, and so on. Taken together, the present findings provided a novel insight into the proteomes of milk sEV from BLV-infected cattle.
Collapse
|
16
|
Niu H, Zhang H, Wu F, Xiong B, Tong J, Jiang L. Proteomics study on the protective mechanism of soybean isoflavone against inflammation injury of bovine mammary epithelial cells induced by Streptococcus agalactiae. Cell Stress Chaperones 2021; 26:91-101. [PMID: 32865767 PMCID: PMC7736374 DOI: 10.1007/s12192-020-01158-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/21/2020] [Accepted: 08/25/2020] [Indexed: 01/14/2023] Open
Abstract
This study aimed to verify the anti-inflammatory effect of soybean isoflavones (SI) on the inflammatory response induced by Streptococcus agalactiae (S. agalactiae) of bovine mammary epithelial cells (bMECs) and to elucidate its possible mechanism. BMECs were pretreated with SI of different concentrations (20, 40, 60, 80, 100 μg/mL) for 0.5, 3, 6, 9, 12, 15, 18, 24 h. And then, S. agalactiae was used to infect bMECs for 6 h (MOI = 50:1) to establish the inflammation model. Cell viability, growth curves of S. agalactiae, cytotoxicity, and S. agalactiae invasion rate were determined. A proteomics technique was used to further detect differential proteins and enrichment pathways. SI (40 μg/mL) improved the viability of bMECs at 12 h (p < 0.05) and 60 and 80 μg/mL of SI greater (p < 0.01). Moreover, 60 μg/mL of SI protects cells from bacterial damage (p < 0.05). SI could inhibit S. agalactiae growth and internalization into bMECs in a time- and dose-dependent manner. In addition, proteomics results showed that 133 proteins were up-regulated and 89 proteins were down-regulated significantly. The differentially significantly expressed proteins (DSEPs) were mainly related to cell proliferation, differentiation, apoptosis, and migration. GO annotation showed that 222 DSEPs were divided into 23 biological processes (BP) terms, 14 cell components (CC) terms, and 12 molecular functions (MF) terms. DSEPs were significantly enriched in 10 pathways, of which the immune pathway was the main enrichment pathway.
Collapse
Affiliation(s)
- Hui Niu
- Department of Animal Science, Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Hua Zhang
- Department of Animal Science, Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Fuxin Wu
- Department of Animal Science, Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Benhai Xiong
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jinjin Tong
- Department of Animal Science, Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China.
| | - Linshu Jiang
- Department of Animal Science, Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China.
| |
Collapse
|
17
|
Proteomic 2D-DIGE Analysis of Milk Whey from Dairy Cows with Staphylococcus aureus Mastitis Reveals Overexpression of Host Defense Proteins. Microorganisms 2020; 8:microorganisms8121883. [PMID: 33260718 PMCID: PMC7760247 DOI: 10.3390/microorganisms8121883] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 12/14/2022] Open
Abstract
Bovine mastitis remains a primary focus of dairy cattle disease research due to its considerable negative economic impact on the dairy industry. Subclinical mastitis (SCM), commonly caused by Staphylococcus aureus, lacks overt clinical signs and the diagnosis is based on bacteriological culture and somatic cell counts of milk, both of which have limitations. The main objective of this study was to identify, characterize and quantify the differential abundance of milk whey proteins from cows with S. aureus SCM compared to whey from healthy cows. Using two-dimensional differential gel electrophoresis (2D-DIGE) coupled with liquid chromatography and tandem mass spectrometry, 28 high-abundant proteins were detected in whey from mastitic milk, 9 of which had host defense functions. These included acute phase proteins involved in innate immunity and antimicrobial functions (e.g., serotransferrin, complement C3, fibrinogen gamma-B chain and cathepsin B), and proteins associated with the immune response to pathogens (e.g., polymeric immunoglobulin receptor-like protein, MHC class I antigen and beta-2-microglobulin). These results provide a unique 2D map of the modulated milk proteome during S. aureus mastitis. The broader importance is that the identified proteins, particularly those with host-defense biological functions, represent potential candidate biomarkers of subclinical mastitis in dairy cows.
Collapse
|
18
|
Acute phase protein expressions in secretory and cistern lining epithelium tissues of the dairy cattle mammary gland during chronic mastitis caused by staphylococci. BMC Vet Res 2020; 16:320. [PMID: 32867772 PMCID: PMC7460751 DOI: 10.1186/s12917-020-02544-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 08/25/2020] [Indexed: 11/23/2022] Open
Abstract
Background Mastitis is the most common disease in dairy cattle and the costliest for the dairy farming industry, as it lowers milk yield and quality. Mastitis occurs as a result of interactions between microorganisms and the individual genetic predispositions of each animal. Thus, it is important to fully understand the mechanisms underlying these interactions. Elucidating the immune response mechanisms can determine which genetic background makes an animal highly resistant to mastitis. We analyzed the innate immune responses of dairy cows naturally infected with coagulase-positive staphylococci (CoPS; N = 8) or coagulase-negative staphylococci (CoNS; N = 7), causing persistent mastitis (after several failed treatments) vs. infection-free (i.e., healthy [H]; N = 8) dairy cows. The expressions of the acute phase protein genes serum amyloid A3 (SAA3), haptoglobin (HP), ceruloplasmin (CP) genes in the tissues most exposed to pathogens— mammary gland cistern lining epithelial cells (CLECs) and mammary epithelial cells (MECs)—were analyzed. Results We found constitutive and extrahepatic expressions of the studied genes in both tissue types. HP expression in the MECs of the CoPS-infected group was higher than in the H group (p ≤ 0.05). Moreover, higher SAA3 expression in the CoPS and CoNS groups than in the H group (p = 0.06 and 0.08, respectively) was found. No differences between SAA3 and HP in CLECs were revealed, regardless of the pathogen type. However, higher expression of CP (p ≤ 0.05) in the CoPS group than in the H group was noted. Conclusions The expressions of selected acute phase proteins were similar between CLECs and MECs, which means that CLECs are not only a mechanical barrier but are also responsible for the biological immune response. Our findings agree with the results of other authors describing the immunological response of MECs during chronic mastitis, but the results for CLECs are novel.
Collapse
|
19
|
Ahlawat S, Arora R, Sharma U, Sharma A, Girdhar Y, Sharma R, Kumar A, Vijh RK. Comparative gene expression profiling of milk somatic cells of Sahiwal cattle and Murrah buffaloes. Gene 2020; 764:145101. [PMID: 32877747 DOI: 10.1016/j.gene.2020.145101] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 08/18/2020] [Accepted: 08/25/2020] [Indexed: 01/31/2023]
Abstract
India is the world's largest milk producing country because of massive contribution made by cattle and buffaloes. In the present investigation, comprehensive comparative profiling of transcriptomic landscape of milk somatic cells of Sahiwal cattle and Murrah buffaloes was carried out. Genes with highest transcript abundance in both species were enriched for biological processes such as lactation, immune response, cellular oxidant detoxification and response to hormones. Analysis of differential expression identified 377 significantly up-regulated and 847 significantly down-regulated genes with fold change >1.5 in Murrah buffaloes as compared to Sahiwal cattle (padj <0.05). Marked enrichment of innate and adaptive immune response related GO terms and higher expression of genes for various host defense peptides such as lysozyme, defensin β and granzymes were evident in buffaloes. Genes related to ECM-receptor interaction, complement and coagulation cascades, cytokine-cytokine receptor interaction and keratinization pathway showed more abundant expression in cattle. Network analysis of the up-regulated genes delineated highly connected genes representing immunity and haematopoietic cell lineage (CBL, CD28, CD247, PECAM1 and ITGA4). For the down-regulated dataset, genes with highest interactions were KRT18, FGFR1, GPR183, ITGB3 and DKK3. Our results lend support to more robust immune mechanisms in buffaloes, possibly explaining lower susceptibility to mammary infections as compared to cattle.
Collapse
Affiliation(s)
- Sonika Ahlawat
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Reena Arora
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India.
| | - Upasna Sharma
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Anju Sharma
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Yashila Girdhar
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Rekha Sharma
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Ashish Kumar
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | | |
Collapse
|
20
|
Addis MF, Maffioli EM, Ceciliani F, Tedeschi G, Zamarian V, Tangorra F, Albertini M, Piccinini R, Bronzo V. Influence of subclinical mastitis and intramammary infection by coagulase-negative staphylococci on the cow milk peptidome. J Proteomics 2020; 226:103885. [DOI: 10.1016/j.jprot.2020.103885] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 06/12/2020] [Accepted: 06/21/2020] [Indexed: 12/12/2022]
|
21
|
Tandem Mass Tag (TMT)-based quantitative proteomics reveals potential targets associated with onset of Sub-clinical Mastitis in cows. Sci Rep 2020; 10:9321. [PMID: 32518370 PMCID: PMC7283279 DOI: 10.1038/s41598-020-66211-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 05/08/2020] [Indexed: 12/14/2022] Open
Abstract
Bovine milk is vital for infant nutrition and is a major component of the human diet. Bovine mastitis is a common inflammatory disease of mammary gland in cattle. It alters the immune profile of the animal and lowers the quality and yield of milk causing huge economic losses to dairy industry. The incidence of sub-clinical mastitis (SCM) is higher (25-65% worldwide) than clinical mastitis (CM) (>5%), and frequently progresses to clinical stage due to lack of sensitive and specific detection method. We used quantitative proteomics to identify changes in milk during sub-clinical mastitis, which may be potential biomarkers for developing rapid, non-invasive, sensitive detection methods. We performed comparative proteome analysis of the bovine milk, collected from the Indian hybrid cow Karan Fries. The differential proteome in the milk of Indian crossbred cows during sub-acute and clinical intramammary gland infection has not been investigated to date. Using high-resolution mass spectrometry-based quantitative proteomics of the bovine whey proteins, we identified a total of 1459 and 1358 proteins in biological replicates, out of which 220 and 157 proteins were differentially expressed between normal and infected samples. A total of 82 proteins were up-regulated and 27 proteins were down-regulated, having fold changes of ≥2 and ≤0.8 respectively. Among these proteins, overexpression of CHI3L1, LBP, GSN, GCLC, C4 and PIGR proteins was positively correlated with the events that elicit host defence system, triggering production of cytokines and inflammatory molecules. The appearance of these potential biomarkers in milk may be used to segregate affected cattle from the normal herd and may support mitigation measures for prevention of SCM and CM.
Collapse
|
22
|
Maity S, Das D, Ambatipudi K. Quantitative alterations in bovine milk proteome from healthy, subclinical and clinical mastitis during S. aureus infection. J Proteomics 2020; 223:103815. [PMID: 32423885 DOI: 10.1016/j.jprot.2020.103815] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/29/2020] [Accepted: 05/05/2020] [Indexed: 12/21/2022]
Abstract
Bovine mastitis, caused by Staphylococcus aureus, is a major impediment to milk production and lacks markers to indicate disease progression in cows and buffaloes. Thus, the focus of this study was to identify proteins marking the transition from subclinical to clinical mastitis. Whey proteins were isolated from 6 group's i.e. healthy, subclinical and clinical mastitis of Holstein Friesian cow and Murrah buffalo. Mass spectrometry and statistical analysis (ANOVA and t-tests) were performed on 12 biological samples each from cow and buffalo (4 per healthy, subclinical and clinical mastitis) resulting in a total of 24 proteome datasets. Collectively, 1479 proteins were identified of which significant proteins were shortlisted by a combination of fold change (≤ 0.5 or ≥ 2) and q < 0.05. Of these proteins, 128 and 163 indicated disease progression in cow and buffalo, respectively. Change in expression of haptoglobin and fibronectin from Holstein Friesian while spermadhesin and osteopontin from Murrah correlated with disease progression. Similarly, angiogenin and cofilin-1 were upregulated while ubiquitin family members were downregulated during disease transition. Subsequently, selected proteins (e.g. osteopontin and fibrinogen-α) were validated by Western blots. The results of this study provide deeper insights into whey proteome dynamics and signature patterns indicative of disease progression. BIOLOGICAL SIGNIFICANCE: Bovine mastitis is the most lethal infectious disease causing a huge economic loss in the dairy industry. In an attempt, to understand the dynamics of whey proteome in response to S. aureus infection, whey protein collected from healthy, subclinical and clinical mastitic HF and Mu were investigated. A total of 1479 proteins were identified, of which 128 and 163 had signature pattern in each stage indicative of the progression of the disease. The results of the present study provide a foundation to better understand the complexity of mastitis that will ultimately help facilitate early therapeutic and husbandry-based intervention to improve animal health and milk quality.
Collapse
Affiliation(s)
- Sudipa Maity
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Debiprasanna Das
- Department of Pathology, College of Veterinary Science and Animal Husbandry, Odisha University of Agriculture and Technology, Bhubaneswar 751003, India
| | - Kiran Ambatipudi
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India.
| |
Collapse
|
23
|
Cai L, Tong J, Zhang Z, Zhang Y, Jiang L, Hou X, Zhang H. Staphylococcus aureus-induced proteomic changes in the mammary tissue of rats: A TMT-based study. PLoS One 2020; 15:e0231168. [PMID: 32365127 PMCID: PMC7197811 DOI: 10.1371/journal.pone.0231168] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 03/17/2020] [Indexed: 01/29/2023] Open
Abstract
Staphylococcus aureus is one of the most important pathogens causing mastitis in dairy cows. The objective of this study was to establish a rat model of mastitis induced by S. aureus infection and to explore changes in the proteomes of mammary tissue in different udder states, providing a better understanding of the host immune response to S. aureus mastitis. On day 3 post-partum, 6 rats were randomly divided into two groups (n = 3), with either 100 μL of PBS (blank group) or a S. aureus suspension containing 2×107 CFU·mL−1 (challenge group) infused into the mammary gland duct. After 24 h of infection, the rats were sacrificed, and mammary gland tissue was collected. Tandem mass tag (TMT)-based technology was applied to compare the proteomes of healthy and mastitic mammary tissues. Compared with the control group, the challenge group had 555 proteins with significant differences in expression, of which 428 were significantly upregulated (FC>1.2 and p<0.05) and 127 were downregulated (FC>0.83 and p<0.05 or p<0.01). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses revealed that upregulated differentially significant expressed proteins (DSEPs) were associated with mainly immune responses, including integrin alpha M, inter-α-trypsin inhibitor heavy chain 4, and alpha-2-macroglobulin. This study is the first in which a rat model of S. aureus-induced mastitis was used to explore the proteins related to mastitis in dairy cows by TMT technology, providing a model for replication of dairy cow S. aureus-induced mastitis experiments.
Collapse
Affiliation(s)
- Lirong Cai
- Beijing Key Laboratory of Dairy Cow Nutrition, Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Jinjin Tong
- Beijing Key Laboratory of Dairy Cow Nutrition, Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Zhaonan Zhang
- Beijing Key Laboratory of Dairy Cow Nutrition, Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Yonghong Zhang
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Linshu Jiang
- Beijing Key Laboratory of Dairy Cow Nutrition, Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Xiaolin Hou
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Hua Zhang
- Beijing Key Laboratory of Dairy Cow Nutrition, Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
- * E-mail:
| |
Collapse
|
24
|
Isolated perfused udder model for transcriptome analysis in response to Streptococcus agalactiae. J DAIRY RES 2020; 86:307-314. [PMID: 31451129 DOI: 10.1017/s0022029919000451] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This study aimed to evaluate the transcriptional changes occurring in isolated perfused mammary alveolar tissue in response to inoculation with S. agalactiae and to identify the most affected biological functions and pathways after 3 h. Four udders taken at slaughter from cows with healthy mammary gland were perfused ex situ with warmed and gassed Tyrode's solution. Mammary alveolar tissue samples were taken from the left fore and rear quarters (IQ-inoculated quarters) before inoculation (hour 0) and at 3 h post inoculation (hpi) and at the same times from control right fore and rear quarters (not inoculated: NIQ). A total of 1756 differentially expressed genes (DEGs) were identified between IQ and NIQ at 3 hpi using edgeR package. Within this set of DEGs, 952 were up regulated and mainly involved with innate immune response and inflammatory response, e.g., CD14, CCL5, TLR2, IL-8, SAA3, as well as in transcriptional regulation such as FOS, STAT3 and NFKBIA. Genes down-regulated (804) included those involved with lipid synthesis e.g., APOC2, SCD, FABP3 and FABP4. The most affected pathways were chemokine signaling, Wnt signaling and complement and coagulation cascades, which likely reflects the early stage response of mammary tissue to S. agalactiae infection. No significant gene expression changes were detected by RNA-Seq in the others contrasts. Real time-PCR confirmed the increase in mRNA abundance of immune-related genes: TLR2, TLR4, IL-1β, and IL-10 at 3 hpi between IQ and NIQ. The expression profiles of Casp1 and Bax for any contrasts were unaffected whereas Bcl2 was increased in IQ, which suggests no induction of apoptosis during the first hours after infection. Results provided novel information regarding the early functional pathways and gene network that orchestrate innate immune responses to S. agalactiae infection. This knowledge could contribute to new strategies to enhance resistance to this disease, such as genomic selection.
Collapse
|
25
|
Ma Y, Wen X, Kong Y, Chen C, Yang M, He S, Wang J, Wang C. Identification of New Peptide Biomarkers for Bacterial Bloodstream Infection. Proteomics Clin Appl 2019; 14:e1900075. [PMID: 31579992 DOI: 10.1002/prca.201900075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 09/02/2019] [Indexed: 12/26/2022]
Abstract
PURPOSE Due to a lack of effective early diagnostic measures, new diagnostic methods for bacterial bloodstream infections (BSIs) are urgently needed. A protein-peptide profiling approach can be used to identify novel diagnostic biomarkers of BSIs. EXPERIMENTAL DESIGN In this study, MALDI-TOF MS and nano-LC/ESI-MS/MS are used to analyze serum peptides. In addition, GO and network analyses are conducted as a means of analyzing these potential protein markers. Finally, the potential biomarkers are verified in independent clinical samples via ELISA. RESULTS m/z 1533.8, 2794.3, 3597.3, 5007.3, and 7816.7 reveal an identical trend; the intensity of m/z 1533.8, 2794.3, and 3597.3 are higher in the infection group relative to controls, whereas the intensity of m/z 5007.3 and 7816.7 are lower in the infection group. Four peaks are successfully identified including ITIH4, KNG1, SAA2, and C3. GO and network analyses find these proteins to form an interaction network, which may be correlated with BSI. ELISA results indicate that ITIH4, KNG1, and SAA2 are effective in differentiating infected from normal control group and the febrile group. CONCLUSIONS AND CLINICAL RELEVANCE These biomarkers have the potential to offer new insights into the signaling networks underlying the development and progression of BSI.
Collapse
Affiliation(s)
- Yating Ma
- Department of Clinical Laboratory, The PLA General Hospital, Beijing, 100853, China.,Nankai University School of Medicine, Nankai University, Tianjin, 300071, China
| | - Xinyu Wen
- Department of Clinical Laboratory, The PLA General Hospital, Beijing, 100853, China
| | - Yi Kong
- Department of Clinical Laboratory, The PLA General Hospital, Beijing, 100853, China.,Jining No. 1 People's Hospital, Jining Medical University, Jining, 272000, China
| | - Chen Chen
- Department of Clinical Laboratory, The PLA General Hospital, Beijing, 100853, China
| | - Ming Yang
- Department of Clinical Laboratory, The PLA General Hospital, Beijing, 100853, China.,Department of Laboratory Medicine, The Third XiangYa Hospital of Central South University, Changsha, 410013, China
| | - Shang He
- Department of Clinical Laboratory, The PLA General Hospital, Beijing, 100853, China
| | - Jianan Wang
- Department of Clinical Laboratory, The PLA General Hospital, Beijing, 100853, China
| | - Chengbin Wang
- Department of Clinical Laboratory, The PLA General Hospital, Beijing, 100853, China.,Nankai University School of Medicine, Nankai University, Tianjin, 300071, China
| |
Collapse
|
26
|
Transcriptomic analysis on the promoter regions discover gene networks involving mastitis in cattle. Microb Pathog 2019; 137:103801. [PMID: 31618669 DOI: 10.1016/j.micpath.2019.103801] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/27/2019] [Accepted: 10/11/2019] [Indexed: 01/11/2023]
Abstract
Mastitis is one of the costliest diseases in dairy farms caused by infection of different microorganisms such as Escherichia coli, Streptococcus uberis and Staphylococcus aureus. Promoters are significantly involved in regulating gene expression and shedding light on the mechanisms of transcriptional regulation in physiological and immunological processes of the infections. Exploiting regulatory elements such as transcription factor binding sites (TFBSs modules) on the promoter region could reveal co-regulated genes, which allow screating regulatory models and executing a cross-sectional analysis on several databases. In this study, the promoter regions of 11 genes associated with contagious mastitis including CCL4, CXCL8, STAT3, IKBKB, MAPK14, NFKBIA, NFKB1, TNF, IL18, IL6, and HCK were investigated to predict the activating regulatory modules on promoters and to discover the key related transcription factors. By exploring the promoter regions, 228 genes were discovered comprising the same transcription factors modules. Out of 228 genes, 36 were validated using five microarray datasets. The promoter research of these genes revealed that as many as 7 down-regulated and 12 up-regulated genes are predictable in the network. The genes whose functions were associated with the initial gene list (11 genes), were identified by DAVID queries with TFBSs models implying that the approach provides a clear image of the underlying regulatory mechanism of gene expression profile and offers a novel approach in designing gene networks in cattle.
Collapse
|
27
|
Gao J, Li T, Lu Z, Wang X, Zhao X, Ma Y. Proteomic Analyses of Mammary Glands Provide Insight into the Immunity and Metabolism Pathways Associated with Clinical Mastitis in Meat Sheep. Animals (Basel) 2019; 9:ani9060309. [PMID: 31159303 PMCID: PMC6617192 DOI: 10.3390/ani9060309] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/21/2019] [Accepted: 05/29/2019] [Indexed: 12/31/2022] Open
Abstract
Simple Summary Clinical mastitis is one of the most common diseases in sheep and is of major economic concern due to treatment costs, inadequate lamb growth and premature eliminate of ewes. To preliminarily explore possible regulatory roles of proteins involved in the host-pathogen interactions during intramammary infection triggered by this disease in meat sheep, mammary tissues were harvested from sheep with healthy and clinical mastitis caused by natural infection, and the differentially expressed proteins were identified in an infected group when compared to a healthy group, using comparative proteomics based on two-dimensional electrophoresis. Further enrichment analyses indicated that most of the differentially expressed proteins mainly engaged in regulating immune responses and metabolisms. These findings offer candidate proteins for further studies on molecular mechanisms of host defense response and metabolism in sheep cases. Abstract Clinical mastitis is still an intractable problem for sheep breeding. The natural immunologic mechanisms of the mammary gland against infections are not yet understood. For a better understanding of the disease-associated proteins during clinical mastitis in meat sheep, we performed two-dimensional electrophoresis (2-DE)-based comparative proteomic analyses of mammary tissues, including from healthy mammary tissues (HMTs) and from mammary tissues with clinical mastitis (CMMTs). The 2-DE results showed that a total of 10 up-regulated and 16 down-regulated proteins were identified in CMMTs when compared to HMTs. Of these, Gene Ontology (GO) and Kyoto Encyclopaedia of Genes and Genomes (KEGG) enrichment analyses revealed that most proteins were associated with immune responses or metabolisms. The results of qRT-PCR and Western blot for randomly selected four differentially expressed proteins (DEPs) including superoxide dismutase [Mn] (SOD2), annexin A2 (ANAX2), keratin 10 (KRT10) and endoplasmic reticulum resident protein 29 (ERP29) showed that their expression trends were consistent with 2-DE results except ANXA2 mRNA levels. This is an initial report describing the 2-DE-based proteomics study of the meat sheep mammary gland with clinical mastitis caused by natural infection, which provides additional insight into the immune and metabolic mechanisms during sheep mastitis.
Collapse
Affiliation(s)
- Jianfeng Gao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
| | - Taotao Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
- Sheep Breeding Biotechnology Engineering Laboratory of Gansu Province, Minqin 733300, China.
| | - Zengkui Lu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
| | - Xia Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
| | - Xingxu Zhao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China.
| | - Youji Ma
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
- Sheep Breeding Biotechnology Engineering Laboratory of Gansu Province, Minqin 733300, China.
| |
Collapse
|
28
|
Jiang Q, Zhao H, Li R, Zhang Y, Liu Y, Wang J, Wang X, Ju Z, Liu W, Hou M, Huang J. In silico genome-wide miRNA-QTL-SNPs analyses identify a functional SNP associated with mastitis in Holsteins. BMC Genet 2019; 20:46. [PMID: 31096910 PMCID: PMC6524300 DOI: 10.1186/s12863-019-0749-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 05/02/2019] [Indexed: 02/02/2023] Open
Abstract
Background Single-nucleotide polymorphisms (SNPs) in microRNAs (miRNAs) and their target binding sites affect miRNA function and are involved in biological processes and diseases, including bovine mastitis, a frequent inflammatory disease. Our previous study has shown that bta-miR-2899 is significantly upregulated in the mammary gland tissue of mastitis-infected cow than that of healthy cows. Results In the present study, we used a customized miRNAQTLsnp software and identified 5252 SNPs in 691 bovine pre-miRNAs, which are also located within the quantitative trait loci (QTLs) that are associated with mastitis and udder conformation-related traits. Using luciferase assay in the bovine mammary epithelial cells, we confirmed a candidate SNP (rs109462250, g. 42,198,087 G > A) in the seed region of bta-miR-2899 located in the somatic cell score (SCS)-related QTL (Chr.18: 33.9–43.9 Mbp), which affected the interaction of bta-miR-2899 and its putative target Spi-1 proto-oncogene (SPI1), a pivotal regulator in the innate and adaptive immune systems. Quantitative real-time polymerase chain reaction results showed that the relative expression of SPI1 in the mammary gland of AA genotype cows was significantly higher than that of GG genotype cows. The SNP genotypes were associated with SCS in Holstein cows. Conclusions Altogether, miRNA-related SNPs, which influence the susceptibility to mastitis, are one of the plausible mechanisms underlying mastitis via modulating the interaction of miRNAs and immune-related genes. These miRNA-QTL-SNPs, such as the SNP (rs109462250) of bta-miR-2899 may have implication for the mastitis resistance breeding program in Holstein cattle. Electronic supplementary material The online version of this article (10.1186/s12863-019-0749-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Qiang Jiang
- Dairy Cattle Research Center, Shandong Academy of Agricultural Science, Jinan, 250131, Shandong, People's Republic of China
| | - Han Zhao
- Dairy Cattle Research Center, Shandong Academy of Agricultural Science, Jinan, 250131, Shandong, People's Republic of China.,College of Life Sciences, Shandong Normal University, Jinan, 250014, Shandong, China
| | - Rongling Li
- Dairy Cattle Research Center, Shandong Academy of Agricultural Science, Jinan, 250131, Shandong, People's Republic of China
| | - Yaran Zhang
- Dairy Cattle Research Center, Shandong Academy of Agricultural Science, Jinan, 250131, Shandong, People's Republic of China
| | - Yong Liu
- Dairy Cattle Research Center, Shandong Academy of Agricultural Science, Jinan, 250131, Shandong, People's Republic of China
| | - Jinpeng Wang
- Dairy Cattle Research Center, Shandong Academy of Agricultural Science, Jinan, 250131, Shandong, People's Republic of China
| | - Xiuge Wang
- Dairy Cattle Research Center, Shandong Academy of Agricultural Science, Jinan, 250131, Shandong, People's Republic of China
| | - Zhihua Ju
- Dairy Cattle Research Center, Shandong Academy of Agricultural Science, Jinan, 250131, Shandong, People's Republic of China
| | - Wenhao Liu
- Dairy Cattle Research Center, Shandong Academy of Agricultural Science, Jinan, 250131, Shandong, People's Republic of China
| | - Minghai Hou
- Dairy Cattle Research Center, Shandong Academy of Agricultural Science, Jinan, 250131, Shandong, People's Republic of China
| | - Jinming Huang
- Dairy Cattle Research Center, Shandong Academy of Agricultural Science, Jinan, 250131, Shandong, People's Republic of China. .,College of Life Sciences, Shandong Normal University, Jinan, 250014, Shandong, China.
| |
Collapse
|
29
|
Iung LHS, Petrini J, Ramírez-Díaz J, Salvian M, Rovadoscki GA, Pilonetto F, Dauria BD, Machado PF, Coutinho LL, Wiggans GR, Mourão GB. Genome-wide association study for milk production traits in a Brazilian Holstein population. J Dairy Sci 2019; 102:5305-5314. [PMID: 30904307 DOI: 10.3168/jds.2018-14811] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 10/19/2018] [Indexed: 12/19/2022]
Abstract
Advances in the molecular area of selection have expanded knowledge of the genetic architecture of complex traits through genome-wide association studies (GWAS). Several GWAS have been performed so far, but confirming these results is not always possible due to several factors, including environmental conditions. Thus, our objective was to identify genomic regions associated with traditional milk production traits, including milk yield, somatic cell score, fat, protein and lactose percentages, and fatty acid composition in a Holstein cattle population producing under tropical conditions. For this, 75,228 phenotypic records from 5,981 cows and genotypic data of 56,256 SNP from 1,067 cows were used in a weighted single-step GWAS. A total of 46 windows of 10 SNP explaining more than 1% of the genetic variance across 10 Bos taurus autosomes (BTA) harbored well-known and novel genes. The MGST1 (BTA5), ABCG2 (BTA6), DGAT1 (BTA14), and PAEP (BTA11) genes were confirmed within some of the regions identified in our study. Potential novel genes involved in tissue damage and repair of the mammary gland (COL18A1), immune response (LTTC19), glucose homeostasis (SLC37A1), synthesis of unsaturated fatty acids (LTBP1), and sugar transport (SLC37A1 and MFSD4A) were found for milk yield, somatic cell score, fat percentage, and fatty acid composition. Our findings may assist genomic selection by using these regions to design a customized SNP array to improve milk production traits on farms with similar environmental conditions.
Collapse
Affiliation(s)
- L H S Iung
- Department of Animal Science, University of São Paulo (USP)/Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, São Paulo 13418900, Brazil
| | - J Petrini
- Department of Animal Science, University of São Paulo (USP)/Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, São Paulo 13418900, Brazil
| | - J Ramírez-Díaz
- Department of Animal Science, University of São Paulo (USP)/Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, São Paulo 13418900, Brazil
| | - M Salvian
- Department of Animal Science, University of São Paulo (USP)/Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, São Paulo 13418900, Brazil
| | - G A Rovadoscki
- Department of Animal Science, University of São Paulo (USP)/Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, São Paulo 13418900, Brazil
| | - F Pilonetto
- Department of Animal Science, University of São Paulo (USP)/Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, São Paulo 13418900, Brazil
| | - B D Dauria
- Department of Animal Science, University of São Paulo (USP)/Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, São Paulo 13418900, Brazil
| | - P F Machado
- Department of Animal Science, University of São Paulo (USP)/Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, São Paulo 13418900, Brazil
| | - L L Coutinho
- Department of Animal Science, University of São Paulo (USP)/Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, São Paulo 13418900, Brazil
| | - G R Wiggans
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, USDA, Beltsville, MD 20705-2350
| | - G B Mourão
- Department of Animal Science, University of São Paulo (USP)/Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, São Paulo 13418900, Brazil.
| |
Collapse
|
30
|
Soler L, Dąbrowski R, García N, Alava MA, Lampreave F, Piñeiro M, Wawron W, Szczubiał M, Bochniarz M. Acute-phase inter-alpha-trypsin inhibitor heavy chain 4 (ITIH4) levels in serum and milk of cows with subclinical mastitis caused by Streptococcus species and coagulase-negative Staphylococcus species. J Dairy Sci 2019; 102:539-546. [DOI: 10.3168/jds.2018-14953] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 08/30/2018] [Indexed: 12/22/2022]
|
31
|
Zhang H, Jiang H, Fan Y, Chen Z, Li M, Mao Y, Karrow NA, Loor JJ, Moore S, Yang Z. Transcriptomics and iTRAQ-Proteomics Analyses of Bovine Mammary Tissue with Streptococcus agalactiae-Induced Mastitis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:11188-11196. [PMID: 30096236 DOI: 10.1021/acs.jafc.8b02386] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Mastitis is a highly prevalent disease in dairy cows that causes large economic losses. Streptococcus agalactiae is a common contagious pathogen and a major cause of bovine mastitis. The immune response to intramammary infection with S. agalactiae in dairy cows is a very complex biological process. To understand the host immune response to S. agalactiae-induced mastitis, mammary gland of lactating Chinese Holstein cows was challenged with S. agalactiae via nipple tube perfusion. Visual inspection, analysis of milk somatic cell counts, histopathology, and transmission electron microscopy of mammary tissue were performed to confirm S. agalactiae-induced mastitis. Microarray and isobaric tags for relative and absolute quantitation (iTRAQ) were used to compare the transcriptomes and proteomes of healthy and mastitic mammary tissue. Compared with healthy tissue, a total of 129 differentially expressed genes (DEGs, fold change >2, p < 0.05) and 144 differentially expressed proteins (DEPs, fold change >1.2, p < 0.05) were identified in mammary tissue from S. agalactiae-challenged cows. Among the concordant 18 DEGs/DEPs, immunoglobulin M precursor, cathelicidin-7 precursor, integrin alpha-5, and complement C4-A-like isoform X1 were associated with mastitis. Intramammary infection with S. agalactiae triggered a complex host innate immune response that involved complement and coagulation cascades, ECM-receptor interaction, focal adhesion, and phagosome and bacterial invasion of epithelial cells pathways. These results provide candidate genes or proteins for further studies in the context of prevention and targeted treatment of bovine mastitis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Niel A Karrow
- Department of Animal Biosciences , University of Guelph , Guelph N1G 2W1 , Canada
| | - Juan J Loor
- Department of Animal Sciences & Division of Nutritional Sciences , University of Illinois , Urbana , Illinois 61801 , United States
| | - Stephen Moore
- Centre for Animal Science , University of Queensland , Saint Luci , Queensland 4072a , Australia
| | | |
Collapse
|
32
|
Zhang Y, Wang X, Jiang Q, Hao H, Ju Z, Yang C, Sun Y, Wang C, Zhong J, Huang J, Zhu H. DNA methylation rather than single nucleotide polymorphisms regulates the production of an aberrant splice variant of IL6R in mastitic cows. Cell Stress Chaperones 2018; 23:617-628. [PMID: 29353404 PMCID: PMC6045551 DOI: 10.1007/s12192-017-0871-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 11/22/2017] [Accepted: 12/21/2017] [Indexed: 12/28/2022] Open
Abstract
Interleukin-6 receptor-alpha (IL6R) interacts with IL6 and forms a ligand-receptor complex, which can stimulate various cellular responses, such as cell proliferation, cell differentiation, and activation of inflammatory processes. Both genetic mutation and epigenetic modification regulate gene transcription. We identified a novel splice variant of bovine IL6R, designated as IL6R-TV, which is characterized by the skipping of exon 2 of the NCBI-referenced IL6R gene (IL6R-reference). The expression levels of IL6R-TV and IL6R-reference transcripts were lower in normal mammary gland tissues. These transcripts play a potential role during inflammatory infection. We also detected two putative functional SNPs (g.19711 T > C and g.19731 G > C) located within the upstream 100 bp of exon 2. These SNPs formed two haplotypes (T-G and C-C). Two mutant pSPL3 exon-trapping plasmids (pSPL3-T-G and pSPL3-C-C) were transferred into the bovine mammary epithelial cells (MAC-T) and human embryonic kidney 293 T cells (HEK293T) to investigate the relationship between the two SNPs and the aberrant splicing of IL6R. DNA methylation levels of the alternatively spliced exon in normal and mastitis-infected mammary gland tissues were quantified through nested bisulfate sequencing PCR (BSP) and cloning sequencing. We found that DNA methylation regulated IL6R transcription. The DNA methylation level was high in mastitis-infected mammary gland tissues and stimulated IL6R expression, thereby promoting the inclusion of the alternatively spliced exon. The upregulated expression of the two transcripts was due to DNA methylation modification rather than genetic mutations.
Collapse
Affiliation(s)
- Yan Zhang
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, People's Republic of China
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan, Shandong, 250131, People's Republic of China
| | - Xiuge Wang
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan, Shandong, 250131, People's Republic of China
| | - Qiang Jiang
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan, Shandong, 250131, People's Republic of China
| | - Haisheng Hao
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, People's Republic of China
| | - Zhihua Ju
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan, Shandong, 250131, People's Republic of China
| | - Chunhong Yang
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan, Shandong, 250131, People's Republic of China
| | - Yan Sun
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan, Shandong, 250131, People's Republic of China
| | - Changfa Wang
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan, Shandong, 250131, People's Republic of China
| | - Jifeng Zhong
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan, Shandong, 250131, People's Republic of China
| | - Jinming Huang
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, People's Republic of China.
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan, Shandong, 250131, People's Republic of China.
- College of Life Sciences, Shandong Normal University, Jinan, Shandong, People's Republic of China.
| | - Huabin Zhu
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, People's Republic of China.
| |
Collapse
|
33
|
Ju Z, Jiang Q, Liu G, Wang X, Luo G, Zhang Y, Zhang J, Zhong J, Huang J. Solexa sequencing and custom microRNA chip reveal repertoire of microRNAs in mammary gland of bovine suffering from natural infectious mastitis. Anim Genet 2018; 49:3-18. [PMID: 29315680 DOI: 10.1111/age.12628] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2017] [Indexed: 12/13/2022]
Abstract
Identification of microRNAs (miRNAs), target genes and regulatory networks associated with innate immune and inflammatory responses and tissue damage is essential to elucidate the molecular and genetic mechanisms for resistance to mastitis. In this study, a combination of Solexa sequencing and custom miRNA chip approaches was used to profile the expression of miRNAs in bovine mammary gland at the late stage of natural infection with Staphylococcus aureus, a widespread mastitis pathogen. We found 383 loci corresponding to 277 known and 49 putative novel miRNAs, two potential mitrons and 266 differentially expressed miRNAs in the healthy and mastitic cows' mammary glands. Several interaction networks and regulators involved in mastitis susceptibility, such as ALCAM, COL1A1, APOP4, ITIH4, CRP and fibrinogen alpha (FGA), were highlighted. Significant down-regulation and location of bta-miR-26a, which targets FGA in the mastitic mammary glands, were validated using quantitative real-time PCR, in situ hybridization and dual-luciferase reporter assays. We propose that the observed miRNA variations in mammary glands of mastitic cows are related to the maintenance of immune and defense responses, cell proliferation and apoptosis, and tissue injury and healing during the late stage of infection. Furthermore, the effect of bta-miR-26a in mastitis, mediated at least in part by enhancing FGA expression, involves host defense, inflammation and tissue damage.
Collapse
Affiliation(s)
- Zhihua Ju
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, No. 159 North of Industry Road, Jinan, Shandong, 250131, China
| | - Qiang Jiang
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, No. 159 North of Industry Road, Jinan, Shandong, 250131, China
| | - Gang Liu
- National Center for Preservation and Utilization of Genetic Resources of Domestic Animals, National Animal Husbandry Service, Beijing, 100193, China
| | - Xiuge Wang
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, No. 159 North of Industry Road, Jinan, Shandong, 250131, China
| | - Guojing Luo
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, No. 159 North of Industry Road, Jinan, Shandong, 250131, China
| | - Yan Zhang
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, No. 159 North of Industry Road, Jinan, Shandong, 250131, China
| | - Jibin Zhang
- Department of Animal Science, Iowa State University, 2361 Kildee Hall, 806 Stange Road, Ames, IA, 50010, USA
| | - Jifeng Zhong
- Engineering Center of Animal Breeding and Reproduction, Jinan, Shandong, 250100, China
| | - Jinming Huang
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, No. 159 North of Industry Road, Jinan, Shandong, 250131, China.,Engineering Center of Animal Breeding and Reproduction, Jinan, Shandong, 250100, China
| |
Collapse
|
34
|
Identification of Host Defense-Related Proteins Using Label-Free Quantitative Proteomic Analysis of Milk Whey from Cows with Staphylococcus aureus Subclinical Mastitis. Int J Mol Sci 2017; 19:ijms19010078. [PMID: 29283389 PMCID: PMC5796028 DOI: 10.3390/ijms19010078] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/19/2017] [Accepted: 12/23/2017] [Indexed: 11/22/2022] Open
Abstract
Staphylococcus aureus is the most common contagious pathogen associated with bovine subclinical mastitis. Current diagnosis of S. aureus mastitis is based on bacteriological culture of milk samples and somatic cell counts, which lack either sensitivity or specificity. Identification of milk proteins that contribute to host defense and their variable responses to pathogenic stimuli would enable the characterization of putative biomarkers of subclinical mastitis. To accomplish this, milk whey samples from healthy and mastitic dairy cows were analyzed using a label-free quantitative proteomics approach. In total, 90 proteins were identified, of which 25 showed significant differential abundance between healthy and mastitic samples. In silico functional analyses indicated the involvement of the differentially abundant proteins in biological mechanisms and signaling pathways related to host defense including pathogen-recognition, direct antimicrobial function, and the acute-phase response. This proteomics and bioinformatics analysis not only facilitates the identification of putative biomarkers of S. aureus subclinical mastitis but also recapitulates previous findings demonstrating the abundance of host defense proteins in intramammary infection. All mass spectrometry data are available via ProteomeXchange with identifier PXD007516.
Collapse
|
35
|
Campos BM, do Carmo AS, da Silva TBR, Verardo LL, de Simoni Gouveia JJ, Mendes Malhado CH, Barbosa da Silva MVG, Souza Carneiro PL. Identification of artificial selection signatures in Caracu breed lines selected for milk production and meat production. Livest Sci 2017. [DOI: 10.1016/j.livsci.2017.10.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
36
|
Li L, Wang Y, Li C, Wang G. Proteomic analysis to unravel the effect of heat stress on gene expression and milk synthesis in bovine mammary epithelial cells. Anim Sci J 2017; 88:2090-2099. [DOI: 10.1111/asj.12880] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 06/16/2017] [Indexed: 01/25/2023]
Affiliation(s)
- Lian Li
- College of Animal Science and Technology; Nanjing Agricultural University; Nanjing China
| | - Yiru Wang
- College of Animal Science and Technology; Nanjing Agricultural University; Nanjing China
| | - Chengmin Li
- College of Animal Science and Technology; Nanjing Agricultural University; Nanjing China
| | - Genlin Wang
- College of Animal Science and Technology; Nanjing Agricultural University; Nanjing China
| |
Collapse
|
37
|
Li Y, Liu X, Niu L, Li Q. Proteomics Analysis Reveals an Important Role for the PPAR Signaling Pathway in DBDCT-Induced Hepatotoxicity Mechanisms. Molecules 2017; 22:E1113. [PMID: 28684700 PMCID: PMC6152083 DOI: 10.3390/molecules22071113] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Accepted: 06/28/2017] [Indexed: 12/16/2022] Open
Abstract
A patented organotin di-n-butyl-di-(4-chlorobenzohydroxamato)tin (DBDCT) with high a antitumor activity was designed, however, its antitumor and toxic mechanisms have not yet been clearly illustrated. Hepatic proteins of DBDCT-treated rats were identified and analyzed using LC-MS/MS with label-free quantitative technology. In total, 149 differentially expressed proteins were successfully identified. Five protein and mRNA expressions were involved in the peroxisome proliferator-activated receptor (PPAR) signaling pathway, including a scavenger receptor (CD36), adipocyte fatty acid binding protein 4 (FABP4), enoyl-CoA hydratase (EHHADH), acetyl-CoA acyltransferase 1 (ACAA1), and phosphoenolpyruvate carboxykinase (PEPCK) in DBDCT-treated Rat Liver (BRL) cells. PPAR-α and PPAR-λ were also significantly decreased at both protein and mRNA levels. Furthermore, compared with the DBDCT treatment group, a special blocking agent of PPAR-λ T0070907 was used to evaluate the relationship between PPAR-λ and its downstream genes. Our studies indicated that DBDCT may serve as a modulator of PPAR-λ, further up-regulating CD36, FABP4 and EHHADH on the PPAR signal pathway.
Collapse
Affiliation(s)
- Yunlan Li
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan 030001, China.
- Department of Traditional Chinese Medicine, Shanxi University of Traditional Chinese Medicine, Taiyuan 030001, China.
| | - Xinxin Liu
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan 030001, China.
| | - Lin Niu
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan 030001, China.
| | - Qingshan Li
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan 030001, China.
- Department of Traditional Chinese Medicine, Shanxi University of Traditional Chinese Medicine, Taiyuan 030001, China.
| |
Collapse
|
38
|
Dai W, Wang Q, Zou Y, White R, Liu J, Liu H. Short communication: Comparative proteomic analysis of the lactating and nonlactating bovine mammary gland. J Dairy Sci 2017; 100:5928-5935. [DOI: 10.3168/jds.2016-12366] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 03/06/2017] [Indexed: 01/09/2023]
|
39
|
Yan G, Li X, Peng Y, Long B, Fan Q, Wang Z, Shi M, Xie C, Zhao L, Yan X. The Fatty Acid β-Oxidation Pathway is Activated by Leucine Deprivation in HepG2 Cells: A Comparative Proteomics Study. Sci Rep 2017; 7:1914. [PMID: 28507299 PMCID: PMC5432498 DOI: 10.1038/s41598-017-02131-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 04/07/2017] [Indexed: 12/23/2022] Open
Abstract
Leucine (Leu) is a multifunctional essential amino acid that plays crucial role in various cellular processes. However, the integral effect of Leu on the hepatic proteome remains largely unknown. Here, we for the first time applied an isobaric tags for relative and absolute quantification (iTRAQ)-based comparative proteomics strategy to investigate the proteome alteration induced by Leu deprivation in human hepatocellular carcinoma (HepG2) cells. A total of 4,111 proteins were quantified; 43 proteins were further identified as differentially expressed proteins between the normal and Leu deprivation groups. Bioinformatics analysis showed that the differentially expressed proteins were involved in various metabolic processes, including amino acid and lipid metabolism, as well as degradation of ethanol. Interestingly, several proteins involved in the fatty acid β-oxidation pathway, including ACSL1, ACADS, and ACOX1, were up-regulated by Leu deprivation. In addition, Leu deprivation led to the reduction of cellular triglycerides in HepG2 cells. These results reveal that the fatty acid β-oxidation pathway is activated by Leu deprivation in HepG2 cells, and provide new insights into the regulatory function of Leu in multiple cellular processes, especially fatty acid metabolism.
Collapse
Affiliation(s)
- Guokai Yan
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China.,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety, Wuhan, 430070, Hubei, China
| | - Xiuzhi Li
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China.,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety, Wuhan, 430070, Hubei, China
| | - Ying Peng
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China.,State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Baisheng Long
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China.,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety, Wuhan, 430070, Hubei, China
| | - Qiwen Fan
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China.,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety, Wuhan, 430070, Hubei, China
| | - Zhichang Wang
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China.,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety, Wuhan, 430070, Hubei, China
| | - Min Shi
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China.,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety, Wuhan, 430070, Hubei, China
| | - Chunlin Xie
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China.,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety, Wuhan, 430070, Hubei, China
| | - Li Zhao
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China.,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety, Wuhan, 430070, Hubei, China
| | - Xianghua Yan
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China. .,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China. .,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety, Wuhan, 430070, Hubei, China.
| |
Collapse
|
40
|
Li S, Wang Q, Lin X, Jin X, Liu L, Wang C, Chen Q, Liu J, Liu H. The Use of "Omics" in Lactation Research in Dairy Cows. Int J Mol Sci 2017; 18:ijms18050983. [PMID: 28475129 PMCID: PMC5454896 DOI: 10.3390/ijms18050983] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 04/17/2017] [Accepted: 04/25/2017] [Indexed: 02/07/2023] Open
Abstract
“Omics” is the application of genomics, transcriptomics, proteomics, and metabolomics in biological research. Over the years, tremendous amounts of biological information has been gathered regarding the changes in gene, mRNA and protein expressions as well as metabolites in different physiological conditions and regulations, which has greatly advanced our understanding of the regulation of many physiological and pathophysiological processes. The aim of this review is to comprehensively describe the advances in our knowledge regarding lactation mainly in dairy cows that were obtained from the “omics” studies. The “omics” technologies have continuously been preferred as the technical tools in lactation research aiming to develop new nutritional, genetic, and management strategies to improve milk production and milk quality in dairy cows.
Collapse
Affiliation(s)
- Shanshan Li
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Quanjuan Wang
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Xiujuan Lin
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Xiaolu Jin
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Lan Liu
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Caihong Wang
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Qiong Chen
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Jianxin Liu
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Hongyun Liu
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
41
|
Bulgari O, Dong X, Roca AL, Caroli AM, Loor JJ. Innate immune responses induced by lipopolysaccharide and lipoteichoic acid in primary goat mammary epithelial cells. J Anim Sci Biotechnol 2017; 8:29. [PMID: 28396748 PMCID: PMC5379715 DOI: 10.1186/s40104-017-0162-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 03/21/2017] [Indexed: 12/24/2022] Open
Abstract
Background Innate immune responses induced by in vitro stimulation of primary mammary epithelial cells (MEC) using Gram-negative lipopolysaccharide (LPS) and Gram-positive lipoteichoic acid (LTA) bacterial cell wall components are well- characterized in bovine species. The objective of the current study was to characterize the downstream regulation of the inflammatory response induced by Toll-like receptors in primary goat MEC (pgMEC). We performed quantitative real-time RT-PCR (qPCR) to measure mRNA levels of 9 genes involved in transcriptional regulation or antibacterial activity: Toll-like receptor 2 (TLR2), Toll-like receptor 4 (TLR4), prostaglandin-endoperoxide synthase 2 (PTGS2), interferon induced protein with tetratricopeptide repeats 3 (IFIT3), interferon regulatory factor 3 (IRF3), myeloid differentiation primary response 88 (MYD88), nuclear factor of kappa light polypeptide gene enhancer in B-cells 1 (NFKB1), Toll interacting protein (TOLLIP), and lactoferrin (LTF). Furthermore, we analyzed 7 cytokines involved in Toll-like receptor signaling pathways: C-C motif chemokine ligand 2 (CCL2), C-C motif chemokine ligand 5 (CCL5), C-X-C motif chemokine ligand 6 (CXCL6), interleukin 8 (CXCL8), interleukin 1 beta (IL1B), interleukin 6 (IL6), and tumor necrosis factor alpha (TNF). Results Stimulation of pgMEC with LPS for 3 h led to an increase in expression of CCL2, CXCL6, IL6, CXCL8, PTGS2, IFIT3, MYD88, NFKB1, and TLR4 (P < 0.05). Except for IL6, and PTGS2, the same genes had greater expression than controls at 6 h post-LPS (P < 0.05). Expression of CCL5, PTGS2, IFIT3, NFKB1, TLR4, and TOLLIP was greater than controls after 3 h of incubation with LTA (P < 0.05). Compared to controls, stimulation with LTA for 6 h led to greater expression of PTGS2, IFIT3, NFKB1, and TOLLIP (P < 0.05) whereas the expression of CXCL6, CXCL8, and TLR4 was lower (P < 0.05). At 3 h incubation with both toxins compared to controls a greater expression (P < 0.05) of CCL2, CCL5, CXCL6, CXCL8, IL6, PTGS2, IFIT3, IRF3, MYD88, and NFKB1 was detected. After 6 h of incubation with both toxins, the expression of CCL2, CXCL6, IFIT3, MYD88, NFKB1, and TLR4 was higher than the controls (P < 0.05). Conclusions Data indicate that in the goat MEC, LTA induces a weaker inflammatory response than LPS. This may be related to the observation that gram-positive bacteria cause chronic mastitis more often than gram-negative infections. Electronic supplementary material The online version of this article (doi:10.1186/s40104-017-0162-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Omar Bulgari
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA.,Department of Molecular and Translational Medicine, University of Brescia, Brescia, 25123 Italy
| | - Xianwen Dong
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA.,Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130 China
| | - Alfred L Roca
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| | - Anna M Caroli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, 25123 Italy
| | - Juan J Loor
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA.,Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| |
Collapse
|
42
|
Complementary transcriptomic and proteomic analyses reveal regulatory mechanisms of milk protein production in dairy cows consuming different forages. Sci Rep 2017; 7:44234. [PMID: 28290485 PMCID: PMC5349593 DOI: 10.1038/srep44234] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 02/06/2017] [Indexed: 11/19/2022] Open
Abstract
Forage plays a critical role in the milk production of dairy cows; however, the mechanisms regulating bovine milk synthesis in dairy cows fed high forage rations with different basal forage types are not well-understood. In the study, rice straw (RS, low-quality) and alfalfa hay (AH, high-quality) diets were fed to lactating cows to explore how forage quality affected the molecular mechanisms regulating milk production using RNA-seq transcriptomic method with iTRAQ proteomic technique. A total of 554 transcripts (423 increased and 131 decreased) and 517 proteins (231 up-regulated and 286 down-regulated) were differentially expressed in the mammary glands of the two groups. The correlation analysis demonstrated seven proteins (six up-regulated and one down-regulated) had consistent mRNA expression. Functional analysis of the differentially expressed transcripts/proteins suggested that enhanced capacity for energy and fatty acid metabolism, increased protein degradation, reduced protein synthesis, decreased amino acid metabolism and depressed cell growth were related to RS consumption. The results indicated cows consuming RS diets may have had depressed milk protein synthesis because these animals had decreased capacity for protein synthesis, enhanced proteolysis, inefficient energy generation and reduced cell growth. Additional work evaluating RS- and AH-based rations may help better isolate molecular adaptations to low nutrient availability during lactation.
Collapse
|
43
|
Shu S, Xu C, Xia C, Xiao X, Wang G, Fan Z, Cao Y, Wang Y, Zhang H. Identification of novel pathways in pathogenesis of ketosis in dairy cows via iTRAQ/MS. J Vet Res 2016. [DOI: 10.1515/jvetres-2016-0047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Abstract
Introduction: To identify novel pathways involved in the pathogenesis of ketosis, an isobaric tag for relative and absolute quantitation/mass spectrometry was used to define differences in protein expression profiles between healthy dairy cows and those with clinical or subclinical ketosis.
Material and Methods: To define the novel pathways of ketosis in cattle, the differences in protein expression were analysed by bioinformatics. Go Ontology and Pathway analysis were carried out for enrich the role and pathway of the different expression proteins between healthy dairy cows and those with clinical or subclinical ketosis.
Results: Differences were identified in 19 proteins, 16 of which were relatively up-regulated while the remaining 3 were relatively down-regulated. Sorbitol dehydrogenase (SORD) and glyceraldehyde-3-phosphate dehydrogenase (G3PD) were up-regulated in cattle with ketosis. SORD and G3PD promoted glycolysis. These mechanisms lead to pyruvic acid production increase and ketone body accumulation.
Conclusion: The novel pathways of glycolysis provided new evidence for the research of ketosis.
Collapse
Affiliation(s)
- Shi Shu
- Department of College of Animal Science and Veterinary Medicine, Heilongjiang BaYi Agriculture University, Daqing 163319, China
| | - Chuchu Xu
- Department of College of Animal Science and Veterinary Medicine, Heilongjiang BaYi Agriculture University, Daqing 163319, China
| | - Cheng Xia
- Department of College of Animal Science and Veterinary Medicine, Heilongjiang BaYi Agriculture University, Daqing 163319, China
- Department of Synergetic Innovation Center of Food Safety and Nutrition, Northeast Agricultural University, Harbin 150030, China
| | - Xinhuan Xiao
- Department of College of Animal Science and Veterinary Medicine, Heilongjiang BaYi Agriculture University, Daqing 163319, China
| | - Gang Wang
- Department of College of Animal Science and Veterinary Medicine, Heilongjiang BaYi Agriculture University, Daqing 163319, China
| | - Ziling Fan
- Department of College of Animal Science and Veterinary Medicine, Heilongjiang BaYi Agriculture University, Daqing 163319, China
| | - Yu Cao
- Department of College of Animal Science and Veterinary Medicine, Heilongjiang BaYi Agriculture University, Daqing 163319, China
| | - Yanhui Wang
- Department of College of Animal Science and Veterinary Medicine, Heilongjiang BaYi Agriculture University, Daqing 163319, China
| | - Hongyou Zhang
- Department of College of Animal Science and Veterinary Medicine, Heilongjiang BaYi Agriculture University, Daqing 163319, China
| |
Collapse
|
44
|
Wang XG, Ju ZH, Hou MH, Jiang Q, Yang CH, Zhang Y, Sun Y, Li RL, Wang CF, Zhong JF, Huang JM. Deciphering Transcriptome and Complex Alternative Splicing Transcripts in Mammary Gland Tissues from Cows Naturally Infected with Staphylococcus aureus Mastitis. PLoS One 2016; 11:e0159719. [PMID: 27459697 PMCID: PMC4961362 DOI: 10.1371/journal.pone.0159719] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 07/06/2016] [Indexed: 11/20/2022] Open
Abstract
Alternative splicing (AS) contributes to the complexity of the mammalian proteome and plays an important role in diseases, including infectious diseases. The differential AS patterns of these transcript sequences between the healthy (HS3A) and mastitic (HS8A) cows naturally infected by Staphylococcus aureus were compared to understand the molecular mechanisms underlying mastitis resistance and susceptibility. In this study, using the Illumina paired-end RNA sequencing method, 1352 differentially expressed genes (DEGs) with higher than twofold changes were found in the HS3A and HS8A mammary gland tissues. Gene ontology and KEGG pathway analyses revealed that the cytokine–cytokine receptor interaction pathway is the most significantly enriched pathway. Approximately 16k annotated unigenes were respectively identified in two libraries, based on the bovine Bos taurus UMD3.1 sequence assembly and search. A total of 52.62% and 51.24% annotated unigenes were alternatively spliced in term of exon skipping, intron retention, alternative 5′ splicing and alternative 3ʹ splicing. Additionally, 1,317 AS unigenes were HS3A-specific, whereas 1,093 AS unigenes were HS8A-specific. Some immune-related genes, such as ITGB6, MYD88, ADA, ACKR1, and TNFRSF1B, and their potential relationships with mastitis were highlighted. From Chromosome 2, 4, 6, 7, 10, 13, 14, 17, and 20, 3.66% (HS3A) and 5.4% (HS8A) novel transcripts, which harbor known quantitative trait locus associated with clinical mastitis, were identified. Many DEGs in the healthy and mastitic mammary glands are involved in immune, defense, and inflammation responses. These DEGs, which exhibit diverse and specific splicing patterns and events, can endow dairy cattle with the potential complex genetic resistance against mastitis.
Collapse
Affiliation(s)
- Xiu Ge Wang
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan, Shandong, P.R. China
| | - Zhi Hua Ju
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan, Shandong, P.R. China
| | - Ming Hai Hou
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan, Shandong, P.R. China
| | - Qiang Jiang
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan, Shandong, P.R. China
| | - Chun Hong Yang
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan, Shandong, P.R. China
| | - Yan Zhang
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan, Shandong, P.R. China
| | - Yan Sun
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan, Shandong, P.R. China
| | - Rong Ling Li
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan, Shandong, P.R. China
| | - Chang Fa Wang
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan, Shandong, P.R. China
| | - Ji Feng Zhong
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan, Shandong, P.R. China
| | - Jin Ming Huang
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan, Shandong, P.R. China
- * E-mail:
| |
Collapse
|
45
|
Verma A, Ambatipudi K. Challenges and opportunities of bovine milk analysis by mass spectrometry. Clin Proteomics 2016; 13:8. [PMID: 27095950 PMCID: PMC4836106 DOI: 10.1186/s12014-016-9110-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 03/18/2016] [Indexed: 12/11/2022] Open
Abstract
Bovine milk and its products (e.g. cheese, yoghurt) are an important part of human diet with beneficial effects for all ages. Although analyses of different milk components (e.g. proteins, lipids) pose huge challenges, the use of mass spectrometric (MS)-based techniques is steadily improving our understanding of the complexity of the biological traits that effect milk yield and its components to meet the global demand arising from population growth. In addition, different milk constituents have various applications in veterinary research and medicine, including early disease diagnosis. The aim of the review is to present an overview of the progress made in MS-based analysis of milk, and suggest a multi-pronged MS strategy to better explore different milk components for translational and clinical utilities.
Collapse
Affiliation(s)
- Aparna Verma
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667 India
| | - Kiran Ambatipudi
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667 India
| |
Collapse
|
46
|
A proteomics-based identification of putative biomarkers for disease in bovine milk. Vet Immunol Immunopathol 2016; 174:11-8. [PMID: 27185258 DOI: 10.1016/j.vetimm.2016.04.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 04/01/2016] [Accepted: 04/04/2016] [Indexed: 10/22/2022]
Abstract
The objective of this study was to identify and characterize potential biomarkers for disease resistance in bovine milk that can be used to indicate dairy cows at risk to develop future health problems. We selected high- and low-resistant cows i.e. cows that were less or more prone to develop diseases according to farmers' experience and notifications in the disease registration data. The protein composition of milk serum samples of these high- and low-resistant cows were compared using NanoLC-MS/MS. In total 78 proteins were identified and quantified of which 13 were significantly more abundant in low-resistant cows than high-resistant cows. Quantification of one of these proteins, lactoferrin (LF), by ELISA in a new and much larger set of full fat milk samples confirmed higher LF levels in low- versus high-resistant cows. These high- and low-resistant cows were selected based on comprehensive disease registration and milk recording data, and absence of disease for at least 4 weeks. Relating the experienced diseases to LF levels in milk showed that lameness was associated with higher LF levels in milk. Analysis of the prognostic value of LF showed that low-resistant cows with higher LF levels in milk had a higher risk of being culled within one year after testing than high-resistant cows. In conclusion, LF in milk are higher in low-resistant cows, are associated with lameness and may be a prognostic marker for risk of premature culling.
Collapse
|
47
|
Comparative Proteomics Analysis Reveals L-Arginine Activates Ethanol Degradation Pathways in HepG2 Cells. Sci Rep 2016; 6:23340. [PMID: 26983598 PMCID: PMC4794764 DOI: 10.1038/srep23340] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 03/04/2016] [Indexed: 12/18/2022] Open
Abstract
L-Arginine (Arg) is a versatile amino acid that plays crucial roles in a wide range of physiological and pathological processes. In this study, to investigate the alteration induced by Arg supplementation in proteome scale, isobaric tags for relative and absolute quantification (iTRAQ) based proteomic approach was employed to comparatively characterize the differentially expressed proteins between Arg deprivation (Ctrl) and Arg supplementation (+Arg) treated human liver hepatocellular carcinoma (HepG2) cells. A total of 21 proteins were identified as differentially expressed proteins and these 21 proteins were all up-regulated by Arg supplementation. Six amino acid metabolism-related proteins, mostly metabolic enzymes, showed differential expressions. Intriguingly, Ingenuity Pathway Analysis (IPA) based pathway analysis suggested that the three ethanol degradation pathways were significantly altered between Ctrl and +Arg. Western blotting and enzymatic activity assays validated that the key enzymes ADH1C, ALDH1A1, and ALDH2, which are mainly involved in ethanol degradation pathways, were highly differentially expressed, and activated between Ctrl and +Arg in HepG2 cells. Furthermore, 10 mM Arg significantly attenuated the cytotoxicity induced by 100 mM ethanol treatment (P < 0.0001). This study is the first time to reveal that Arg activates ethanol degradation pathways in HepG2 cells.
Collapse
|
48
|
Macciotta N, Gaspa G, Bomba L, Vicario D, Dimauro C, Cellesi M, Ajmone-Marsan P. Genome-wide association analysis in Italian Simmental cows for lactation curve traits using a low-density (7K) SNP panel. J Dairy Sci 2015; 98:8175-85. [DOI: 10.3168/jds.2015-9500] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 06/22/2015] [Indexed: 01/15/2023]
|
49
|
Zhu Z, Yang F, Zhang K, Cao W, Jin Y, Wang G, Mao R, Li D, Guo J, Liu X, Zheng H. Comparative Proteomic Analysis of Wild-Type and SAP Domain Mutant Foot-and-Mouth Disease Virus-Infected Porcine Cells Identifies the Ubiquitin-Activating Enzyme UBE1 Required for Virus Replication. J Proteome Res 2015; 14:4194-206. [DOI: 10.1021/acs.jproteome.5b00310] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Zixiang Zhu
- State Key Laboratory of Veterinary
Etiological Biology, National Foot and Mouth Diseases Reference Laboratory,
Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Fan Yang
- State Key Laboratory of Veterinary
Etiological Biology, National Foot and Mouth Diseases Reference Laboratory,
Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Keshan Zhang
- State Key Laboratory of Veterinary
Etiological Biology, National Foot and Mouth Diseases Reference Laboratory,
Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Weijun Cao
- State Key Laboratory of Veterinary
Etiological Biology, National Foot and Mouth Diseases Reference Laboratory,
Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Ye Jin
- State Key Laboratory of Veterinary
Etiological Biology, National Foot and Mouth Diseases Reference Laboratory,
Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Guoqing Wang
- State Key Laboratory of Veterinary
Etiological Biology, National Foot and Mouth Diseases Reference Laboratory,
Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Ruoqing Mao
- State Key Laboratory of Veterinary
Etiological Biology, National Foot and Mouth Diseases Reference Laboratory,
Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Dan Li
- State Key Laboratory of Veterinary
Etiological Biology, National Foot and Mouth Diseases Reference Laboratory,
Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jianhong Guo
- State Key Laboratory of Veterinary
Etiological Biology, National Foot and Mouth Diseases Reference Laboratory,
Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiangtao Liu
- State Key Laboratory of Veterinary
Etiological Biology, National Foot and Mouth Diseases Reference Laboratory,
Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Haixue Zheng
- State Key Laboratory of Veterinary
Etiological Biology, National Foot and Mouth Diseases Reference Laboratory,
Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
50
|
Zhang L, Boeren S, van Hooijdonk ACM, Vervoort JM, Hettinga KA. A proteomic perspective on the changes in milk proteins due to high somatic cell count. J Dairy Sci 2015; 98:5339-51. [PMID: 26094216 DOI: 10.3168/jds.2014-9279] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 04/27/2015] [Indexed: 12/21/2022]
Abstract
Although cows with subclinical mastitis have no difference in the appearance of their milk, milk composition and milk quality are altered because of the inflammation. To know the changes in milk quality with different somatic cell count (SCC) levels, 5 pooled bovine milk samples with SCC from 10(5) to 10(6) cells/mL were analyzed qualitatively and quantitatively using both one-dimension sodium dodecyl sulfate PAGE and filter-aided sample preparation coupled with dimethyl labeling, both followed by liquid chromatography tandem mass spectrometry. Minor differences were found on the qualitative level in the proteome from milk with different SCC levels, whereas the concentration of milk proteins showed remarkable changes. Not only immune-related proteins (cathelicidins, IGK protein, CD59 molecule, complement regulatory protein, lactadherin), but also proteins with other biological functions (e.g., lipid metabolism: platelet glycoprotein 4, butyrophilin subfamily 1 member A1, perilipin-2) were significantly different in milk from cows with high SCC level compared with low SCC level. The increased concentration of protease inhibitors in the milk with higher SCC levels may suggest a protective role in the mammary gland against protease activity. Prostaglandin-H2 D-isomerase showed a linear relation with SCC, which was confirmed with an ELISA. However, the correlation coefficient was lower in individual cows compared with bulk milk. These results indicate that prostaglandin-H2 D-isomerase may be used as an indicator to evaluate bulk milk quality and thereby reduce the economic loss in the dairy industry. The results from this study reflect the biological phenomena occurring during subclinical mastitis and in addition provide a potential indicator for the detection of bulk milk with high SCC.
Collapse
Affiliation(s)
- L Zhang
- Dairy Science and Technology Group, Wageningen University, 6700EV, Wageningen, the Netherlands
| | - S Boeren
- Laboratory of Biochemistry, Wageningen University, 6700EV, Wageningen, the Netherlands
| | - A C M van Hooijdonk
- Dairy Science and Technology Group, Wageningen University, 6700EV, Wageningen, the Netherlands
| | - J M Vervoort
- Laboratory of Biochemistry, Wageningen University, 6700EV, Wageningen, the Netherlands
| | - K A Hettinga
- Dairy Science and Technology Group, Wageningen University, 6700EV, Wageningen, the Netherlands.
| |
Collapse
|