1
|
Zhang Y, Cao M, Li Q, Yu F. Genome-wide identification and expression analysis of TPP gene family under salt stress in peanut (Arachis hypogaea L.). PLoS One 2024; 19:e0305730. [PMID: 39024233 PMCID: PMC11257338 DOI: 10.1371/journal.pone.0305730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 06/04/2024] [Indexed: 07/20/2024] Open
Abstract
Trehalose-6-phosphate phosphatase (TPP), a key enzyme for trehalose biosynthesis in plants, plays a pivotal role in the growth and development of higher plants, as well as their adaptations to various abiotic stresses. Employing bioinformatics techniques, 45 TPP genes distributed across 17 chromosomes were identified with conserved Trehalose-PPase domains in the peanut genome, aiming to screen those involved in salt tolerance. Collinearity analysis showed that 22 TPP genes from peanut formed homologous gene pairs with 9 TPP genes from Arabidopsis and 31 TPP genes from soybean, respectively. Analysis of cis-acting elements in the promoters revealed the presence of multiple hormone- and abiotic stress-responsive elements in the promoter regions of AhTPPs. Expression pattern analysis showed that members of the TPP gene family in peanut responded significantly to various abiotic stresses, including low temperature, drought, and nitrogen deficiency, and exhibited certain tissue specificity. Salt stress significantly upregulated AhTPPs, with a higher number of responsive genes observed at the seedling stage compared to the podding stage. The intuitive physiological effect was reflected in the significantly higher accumulation of trehalose content in the leaves of plants under salt stress compared to the control. These findings indicate that the TPP gene family plays a crucial role in peanut's response to abiotic stresses, laying the foundation for further functional studies and utilization of these genes.
Collapse
Affiliation(s)
- Yanfeng Zhang
- College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Minxuan Cao
- College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qiuzhi Li
- Liaocheng Academy of Agricultural Sciences, Liaocheng, Shandong, China
| | - Fagang Yu
- Liaocheng Academy of Agricultural Sciences, Liaocheng, Shandong, China
| |
Collapse
|
2
|
Ijaz A, Anwar Z, Ali A, Ditta A, Shani MY, Haidar S, Wang B, Fang L, Khan SMUD, Khan MKR. Unraveling the genetic and molecular basis of heat stress in cotton. Front Genet 2024; 15:1296622. [PMID: 38919956 PMCID: PMC11196824 DOI: 10.3389/fgene.2024.1296622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 04/29/2024] [Indexed: 06/27/2024] Open
Abstract
Human activities and climate change have resulted in frequent and intense weather fluctuations, leading to diverse abiotic stresses on crops which hampers greatly their metabolic activities. Heat stress, a prevalent abiotic factor, significantly influences cotton plant biological activities resulting in reducing yield and production. We must deepen our understanding of how plants respond to heat stress across various dimensions, encompassing genes, RNAs, proteins, metabolites for effective cotton breeding. Multi-omics methods, primarily genomics, transcriptomics, proteomics, metabolomics, and phenomics, proves instrumental in studying cotton's responses to abiotic stresses. Integrating genomics, transcriptomics, proteomics, and metabolomic is imperative for our better understanding regarding genetics and molecular basis of heat tolerance in cotton. The current review explores fundamental omics techniques, covering genomics, transcriptomics, proteomics, and metabolomics, to highlight the progress made in cotton omics research.
Collapse
Affiliation(s)
- Aqsa Ijaz
- Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Zunaira Anwar
- Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Ahmad Ali
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Allah Ditta
- Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
- Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad, Pakistan
| | - Muhammad Yousaf Shani
- Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Sajjad Haidar
- Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
- Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad, Pakistan
| | - Boahua Wang
- School of Life Sciences, Nantong University, Nantong, China
| | - Liu Fang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
| | | | - Muhammad Kashif Riaz Khan
- Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
- Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad, Pakistan
| |
Collapse
|
3
|
Hao X, He S. Genome-wide identification, classification and expression analysis of the heat shock transcription factor family in Garlic (Allium sativum L.). BMC PLANT BIOLOGY 2024; 24:421. [PMID: 38760734 PMCID: PMC11102281 DOI: 10.1186/s12870-024-05018-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 04/12/2024] [Indexed: 05/19/2024]
Abstract
BACKGROUND The heat shock transcription factor (HSF) plays a crucial role in the regulatory network by coordinating responses to heat stress as well as other stress signaling pathways. Despite extensive studies on HSF functions in various plant species, our understanding of this gene family in garlic, an important crop with nutritional and medicinal value, remains limited. In this study, we conducted a comprehensive investigation of the entire garlic genome to elucidate the characteristics of the AsHSF gene family. RESULTS In this study, we identified a total of 17 AsHSF transcription factors. Phylogenetic analysis classified these transcription factors into three subfamilies: Class A (9 members), Class B (6 members), and Class C (2 members). Each subfamily was characterized by shared gene structures and conserved motifs. The evolutionary features of the AsHSF genes were investigated through a comprehensive analysis of chromosome location, conserved protein motifs, and gene duplication events. These findings suggested that the evolution of AsHSF genes is likely driven by both tandem and segmental duplication events. Moreover, the nucleotide diversity of the AsHSF genes decreased by only 0.0002% from wild garlic to local garlic, indicating a slight genetic bottleneck experienced by this gene family during domestication. Furthermore, the analysis of cis-acting elements in the promoters of AsHSF genes indicated their crucial roles in plant growth, development, and stress responses. qRT-PCR analysis, co-expression analysis, and protein interaction prediction collectively highlighted the significance of Asa6G04911. Subsequent experimental investigations using yeast two-hybridization and yeast induction experiments confirmed its interaction with HSP70/90, reinforcing its significance in heat stress. CONCLUSIONS This study is the first to unravel and analyze the AsHSF genes in garlic, thereby opening up new avenues for understanding their functions. The insights gained from this research provide a valuable resource for future investigations, particularly in the functional analysis of AsHSF genes.
Collapse
Affiliation(s)
- Xiaomeng Hao
- Institute of Neurobiology, Jining Medical University, Jining, China
| | - Shutao He
- Institute of Biotechnology and Health, Beijing Academy of Science and Technology, Beijing, China.
| |
Collapse
|
4
|
Wang Z, Wang P, He J, Kong L, Zhang W, Liu W, Liu X, Ma W. Genome-Wide Analysis of the HSF Gene Family Reveals Its Role in Astragalus mongholicus under Different Light Conditions. BIOLOGY 2024; 13:280. [PMID: 38666892 PMCID: PMC11048653 DOI: 10.3390/biology13040280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/18/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024]
Abstract
Astragalus mongholicus is a traditional Chinese medicine (TCM) with important medicinal value and is widely used worldwide. Heat shock (HSF) transcription factors are among the most important transcription factors in plants and are involved in the transcriptional regulation of various stress responses, including drought, salinity, oxidation, osmotic stress, and high light, thereby regulating growth and developmental processes. However, the HFS gene family has not yet been identified in A. mongholicus, and little is known regarding the role of HSF genes in A. mongholicus. This study is based on whole genome analysis of A. mongholicus, identifying a total of 22 AmHSF genes and analyzing their physicochemical properties. Divided into three subgroups based on phylogenetic and gene structural characteristics, including subgroup A (12), subgroup B (9), and subgroup C (1), they are randomly distributed in 8 out of 9 chromosomes of A. mongholicus. In addition, transcriptome data and quantitative real time polymerase chain reaction (qRT-PCR) analyses revealed that AmHSF was differentially transcribed in different tissues, suggesting that AmHSF gene functions may differ. Red and blue light treatment significantly affected the expression of 20 HSF genes in soilless cultivation of A. mongholicus seedlings. AmHSF3, AmHSF3, AmHSF11, AmHSF12, and AmHSF14 were upregulated after red light and blue light treatment, and these genes all had light-corresponding cis-elements, suggesting that AmHSF genes play an important role in the light response of A. mongholicus. Although the responses of soilless-cultivated A. mongholicus seedlings to red and blue light may not represent the mature stage, our results provide fundamental research for future elucidation of the regulatory mechanisms of HSF in the growth and development of A. mongholicus and its response to different light conditions.
Collapse
Affiliation(s)
- Zhen Wang
- Pharmacy of College, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (Z.W.); (P.W.); (J.H.); (L.K.); (W.L.)
| | - Panpan Wang
- Pharmacy of College, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (Z.W.); (P.W.); (J.H.); (L.K.); (W.L.)
| | - Jiajun He
- Pharmacy of College, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (Z.W.); (P.W.); (J.H.); (L.K.); (W.L.)
| | - Lingyang Kong
- Pharmacy of College, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (Z.W.); (P.W.); (J.H.); (L.K.); (W.L.)
| | - Wenwei Zhang
- Experimental Teaching and Practical Training Center, Heilongjiang University of Chinese Medicine, Harbin 150040, China;
| | - Weili Liu
- Pharmacy of College, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (Z.W.); (P.W.); (J.H.); (L.K.); (W.L.)
- Experimental Teaching and Practical Training Center, Heilongjiang University of Chinese Medicine, Harbin 150040, China;
| | - Xiubo Liu
- College of Jiamusi, Heilongjiang University of Chinese Medicine, Jiamusi 154007, China
| | - Wei Ma
- Pharmacy of College, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (Z.W.); (P.W.); (J.H.); (L.K.); (W.L.)
- Experimental Teaching and Practical Training Center, Heilongjiang University of Chinese Medicine, Harbin 150040, China;
| |
Collapse
|
5
|
Khan MN, Siddiqui MH, AlSolami MA, Siddiqui ZH. Melatonin-regulated heat shock proteins and mitochondrial ATP synthase induce drought tolerance through sustaining ROS homeostasis in H 2S-dependent manner. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108231. [PMID: 38056039 DOI: 10.1016/j.plaphy.2023.108231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 10/17/2023] [Accepted: 11/21/2023] [Indexed: 12/08/2023]
Abstract
Drought is thought to be one of the major global hazards to crop production. Understanding the role of melatonin (Mel) during plant adaptive responses to drought stress (DS) was the aim of the current investigation. Involvement of hydrogen sulfide (H2S) was also explored in Mel-regulated mechanisms of plants' tolerance to DS. A perusal of the data shows that exposure of tomato plants to DS elevated the activity of mitochondrial enzymes viz. pyruvate dehydrogenase, malate dehydrogenase, and citrate synthase. Whereas the activity of ATP synthase and ATPase was downregulated under stress conditions. Under DS, an increase in the expression level of heat shock proteins (HSPs) and activation level of antioxidant defense system was observed as well. On the other hand, an increase in the activity of NADPH oxidase and glycolate oxidase was observed along with the commencement of oxidative stress and accompanying damage. Application of 30 μM Mel to drought-stressed plants enhanced H2S accumulation and further elevated the activity of mitochondrial enzymes, activation level of the defense system, and expression of HSP17.6 and HSP70. Positive effect of Mel on these attributes was reflected by reduced level of ROS and related damage. However, application of H2S biosynthesis inhibitor DL-propargylglycine reversed the effect of Mel on the said attributes and again the damaging effects of drought were observed even in presence of Mel. This observation led us to conclude that Mel-regulated defense mechanisms operate through endogenous H2S under DS conditions.
Collapse
Affiliation(s)
- M Nasir Khan
- Department of Biology, College of Haql, University of Tabuk, Tabuk, 71491, Saudi Arabia.
| | - Manzer H Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mazen A AlSolami
- Department of Biology, College of Haql, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Zahid Hameed Siddiqui
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia
| |
Collapse
|
6
|
Peng S, Li P, Li T, Tian Z, Xu R. GhCNGC13 and 32 Act as Critical Links between Growth and Immunity in Cotton. Int J Mol Sci 2023; 25:1. [PMID: 38203172 PMCID: PMC10778622 DOI: 10.3390/ijms25010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 01/12/2024] Open
Abstract
Cyclic nucleotide-gated ion channels (CNGCs) remain poorly studied in crop plants, most of which are polyploid. In allotetraploid Upland cotton (Gossypium hirsutum), silencing GhCNGC13 and 32 impaired plant growth and shoot apical meristem (SAM) development, while triggering plant autoimmunity. Both growth hormones (indole-3-acetic acid and gibberellin) and stress hormones (abscisic acid, salicylic acid, and jasmonate) increased, while leaf photosynthesis decreased. The silenced plants exhibited an enhanced resistance to Botrytis cinerea; however, Verticillium wilt resistance was weakened, which was associated with LIPOXYGENASE2 (LOX2) downregulation. Transcriptomic analysis of silenced plants revealed 4835 differentially expressed genes (DEGs) with functional enrichment in immunity and photosynthesis. These DEGs included a set of transcription factors with significant over-representation in the HSF, NAC, and WRKY families. Moreover, numerous members of the GhCNGC family were identified among the DEGs, which may indicate a coordinated action. Collectively, our results suggested that GhCNGC13 and 32 functionally link to photosynthesis, plant growth, and plant immunity. We proposed that GhCNGC13 and 32 play a critical role in the "growth-defense tradeoff" widely observed in crops.
Collapse
Affiliation(s)
- Song Peng
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China; (S.P.); (P.L.); (T.L.)
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Panyu Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China; (S.P.); (P.L.); (T.L.)
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Tianming Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China; (S.P.); (P.L.); (T.L.)
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Zengyuan Tian
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China; (S.P.); (P.L.); (T.L.)
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Ruqiang Xu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China; (S.P.); (P.L.); (T.L.)
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
7
|
Xu Y, Jin Y, He D, Di H, Liang Y, Xu Y. A Genome-Wide Analysis and Expression Profile of Heat Shock Transcription Factor (Hsf) Gene Family in Rhododendron simsii. PLANTS (BASEL, SWITZERLAND) 2023; 12:3917. [PMID: 38005814 PMCID: PMC10674592 DOI: 10.3390/plants12223917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/01/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023]
Abstract
Heat shock transcription factors are key players in a number of transcriptional regulatory pathways that function during plant growth and development. However, their mode of action in Rhododendron simsii is still unclear. In this study, 22 RsHsf genes were identified from genomic data of R. simsii. The 22 genes were randomly distributed on 12 chromosomes, and were divided into three major groups according to their phylogenetic relationships. The structures and conserved motifs were predicted for the 22 genes. Analysis of cis-acting elements revealed stress-responsive and phytohormone-responsive elements in the gene promoter regions, but the types and number varied among the different groups of genes. Transcriptional profile analyses revealed that RsHsfs were expressed in a tissue-specific manner, with particularly high transcript levels in the roots. The transcriptional profiles under abiotic stress were detected by qRT-PCR, and the results further validated the critical function of RsHsfs. This study provides basic information about RsHsf family in R. simsii, and paves the way for further research to clarify their precise roles and to breed new stress-tolerant varieties.
Collapse
Affiliation(s)
- Yanan Xu
- Jiyang College, Zhejiang A&F University, Zhuji 311800, China; (Y.X.); (H.D.); (Y.L.)
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Ying Jin
- Zhuji Economic Specialty Station, Zhuji 311800, China; (Y.J.); (D.H.)
| | - Dan He
- Zhuji Economic Specialty Station, Zhuji 311800, China; (Y.J.); (D.H.)
| | - Haochen Di
- Jiyang College, Zhejiang A&F University, Zhuji 311800, China; (Y.X.); (H.D.); (Y.L.)
| | - Ying Liang
- Jiyang College, Zhejiang A&F University, Zhuji 311800, China; (Y.X.); (H.D.); (Y.L.)
| | - Yanxia Xu
- Jiyang College, Zhejiang A&F University, Zhuji 311800, China; (Y.X.); (H.D.); (Y.L.)
- Zhuji Economic Specialty Station, Zhuji 311800, China; (Y.J.); (D.H.)
| |
Collapse
|
8
|
Yang M, Umer MJ, Wang H, Han J, Han J, Liu Q, Zheng J, Cai X, Hou Y, Xu Y, Wang Y, Khan MKR, Ditta A, Liu F, Zhou Z. Decoding the guardians of cotton resilience: A comprehensive exploration of the βCA genes and its role in Verticillium dahliae resistance. PHYSIOLOGIA PLANTARUM 2023; 175:e14113. [PMID: 38148227 DOI: 10.1111/ppl.14113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/26/2023] [Accepted: 11/13/2023] [Indexed: 12/28/2023]
Abstract
Plant Carbonic anhydrases (Cas) have been shown to be stress-responsive enzymes that may play a role in adapting to adverse conditions. Cotton is a significant economic crop in China, with upland cotton (Gossypium hirsutum) being the most widely cultivated species. We conducted genome-wide identification of the βCA gene in six cotton species and preliminary analysis of the βCA gene in upland cotton. In total, 73 βCA genes from six cotton species were identified, with phylogenetic analysis dividing them into five subgroups. GHβCA proteins were predominantly localized in the chloroplast and cytoplasm. The genes exhibited conserved motifs, with motifs 1, 2, and 3 being prominent. GHβCA genes were unevenly distributed across chromosomes and were associated with stress-responsive cis-regulatory elements, including those responding to light, MeJA, salicylic acid, abscisic acid, cell cycle regulation, and defence/stress. Expression analysis indicated that GHβCA6, GHβCA7, GHβCA10, GHβCA15, and GHβCA16 were highly expressed under various abiotic stress conditions, whereas GHβCA3, GHβCA9, GHβCA10, and GHβCA18 had higher expression patterns under Verticillium dahliae infection at different time intervals. In Gossypium thurberi, GthβCA1, GthβCA2, and GthβCA4 showed elevated expression across stress conditions and tissues. Silencing GHβCA10 through VIGS increased Verticillium wilt severity and reduced lignin deposition compared to non-silenced plants. GHβCA10 is crucial for cotton's defense against Verticillium dahliae. Further research is needed to understand the underlying mechanisms and develop strategies to enhance resistance against Verticillium wilt.
Collapse
Affiliation(s)
- Mengying Yang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University/Institute of Cotton Research, Chinese Academy of Agricultural Science, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Muhammad Jawad Umer
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization/Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Henan, China
| | - Heng Wang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization/Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Henan, China
| | - Jiale Han
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University/Institute of Cotton Research, Chinese Academy of Agricultural Science, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Jiangping Han
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University/Institute of Cotton Research, Chinese Academy of Agricultural Science, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Qiankun Liu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization/Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Henan, China
| | - Jie Zheng
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization/Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Henan, China
- National Nanfan Research Institute of Chinese Academy of Agriculture Sciences, Sanya, China
| | - Xiaoyan Cai
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University/Institute of Cotton Research, Chinese Academy of Agricultural Science, China
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization/Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Henan, China
- National Nanfan Research Institute of Chinese Academy of Agriculture Sciences, Sanya, China
- Henan International Joint Laboratory of Cotton Biology, Henan, China
| | - Yuqing Hou
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization/Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Henan, China
| | - Yanchao Xu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization/Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Henan, China
- National Nanfan Research Institute of Chinese Academy of Agriculture Sciences, Sanya, China
| | - Yuhong Wang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization/Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Henan, China
| | | | - Allah Ditta
- Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad, Pakistan
| | - Fang Liu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University/Institute of Cotton Research, Chinese Academy of Agricultural Science, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization/Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Henan, China
- National Nanfan Research Institute of Chinese Academy of Agriculture Sciences, Sanya, China
- Henan International Joint Laboratory of Cotton Biology, Henan, China
| | - Zhongli Zhou
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization/Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Henan, China
- Henan International Joint Laboratory of Cotton Biology, Henan, China
| |
Collapse
|
9
|
Xie K, Guo J, Wang S, Ye W, Sun F, Zhang C, Xi Y. Genome-wide identification, classification, and expression analysis of heat shock transcription factor family in switchgrass (Panicum virgatum L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107848. [PMID: 37392668 DOI: 10.1016/j.plaphy.2023.107848] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 07/03/2023]
Abstract
Switchgrass is one of the most promising bioenergy crops and is generally cultivated in arid climates and poor soils. Heat shock transcription factors (Hsfs) are key regulators of plant responses to abiotic and biotic stressors. However, their role and mechanism of action in switchgrass have not been elucidated. Hence, this study aimed to identify the Hsf family in switchgrass and understand its functional role in heat stress signal transduction and heat tolerance by using bioinformatics and RT-PCR analysis. Forty-eight PvHsfs were identified and divided into three main classes based on their gene structure and phylogenetic relationships: HsfA, HsfB, and HsfC. The results of the bioinformatics analysis showed a DNA-binding domain (DBD) at the N-terminal in PvHsfs, and they were not evenly distributed on all chromosomes except for chromosomes 8 N and 8 K. Many cis-elements related to plant development, stress responses, and plant hormones were identified in the promoter sequence of each PvHsf. Segmental duplication is the primary force underlying Hsf family expansion in switchgrass. The results of the expression pattern of PvHsfs in response to heat stress showed that PvHsf03 and PvHsf25 might play critical roles in the early and late stages of switchgrass response to heat stress, respectively, and HsfB mainly showed a negative response to heat stress. Ectopic expression of PvHsf03 in Arabidopsis significantly increased the heat resistance of seedlings. Overall, our research lays a notable foundation for studying the regulatory network in response to deleterious environments and for further excavating tolerance genes in switchgrass.
Collapse
Affiliation(s)
- Kunliang Xie
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, 712100, China.
| | - Jinliang Guo
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, 712100, China
| | - Shaoyu Wang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, 712100, China
| | - Wenjie Ye
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, 712100, China
| | - Fengli Sun
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, 712100, China
| | - Chao Zhang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, 712100, China
| | - Yajun Xi
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
10
|
Heat Shock Transcription Factor GhHSFB2a Is Crucial for Cotton Resistance to Verticillium dahliae. Int J Mol Sci 2023; 24:ijms24031845. [PMID: 36768168 PMCID: PMC9916287 DOI: 10.3390/ijms24031845] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/09/2023] [Accepted: 01/09/2023] [Indexed: 01/19/2023] Open
Abstract
Heat shock transcription factors (HSFs) play a critical regulatory role in many plant disease resistance pathways. However, the molecular mechanisms of cotton HSFs involved in resistance to the soil-borne fungus Verticillium dahliae are limited. In our previous study, we identified numerous differentially expressed genes (DEGs) in the transcriptome and metabolome of V. dahliae-inoculated Arabidopsis thaliana. In this study, we identified and functionally characterized GhHSFB2a, which is a DEG belonging to HSFs and related to cotton immunity to V. dahliae. Subsequently, the phylogenetic tree of the type two of the HSFB subfamily in different species was divided into two subgroups: A. thaliana and strawberry, which have the closest evolutionary relationship to cotton. We performed promoter cis-element analysis and showed that the defense-reaction-associated cis-acting element-FC-rich motif may be involved in the plant response to V. dahliae in cotton. The expression pattern analysis of GhHSFB2a displayed that it is transcriptional in roots, stems, and leaves and significantly higher at 12 h post-inoculation (hpi). Subcellular localization of GhHSFB2a was observed, and the results showed localization to the nucleus. Virus-induced gene silencing (VIGS) analysis exhibited that GhHSFB2a silencing increased the disease index and fungal biomass and attenuated resistance against V. dahliae. Transcriptome sequencing of wild-type and GhHSFB2a-silenced plants, followed by Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, protein-protein interaction, and validation of marker genes revealed that ABA, ethylene, linoleic acid, and phenylpropanoid pathways are involved in GhHSFB2a-mediated plant disease resistance. Ectopic overexpression of the GhHSFB2a gene in Arabidopsis showed a significant increase in the disease resistance. Cumulatively, our results suggest that GhHSFB2a is required for the cotton immune response against V. dahliae-mediated ABA, ethylene, linoleic acid, and phenylpropanoid pathways, indicating its potential role in the molecular design breeding of plants.
Collapse
|
11
|
Genome-wide identification and expression analysis of the GSK gene family in wheat (Triticum aestivum L.). Mol Biol Rep 2022; 49:2899-2913. [PMID: 35083611 DOI: 10.1007/s11033-021-07105-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 12/17/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Plant glycogen synthase kinase 3/shaggy kinase (GSK3) proteins contain the conserved kinase domain and play a pivotal role in the regulation of plant growth and abiotic stress responses. Nonetheless, genome-wide analysis of the GSK gene family in wheat (Triticum aestivum L.) has not been reported. METHODS AND RESULTS Using high-quality wheat genome sequences, a comprehensive genome-wide characterization of the GSK gene family in wheat was conducted. Their phylogenetics, chromosome location, gene structure, conserved domains, promoter cis-elements, gene duplications, and network interactions were systematically analyzed. In this study, we identified 22 GSK genes in wheat genome that were unevenly distributed on nine wheat chromosomes. Based on phylogenetic analysis, the GSK genes from Arabidopsis, rice, barley, and wheat were clustered into four subfamilies. Gene structure and conserved protein motif analysis revealed that GSK proteins in the same subfamily share similar motif structures and exon/intron organization. Results from gene duplication analysis indicate that four segmental duplications events contribute to the expansion of the wheat GSK gene family. Promoter analysis indicated the participation of TaSK genes in response to the hormone, light and abiotic stress, and plant growth and development. Furthermore, gene network analysis found that five TaSKs were involved in the regulatory network and 130 gene pairs of network interactions were identified. The heat map generated from the available transcriptomic data revealed that the TaSKs exhibited preferential expression in specific tissues and different expression patterns under abiotic stress conditions. Moreover, results from qRT-PCR analysis revealed that the randomly selected TaSK genes were abundantly expressed in spikes and grains at one specific developmental stage, as well as in responding to drought and salt stress. CONCLUSIONS These findings clearly depicted the evolutionary processes and the characteristics, and expression profiles of the GSK gene family in wheat, revealed their role in wheat development and response to abiotic stress responses.
Collapse
|
12
|
Zhang Q, Geng J, Du Y, Zhao Q, Zhang W, Fang Q, Yin Z, Li J, Yuan X, Fan Y, Cheng X, Du J. Heat shock transcription factor (Hsf) gene family in common bean (Phaseolus vulgaris): genome-wide identification, phylogeny, evolutionary expansion and expression analyses at the sprout stage under abiotic stress. BMC PLANT BIOLOGY 2022; 22:33. [PMID: 35031009 PMCID: PMC8759166 DOI: 10.1186/s12870-021-03417-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 12/28/2021] [Indexed: 05/03/2023]
Abstract
BACKGROUND Common bean (Phaseolus vulgaris) is an essential crop with high economic value. The growth of this plant is sensitive to environmental stress. Heat shock factor (Hsf) is a family of antiretroviral transcription factors that regulate plant defense system against biotic and abiotic stress. To date, few studies have identified and bio-analyzed Hsfs in common bean. RESULTS In this study, 30 Hsf transcription factors (PvHsf1-30) were identified from the PFAM database. The PvHsf1-30 belonged to 14 subfamilies with similar motifs, gene structure and cis-acting elements. The Hsf members in Arabidopsis, rice (Oryza sativa), maize (Zea mays) and common bean were classified into 14 subfamilies. Collinearity analysis showed that PvHsfs played a role in the regulation of responses to abiotic stress. The expression of PvHsfs varied across different tissues. Moreover, quantitative real-time PCR (qRT-PCR) revealed that most PvHsfs were differentially expressed under cold, heat, salt and heavy metal stress, indicating that PvHsfs might play different functions depending on the type of abiotic stress. CONCLUSIONS In this study, we identified 30 Hsf transcription factors and determined their location, motifs, gene structure, cis-elements, collinearity and expression patterns. It was found that PvHsfs regulates responses to abiotic stress in common bean. Thus, this study provides a basis for further analysis of the function of PvHsfs in the regulation of abiotic stress in common bean.
Collapse
Affiliation(s)
- Qi Zhang
- College of Agriculture, Heilongjiang BaYi Agricultural University, Daqing, 163319, Heilongjaing, China
| | - Jing Geng
- College of Agriculture, Heilongjiang BaYi Agricultural University, Daqing, 163319, Heilongjaing, China
| | - Yanli Du
- College of Agriculture, Heilongjiang BaYi Agricultural University, Daqing, 163319, Heilongjaing, China
- National Coarse Cereals Engineering Research Center, Daqing, 161139, Heilongjiang, China
| | - Qiang Zhao
- College of Agriculture, Heilongjiang BaYi Agricultural University, Daqing, 163319, Heilongjaing, China
| | - Wenjing Zhang
- College of Agriculture, Heilongjiang BaYi Agricultural University, Daqing, 163319, Heilongjaing, China
| | - Qingxi Fang
- College of Agriculture, Heilongjiang BaYi Agricultural University, Daqing, 163319, Heilongjaing, China
| | - Zhengong Yin
- Crop Resources Institute of Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, Heilongjiang, China
| | - Jianghui Li
- College of Agriculture, Heilongjiang BaYi Agricultural University, Daqing, 163319, Heilongjaing, China
| | - Xiankai Yuan
- College of Agriculture, Heilongjiang BaYi Agricultural University, Daqing, 163319, Heilongjaing, China
| | - Yaru Fan
- College of Agriculture, Heilongjiang BaYi Agricultural University, Daqing, 163319, Heilongjaing, China
| | - Xin Cheng
- College of Agriculture, Heilongjiang BaYi Agricultural University, Daqing, 163319, Heilongjaing, China
| | - Jidao Du
- College of Agriculture, Heilongjiang BaYi Agricultural University, Daqing, 163319, Heilongjaing, China.
- National Coarse Cereals Engineering Research Center, Daqing, 161139, Heilongjiang, China.
| |
Collapse
|
13
|
Anwar M, Saleem MA, Dan M, Malik W, Ul-Allah S, Ahmad MQ, Qayyum A, Amjid MW, Zia ZU, Afzal H, Asif M, Ur Rahman MA, Hu Z. Morphological, physiological and molecular assessment of cotton for drought tolerance under field conditions. Saudi J Biol Sci 2022; 29:444-452. [PMID: 35002440 PMCID: PMC8717151 DOI: 10.1016/j.sjbs.2021.09.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 08/31/2021] [Accepted: 09/05/2021] [Indexed: 11/29/2022] Open
Abstract
Climate change could be an existential threat to many crops. Drought and heat stress are becoming harder for cultivated crops. Cotton in Pakistan is grown under natural high temperature and low moisture, could be used as a source of heat and drought tolerance. Therefore, the study was conducted to morphological, physiological and molecular characterization of cotton genotypes under field conditions. A total of 25 cotton genotypes were selected from the gene pool of Pakistan based on tolerance to heat and drought stress. In field trail, the stress related traits like boll retention percentage, plant height, number of nodes and inter-nodal distance were recorded. In physiological assessment, traits such as photosynthesis rate, stomatal conductance, transpiration rate, leaf temperature, relative water content and excised leaf water loss were observed. At molecular level, a set of 19 important transcription factors, controlling drought/heat stress tolerance (HSPCB, GHSP26, HSFA2, HSP101, HSP3, DREB1A, DREB2A, TPS, GhNAC2, GbMYB5, GhWRKY41, GhMKK3, GhMPK17, GhMKK1, GhMPK2, APX1, HSC70, ANNAT8, and GhPP2A1) were analyzed from all genotypes. Data analyses depicted that boll retention percentage, photosynthesis, stomatal conductance, relative water content under the stress conditions were associated with the presence of important drought & heat TF/genes which depicts high genetic potential of Pakistani cotton varieties against abiotic stress. The variety MNH-886 appeared in medium plant height, high boll retention percentage, high relative water content, photosynthesis rate, stomatal conductance, transpiration rate and with maximum number transcription factors under study. The variety may be used as source material for heat and drought tolerant cotton breeding. The results of this study may be useful for the cotton breeders to develop genotype adoptable to environmental stresses under climate change scenario.
Collapse
Affiliation(s)
- Muhammad Anwar
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Muhammad Asif Saleem
- Department of Plant Breeding & Genetics, Bahauddin Zakariya University, Multan, Pakistan
| | - Ma Dan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agriculture Sciences, Anyang 455000, China
| | - Waqas Malik
- Department of Plant Breeding & Genetics, Bahauddin Zakariya University, Multan, Pakistan
| | - Sami Ul-Allah
- College of Agriculture, Bahauddin Zakariya University, Bahadur Sub-campus, Layyah, Pakistan
| | - Muhammad Qadir Ahmad
- Department of Plant Breeding & Genetics, Bahauddin Zakariya University, Multan, Pakistan
| | - Abdul Qayyum
- Department of Plant Breeding & Genetics, Bahauddin Zakariya University, Multan, Pakistan
| | - Muhammad Waqas Amjid
- State Key Lab. of Crop Genetics & Germplasm, Nanjing Agriculture University, China
| | | | - Hammad Afzal
- Department of Plant Breeding & Genetics, Bahauddin Zakariya University, Multan, Pakistan
| | - Muhammad Asif
- Department of Plant Breeding & Genetics, Bahauddin Zakariya University, Multan, Pakistan
| | - Muhammad Aneeq Ur Rahman
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Zhangli Hu
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.,Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Longhua Innovation Institute for Biotechnology, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
14
|
Peng Z, Jiang X, Wang Z, Wang X, Li H, He S, Pan Z, Qayyum A, Rehman A, Du X. Identification of Raf-Like Kinases B Subfamily Genes in Gossypium Species Revealed GhRAF42 Enhanced Salt Tolerance in Cotton. Int J Mol Sci 2021; 22:12649. [PMID: 34884455 PMCID: PMC8657469 DOI: 10.3390/ijms222312649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/12/2021] [Accepted: 11/19/2021] [Indexed: 11/16/2022] Open
Abstract
Salinity is a critical abiotic factor that significantly reduces agricultural production. Cotton is an important fiber crop and a pioneer on saline soil, hence genetic architecture that underpins salt tolerance should be thoroughly investigated. The Raf-like kinase B-subfamily (RAF) genes were discovered to regulate the salt stress response in cotton plants. However, understanding the RAFs in cotton, such as Enhanced Disease Resistance 1 and Constitutive Triple Response 1 kinase, remains a mystery. This study obtained 29, 28, 56, and 54 RAF genes from G. arboreum, G. raimondii, G. hirsutum, and G. barbadense, respectively. The RAF gene family described allopolyploidy and hybridization events in allotetraploid cotton evolutionary connections. Ka/Ks analysis advocates that cotton evolution was subjected to an intense purifying selection of the RAF gene family. Interestingly, integrated analysis of synteny and gene collinearity suggested dispersed and segmental duplication events involved in the extension of RAFs in cotton. Transcriptome studies, functional validation, and virus-induced gene silencing on salt treatments revealed that GhRAF42 is engaged in salt tolerance in upland cotton. This research might lead to a better understanding of the role of RAFs in plants and the identification of suitable candidate salt-tolerant genes for cotton breeding.
Collapse
Affiliation(s)
- Zhen Peng
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450000, China; (Z.P.); (X.J.); (H.L.); (S.H.); (Z.P.)
- State Key Laboratory of Cotton Biology, Institute of Cotton Research Chinese Academy of Agricultural Science, Anyang 455000, China; (Z.W.); (X.W.)
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China
| | - Xuran Jiang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450000, China; (Z.P.); (X.J.); (H.L.); (S.H.); (Z.P.)
| | - Zhenzhen Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research Chinese Academy of Agricultural Science, Anyang 455000, China; (Z.W.); (X.W.)
| | - Xiaoyang Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research Chinese Academy of Agricultural Science, Anyang 455000, China; (Z.W.); (X.W.)
| | - Hongge Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450000, China; (Z.P.); (X.J.); (H.L.); (S.H.); (Z.P.)
- State Key Laboratory of Cotton Biology, Institute of Cotton Research Chinese Academy of Agricultural Science, Anyang 455000, China; (Z.W.); (X.W.)
| | - Shoupu He
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450000, China; (Z.P.); (X.J.); (H.L.); (S.H.); (Z.P.)
- State Key Laboratory of Cotton Biology, Institute of Cotton Research Chinese Academy of Agricultural Science, Anyang 455000, China; (Z.W.); (X.W.)
| | - Zhaoe Pan
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450000, China; (Z.P.); (X.J.); (H.L.); (S.H.); (Z.P.)
| | - Abdul Qayyum
- Department of Plant Breeding and Genetics, Bahauddin Zakariya University, Multan 66000, Pakistan;
| | - Abdul Rehman
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450000, China; (Z.P.); (X.J.); (H.L.); (S.H.); (Z.P.)
- State Key Laboratory of Cotton Biology, Institute of Cotton Research Chinese Academy of Agricultural Science, Anyang 455000, China; (Z.W.); (X.W.)
| | - Xiongming Du
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450000, China; (Z.P.); (X.J.); (H.L.); (S.H.); (Z.P.)
- State Key Laboratory of Cotton Biology, Institute of Cotton Research Chinese Academy of Agricultural Science, Anyang 455000, China; (Z.W.); (X.W.)
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China
| |
Collapse
|
15
|
Genome-wide identification and analysis of the heat shock transcription factor family in moso bamboo (Phyllostachys edulis). Sci Rep 2021; 11:16492. [PMID: 34389742 PMCID: PMC8363633 DOI: 10.1038/s41598-021-95899-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 07/23/2021] [Indexed: 02/07/2023] Open
Abstract
Heat shock transcription factors (HSFs) are central elements in the regulatory network that controls plant heat stress response. They are involved in multiple transcriptional regulatory pathways and play important roles in heat stress signaling and responses to a variety of other stresses. We identified 41 members of the HSF gene family in moso bamboo, which were distributed non-uniformly across its 19 chromosomes. Phylogenetic analysis showed that the moso bamboo HSF genes could be divided into three major subfamilies; HSFs from the same subfamily shared relatively conserved gene structures and sequences and encoded similar amino acids. All HSF genes contained HSF signature domains. Subcellular localization prediction indicated that about 80% of the HSF proteins were located in the nucleus, consistent with the results of GO enrichment analysis. A large number of stress response-associated cis-regulatory elements were identified in the HSF upstream promoter sequences. Synteny analysis indicated that the HSFs in the moso bamboo genome had greater collinearity with those of rice and maize than with those of Arabidopsis and pepper. Numerous segmental duplicates were found in the moso bamboo HSF gene family. Transcriptome data indicated that the expression of a number of PeHsfs differed in response to exogenous gibberellin (GA) and naphthalene acetic acid (NAA). A number of HSF genes were highly expressed in the panicles and in young shoots, suggesting that they may have functions in reproductive growth and the early development of rapidly-growing shoots. This study provides fundamental information on members of the bamboo HSF gene family and lays a foundation for further study of their biological functions in the regulation of plant responses to adversity.
Collapse
|
16
|
Genome-wide identification and molecular evolution analysis of the heat shock transcription factor (HSF) gene family in four diploid and two allopolyploid Gossypium species. Genomics 2021; 113:3112-3127. [PMID: 34246694 DOI: 10.1016/j.ygeno.2021.07.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 06/21/2021] [Accepted: 07/06/2021] [Indexed: 11/23/2022]
Abstract
Heat shock transcription factors (HSFs) can regulate plant development and stress response. The comprehensive evolutionary history of the HSF family remains elusive in cotton. In this study, each cotton species had 78 members in Gossypium barbadense and Gossypium hirsutum. The diploid species had 39 GaHSFs in Gossypium arboreum, 31 GrHSFs in Gossypium raimondii, 34 GtHSFs in Gossypium turneri, and 34 GlHSFs in Gossypium longicalyx. The HSF family in cotton can be classified into three subfamilies, with seven groups in subfamily A and five groups in subfamily B. Different groups exhibited distinct gene proportions, conserved motifs, gene structures, expansion rates, gene loss rates, and cis-regulatory elements. The paleohexaploidization event led to the expansion of the HSF family in cotton, and the gene duplication events in six Gossypium species were inherited from their common ancestor. The HSF family in diploid species had a divergent evolutionary history, whereas two cultivated tetraploids presented a highly conserved evolution of the HSF family. The HSF members in At and Dt subgenomes of the cultivated tetraploids showed a different evolution from their corresponding diploid donors. Some HSF members were regarded as key candidates for regulating cotton development and stress response. This study provided the comprehensive information on the evolutionary history of the HSF family in cotton.
Collapse
|
17
|
Identification of C 2H 2 subfamily ZAT genes in Gossypium species reveals GhZAT34 and GhZAT79 enhanced salt tolerance in Arabidopsis and cotton. Int J Biol Macromol 2021; 184:967-980. [PMID: 34197850 DOI: 10.1016/j.ijbiomac.2021.06.166] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/25/2021] [Accepted: 06/25/2021] [Indexed: 01/04/2023]
Abstract
Soil salinization is a vital factor that restricts the efficient and sustainable development of global agriculture. Studies enlightened that the C2H2 zinc finger proteins (C2H2-ZFP) were involved in regulating the stress response in plants. However, knowledge of the C2H2-ZFP subfamily C1 (ZAT; Zinc finger of Arabidopsis thaliana) in cotton is still a mystery. In this study, 47, 45, 94, and 88 ZAT genes were obtained from diploid A2, D5 and tetraploid AD1, AD2 cotton genomes, respectively. The function of hybridization and allopolyploidy in the evolutionary linkage of allotetraploid cotton was explained by the family of ZAT gene in 4 species. Duplication of gene activities indicates that the family of ZAT gene of cotton evolution was under strong purifying selection. The integration of previous transcriptome data related to NaCl stress, strongly suggests the GhZAT34 and GhZAT79 may interact with salt resistance in upland cotton. The expression level of certain ZAT genes, higher seed germination rate of transgenic Arabidopsis and gene- silenced cotton revealed that both genes were involved in the salt tolerance of upland cotton. This study may pave the substantial understandings into the role of ZATs genes in plants as well as suggest appropriate candidate genes for breeding of cotton varieties against salinity tolerance.
Collapse
|
18
|
Rehman A, Peng Z, Li H, Qin G, Jia Y, Pan Z, He S, Qayyum A, Du X. Genome wide analysis of IQD gene family in diploid and tetraploid species of cotton (Gossypium spp.). Int J Biol Macromol 2021; 184:1035-1061. [PMID: 34174315 DOI: 10.1016/j.ijbiomac.2021.06.115] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/31/2021] [Accepted: 06/16/2021] [Indexed: 12/25/2022]
Abstract
Calmodulin (CaM) is considered as the most significant Ca2+ signaling messenger that mediate various biochemical and physiological reactions. IQ domain (IQD) proteins are plant specific CML/CaM calcium binding which are characterized by domains of 67 amino acids. 50, 50, 94, and 99 IQD genes were detected from G. arboreum (A2), G. raimondii (D5), G. barbadense (AD2) and G. hirsutum (AD1) respectively. Existence of more orthologous genes in cotton species than Arabidopsis, advocated that polyploidization produced new cotton specific orthologous gene clusters. Duplication of gene events depicts that IQD gene family of cotton evolution was under strong purifying selection. G. hirsutum exhibited high level synteny. GarIQD25 exhibited high expression in stem, root, flower, ovule and fiber in G. arboreum. In G. raimondii, GraIQD03 demonstrated upregulation across stem, ovule, fiber and seed. GbaIQD11 and GbaIQD62 exhibited upregulation in fiber development in G. barbadense. GhiIQD69 recognized as main candidate genes for plant parts, floral tissues, fiber and ovule development. Promotor analysis identified cis-regulatory elements were involved in plant growth and development. Overwhelmingly, present study paves the way to better understand the evolution of cotton IQD genes and lays a foundation for future investigation of IQD in cotton.
Collapse
Affiliation(s)
- Abdul Rehman
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450000, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research Chinese Academy of Agricultural Science, Anyang 455000, Henan, China
| | - Zhen Peng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research Chinese Academy of Agricultural Science, Anyang 455000, Henan, China
| | - Hongge Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research Chinese Academy of Agricultural Science, Anyang 455000, Henan, China
| | - Guangyong Qin
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450000, China
| | - Yinhua Jia
- State Key Laboratory of Cotton Biology, Institute of Cotton Research Chinese Academy of Agricultural Science, Anyang 455000, Henan, China
| | - Zhaoe Pan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research Chinese Academy of Agricultural Science, Anyang 455000, Henan, China
| | - Shoupu He
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450000, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research Chinese Academy of Agricultural Science, Anyang 455000, Henan, China
| | - Abdul Qayyum
- Department of Plant Breeding and Genetics, Bahauddin Zakariya university, Multan 66000, Pakistan
| | - Xiongming Du
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450000, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research Chinese Academy of Agricultural Science, Anyang 455000, Henan, China.
| |
Collapse
|
19
|
Liang Y, Wang J, Zheng J, Gong Z, Li Z, Ai X, Li X, Chen Q. Genome-Wide Comparative Analysis of Heat Shock Transcription Factors Provides Novel Insights for Evolutionary History and Expression Characterization in Cotton Diploid and Tetraploid Genomes. Front Genet 2021; 12:658847. [PMID: 34168673 PMCID: PMC8217870 DOI: 10.3389/fgene.2021.658847] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 03/15/2021] [Indexed: 11/13/2022] Open
Abstract
Heat shock transcription factors (HSFs) are involved in environmental stress response and plant development, such as heat stress and flowering development. According to the structural characteristics of the HSF gene family, HSF genes were classified into three major types (HSFA, HSFB, and HSFC) in plants. Using conserved domains of HSF genes, we identified 621 HSF genes among 13 cotton genomes, consisting of eight diploid and five tetraploid genomes. Phylogenetic analysis indicated that HSF genes among 13 cotton genomes were grouped into two different clusters: one cluster contained all HSF genes of HSFA and HSFC, and the other cluster contained all HSF genes of HSFB. Comparative analysis of HSF genes in Arabidopsis thaliana, Gossypium herbaceum (A1), Gossypium arboreum (A2), Gossypium raimondii (D5), and Gossypium hirsutum (AD1) genomes demonstrated that four HSF genes were inherited from a common ancestor, A0, of all existing cotton A genomes. Members of the HSF gene family in G. herbaceum (A1) genome indicated a significant loss compared with those in G. arboretum (A2) and G. hirsutum (AD1) A genomes. However, HSF genes in G. raimondii (D5) showed relative loss compared with those in G. hirsutum (AD1) D genome. Analysis of tandem duplication (TD) events of HSF genes revealed that protein-coding genes among different cotton genomes have experienced TD events, but only the two-gene tandem array was detected in Gossypium thurberi (D1) genome. The expression analysis of HSF genes in G. hirsutum (AD1) and Gossypium barbadense (AD2) genomes indicated that the expressed HSF genes were divided into two different groups, respectively, and the expressed HSF orthologous genes between the two genomes showed totally different expression patterns despite the implementation of the same abiotic stresses. This work will provide novel insights for the study of evolutionary history and expression characterization of HSF genes in different cotton genomes and a widespread application model for the study of HSF gene families in plants.
Collapse
Affiliation(s)
- Yajun Liang
- Xinjiang Academy of Agricultural Science, Urumqi, China.,Engineering Research Centre of Cotton of Ministry of Education, Xinjiang Agricultural University, Urumqi, China
| | - Junduo Wang
- Xinjiang Academy of Agricultural Science, Urumqi, China
| | - Juyun Zheng
- Xinjiang Academy of Agricultural Science, Urumqi, China
| | - Zhaolong Gong
- Xinjiang Academy of Agricultural Science, Urumqi, China
| | - Zhiqiang Li
- Adsen Biotechnology Corporation, Urumqi, China
| | - Xiantao Ai
- Engineering Research Centre of Cotton of Ministry of Education, Xinjiang Agricultural University, Urumqi, China
| | - Xueyuan Li
- Xinjiang Academy of Agricultural Science, Urumqi, China
| | - Quanjia Chen
- Engineering Research Centre of Cotton of Ministry of Education, Xinjiang Agricultural University, Urumqi, China
| |
Collapse
|
20
|
Wang L, Liu Y, Chai M, Chen H, Aslam M, Niu X, Qin Y, Cai H. Genome-wide identification, classification, and expression analysis of the HSF gene family in pineapple ( Ananas comosus). PeerJ 2021; 9:e11329. [PMID: 33987013 PMCID: PMC8086565 DOI: 10.7717/peerj.11329] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/31/2021] [Indexed: 11/28/2022] Open
Abstract
Transcription factors (TFs), such as heat shock transcription factors (HSFs), usually play critical regulatory functions in plant development, growth, and response to environmental cues. However, no HSFs have been characterized in pineapple thus far. Here, we identified 22 AcHSF genes from the pineapple genome. Gene structure, motifs, and phylogenetic analysis showed that AcHSF families were distinctly grouped into three subfamilies (12 in Group A, seven in Group B, and four in Group C). The AcHSF promoters contained various cis-elements associated with stress, hormones, and plant development processes, for instance, STRE, WRKY, and ABRE binding sites. The majority of HSFs were expressed in diverse pineapple tissues and developmental stages. The expression of AcHSF-B4b/AcHSF-B4c and AcHSF-A7b/AcHSF-A1c were enriched in the ovules and fruits, respectively. Six genes (AcHSF-A1a , AcHSF-A2, AcHSF-A9a, AcHSF-B1a, AcHSF-B2a, and AcHSF-C1a) were transcriptionally modified by cold, heat, and ABA. Our results provide an overview and lay the foundation for future functional characterization of the pineapple HSF gene family.
Collapse
Affiliation(s)
- Lulu Wang
- State Key Lab of Ecological Pest Control for Fujian and Taiwan Crops; Key Lab of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education; Fujian Provincial Key Lab of Haixia Applied Plant Systems Biology, College of Life Sciences, Fuji, Fuzhou, Fujian, China
| | - Yanhui Liu
- State Key Lab of Ecological Pest Control for Fujian and Taiwan Crops; Key Lab of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education; Fujian Provincial Key Lab of Haixia Applied Plant Systems Biology, College of Life Sciences, Fuji, Fuzhou, Fujian, China
| | - Mengnan Chai
- State Key Lab of Ecological Pest Control for Fujian and Taiwan Crops; Key Lab of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education; Fujian Provincial Key Lab of Haixia Applied Plant Systems Biology, College of Life Sciences, Fuji, Fuzhou, Fujian, China
| | - Huihuang Chen
- State Key Lab of Ecological Pest Control for Fujian and Taiwan Crops; Key Lab of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education; Fujian Provincial Key Lab of Haixia Applied Plant Systems Biology, College of Life Sciences, Fuji, Fuzhou, Fujian, China
| | - Mohammad Aslam
- State Key Lab of Ecological Pest Control for Fujian and Taiwan Crops; Key Lab of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education; Fujian Provincial Key Lab of Haixia Applied Plant Systems Biology, College of Life Sciences, Fuji, Fuzhou, Fujian, China
| | - Xiaoping Niu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, Guangxi, China
| | - Yuan Qin
- State Key Lab of Ecological Pest Control for Fujian and Taiwan Crops; Key Lab of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education; Fujian Provincial Key Lab of Haixia Applied Plant Systems Biology, College of Life Sciences, Fuji, Fuzhou, Fujian, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, Guangxi, China
| | - Hanyang Cai
- State Key Lab of Ecological Pest Control for Fujian and Taiwan Crops; Key Lab of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education; Fujian Provincial Key Lab of Haixia Applied Plant Systems Biology, College of Life Sciences, Fuji, Fuzhou, Fujian, China
| |
Collapse
|
21
|
Rehman A, Atif RM, Azhar MT, Peng Z, Li H, Qin G, Jia Y, Pan Z, He S, Qayyum A, Du X. Genome wide identification, classification and functional characterization of heat shock transcription factors in cultivated and ancestral cottons (Gossypium spp.). Int J Biol Macromol 2021; 182:1507-1527. [PMID: 33965497 DOI: 10.1016/j.ijbiomac.2021.05.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 11/30/2022]
Abstract
Heat shock transcription factors (HSF) have been demonstrated to play a significant transcriptional regulatory role in plants and considered as an integral part of signal transduction pathways against environmental stresses especially heat stress. Despite of their importance, HSFs have not yet been identified and characterized in all cotton species. In this study, we report the identification of 42, 39, 67, and 79 non-redundant HSF genes from diploid cottons G. arboreum (A2) and G. raimondii (D5), and tetraploid cottons G. barbadense (AD2) and G. hirsutum (AD1) respectively. The chromosome localization of identified HSFs revealed their random distribution on all the 13 chromosomes of A and D genomes of cotton with few regions containing HSFs in clusters. The genes structure and conserved domain analysis revealed the family-specific conservation of intron/exon organization and conserved domains in HSFs. Various abiotic stress-related cis-regulatory elements were identified from the putative promoter regions of cotton HSFs suggesting their possible role in mediating abiotic stress tolerance. The combined phylogenetic analysis of all the cotton HSFs grouped them into three subfamilies; with 145 HSFs belong to class A, 85 to class B, and 17 to class C subfamily. Moreover, a detailed analysis of HSF gene family in four species of cotton elucidated the role of allopolyploid and hybridization during evolutionary cascade of allotetraploid cotton. Comparatively, existence of more orthologous genes in cotton species than Arabidopsis, advocated that polyploidization produced new cotton specific orthologous gene clusters. Phylogenetic, collinearity and multiple synteny analyses exhibited dispersed, segmental, proximal, and tandem gene duplication events in HSF gene family. Duplication of gene events suggests that HSF gene family of cotton evolution was under strong purifying selection. Expression analysis revealed that GarHSF04 were found to be actively involved in PEG and salinity tolerance in G. arboreum. GhiHSF14 upregulated in heat and downregulated in salinity whilst almost illustrated similar behavior under cold and PEG treatments and GhiHSF21 exhibited down regulation almost across all the stresses in G. hirsutum. Overwhelmingly, present study paves the way to better understand the evolution of cotton HSF TFs and lays a foundation for future investigation of HSFs in improving abiotic stress tolerance in cotton.
Collapse
Affiliation(s)
- Abdul Rehman
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450000, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research Chinese Academy of Agricultural Science, Anyang 455000, Henan, China; Department of Plant Breeding and Genetics, Bahauddin Zakariya university, Multan 60800, Pakistan
| | - Rana Muhammad Atif
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad 38040, Pakistan; Center of Advanced Studies in Agriculture & Food Security, University of Agriculture, Faisalabad 38040, Pakistan.
| | - Muhammad Tehseen Azhar
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450000, China; Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Zhen Peng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research Chinese Academy of Agricultural Science, Anyang 455000, Henan, China
| | - Hongge Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research Chinese Academy of Agricultural Science, Anyang 455000, Henan, China
| | - Guangyong Qin
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450000, China
| | - Yinhua Jia
- State Key Laboratory of Cotton Biology, Institute of Cotton Research Chinese Academy of Agricultural Science, Anyang 455000, Henan, China
| | - Zhaoe Pan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research Chinese Academy of Agricultural Science, Anyang 455000, Henan, China
| | - Shoupu He
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450000, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research Chinese Academy of Agricultural Science, Anyang 455000, Henan, China
| | - Abdul Qayyum
- Department of Plant Breeding and Genetics, Bahauddin Zakariya university, Multan 60800, Pakistan
| | - Xiongming Du
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450000, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research Chinese Academy of Agricultural Science, Anyang 455000, Henan, China.
| |
Collapse
|
22
|
Identification of the trehalose-6-phosphate synthase gene family in Medicago truncatula and expression analysis under abiotic stresses. Gene 2021; 787:145641. [PMID: 33848573 DOI: 10.1016/j.gene.2021.145641] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 03/21/2021] [Accepted: 04/07/2021] [Indexed: 01/01/2023]
Abstract
Trehalose-6-phosphate synthase (TPS) exerts important functions related to plant desiccation tolerance and responses to environmental stimuli. However, in Medicago truncatula, the TPS family has not been reported to date. This study found 11 MtTPS genes in the genome of M. truncatula, which could be divided into two subfamilies: Class I and Class II. All TPS family members have a TPS domain (Glyco transf_20) at the N-terminus and a TPP domain (Trehalose_PPase) at the C-terminus. Interestingly, the genetic structures differ between Class I and Class II, Class I members have more introns than Class II members. Furthermore, transcriptome and real-time PCR analysis showed that five MtTPS genes could be induced by drought, salt or cold. Specifically, MtTPS2, MtTPS8, MtTPS9, MtTPS11 were up-regulated under both drought and salt treatment, particularly, MtTPS8 and MtTPS9 can also be induced by cold, while MtTPS7 only responded to salt stress. In summary, this study provides the foundation for further research on TPS genes in M. truncatula and their regulatory function in response to abiotic stresses.
Collapse
|
23
|
Tan B, Yan L, Li H, Lian X, Cheng J, Wang W, Zheng X, Wang X, Li J, Ye X, Zhang L, Li Z, Feng J. Genome-wide identification of HSF family in peach and functional analysis of PpHSF5 involvement in root and aerial organ development. PeerJ 2021; 9:e10961. [PMID: 33763299 PMCID: PMC7958895 DOI: 10.7717/peerj.10961] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 01/27/2021] [Indexed: 12/01/2022] Open
Abstract
Background Heat shock factors (HSFs) play important roles during normal plant growth and development and when plants respond to diverse stressors. Although most studies have focused on the involvement of HSFs in the response to abiotic stresses, especially in model plants, there is little research on their participation in plant growth and development or on the HSF (PpHSF) gene family in peach (Prunus persica). Methods DBD (PF00447), the HSF characteristic domain, was used to search the peach genome and identify PpHSFs. Phylogenetic, multiple alignment and motif analyses were conducted using MEGA 6.0, ClustalW and MEME, respectively. The function of PpHSF5 was confirmed by overexpression of PpHSF5 into Arabidopsis. Results Eighteen PpHSF genes were identified within the peach genome. The PpHSF genes were nonuniformly distributed on the peach chromosomes. Seventeen of the PpHSFs (94.4%) contained one or two introns, except PpHSF18, which contained three introns. The in silico-translated PpHSFs were classified into three classes (PpHSFA, PpHSFB and PpHSFC) based on multiple alignment, motif analysis and phylogenetic comparison with HSFs from Arabidopsis thaliana and Oryza sativa. Dispersed gene duplication (DSD at 67%) mainly contributed to HSF gene family expansion in peach. Promoter analysis showed that the most common cis-elements were the MYB (abiotic stress response), ABRE (ABA-responsive) and MYC (dehydration-responsive) elements. Transcript profiling of 18 PpHSFs showed that the expression trend of PpHSF5 was consistent with shoot length changes in the cultivar ‘Zhongyoutao 14’. Further analysis of the PpHSF5 was conducted in 5-year-old peach trees, Nicotiana benthamiana and Arabidopsis thaliana, respectively. Tissue-specific expression analysis showed that PpHSF5 was expressed predominantly in young vegetative organs (leaf and apex). Subcellular localization revealed that PpHSF5 was located in the nucleus in N. benthamiana cells. Two transgenic Arabidopsis lines were obtained that overexpressed PpHSF5. The root length and the number of lateral roots in the transgenic seedlings were significantly less than in WT seedlings and after cultivation for three weeks. The transgenic rosettes were smaller than those of the WT at 2–3 weeks. The two transgenic lines exhibited a dwarf phenotype three weeks after transplanting, although there was no significant difference in the number of internodes. Moreover, the PpHSF5-OE lines exhibited enhanced thermotolerance. These results indicated that PpHSF5 might be act as a suppresser of growth and development of root and aerial organs.
Collapse
Affiliation(s)
- Bin Tan
- College of Horticulture, Henan Agricultural University, Zhengzhou, China.,Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou, China
| | - Liu Yan
- College of Horticulture, Henan Agricultural University, Zhengzhou, China.,Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou, China
| | - Huannan Li
- College of Horticulture, Henan Agricultural University, Zhengzhou, China.,Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou, China
| | - Xiaodong Lian
- College of Horticulture, Henan Agricultural University, Zhengzhou, China.,Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou, China
| | - Jun Cheng
- College of Horticulture, Henan Agricultural University, Zhengzhou, China.,Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou, China
| | - Wei Wang
- College of Horticulture, Henan Agricultural University, Zhengzhou, China.,Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou, China
| | - Xianbo Zheng
- College of Horticulture, Henan Agricultural University, Zhengzhou, China.,Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou, China
| | - Xiaobei Wang
- College of Horticulture, Henan Agricultural University, Zhengzhou, China.,Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou, China
| | - Jidong Li
- College of Horticulture, Henan Agricultural University, Zhengzhou, China.,Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou, China
| | - Xia Ye
- College of Horticulture, Henan Agricultural University, Zhengzhou, China.,Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou, China
| | - Langlang Zhang
- College of Horticulture, Henan Agricultural University, Zhengzhou, China.,Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou, China
| | - Zhiqian Li
- College of Horticulture, Henan Agricultural University, Zhengzhou, China.,Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou, China
| | - Jiancan Feng
- College of Horticulture, Henan Agricultural University, Zhengzhou, China.,Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou, China
| |
Collapse
|
24
|
Panzade KP, Kale SS, Kapale V, Chavan NR. Genome-Wide Analysis of Heat Shock Transcription Factors in Ziziphus jujuba Identifies Potential Candidates for Crop Improvement Under Abiotic Stress. Appl Biochem Biotechnol 2020; 193:1023-1041. [PMID: 33244672 DOI: 10.1007/s12010-020-03463-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 11/09/2020] [Indexed: 11/24/2022]
Abstract
Plant heat shock transcription factors (Hsfs) play a significant role in adoption under abiotic stress conditions by modulating the expression of several stress-responsive genes. Analysis of the Hsf gene family will serve to understand the molecular mechanism which is involved in response to abiotic stress. The Ziziphus species grows in warm and dry regions and is inherently tolerant to abiotic stress conditions; thus, Ziziphus is a highly enriched source of genes conferring abiotic stress tolerance. Therefore, the present study provides a comprehensive genome-wide analysis of the Hsf gene family in Z. jujuba. Identified 21 non-redundant Hsf genes were grouped into three major classes (classes A, B, and C) based on the phylogenetic analysis. Promoter and gene ontology analysis suggested that ZjHsfs perform diverse functions in response to abiotic stress conditions. Two paralogous pairs resulting from tandem gene duplication events were identified. Also, physio-chemical properties of chromosomal locations, gene structure, motifs, and protein domain organization of Hsfs were analyzed. Real-time PCR expression analyses revealed that most of the Z. jujuba Hsf genes are differentially expressed in response to heat stress. The analysis suggested ZjHsf-2, ZjHsf-3, ZjHsf-5, ZjHsf-7, ZjHsf-8, ZjHsf-10, ZjHsf-12, ZjHsf-17, and ZjHsf-18 were the outstanding candidate genes for imparting heat stress tolerance and for future functional analysis. The present analysis laid the foundation for understanding the molecular mechanism of the Hsf gene family regulating Z. jujuba development and tolerance to abiotic stress conditions.
Collapse
Affiliation(s)
- Kishor Prabhakar Panzade
- Division of Molecular Biology and Biotechnology, Indian Agriculture Research Institute, New Delhi, 110012, India
| | - Sonam S Kale
- Department of Plant Biotechnology, MGM College of Agricultural Biotechnology, Aurangabad, 431003, India
| | - Vijay Kapale
- Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, 263153, India
| | - Narendra R Chavan
- Department of Plant Biotechnology, MGM College of Agricultural Biotechnology, Aurangabad, 431003, India.
| |
Collapse
|
25
|
Wang J, Hu H, Wang W, Wei Q, Hu T, Bao C. Genome-Wide Identification and Functional Characterization of the Heat Shock Factor Family in Eggplant ( Solanum melongena L.) under Abiotic Stress Conditions. PLANTS 2020; 9:plants9070915. [PMID: 32698415 PMCID: PMC7412109 DOI: 10.3390/plants9070915] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 01/10/2023]
Abstract
Plant heat shock factors (Hsfs) play crucial roles in various environmental stress responses. Eggplant (Solanum melongena L.) is an agronomically important and thermophilic vegetable grown worldwide. Although the functions of Hsfs under environmental stress conditions have been characterized in the model plant Arabidopsis thaliana and tomato, their roles in responding to various stresses remain unclear in eggplant. Therefore, we characterized the eggplant SmeHsf family and surveyed expression profiles mediated by the SmeHsfs under various stress conditions. Here, using reported Hsfs from other species as queries to search SmeHsfs in the eggplant genome and confirming the typical conserved domains, we identified 20 SmeHsf genes. The SmeHsfs were further classified into 14 subgroups on the basis of their structure. Additionally, quantitative real-time PCR revealed that SmeHsfs responded to four stresses—cold, heat, salinity and drought—which indicated that SmeHsfs play crucial roles in improving tolerance to various abiotic stresses. The expression pattern of SmeHsfA6b exhibited the most immediate response to the various environmental stresses, except drought. The genome-wide identification and abiotic stress-responsive expression pattern analysis provide clues for further analysis of the roles and regulatory mechanism of SmeHsfs under environmental stresses.
Collapse
|
26
|
Rai KK, Rai N, Aamir M, Tripathi D, Rai SP. Interactive role of salicylic acid and nitric oxide on transcriptional reprogramming for high temperature tolerance in lablab purpureus L.: Structural and functional insights using computational approaches. J Biotechnol 2020; 309:113-130. [PMID: 31935417 DOI: 10.1016/j.jbiotec.2020.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/17/2019] [Accepted: 01/03/2020] [Indexed: 02/07/2023]
Abstract
Salicylic acid (SA) and nitric oxide (NO) are considered as putative plant growth regulators that are involved in the regulation of an array of plant's growth and developmental functions under environmental fluctuations when applied at lower concentrations. The possible involvement of NO in SA induced attenuation of high temperature (HT) induced oxidative stress in plants is however, still vague and need to be explored. Therefore, the present study aimed to investigates the biochemical and physiological changes induced by foliar spray of SA and NO combinations to ameliorate HT induced oxidative stress in Lablab purpureus L. Foliar application of combined SA and NO significantly improved relative water content (27.8 %), photosynthetic pigment content (67.2 %), membrane stability (45 %), proline content (1.0 %), expression of enzymatic antioxidants (7.1-18 %) along with pod yield (1.0 %). Heat Shock Factors (HSFs) play crucial roles in plants abiotic stress tolerance, however there structural and functional classifications in L. purpureus L. is still unknown. So, In-silico approach was also used for functional characterization and homology modelling of HSFs in L. purpureus. The experimental findings depicted that combine effect of SA and NO enhances tolerance in HT stressed L. purpureus L. plants by regulating physiological functions, antioxidants, expression and regulation of stress-responsive genes via transcriptional regulation of heat shock factor.
Collapse
Affiliation(s)
- Krishna Kumar Rai
- Centre of Advance Study in Botany, Department of Botany, Institute of Science, Banaras Hindu University (BHU), Varanasi, 221005 Uttar Pradesh, India; Indian Institute of Vegetable Research, Post Box-01, P.O.-Jakhini (Shahanshahpur), Varanasi, 221305, Uttar Pradesh, India
| | - Nagendra Rai
- Indian Institute of Vegetable Research, Post Box-01, P.O.-Jakhini (Shahanshahpur), Varanasi, 221305, Uttar Pradesh, India
| | - Mohd Aamir
- Centre of Advance Study in Botany, Department of Botany, Institute of Science, Banaras Hindu University (BHU), Varanasi, 221005 Uttar Pradesh, India
| | - Deepika Tripathi
- Centre of Advance Study in Botany, Department of Botany, Institute of Science, Banaras Hindu University (BHU), Varanasi, 221005 Uttar Pradesh, India
| | - Shashi Pandey Rai
- Centre of Advance Study in Botany, Department of Botany, Institute of Science, Banaras Hindu University (BHU), Varanasi, 221005 Uttar Pradesh, India.
| |
Collapse
|
27
|
Genome-Wide Identification and Characterization of Heat-Shock Transcription Factors in Rubber Tree. FORESTS 2019. [DOI: 10.3390/f10121157] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Heat-shock transcription factors (Hsfs) play a pivotal role in the response of plants to various stresses. The present study aimed to characterize the Hsf genes in the rubber tree, a primary global source of natural rubber. In this study, 30 Hsf genes were identified in the rubber tree using genome-wide analysis. They possessed a structurally conserved DNA-binding domain and an oligomerization domain. On the basis of the length of the insert region between HR-A and HR-B in the oligomerization domain, the 30 members were clustered into three classes, Classes A (18), B (10), and C (2). Members within the same class shared highly conserved gene structures and protein motifs. The background expression levels of 11 genes in cold-tolerant rubber-tree clone 93-14 were significantly higher than those in cold-sensitive rubber-tree clone Reken501, while four genes exhibited inverse expression patterns. Upon cold stress, 20 genes were significantly upregulated in 93-114. Of the upregulated genes, HbHsfA2b, HbHsfA3a, and HbHsfA7a were also significantly upregulated in three other cold-tolerant rubber-tree clones at one or more time intervals upon cold stress. Their nuclear localization was verified, and the protein–protein interaction network was predicted. This study provides a basis for dissecting Hsf function in the enhanced cold tolerance of the rubber tree.
Collapse
|
28
|
Li W, Wan XL, Yu JY, Wang KL, Zhang J. Genome-Wide Identification, Classification, and Expression Analysis of the Hsf Gene Family in Carnation ( Dianthus caryophyllus). Int J Mol Sci 2019; 20:ijms20205233. [PMID: 31652538 PMCID: PMC6829504 DOI: 10.3390/ijms20205233] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 10/16/2019] [Accepted: 10/18/2019] [Indexed: 01/26/2023] Open
Abstract
Heat shock transcription factors (Hsfs) are a class of important transcription factors (TFs) which play crucial roles in the protection of plants from damages caused by various abiotic stresses. The present study aimed to characterize the Hsf genes in carnation (Dianthus caryophyllus), which is one of the four largest cut flowers worldwide. In this study, a total of 17 non-redundant Hsf genes were identified from the D. caryophyllus genome. Specifically, the gene structure and motifs of each DcaHsf were comprehensively analyzed. Phylogenetic analysis of the DcaHsf family distinctly separated nine class A, seven class B, and one class C Hsf genes. Additionally, promoter analysis indicated that the DcaHsf promoters included various cis-acting elements that were related to stress, hormones, as well as development processes. In addition, cis-elements, such as STRE, MYB, and ABRE binding sites, were identified in the promoters of most DcaHsf genes. According to qRT-PCR data, the expression of DcaHsfs varied in eight tissues and six flowering stages and among different DcaHsfs, even in the same class. Moreover, DcaHsf-A1, A2a, A9a, B2a, B3a revealed their putative involvement in the early flowering stages. The time-course expression profile of DcaHsf during stress responses illustrated that all the DcaHsfs were heat- and drought-responsive, and almost all DcaHsfs were down-regulated by cold, salt, and abscisic acid (ABA) stress. Meanwhile, DcaHsf-A3, A7, A9a, A9b, B3a were primarily up-regulated at an early stage in response to salicylic acid (SA). This study provides an overview of the Hsf gene family in D. caryophyllus and a basis for the breeding of stress-resistant carnation.
Collapse
Affiliation(s)
- Wei Li
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao 266000, China.
| | - Xue-Li Wan
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao 266000, China.
| | - Jia-Yu Yu
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao 266000, China.
| | - Kui-Ling Wang
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao 266000, China.
| | - Jin Zhang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China.
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
| |
Collapse
|
29
|
Wan X, Yang J, Guo C, Bao M, Zhang J. Genome-wide identification and classification of the Hsf and sHsp gene families in Prunus mume, and transcriptional analysis under heat stress. PeerJ 2019; 7:e7312. [PMID: 31392093 PMCID: PMC6673427 DOI: 10.7717/peerj.7312] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 06/18/2019] [Indexed: 11/20/2022] Open
Abstract
The transcriptional activation of heat shock proteins (Hsps) by heat shock transcription factors (Hsfs) is presumed to have a pivotal role in plant heat stress (HS) response. Prunus mume is an ornamental woody plant with distinctive features, including rich varieties and colors. In this study, 18 Hsfs and 24 small Hsps (sHsps) were identified in P. mume. Their chromosomal locations, protein domains, conserved motifs, phylogenetic relationships, and exon–intron structures were analyzed and compared with Arabidopsis thaliana Hsfs or sHsps. A total of 18 PmHsf members were classified into three major classes, A, B, and C. A total of 24 PmsHsps were grouped into eight subfamilies (CI to CIII, P, endoplasmic reticulum, M, and CI- or P-related). Quantitative reverse transcription PCR analysis revealed that members of the A2, A7, and A9 groups became the prominent Hsfs after heat shock, suggesting their involvement in a key regulatory role of heat tolerance. Most of the PmsHsp genes were up-regulated upon exposure to HS. Overall, our data contribute to an improved understanding of the complexity of the P. mume Hsf and sHsp gene families, and provide a basis for directing future systematic studies investigating the roles of the Hsf and sHsp gene families.
Collapse
Affiliation(s)
- Xueli Wan
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China.,College of Landscape and Forestry, Qingdao Agricultural University, Qingdao, China
| | - Jie Yang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China.,School of Nuclear Technology and Chemisity & Biology, Hubei University of Science and Technology, Xianning, China
| | - Cong Guo
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China.,Institute of Industrial Crops, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Manzhu Bao
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Junwei Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
30
|
Zhou M, Zheng S, Liu R, Lu J, Lu L, Zhang C, Liu Z, Luo C, Zhang L, Yant L, Wu Y. Genome-wide identification, phylogenetic and expression analysis of the heat shock transcription factor family in bread wheat (Triticum aestivum L.). BMC Genomics 2019; 20:505. [PMID: 31215411 PMCID: PMC6580518 DOI: 10.1186/s12864-019-5876-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 05/31/2019] [Indexed: 01/31/2023] Open
Abstract
Background Environmental toxicity from non-essential heavy metals such as cadmium (Cd), which is released from human activities and other environmental causes, is rapidly increasing. Wheat can accumulate high levels of Cd in edible tissues, which poses a major hazard to human health. It has been reported that heat shock transcription factor A 4a (HsfA4a) of wheat and rice conferred Cd tolerance by upregulating metallothionein gene expression. However, genome-wide identification, classification, and comparative analysis of the Hsf family in wheat is lacking. Further, because of the promising role of Hsf genes in Cd tolerance, there is need for an understanding of the expression of this family and their functions on wheat under Cd stress. Therefore, here we identify the wheat TaHsf family and to begin to understand the molecular mechanisms mediated by the Hsf family under Cd stress. Results We first identified 78 putative Hsf homologs using the latest available wheat genome information, of which 38 belonged to class A, 16 to class B and 24 to class C subfamily. Then, we determined chromosome localizations, gene structures, conserved protein motifs, and phylogenetic relationships of these TaHsfs. Using RNA sequencing data over the course of development, we surveyed expression profiles of these TaHsfs during development and under different abiotic stresses to characterise the regulatory network of this family. Finally, we selected 13 TaHsf genes for expression level verification under Cd stress using qRT-PCR. Conclusions To our knowledge, this is the first report of the genome organization, evolutionary features and expression profiles of the wheat Hsf gene family. This work therefore lays the foundation for targeted functional analysis of wheat Hsf genes, and contributes to a better understanding of the roles and regulatory mechanism of wheat Hsfs under Cd stress. Electronic supplementary material The online version of this article (10.1186/s12864-019-5876-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Min Zhou
- Chengdu Institute of Biology, Chinese Academy of Sciences, No.9, section 4 of South RenMin Road, Wuhou District, Chengdu, 610041, Sichuan, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Shigang Zheng
- Chengdu Institute of Biology, Chinese Academy of Sciences, No.9, section 4 of South RenMin Road, Wuhou District, Chengdu, 610041, Sichuan, China
| | - Rong Liu
- Chengdu Institute of Biology, Chinese Academy of Sciences, No.9, section 4 of South RenMin Road, Wuhou District, Chengdu, 610041, Sichuan, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Lu
- Chengdu Institute of Biology, Chinese Academy of Sciences, No.9, section 4 of South RenMin Road, Wuhou District, Chengdu, 610041, Sichuan, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lu Lu
- Chengdu Institute of Biology, Chinese Academy of Sciences, No.9, section 4 of South RenMin Road, Wuhou District, Chengdu, 610041, Sichuan, China
| | - Chihong Zhang
- Chengdu Institute of Biology, Chinese Academy of Sciences, No.9, section 4 of South RenMin Road, Wuhou District, Chengdu, 610041, Sichuan, China
| | - Zehou Liu
- Chengdu Institute of Biology, Chinese Academy of Sciences, No.9, section 4 of South RenMin Road, Wuhou District, Chengdu, 610041, Sichuan, China
| | - Congpei Luo
- Chengdu Institute of Biology, Chinese Academy of Sciences, No.9, section 4 of South RenMin Road, Wuhou District, Chengdu, 610041, Sichuan, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lei Zhang
- Chengdu Institute of Biology, Chinese Academy of Sciences, No.9, section 4 of South RenMin Road, Wuhou District, Chengdu, 610041, Sichuan, China
| | - Levi Yant
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Yu Wu
- Chengdu Institute of Biology, Chinese Academy of Sciences, No.9, section 4 of South RenMin Road, Wuhou District, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
31
|
Priya M, Dhanker OP, Siddique KHM, HanumanthaRao B, Nair RM, Pandey S, Singh S, Varshney RK, Prasad PVV, Nayyar H. Drought and heat stress-related proteins: an update about their functional relevance in imparting stress tolerance in agricultural crops. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:1607-1638. [PMID: 30941464 DOI: 10.1007/s00122-019-03331-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 03/19/2019] [Indexed: 05/21/2023]
Abstract
We describe here the recent developments about the involvement of diverse stress-related proteins in sensing, signaling, and defending the cells in plants in response to drought or/and heat stress. In the current era of global climate drift, plant growth and productivity are often limited by various environmental stresses, especially drought and heat. Adaptation to abiotic stress is a multigenic process involving maintenance of homeostasis for proper survival under adverse environment. It has been widely observed that a series of proteins respond to heat and drought conditions at both transcriptional and translational levels. The proteins are involved in various signaling events, act as key transcriptional activators and saviors of plants under extreme environments. A detailed insight about the functional aspects of diverse stress-responsive proteins may assist in unraveling various stress resilience mechanisms in plants. Furthermore, by identifying the metabolic proteins associated with drought and heat tolerance, tolerant varieties can be produced through transgenic/recombinant technologies. A large number of regulatory and functional stress-associated proteins are reported to participate in response to heat and drought stresses, such as protein kinases, phosphatases, transcription factors, and late embryogenesis abundant proteins, dehydrins, osmotins, and heat shock proteins, which may be similar or unique to stress treatments. Few studies have revealed that cellular response to combined drought and heat stresses is distinctive, compared to their individual treatments. In this review, we would mainly focus on the new developments about various stress sensors and receptors, transcription factors, chaperones, and stress-associated proteins involved in drought or/and heat stresses, and their possible role in augmenting stress tolerance in crops.
Collapse
Affiliation(s)
- Manu Priya
- Department of Botany, Panjab University, Chandigarh, India
| | - Om P Dhanker
- Stockbridge School of Agriculture, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, University of Western Australia, Perth, WA, Australia
| | | | | | - Sarita Pandey
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics, Patancheru, Hyderabad, Telangana, 502324, India
| | - Sadhana Singh
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics, Patancheru, Hyderabad, Telangana, 502324, India
| | - Rajeev K Varshney
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics, Patancheru, Hyderabad, Telangana, 502324, India
| | - P V Vara Prasad
- Sustainable Intensification Innovation Lab, Kansas State University, Manhattan, KS, USA
| | - Harsh Nayyar
- Department of Botany, Panjab University, Chandigarh, India.
| |
Collapse
|
32
|
Li GL, Zhang HN, Shao H, Wang GY, Zhang YY, Zhang YJ, Zhao LN, Guo XL, Sheteiwy MS. ZmHsf05, a new heat shock transcription factor from Zea mays L. improves thermotolerance in Arabidopsis thaliana and rescues thermotolerance defects of the athsfa2 mutant. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 283:375-384. [PMID: 31128708 DOI: 10.1016/j.plantsci.2019.03.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 03/07/2019] [Accepted: 03/08/2019] [Indexed: 05/05/2023]
Abstract
High temperature directly affects the yield and quality of crops. Plant Hsfs play vital roles in plant response to heat shock. In the present study, ZmHsf05 was isolated from maize (Zea mays L.) using homologous cloning methods. The sequencing analysis demonstrated that CDS of ZmHsf05 was 1080 bp length and encoded a protein containing 359 amino acids. The putative amino acid sequence of ZmHsf05 contained typical Hsf domains, such as DBD, OD, NLS and AHA motif. Subcellular localization assays displayed that the ZmHsf05 is localized to the nucleus. ZmHsf05 was expressed in many maize tissues and its expression level was increased by heat stress treatment. ZmHsf05 rescued the reduced thermotolerance of the athsfa2 mutant in Arabidopsis seedlings. Arabidopsis seedlings of ZmHsf05-overexpressing increased both the basal and acquired thermotolerances. After heat stress, the ZmHsf05-overexpressing lines showed enhanced survival rate and chlorophyll content compared with WT seedlings. The expression of Hsps was up-regulated in the ZmHsf05-overexpressing Arabidopsis lines after heat stress treatment. These results suggested that ZmHsf05 plays an important role in both basal and acquired thermotolerance in plants.
Collapse
Affiliation(s)
- Guo-Liang Li
- Plant Genetic Engineering Center of Hebei Province/Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, PR China
| | - Hua-Ning Zhang
- Plant Genetic Engineering Center of Hebei Province/Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, PR China
| | - Hongbo Shao
- Salt-soil Agricultural Center, Key Laboratory of Agricultural Environment in the Lower Reaches of Yangtze River Plain, Institute of Agriculture Resources and Environment, Jiangsu Academy of Agriculture Science(JAAS), Nanjing, 210014, PR China; College of Environment and Safety Engineering, Qingdao University of Science & Technology, Qingdao 266000, China; Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Yancheng Teachers University, Yancheng, 224002, PR China.
| | - Gui-Yan Wang
- Faculty of Agronomy, Hebei Agricultural University, Baoding, 071001, PR China.
| | - Yuan-Yuan Zhang
- Plant Genetic Engineering Center of Hebei Province/Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, PR China; College of Life Science, Hebei Normal University, Shijiazhuang 050024, PR China
| | - Yu-Jie Zhang
- Plant Genetic Engineering Center of Hebei Province/Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, PR China; College of Agriculture and Forestry Science and Technology, Hebei North University, Zhangjiakou, 075000, PR China
| | - Li-Na Zhao
- Plant Genetic Engineering Center of Hebei Province/Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, PR China; Faculty of Agronomy, Hebei Agricultural University, Baoding, 071001, PR China
| | - Xiu-Lin Guo
- Plant Genetic Engineering Center of Hebei Province/Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, PR China.
| | - Mohamed Salah Sheteiwy
- Salt-soil Agricultural Center, Key Laboratory of Agricultural Environment in the Lower Reaches of Yangtze River Plain, Institute of Agriculture Resources and Environment, Jiangsu Academy of Agriculture Science(JAAS), Nanjing, 210014, PR China
| |
Collapse
|
33
|
Duan S, Liu B, Zhang Y, Li G, Guo X. Genome-wide identification and abiotic stress-responsive pattern of heat shock transcription factor family in Triticum aestivum L. BMC Genomics 2019; 20:257. [PMID: 30935363 PMCID: PMC6444544 DOI: 10.1186/s12864-019-5617-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 03/18/2019] [Indexed: 01/01/2023] Open
Abstract
Background Enhancement of crop productivity under various abiotic stresses is a major objective of agronomic research. Wheat (Triticum aestivum L.) as one of the world’s staple crops is highly sensitive to heat stress, which can adversely affect both yield and quality. Plant heat shock factors (Hsfs) play a crucial role in abiotic and biotic stress response and conferring stress tolerance. Thus, multifunctional Hsfs may be potentially targets in generating novel strains that have the ability to survive environments that feature a combination of stresses. Result In this study, using the released genome sequence of wheat and the novel Hsf protein HMM (Hidden Markov Model) model constructed with the Hsf protein sequence of model monocot (Oryza sativa) and dicot (Arabidopsis thaliana) plants, genome-wide TaHsfs identification was performed. Eighty-two non-redundant and full-length TaHsfs were randomly located on 21 chromosomes. The structural characteristics and phylogenetic analysis with Arabidopsis thaliana, Oryza sativa and Zea mays were used to classify these genes into three major classes and further into 13 subclasses. A novel subclass, TaHsfC3 was found which had not been documented in wheat or other plants, and did not show any orthologous genes in A. thaliana, O. sativa, or Z. mays Hsf families. The observation of a high proportion of homeologous TaHsf gene groups suggests that the allopolyploid process, which occurred after the fusion of genomes, contributed to the expansion of the TaHsf family. Furthermore, TaHsfs expression profiling by RNA-seq revealed that the TaHsfs could be responsive not only to abiotic stresses but also to phytohormones. Additionally, the TaHsf family genes exhibited class-, subclass- and organ-specific expression patterns in response to various treatments. Conclusions A comprehensive analysis of Hsf genes was performed in wheat, which is useful for better understanding one of the most complex Hsf gene families. Variations in the expression patterns under different abiotic stress and phytohormone treatments provide clues for further analysis of the TaHsfs functions and corresponding signal transduction pathways in wheat. Electronic supplementary material The online version of this article (10.1186/s12864-019-5617-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shuonan Duan
- Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang, 050051, China
| | - Binhui Liu
- Institute of Dryland Farming, Hebei Academy of Agriculture and Forestry Sciences, Hengshui, 053000, China
| | - Yuanyuan Zhang
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Guoliang Li
- Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang, 050051, China.
| | - Xiulin Guo
- Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang, 050051, China.
| |
Collapse
|
34
|
Agarwal P, Khurana P. Functional characterization of HSFs from wheat in response to heat and other abiotic stress conditions. Funct Integr Genomics 2019; 19:497-513. [PMID: 30868385 DOI: 10.1007/s10142-019-00666-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 02/07/2019] [Accepted: 02/07/2019] [Indexed: 10/27/2022]
Abstract
High temperature stress is known to be one of the major limiting factors for wheat productivity worldwide. HSFs are known to play a central role in heat stress response in plants. Hence, the current study is an attempt to explore an in-depth involvement of TaHSFs in stress responses mainly in heat and other abiotic responses like salinity, drought, and cold stress. Effort was made to understand as how the expression of HSF is able to define the differential robustness of wheat varieties. Subsequent studies were done to establish the involvement of any temporal or spatial cue on the behavior of these TaHSFs under heat stress conditions. A total of 53 HSFs have been reported until date and out of these, few TaHSFs including one identified in our library, i.e., TaHsfA2d (Traes_4AS_52EB860E7.2), were selected for the expression analysis studies. The expressions of these HSFs were found to differ in both magnitude and sensitivity to the heat as well as other abiotic stresses. Moreover, these TaHSFs displayed wide range of expression in different tissues like anther, ovary, lemma, palea, awn, glume, and different stages of seed development. Thus, TaHSFs appear to be under dynamic expression as they respond in a unique manner to spatial, temporal, and environmental cues. Therefore, these HSFs can be used as candidate genes for understanding the molecular mechanism under heat stress and can be utilized for improving crop yield by enhancing the tolerance and survival of the crop plants under adverse environment conditions.
Collapse
Affiliation(s)
- Preeti Agarwal
- Department of Plant Molecular Biology, University of Delhi South Campus, Dhaula Kuan, New Delhi, 110021, India
| | - Paramjit Khurana
- Department of Plant Molecular Biology, University of Delhi South Campus, Dhaula Kuan, New Delhi, 110021, India.
| |
Collapse
|
35
|
Li S, Wang R, Jin H, Ding Y, Cai C. Molecular Characterization and Expression Profile Analysis of Heat Shock Transcription Factors in Mungbean. Front Genet 2019; 9:736. [PMID: 30687395 PMCID: PMC6336897 DOI: 10.3389/fgene.2018.00736] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 12/22/2018] [Indexed: 11/30/2022] Open
Abstract
Heat shock transcription factors (Hsfs) are essential elements in plant signal transduction pathways that mediate gene expression in response to various abiotic stresses. Mungbean (Vigna radiata) is an important crop worldwide. The emergence of a genome database now allows for functional analysis of mungbean genes. In this study, we dissect the mungbean Hsfs using genome-wide identification and expression profiles. We characterized a total of 24 VrHsf genes and classified them into three groups (A, B, and C) based on their phylogeny and conserved domain structures. All VrHsf genes exhibit highly conserved exon-intron organization, with two exons and one intron. In addition, all VrHsf proteins contain 16 distinct motifs. Chromosome location analysis revealed that VrHsf genes are located on 8 of the 11 mungbean chromosomes, and that seven duplicated gene pairs had formed among them. Moreover, transcription patterns of VrHsf genes varied in different tissues, indicating their different roles in plant growth and development. We identified multiple stress related cis-elements in VrHsf promoter regions 2 kb upstream of the translation initiation codons, and the expression of most VrHsf genes was altered under different stress conditions, suggesting their potential functions in stress resistance pathways. These molecular characterization and expression profile analyses of VrHsf genes provide essential information for further function investigation.
Collapse
Affiliation(s)
- Shuai Li
- Key Lab of Plant Biotechnology in Universities of Shandong Province, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Runhao Wang
- Key Lab of Plant Biotechnology in Universities of Shandong Province, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Hanqi Jin
- Key Lab of Plant Biotechnology in Universities of Shandong Province, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Yanhua Ding
- Key Lab of Plant Biotechnology in Universities of Shandong Province, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Chunmei Cai
- Key Lab of Plant Biotechnology in Universities of Shandong Province, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
36
|
Lohani N, Golicz AA, Singh MB, Bhalla PL. Genome-wide analysis of the Hsf gene family in Brassica oleracea and a comparative analysis of the Hsf gene family in B. oleracea, B. rapa and B. napus. Funct Integr Genomics 2019; 19:515-531. [DOI: 10.1007/s10142-018-0649-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 11/12/2018] [Accepted: 11/19/2018] [Indexed: 02/05/2023]
|
37
|
Ashraf MF, Yang S, Wu R, Wang Y, Hussain A, Noman A, Khan MI, Liu Z, Qiu A, Guan D, He S. Capsicum annuum HsfB2a Positively Regulates the Response to Ralstonia solanacearum Infection or High Temperature and High Humidity Forming Transcriptional Cascade with CaWRKY6 and CaWRKY40. PLANT & CELL PHYSIOLOGY 2018; 59:2608-2623. [PMID: 30169791 DOI: 10.1093/pcp/pcy181] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 08/29/2018] [Indexed: 05/21/2023]
Abstract
The responses of pepper (Capsicum annuum) plants to inoculation with the pathogenic bacterium Ralstonia solanacearum and to high-temperature-high-humidity (HTHH) conditions were previously found to be coordinated by the transcription factors CaWRKY6 and CaWRKY40; however, the underlying molecular mechanism was unclear. Herein, we identified and functionally characterized CaHsfB2a, a nuclear-localized heat shock factor involved in pepper immunity to R. solanacearum inoculation (RSI) and tolerance to HTHH. CaHsfB2a is transcriptionally induced in pepper plants by RSI or HTHH and by exogenous application of salicylic acid (SA), methyl jasmonate (MeJA), ethylene (ETH), or abscisic acid (ABA). Virus-induced gene silencing (VIGS) of CaHsfB2a significantly impaired pepper immunity to RSI, hampered HTHH tolerance, and curtailed expression of immunity- and thermotolerance-associated marker genes such as CaHIR1, CaNPR1, CaABR1, and CaHSP24. Likewise, transient overexpression of CaHsfB2a in pepper leaves induced hypersensitive response (HR)-like cell death and H2O2 accumulation and upregulated the above-mentioned marker genes as well as CaWRKY6 and CaWRKY40. Chromatin immunoprecipitation (ChIP) and microscale thermophoresis (MST) analysis revealed that CaHsfB2a bound the promoters of both CaWRKY6 and CaWRKY40. In a parallel experiment, we determined by ChIP-PCR and MST that CaHsfB2a was regulated directly by CaWRKY40 but indirectly by CaWRKY6. Cumulatively, our results suggest that CaHsfB2a positively regulates plant immunity against RSI and tolerance to HTHH, via transcriptional cascades and positive feedback loops involving CaWRKY6 and CaWRKY40.
Collapse
Affiliation(s)
- Muhammad Furqan Ashraf
- Ministry of Education Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Sheng Yang
- Ministry of Education Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Ruijie Wu
- Ministry of Education Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yuzhu Wang
- Ministry of Education Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Ansar Hussain
- Ministry of Education Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Ali Noman
- Department of Botany Government College University, Faisalabad, Pakistan
| | - Muhammad Ifnan Khan
- Ministry of Education Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Zhiqin Liu
- Ministry of Education Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ailian Qiu
- Ministry of Education Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Deyi Guan
- Ministry of Education Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shuilin He
- Ministry of Education Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
38
|
Li W, Sun K, Ren Z, Song C, Pei X, Liu Y, Wang Z, He K, Zhang F, Zhou X, Ma X, Yang D. Molecular Evolution and Stress and Phytohormone Responsiveness of SUT Genes in Gossypium hirsutum. Front Genet 2018; 9:494. [PMID: 30405700 PMCID: PMC6205988 DOI: 10.3389/fgene.2018.00494] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 10/04/2018] [Indexed: 11/13/2022] Open
Abstract
Sucrose transporters (SUTs) play key roles in allocating the translocation of assimilates from source to sink tissues. Although the characteristics and biological roles of SUTs have been intensively investigated in higher plants, this gene family has not been functionally characterized in cotton. In this study, we performed a comprehensive analysis of SUT genes in the tetraploid cotton Gossypium hirsutum. A total of 18 G. hirsutum SUT genes were identified and classified into three groups based on their evolutionary relationships. Up to eight SUT genes in G. hirsutum were placed in the dicot-specific SUT1 group, while four and six SUT genes were, respectively, clustered into SUT4 and SUT2 groups together with members from both dicot and monocot species. The G. hirsutum SUT genes within the same group displayed similar exon/intron characteristics, and homologous genes in G. hirsutum At and Dt subgenomes, G. arboreum, and G. raimondii exhibited one-to-one relationships. Additionally, the duplicated genes in the diploid and polyploid cotton species have evolved through purifying selection, suggesting the strong conservation of SUT loci in these species. Expression analysis in different tissues indicated that SUT genes might play significant roles in cotton fiber elongation. Moreover, analyses of cis-acting regulatory elements in promoter regions and expression profiling under different abiotic stress and exogenous phytohormone treatments implied that SUT genes, especially GhSUT6A/D, might participate in plant responses to diverse abiotic stresses and phytohormones. Our findings provide valuable information for future studies on the evolution and function of SUT genes in cotton.
Collapse
Affiliation(s)
- Wei Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Kuan Sun
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Zhongying Ren
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | | | - Xiaoyu Pei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Yangai Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Zhenyu Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Kunlun He
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Fei Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Xiaojian Zhou
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Xiongfeng Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Daigang Yang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| |
Collapse
|
39
|
Wei Y, Liu G, Chang Y, He C, Shi H. Heat shock transcription factor 3 regulates plant immune response through modulation of salicylic acid accumulation and signalling in cassava. MOLECULAR PLANT PATHOLOGY 2018; 19:2209-2220. [PMID: 29660238 PMCID: PMC6638013 DOI: 10.1111/mpp.12691] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 02/27/2018] [Accepted: 04/09/2018] [Indexed: 05/05/2023]
Abstract
As the terminal components of signal transduction, heat stress transcription factors (Hsfs) mediate the activation of multiple genes responsive to various stresses. However, the information and functional analysis are very limited in non-model plants, especially in cassava (Manihot esculenta), one of the most important crops in tropical areas. In this study, 32 MeHsfs were identified from the cassava genome; the evolutionary tree, gene structures and motifs were also analysed. Gene expression analysis found that MeHsfs were commonly regulated by Xanthomonas axonopodis pv. manihotis (Xam). Amongst these MeHsfs, MeHsf3 was specifically located in the cell nucleus and showed transcriptionally activated activity on heat stress elements (HSEs). Through transient expression in Nicotiana benthamiana leaves and virus-induced gene silencing (VIGS) in cassava, we identified the essential role of MeHsf3 in plant disease resistance, by regulating the transcripts of Enhanced Disease Susceptibility 1 (EDS1) and pathogen-related gene 4 (PR4). Notably, as regulators of defence susceptibility, MeEDS1 and MePR4 were identified as direct targets of MeHsf3. Moreover, the disease sensitivity of MeHsf3- and MeEDS1-silenced plants could be restored by exogenous salicylic acid (SA) treatment. Taken together, this study highlights the involvement of MeHsf3 in defence resistance through the transcriptional activation of MeEDS1 and MePR4.
Collapse
Affiliation(s)
- Yunxie Wei
- Hainan Key Laboratory for Sustainable Utilization of Tropical BioresourcesInstitute of Tropical Agriculture and Forestry, Hainan UniversityHaikou 570228China
| | - Guoyin Liu
- Hainan Key Laboratory for Sustainable Utilization of Tropical BioresourcesInstitute of Tropical Agriculture and Forestry, Hainan UniversityHaikou 570228China
| | - Yanli Chang
- Hainan Key Laboratory for Sustainable Utilization of Tropical BioresourcesInstitute of Tropical Agriculture and Forestry, Hainan UniversityHaikou 570228China
| | - Chaozu He
- Hainan Key Laboratory for Sustainable Utilization of Tropical BioresourcesInstitute of Tropical Agriculture and Forestry, Hainan UniversityHaikou 570228China
| | - Haitao Shi
- Hainan Key Laboratory for Sustainable Utilization of Tropical BioresourcesInstitute of Tropical Agriculture and Forestry, Hainan UniversityHaikou 570228China
| |
Collapse
|
40
|
Chidambaranathan P, Jagannadham PTK, Satheesh V, Kohli D, Basavarajappa SH, Chellapilla B, Kumar J, Jain PK, Srinivasan R. Genome-wide analysis identifies chickpea (Cicer arietinum) heat stress transcription factors (Hsfs) responsive to heat stress at the pod development stage. JOURNAL OF PLANT RESEARCH 2018; 131:525-542. [PMID: 28474118 DOI: 10.1007/s10265-017-0948-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 04/04/2017] [Indexed: 05/15/2023]
Abstract
The heat stress transcription factors (Hsfs) play a prominent role in thermotolerance and eliciting the heat stress response in plants. Identification and expression analysis of Hsfs gene family members in chickpea would provide valuable information on heat stress responsive Hsfs. A genome-wide analysis of Hsfs gene family resulted in the identification of 22 Hsf genes in chickpea in both desi and kabuli genome. Phylogenetic analysis distinctly separated 12 A, 9 B, and 1 C class Hsfs, respectively. An analysis of cis-regulatory elements in the upstream region of the genes identified many stress responsive elements such as heat stress elements (HSE), abscisic acid responsive element (ABRE) etc. In silico expression analysis showed nine and three Hsfs were also expressed in drought and salinity stresses, respectively. Q-PCR expression analysis of Hsfs under heat stress at pod development and at 15 days old seedling stage showed that CarHsfA2, A6, and B2 were significantly upregulated in both the stages of crop growth and other four Hsfs (CarHsfA2, A6a, A6c, B2a) showed early transcriptional upregulation for heat stress at seedling stage of chickpea. These subclasses of Hsfs identified in this study can be further evaluated as candidate genes in the characterization of heat stress response in chickpea.
Collapse
Affiliation(s)
- Parameswaran Chidambaranathan
- National Research Centre on Plant Biotechnology, New Delhi, India
- Indian Agricultural Research Institute, New Delhi, India
| | - Prasanth Tej Kumar Jagannadham
- National Research Centre on Plant Biotechnology, New Delhi, India
- Indian Agricultural Research Institute, New Delhi, India
| | - Viswanathan Satheesh
- National Research Centre on Plant Biotechnology, New Delhi, India
- Indian Agricultural Research Institute, New Delhi, India
| | - Deshika Kohli
- National Research Centre on Plant Biotechnology, New Delhi, India
| | | | | | - Jitendra Kumar
- Division of Genetics, Indian Agricultural Research Institute, New Delhi, India
| | - Pradeep Kumar Jain
- National Research Centre on Plant Biotechnology, New Delhi, India
- Indian Agricultural Research Institute, New Delhi, India
| | - R Srinivasan
- National Research Centre on Plant Biotechnology, New Delhi, India.
- Indian Agricultural Research Institute, New Delhi, India.
- Emeritus Scientist, Molecular Biology and Biotechnology, NRC Plant Biotechnology, Indian Agricultural Research Institute, New Delhi, 110012, India.
| |
Collapse
|
41
|
Li W, Ren Z, Wang Z, Sun K, Pei X, Liu Y, He K, Zhang F, Song C, Zhou X, Zhang W, Ma X, Yang D. Evolution and Stress Responses of Gossypium hirsutum SWEET Genes. Int J Mol Sci 2018; 19:E769. [PMID: 29517986 PMCID: PMC5877630 DOI: 10.3390/ijms19030769] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 02/21/2018] [Accepted: 02/26/2018] [Indexed: 02/07/2023] Open
Abstract
The SWEET (sugars will eventually be exported transporters) proteins are sugar efflux transporters containing the MtN3_saliva domain, which affects plant development as well as responses to biotic and abiotic stresses. These proteins have not been functionally characterized in the tetraploid cotton, Gossypium hirsutum, which is a widely cultivated cotton species. In this study, we comprehensively analyzed the cotton SWEET gene family. A total of 55 putative G. hirsutumSWEET genes were identified. The GhSWEET genes were classified into four clades based on a phylogenetic analysis and on the examination of gene structural features. Moreover, chromosomal localization and an analysis of homologous genes in Gossypium arboreum, Gossypium raimondii, and G. hirsutum suggested that a whole-genome duplication, several tandem duplications, and a polyploidy event contributed to the expansion of the cotton SWEET gene family, especially in Clade III and IV. Analyses of cis-acting regulatory elements in the promoter regions, expression profiles, and artificial selection revealed that the GhSWEET genes were likely involved in cotton developmental processes and responses to diverse stresses. These findings may clarify the evolution of G. hirsutum SWEET gene family and may provide a foundation for future functional studies of SWEET proteins regarding cotton development and responses to abiotic stresses.
Collapse
Affiliation(s)
- Wei Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| | - Zhongying Ren
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| | - Zhenyu Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| | - Kuan Sun
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| | - Xiaoyu Pei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| | - Yangai Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| | - Kunlun He
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| | - Fei Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| | - Chengxiang Song
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| | - Xiaojian Zhou
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| | - Wensheng Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| | - Xiongfeng Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| | - Daigang Yang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| |
Collapse
|
42
|
Zhang B, Wang Y, Liu JY. Genome-wide identification and characterization of phospholipase C gene family in cotton (Gossypium spp.). SCIENCE CHINA-LIFE SCIENCES 2017; 61:88-99. [PMID: 28547583 DOI: 10.1007/s11427-017-9053-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 04/01/2017] [Indexed: 01/05/2023]
Abstract
Phospholipase C (PLC) are important regulatory enzymes involved in several lipid and Ca2+-dependent signaling pathways. Previous studies have elucidated the versatile roles of PLC genes in growth, development and stress responses of many plants, however, the systematic analyses of PLC genes in the important fiber-producing plant, cotton, are still deficient. In this study, through genome-wide survey, we identified twelve phosphatidylinositol-specific PLC (PI-PLC) and nine non-specific PLC (NPC) genes in the allotetraploid upland cotton Gossypium hirsutum and nine PI-PLC and six NPC genes in two diploid cotton G. arboretum and G.raimondii, respectively. The PI-PLC and NPC genes of G. hirsutum showed close phylogenetic relationship with their homologous genes in the diploid cottons and Arabidopsis. Segmental and tandem duplication contributed greatly to the formation of the gene family. Expression profiling indicated that few of the PLC genes are constitutely expressed, whereas most of the PLC genes are preferentially expressed in specific tissues and abiotic stress conditions. Promoter analyses further implied that the expression of these PLC genes might be regulated by MYB transcription factors and different phytohormones. These results not only suggest an important role of phospholipase C members in cotton plant development and abiotic stress response but also provide good candidate targets for future molecular breeding of superior cotton cultivars.
Collapse
Affiliation(s)
- Bing Zhang
- Laboratory of Plant Molecular Biology, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yanmei Wang
- Laboratory of Plant Molecular Biology, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jin-Yuan Liu
- Laboratory of Plant Molecular Biology, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
43
|
Zhu X, Huang C, Zhang L, Liu H, Yu J, Hu Z, Hua W. Systematic Analysis of Hsf Family Genes in the Brassica napus Genome Reveals Novel Responses to Heat, Drought and High CO 2 Stresses. FRONTIERS IN PLANT SCIENCE 2017; 8:1174. [PMID: 28729874 PMCID: PMC5498556 DOI: 10.3389/fpls.2017.01174] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 06/19/2017] [Indexed: 05/19/2023]
Abstract
Drought and heat stress are major causes of lost plant crop yield. In the future, high levels of CO2, in combination of other abiotic stress factors, will become a novel source of stress. Little is known of the mechanisms involved in the acclimation responses of plants to this combination of abiotic stress factors, though it has been demonstrated that heat shock transcription factors (Hsfs) are involved in plant response to various abiotic stresses. In this study, we performed a genome-wide identification and a systematic analysis of genes in the Hsf gene family in Brassica napus. A total of 64 genes encoding Hsf proteins were identified and classified into 3 major classes: A, B and C. We found that, unlike in other eudicots, the A9 subclass is absent in rapeseed. Further gene structure analysis revealed a loss of the only intron in the DBD domain for BnaHsf63 and -64 within class C, which is evolutionarily conserved in all Hsf genes. Transcription profile results demonstrated that most BnaHsf family genes are upregulated by both drought and heat conditions, while some are responded to a high CO2 treatment. According to the combined RNA-seq and qRT-PCR analysis, the A1E/A4A/A7 subclasses were upregulated by both drought and heat treatments. Members in class C seemed to be predominantly induced only by drought. Among BnaHsf genes, the A2/A3/B2 subclasses were regulated by all three abiotic stresses. Members in A2/B2 subclasses were upregulated by drought and heat treatments, but were downregulated under high CO2 conditions. While the A3 subclass was upregulated by all the three abiotic stresses. Various stress-related cis-acting elements, enriched in promoter regions, were correlated with the transcriptional response of BnaHsfs to these abiotic stresses. Further study of these novel groups of multifunctional BnaHsf genes will improve our understanding of plant acclimation response to abiotic stresses, and may be useful for improving the abiotic stress resistance of crop varieties.
Collapse
|
44
|
Wang P, Song H, Li C, Li P, Li A, Guan H, Hou L, Wang X. Genome-Wide Dissection of the Heat Shock Transcription Factor Family Genes in Arachis. FRONTIERS IN PLANT SCIENCE 2017; 8:106. [PMID: 28220134 PMCID: PMC5292572 DOI: 10.3389/fpls.2017.00106] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 01/18/2017] [Indexed: 05/21/2023]
Abstract
Heat shock transcription factors (Hsfs) are important transcription factors (TFs) in protecting plants from damages caused by various stresses. The released whole genome sequences of wild peanuts make it possible for genome-wide analysis of Hsfs in peanut. In this study, a total of 16 and 17 Hsf genes were identified from Arachis duranensis and A. ipaensis, respectively. We identified 16 orthologous Hsf gene pairs in both peanut species; however HsfXs was only identified from A. ipaensis. Orthologous pairs between two wild peanut species were highly syntenic. Based on phylogenetic relationship, peanut Hsfs were divided into groups A, B, and C. Selection pressure analysis showed that group B Hsf genes mainly underwent positive selection and group A Hsfs were affected by purifying selection. Small scale segmental and tandem duplication may play important roles in the evolution of these genes. Cis-elements, such as ABRE, DRE, and HSE, were found in the promoters of most Arachis Hsf genes. Five AdHsfs and two AiHsfs contained fungal elicitor responsive elements suggesting their involvement in response to fungi infection. These genes were differentially expressed in cultivated peanut under abiotic stress and Aspergillus flavus infection. AhHsf2 and AhHsf14 were significantly up-regulated after inoculation with A. flavus suggesting their possible role in fungal resistance.
Collapse
Affiliation(s)
- Pengfei Wang
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and PhysiologyJinan, China
| | - Hui Song
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and PhysiologyJinan, China
| | - Changsheng Li
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and PhysiologyJinan, China
| | - Pengcheng Li
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and PhysiologyJinan, China
| | - Aiqin Li
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and PhysiologyJinan, China
| | - Hongshan Guan
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and PhysiologyJinan, China
| | - Lei Hou
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and PhysiologyJinan, China
- *Correspondence: Lei Hou
| | - Xingjun Wang
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and PhysiologyJinan, China
- College of Life Sciences, Shandong Normal UniversityJinan, China
- Xingjun Wang
| |
Collapse
|
45
|
Heat shock transcription factors in banana: genome-wide characterization and expression profile analysis during development and stress response. Sci Rep 2016; 6:36864. [PMID: 27857174 PMCID: PMC5114564 DOI: 10.1038/srep36864] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 10/21/2016] [Indexed: 12/01/2022] Open
Abstract
Banana (Musa acuminata) is one of the most popular fresh fruits. However, the rapid spread of fungal pathogen Fusarium oxysporum f. sp. cubense (Foc) in tropical areas severely affected banana growth and production. Thus, it is very important to identify candidate genes involved in banana response to abiotic stress and pathogen infection, as well as the molecular mechanism and possible utilization for genetic breeding. Heat stress transcription factors (Hsfs) are widely known for their common involvement in various abiotic stresses and plant-pathogen interaction. However, no MaHsf has been identified in banana, as well as its possible role. In this study, genome-wide identification and further analyses of evolution, gene structure and conserved motifs showed closer relationship of them in every subgroup. The comprehensive expression profiles of MaHsfs revealed the tissue- and developmental stage-specific or dependent, as well as abiotic and biotic stress-responsive expressions of them. The common regulation of several MaHsfs by abiotic and biotic stress indicated the possible roles of them in plant stress responses. Taken together, this study extended our understanding of MaHsf gene family and identified some candidate MaHsfs with specific expression profiles, which may be used as potential candidates for genetic breeding in banana.
Collapse
|
46
|
Xin S, Tao C, Li H. Cloning and Functional Analysis of the Promoter of an Ascorbate Oxidase Gene from Gossypium hirsutum. PLoS One 2016; 11:e0161695. [PMID: 27597995 PMCID: PMC5012575 DOI: 10.1371/journal.pone.0161695] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 08/10/2016] [Indexed: 01/19/2023] Open
Abstract
Apoplastic ascorbate oxidase (AO) plays significant roles in plant cell growth. However, the mechanism of underlying the transcriptional regulation of AO in Gossypium hirsutum remains unclear. Here, we obtained a 1,920-bp promoter sequence from the Gossypium hirsutum ascorbate oxidase (GhAO1) gene, and this GhAO1 promoter included a number of known cis-elements. Promoter activity analysis in overexpressing pGhAO1::GFP-GUS tobacco (Nicotiana benthamiana) showed that the GhAO1 promoter exhibited high activity, driving strong reporter gene expression in tobacco trichomes, leaves and roots. Promoter 5'-deletion analysis demonstrated that truncated GhAO1 promoters with serial 5'-end deletions had different GUS activities. A 360-bp fragment was sufficient to activate GUS expression. The P-1040 region had less GUS activity than the P-720 region, suggesting that the 320-bp region from nucleotide -720 to -1040 might include a cis-element acting as a silencer. Interestingly, an auxin-responsive cis-acting element (TGA-element) was uncovered in the promoter. To analyze the function of the TGA-element, tobacco leaves transformed with promoters with different 5' truncations were treated with indole-3-acetic acid (IAA). Tobacco leaves transformed with the promoter regions containing the TGA-element showed significantly increased GUS activity after IAA treatment, implying that the fragment spanning nucleotides -1760 to -1600 (which includes the TGA-element) might be a key component for IAA responsiveness. Analyses of the AO promoter region and AO expression pattern in Gossypium arboreum (Ga, diploid cotton with an AA genome), Gossypium raimondii (Gr, diploid cotton with a DD genome) and Gossypium hirsutum (Gh, tetraploid cotton with an AADD genome) indicated that AO promoter activation and AO transcription were detected together only in D genome/sub-genome (Gr and Gh) cotton. Taken together, these results suggest that the 1,920-bp GhAO1 promoter is a functional sequence with a potential effect on fiber cell development, mediated by TGA-element containing sequences, via the auxin-signaling pathway.
Collapse
Affiliation(s)
- Shan Xin
- College of life sciences, Key laboratory of Agrobiotechnology, Shihezi University, Shihezi, Xinjiang, China
| | - Chengcheng Tao
- College of life sciences, Key laboratory of Agrobiotechnology, Shihezi University, Shihezi, Xinjiang, China
| | - Hongbin Li
- College of life sciences, Key laboratory of Agrobiotechnology, Shihezi University, Shihezi, Xinjiang, China
| |
Collapse
|
47
|
Mu M, Lu XK, Wang JJ, Wang DL, Yin ZJ, Wang S, Fan WL, Ye WW. Genome-wide Identification and analysis of the stress-resistance function of the TPS (Trehalose-6-Phosphate Synthase) gene family in cotton. BMC Genet 2016; 17:54. [PMID: 26993467 PMCID: PMC4797179 DOI: 10.1186/s12863-016-0360-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 03/07/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Trehalose (a-D-glucopyranosyl a-D-glucopyranoside) is a nonreducing disaccharide and is widely distributed in bacteria, fungi, algae, plants and invertebrates. In the study, the identification of trehalose-6-phosphate synthase (TPS) genes stress-related in cotton, and the genetic structure analysis and molecular evolution analysis of TPSs were conducted with bioinformatics methods, which could lay a foundation for further research of TPS functions in cotton. RESULTS The genome information of Gossypium raimondii (group D), G. arboreum L. (group A), and G. hirsutum L. (group AD) was used in the study. Fifty-three TPSs were identified comprising 15 genes in group D, 14 in group A, and 24 in group AD. Bioinformatics methods were used to analyze the genetic structure and molecular evolution of TPSs. Real-time PCR analysis was performed to investigate the expression patterns of gene family members. All TPS family members in cotton can be divided into two subfamilies: Class I and Class II. The similarity of the TPS sequence is high within the same species and close within their family relatives. The genetic structures of two TPS subfamily members are different, with more introns and a more complicated gene structure in Class I. There is a TPS domain(Glyco transf_20) at the N-terminal in all TPS family members and a TPP domain(Trehalose_PPase) at the C-terminal in all except GrTPS6, GhTPS4, and GhTPS9. All Class II members contain a UDP-forming domain. The responses to environmental stresses showed that stresses could induce the expression of TPSs but the expression patterns vary with different stresses. CONCLUSIONS The distribution of TPSs varies with different species but is relatively uniform on chromosomes. Genetic structure varies with different gene members, and expression levels vary with different stresses and exhibit tissue specificity. The upregulated genes in upland cotton TM-1 is significantly more than that in G. raimondii and G. arboreum L. Shixiya 1.
Collapse
Affiliation(s)
- Min Mu
- State Key Laboratory of Cotton Biology / Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan 455000 China
| | - Xu-Ke Lu
- State Key Laboratory of Cotton Biology / Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan 455000 China
| | - Jun-Juan Wang
- State Key Laboratory of Cotton Biology / Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan 455000 China
| | - De-Long Wang
- State Key Laboratory of Cotton Biology / Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan 455000 China
| | - Zu-Jun Yin
- State Key Laboratory of Cotton Biology / Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan 455000 China
| | - Shuai Wang
- State Key Laboratory of Cotton Biology / Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan 455000 China
| | - Wei-Li Fan
- State Key Laboratory of Cotton Biology / Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan 455000 China
| | - Wu-Wei Ye
- State Key Laboratory of Cotton Biology / Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan 455000 China
| |
Collapse
|
48
|
Moshe A, Gorovits R, Liu Y, Czosnek H. Tomato plant cell death induced by inhibition of HSP90 is alleviated by Tomato yellow leaf curl virus infection. MOLECULAR PLANT PATHOLOGY 2016; 17:247-60. [PMID: 25962748 PMCID: PMC6638530 DOI: 10.1111/mpp.12275] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
To ensure a successful long-term infection cycle, begomoviruses must restrain their destructive effect on host cells and prevent drastic plant responses, at least in the early stages of infection. The monopartite begomovirus Tomato yellow leaf curl virus (TYLCV) does not induce a hypersensitive response and cell death on whitefly-mediated infection of virus-susceptible tomato plants until diseased tomatoes become senescent. The way in which begomoviruses evade plant defences and interfere with cell death pathways is still poorly understood. We show that the chaperone HSP90 (heat shock protein 90) and its co-chaperone SGT1 (suppressor of the G2 allele of Skp1) are involved in the establishment of TYLCV infection. Inactivation of HSP90, as well as silencing of the Hsp90 and Sgt1 genes, leads to the accumulation of damaged ubiquitinated proteins and to a cell death phenotype. These effects are relieved under TYLCV infection. HSP90-dependent inactivation of 26S proteasome degradation and the transcriptional activation of the heat shock transcription factors HsfA2 and HsfB1 and of the downstream genes Hsp17 and Apx1/2 are suppressed in TYLCV-infected tomatoes. Following suppression of the plant stress response, TYLCV can replicate and accumulate in a permissive environment.
Collapse
Affiliation(s)
- Adi Moshe
- Institute of Plant Sciences and Genetics in Agriculture, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Rena Gorovits
- Institute of Plant Sciences and Genetics in Agriculture, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Yule Liu
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Henryk Czosnek
- Institute of Plant Sciences and Genetics in Agriculture, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, 76100, Israel
| |
Collapse
|
49
|
Dossa K, Diouf D, Cissé N. Genome-Wide Investigation of Hsf Genes in Sesame Reveals Their Segmental Duplication Expansion and Their Active Role in Drought Stress Response. FRONTIERS IN PLANT SCIENCE 2016; 7:1522. [PMID: 27790233 PMCID: PMC5061811 DOI: 10.3389/fpls.2016.01522] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 09/27/2016] [Indexed: 05/05/2023]
Abstract
Sesame is a survivor crop cultivated for ages in arid areas under high temperatures and limited water conditions. Since its entire genome has been sequenced, revealing evolution, and functional characterization of its abiotic stress genes became a hot topic. In this study, we performed a whole-genome identification and analysis of Hsf gene family in sesame. Thirty genes encoding Hsf domain were found and classified into 3 major classes A, B, and C. The class A members were the most representative one and Hsf genes were distributed in 12 of the 16 linkage groups (except the LG 8, 9, 13, and 16). Evolutionary analysis revealed that, segmental duplication events which occurred around 67 MYA, were the primary force underlying Hsf genes expansion in sesame. Comparative analysis also suggested that sesame has retained most of its Hsf genes while its relatives viz. tomato and potato underwent extensive gene losses during evolution. Continuous purifying selection has played a key role in the maintenance of Hsf genes in sesame. Expression analysis of the Hsf genes in sesame revealed their putative involvement in multiple tissue-/developmental stages. Time-course expression profiling of Hsf genes in response to drought stress showed that 90% Hsfs are drought responsive. We infer that classes B-Hsfs might be the primary regulators of drought response in sesame by cooperating with some class A genes. This is the first insight into this gene family and the results provide some gene resources for future gene cloning and functional studies toward the improvement in stress tolerance of sesame.
Collapse
Affiliation(s)
- Komivi Dossa
- Centre d'Etudes Régional pour l'Amélioration de l'Adaptation à la SécheresseSénégal
- Laboratoire Campus de Biotechnologies Végétales, Département de Biologie Végétale, Faculté des Sciences et Techniques, Université Cheikh Anta DiopDakar, Sénégal
- *Correspondence: Komivi Dossa
| | - Diaga Diouf
- Laboratoire Campus de Biotechnologies Végétales, Département de Biologie Végétale, Faculté des Sciences et Techniques, Université Cheikh Anta DiopDakar, Sénégal
| | - Ndiaga Cissé
- Centre d'Etudes Régional pour l'Amélioration de l'Adaptation à la SécheresseSénégal
| |
Collapse
|
50
|
Guo M, Liu JH, Ma X, Luo DX, Gong ZH, Lu MH. The Plant Heat Stress Transcription Factors (HSFs): Structure, Regulation, and Function in Response to Abiotic Stresses. FRONTIERS IN PLANT SCIENCE 2016; 7:114. [PMID: 26904076 PMCID: PMC4746267 DOI: 10.3389/fpls.2016.00114] [Citation(s) in RCA: 346] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 01/21/2016] [Indexed: 05/18/2023]
Abstract
Abiotic stresses such as high temperature, salinity, and drought adversely affect the survival, growth, and reproduction of plants. Plants respond to such unfavorable changes through developmental, physiological, and biochemical ways, and these responses require expression of stress-responsive genes, which are regulated by a network of transcription factors (TFs), including heat stress transcription factors (HSFs). HSFs play a crucial role in plants response to several abiotic stresses by regulating the expression of stress-responsive genes, such as heat shock proteins (Hsps). In this review, we describe the conserved structure of plant HSFs, the identification of HSF gene families from various plant species, their expression profiling under abiotic stress conditions, regulation at different levels and function in abiotic stresses. Despite plant HSFs share highly conserved structure, their remarkable diversification across plants reflects their numerous functions as well as their integration into the complex stress signaling and response networks, which can be employed in crop improvement strategies via biotechnological intervention.
Collapse
Affiliation(s)
- Meng Guo
- Department of Vegetable Science, College of Horticulture, Northwest A&F UniversityYangling, China
| | - Jin-Hong Liu
- Department of Vegetable Science, College of Horticulture, Northwest A&F UniversityYangling, China
| | - Xiao Ma
- Department of Vegetable Science, College of Horticulture, Northwest A&F UniversityYangling, China
| | - De-Xu Luo
- Vegetable Research and Development Centre, Huaiyin Institute of Agricultural Sciences in Jiangsu Xuhuai RegionHuaian, China
| | - Zhen-Hui Gong
- Department of Vegetable Science, College of Horticulture, Northwest A&F UniversityYangling, China
- *Correspondence: Zhen-Hui Gong
| | - Ming-Hui Lu
- Department of Vegetable Science, College of Horticulture, Northwest A&F UniversityYangling, China
- Ming-Hui Lu
| |
Collapse
|