1
|
Carballo-Pacoret P, Carracedo A, Rodriguez-Fontenla C. Unraveling the three-dimensional (3D) genome architecture in Neurodevelopmental Disorders (NDDs). Neurogenetics 2024; 25:293-305. [PMID: 39190242 DOI: 10.1007/s10048-024-00774-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/17/2024] [Indexed: 08/28/2024]
Abstract
The human genome, comprising millions of pairs of bases, serves as the blueprint of life, encoding instructions for cellular processes. However, genomes are not merely linear sequences; rather, the complex of DNA and histones, known as chromatin, exhibits complex organization across various levels, which profoundly influence gene expression and cellular function. Central to understanding genome organization is the emerging field of three-dimensional (3D) genome studies. Utilizing advanced techniques such as Hi-C, researchers have unveiled non-random dispositions of genomic elements, highlighting their importance in transcriptional regulation and disease mechanisms. Topologically Associating Domains (TADs), that demarcate regions of chromatin with preferential internal interactions, play crucial roles in gene regulation and are increasingly implicated in various diseases such as cancer and schizophrenia. However, their role in Neurodevelopmental Disorders (NDDs) remains poorly understood. Here, we focus on TADs and 3D conservation across the evolution and between cell types in NDDs. The investigation into genome organization and its impact on disease has led to significant breakthroughs in understanding NDDs etiology such ASD (Autism Spectrum Disorder). By elucidating the wide spectrum of ASD manifestations, researchers aim to uncover the underlying genetic and epigenetic factors contributing to its heterogeneity. Moreover, studies linking TAD disruption to NDDs underscore the importance of spatial genome organization in maintaining proper brain development and function. In summary, this review highlights the intricate interplay between genome organization, transcriptional control, and disease pathology, shedding light on fundamental biological processes and offering insights into the mechanisms underlying NDDs like ASD.
Collapse
Affiliation(s)
- P Carballo-Pacoret
- Grupo de Medicina Xenómica, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidad de Santiago de Compostela, Av Barcelona 31, Santiago de Compostela A Coruña, 15706, Spain
- Grupo de Medicina Xenómica, Facultad de Medicina, Universidad de Santiago de Compostela, San Francisco s/n., Santiago de Compostela, 15782, Spain
| | - A Carracedo
- Grupo de Medicina Xenómica, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidad de Santiago de Compostela, Av Barcelona 31, Santiago de Compostela A Coruña, 15706, Spain
- Grupo de Medicina Xenómica, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Fundación Instituto de Investigación Sanitaria de Santiago de Compostela (FIDIS), Universidad de Santiago de Compostela, Santiago de Compostela, Spain
- Grupo de Medicina Xenómica, Facultad de Medicina, Universidad de Santiago de Compostela, San Francisco s/n., Santiago de Compostela, 15782, Spain
| | - C Rodriguez-Fontenla
- Grupo de Medicina Xenómica, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidad de Santiago de Compostela, Av Barcelona 31, Santiago de Compostela A Coruña, 15706, Spain.
- Grupo de Medicina Xenómica, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Fundación Instituto de Investigación Sanitaria de Santiago de Compostela (FIDIS), Universidad de Santiago de Compostela, Santiago de Compostela, Spain.
- Grupo de Medicina Xenómica, Facultad de Medicina, Universidad de Santiago de Compostela, San Francisco s/n., Santiago de Compostela, 15782, Spain.
| |
Collapse
|
2
|
Ham A, Chang AY, Li H, Bain JM, Goldman JE, Sulzer D, Veenstra-VanderWeele J, Tang G. Impaired macroautophagy confers substantial risk for intellectual disability in children with autism spectrum disorders. Mol Psychiatry 2024:10.1038/s41380-024-02741-z. [PMID: 39237724 DOI: 10.1038/s41380-024-02741-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Autism spectrum disorder (ASD) represents a complex of neurological and developmental disabilities characterized by clinical and genetic heterogeneity. While the causes of ASD are still unknown, many ASD risk factors are found to converge on intracellular quality control mechanisms that are essential for cellular homeostasis, including the autophagy-lysosomal degradation pathway. Studies have reported impaired autophagy in ASD human brain and ASD-like synapse pathology and behaviors in mouse models of brain autophagy deficiency, highlighting an essential role for defective autophagy in ASD pathogenesis. To determine whether altered autophagy in the brain may also occur in peripheral cells that might provide useful biomarkers, we assessed activities of autophagy in lympoblasts from ASD and control subjects. We find that lymphoblast autophagy is compromised in a subset of ASD participants due to impaired autophagy induction. Similar changes in autophagy are detected in postmortem human brains from ASD individuals and in brain and peripheral blood mononuclear cells from syndromic ASD mouse models. Remarkably, we find a strong correlation between impaired autophagy and intellectual disability in ASD participants. By depleting the key autophagy gene Atg7 from different brain cells, we provide further evidence that autophagy deficiency causes cognitive impairment in mice. Together, our findings suggest autophagy dysfunction as a convergent mechanism that can be detected in peripheral blood cells from a subset of autistic individuals, and that lymphoblast autophagy may serve as a biomarker to stratify ASD patients for the development of targeted interventions.
Collapse
Affiliation(s)
- Ahrom Ham
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Audrey Yuen Chang
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Hongyu Li
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Jennifer M Bain
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - James E Goldman
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - David Sulzer
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Department of Pharmacology, Columbia University Irving Medical Center, New York, NY, 10032, USA
- New York State Psychiatric Institute, New York, NY, 10032, USA
| | - Jeremy Veenstra-VanderWeele
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, 10032, USA
- New York State Psychiatric Institute, New York, NY, 10032, USA
| | - Guomei Tang
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
3
|
Bhagar R, Gill SS, Le-Niculescu H, Yin C, Roseberry K, Mullen J, Schmitz M, Paul E, Cooke J, Tracy C, Tracy Z, Gettelfinger AS, Battles D, Yard M, Sandusky G, Shekhar A, Kurian SM, Bogdan P, Niculescu AB. Next-generation precision medicine for suicidality prevention. Transl Psychiatry 2024; 14:362. [PMID: 39242534 PMCID: PMC11379963 DOI: 10.1038/s41398-024-03071-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 08/19/2024] [Accepted: 08/27/2024] [Indexed: 09/09/2024] Open
Abstract
Suicidality remains a clear and present danger in society in general, and for mental health patients in particular. Lack of widespread use of objective and/or quantitative information has hampered treatment and prevention efforts. Suicidality is a spectrum of severity from vague thoughts that life is not worth living, to ideation, plans, attempts, and completion. Blood biomarkers that track suicidality risk provide a window into the biology of suicidality, as well as could help with assessment and treatment. Previous studies by us were positive. Here we describe new studies we conducted transdiagnostically in psychiatric patients, starting with the whole genome, to expand the identification, prioritization, validation and testing of blood gene expression biomarkers for suicidality, using a multiple independent cohorts design. We found new as well as previously known biomarkers that were predictive of high suicidality states, and of future psychiatric hospitalizations related to them, using cross-sectional and longitudinal approaches. The overall top increased in expression biomarker was SLC6A4, the serotonin transporter. The top decreased biomarker was TINF2, a gene whose mutations result in very short telomeres. The top biological pathways were related to apoptosis. The top upstream regulator was prednisolone. Taken together, our data supports the possibility that biologically, suicidality is an extreme stress-driven form of active aging/death. Consistent with that, the top subtypes of suicidality identified by us just based on clinical measures had high stress and high anxiety. Top therapeutic matches overall were lithium, clozapine and ketamine, with lithium stronger in females and clozapine stronger in males. Drug repurposing bioinformatic analyses identified the potential of renin-angiotensin system modulators and of cyclooxygenase inhibitors. Additionally, we show how patient reports for doctors would look based on blood biomarkers testing, personalized by gender. We also integrated with the blood biomarker testing social determinants and psychological measures (CFI-S, suicidal ideation), showing synergy. Lastly, we compared that to machine learning approaches, to optimize predictive ability and identify key features. We propose that our findings and comprehensive approach can have transformative clinical utility.
Collapse
Affiliation(s)
- R Bhagar
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - S S Gill
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
- MindX Sciences, Indianapolis, IN, USA
| | - H Le-Niculescu
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Psychiatry, University of Arizona College of Medicine, Phoenix, AZ, USA
| | - C Yin
- University of Southern California, Los Angeles, CA, USA
| | - K Roseberry
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - J Mullen
- IT Core, Indiana University, Indianapolis, IN, USA
| | - M Schmitz
- MindX Sciences, Indianapolis, IN, USA
| | - E Paul
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
- VA Medical Center, Indianapolis, IN, USA
| | - J Cooke
- VA Medical Center, Indianapolis, IN, USA
| | - C Tracy
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
- VA Medical Center, Indianapolis, IN, USA
| | - Z Tracy
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
- VA Medical Center, Indianapolis, IN, USA
| | - A S Gettelfinger
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - D Battles
- Marion County Coroner's Office, Indianapolis, USA
| | - M Yard
- INBRAIN, Indianapolis, IN, USA
| | | | - A Shekhar
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
- Office of the Dean, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | - P Bogdan
- University of Southern California, Los Angeles, CA, USA
| | - A B Niculescu
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA.
- MindX Sciences, Indianapolis, IN, USA.
- VA Medical Center, Indianapolis, IN, USA.
- INBRAIN, Indianapolis, IN, USA.
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Psychiatry, University of Arizona College of Medicine, Phoenix, AZ, USA.
| |
Collapse
|
4
|
Hirst K, Zamzow RM, Stichter JP, Beversdorf DQ. A Pilot Feasibility Study Assessing the Combined Effects of Early Behavioral Intervention and Propranolol on Autism Spectrum Disorder (ASD). CHILDREN (BASEL, SWITZERLAND) 2023; 10:1639. [PMID: 37892301 PMCID: PMC10605265 DOI: 10.3390/children10101639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/20/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023]
Abstract
Autism spectrum disorder (ASD), a neurodevelopmental disorder typified by differences in social communication as well as restricted and repetitive behaviors, is often responsive to early behavioral intervention. However, there is limited information on whether such intervention can be augmented with pharmacological approaches. We conducted a double-blinded, placebo-controlled feasibility trial to examine the effects of the β-adrenergic antagonist propranolol combined with early intensive behavioral intervention (EIBI) for children with ASD. Nine participants with ASD, ages three to ten, undergoing EIBI were enrolled and randomized to a 12-week course of propranolol or placebo. Blinded assessments were conducted at baseline, 6 weeks, and 12 weeks. The primary outcome measures focusing on social interaction were the General Social Outcome Measure-2 (GSOM-2) and Social Responsiveness Scale-Second Edition (SRS-2). Five participants completed the 12-week visit. The sample size was insufficient to evaluate the treatment efficacy. However, side effects were infrequent, and participants were largely able to fully participate in the procedures. Conducting a larger clinical trial to investigate propranolol's effects on core ASD features within the context of behavioral therapy will be beneficial, as this will advance and individualize combined therapeutic approaches to ASD intervention. This initial study helps to understand feasibility constraints on performing such a study.
Collapse
Affiliation(s)
- Kathy Hirst
- Thompson Center for Autism and Neurodevelopment, University of Missouri, Columbia, MO 65211, USA; (K.H.); (J.P.S.)
| | - Rachel M. Zamzow
- Interdisciplinary Neuroscience Program, University of Missouri, Columbia, MO 65211, USA;
| | - Janine P. Stichter
- Thompson Center for Autism and Neurodevelopment, University of Missouri, Columbia, MO 65211, USA; (K.H.); (J.P.S.)
| | - David Q. Beversdorf
- Thompson Center for Autism and Neurodevelopment, University of Missouri, Columbia, MO 65211, USA; (K.H.); (J.P.S.)
- Interdisciplinary Neuroscience Program, University of Missouri, Columbia, MO 65211, USA;
- Departments of Radiology, Neurology, and Psychological Sciences, William and Nancy Thompson Endowed Chair in Radiology, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
5
|
Trangle SS, Rosenberg T, Parnas H, Levy G, Bar E, Marco A, Barak B. In individuals with Williams syndrome, dysregulation of methylation in non-coding regions of neuronal and oligodendrocyte DNA is associated with pathology and cortical development. Mol Psychiatry 2023; 28:1112-1127. [PMID: 36577841 DOI: 10.1038/s41380-022-01921-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 12/03/2022] [Accepted: 12/12/2022] [Indexed: 12/29/2022]
Abstract
Williams syndrome (WS) is a neurodevelopmental disorder caused by a heterozygous micro-deletion in the WS critical region (WSCR) and is characterized by hyper-sociability and neurocognitive abnormalities. Nonetheless, whether and to what extent WSCR deletion leads to epigenetic modifications in the brain and induces pathological outcomes remains largely unknown. By examining DNA methylation in frontal cortex, we revealed genome-wide disruption in the methylome of individuals with WS, as compared to typically developed (TD) controls. Surprisingly, differentially methylated sites were predominantly annotated as introns and intergenic loci and were found to be highly enriched around binding sites for transcription factors that regulate neuronal development, plasticity and cognition. Moreover, by utilizing enhancer-promoter interactome data, we confirmed that most of these loci function as active enhancers in the human brain or as target genes of transcriptional networks associated with myelination, oligodendrocyte (OL) differentiation, cognition and social behavior. Cell type-specific methylation analysis revealed aberrant patterns in the methylation of active enhancers in neurons and OLs, and important neuron-glia interactions that might be impaired in individuals with WS. Finally, comparison of methylation profiles from blood samples of individuals with WS and healthy controls, along with other data collected in this study, identified putative targets of endophenotypes associated with WS, which can be used to define brain-risk loci for WS outside the WSCR locus, as well as for other associated pathologies. In conclusion, our study illuminates the brain methylome landscape of individuals with WS and sheds light on how these aberrations might be involved in social behavior and physiological abnormalities. By extension, these results may lead to better diagnostics and more refined therapeutic targets for WS.
Collapse
Affiliation(s)
- Sari Schokoroy Trangle
- The School of Psychological Sciences, Faculty of Social Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Tali Rosenberg
- Neuro-Epigenetics Laboratory, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 7610001, Israel
| | - Hadar Parnas
- Neuro-Epigenetics Laboratory, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 7610001, Israel
| | - Gilad Levy
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Ela Bar
- The School of Psychological Sciences, Faculty of Social Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel.,The School of Neurobiology, Biochemistry & Biophysics, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Asaf Marco
- Neuro-Epigenetics Laboratory, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 7610001, Israel.
| | - Boaz Barak
- The School of Psychological Sciences, Faculty of Social Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel. .,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 6997801, Israel.
| |
Collapse
|
6
|
Tomaiuolo P, Piras IS, Sain SB, Picinelli C, Baccarin M, Castronovo P, Morelli MJ, Lazarevic D, Scattoni ML, Tonon G, Persico AM. RNA sequencing of blood from sex- and age-matched discordant siblings supports immune and transcriptional dysregulation in autism spectrum disorder. Sci Rep 2023; 13:807. [PMID: 36646776 PMCID: PMC9842630 DOI: 10.1038/s41598-023-27378-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 01/02/2023] [Indexed: 01/18/2023] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental condition with onset in early childhood, still diagnosed only through clinical observation due to the lack of laboratory biomarkers. Early detection strategies would be especially useful in screening high-risk newborn siblings of children already diagnosed with ASD. We performed RNA sequencing on peripheral blood, comparing 27 pairs of ASD children vs their sex- and age-matched unaffected siblings. Differential gene expression profiling, performed applying an unpaired model found two immune genes, EGR1 and IGKV3D-15, significantly upregulated in ASD patients (both p adj = 0.037). Weighted gene correlation network analysis identified 18 co-expressed modules. One of these modules was downregulated among autistic individuals (p = 0.035) and a ROC curve using its eigengene values yielded an AUC of 0.62. Genes in this module are primarily involved in transcriptional control and its hub gene, RACK1, encodes for a signaling protein critical for neurodevelopment and innate immunity, whose expression is influenced by various hormones and known "endocrine disruptors". These results indicate that transcriptomic biomarkers can contribute to the sensitivity of an intra-familial multimarker panel for ASD and provide further evidence that neurodevelopment, innate immunity and transcriptional regulation are key to ASD pathogenesis.
Collapse
Affiliation(s)
| | - Ignazio Stefano Piras
- Neurogenomics Division, The Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Simona Baghai Sain
- Center for Translational Genomics and Bioinformatics, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Picinelli
- Mafalda Luce Center for Pervasive Developmental Disorders, Milan, Italy
| | - Marco Baccarin
- Mafalda Luce Center for Pervasive Developmental Disorders, Milan, Italy.,Department of Genetics, Synlab Suisse SA, Bioggio, Switzerland
| | - Paola Castronovo
- Mafalda Luce Center for Pervasive Developmental Disorders, Milan, Italy
| | - Marco J Morelli
- Center for Translational Genomics and Bioinformatics, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Dejan Lazarevic
- Center for Translational Genomics and Bioinformatics, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria Luisa Scattoni
- Research Coordination and Support Service, Istituto Superiore di Sanità, Rome, Italy
| | - Giovanni Tonon
- Center for Translational Genomics and Bioinformatics, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Antonio M Persico
- Child and Adolescent Neuropsychiatry Program, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi 287, 41125, Modena, Italy.
| |
Collapse
|
7
|
Nan H, Chu M, Liu L, Xie K, Wu L. A novel truncating variant of SPAST associated with hereditary spastic paraplegia indicates a haploinsufficiency pathogenic mechanism. Front Neurol 2022; 13:1005544. [DOI: 10.3389/fneur.2022.1005544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/27/2022] [Indexed: 11/16/2022] Open
Abstract
IntroductionHereditary spastic paraplegias (HSPs) are genetic neurodegenerative diseases. The most common form of pure HSP that is inherited in an autosomal dominant manner is spastic paraplegia type 4 (SPG4), which is caused by mutations in the SPAST gene. Different theories have been proposed as the mechanism underlying SPAST-HSP for different types of genetic mutations, including gain- and loss-of-function mechanisms. To better understand the mutation mechanisms, we performed genetic analysis and investigated a truncating SPAST variant that segregated with disease in one family.Objectives and methodsWe described a pure HSP pedigree with family members across four generations. We performed genetic analysis and investigated a novel frameshift pathogenic variant (c.862_863dupAC, p. H289Lfs*27) in this family. We performed reverse transcription-polymerase chain reaction (RT-PCR), Sanger sequencing, and quantitative RT-PCR using total RNA from an Epstein-Barr virus-induced lymphoblastoid cell line produced from the proband. We also performed Western blotting on cell lysates to investigate if the protein expression of spastin is affected by this variant.ResultsThis variant (c.862_863dupAC, p. H289Lfs*27) co-segregated with pure HSP in this family and is not registered in any public database. Measurement of SPAST transcripts in lymphoblasts from the proband demonstrated a reduction of SPAST transcript levels through likely nonsense-mediated mRNA decay. Immunoblot analyses demonstrated a reduction of spastin protein expression levels in lymphoblasts.ConclusionWe report an SPG4 family with a novel heterozygous frameshift variant p.H289Lfs*27 in SPAST. Our study implies haploinsufficiency as the pathogenic mechanism for this variant and expands the known mutation spectrum of SPAST.
Collapse
|
8
|
Therapeutic Effect of Finasteride through its Antiandrogenic and Antioxidant Role in a Propionic acid-induced Autism Model: Demonstrated by Behavioral tests, Histological Findings and MR Spectroscopy’. Neurosci Lett 2022; 779:136622. [DOI: 10.1016/j.neulet.2022.136622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/03/2022] [Accepted: 04/05/2022] [Indexed: 12/30/2022]
|
9
|
Caracci MO, Avila ME, Espinoza-Cavieres FA, López HR, Ugarte GD, De Ferrari GV. Wnt/β-Catenin-Dependent Transcription in Autism Spectrum Disorders. Front Mol Neurosci 2021; 14:764756. [PMID: 34858139 PMCID: PMC8632544 DOI: 10.3389/fnmol.2021.764756] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/12/2021] [Indexed: 12/20/2022] Open
Abstract
Autism spectrum disorders (ASD) is a heterogeneous group of neurodevelopmental disorders characterized by synaptic dysfunction and defects in dendritic spine morphology. In the past decade, an extensive list of genes associated with ASD has been identified by genome-wide sequencing initiatives. Several of these genes functionally converge in the regulation of the Wnt/β-catenin signaling pathway, a conserved cascade essential for stem cell pluripotency and cell fate decisions during development. Here, we review current information regarding the transcriptional program of Wnt/β-catenin signaling in ASD. First, we discuss that Wnt/β-catenin gain and loss of function studies recapitulate brain developmental abnormalities associated with ASD. Second, transcriptomic approaches using patient-derived induced pluripotent stem cells (iPSC) cells, featuring mutations in high confidence ASD genes, reveal a significant dysregulation in the expression of Wnt signaling components. Finally, we focus on the activity of chromatin-remodeling proteins and transcription factors considered high confidence ASD genes, including CHD8, ARID1B, ADNP, and TBR1, that regulate Wnt/β-catenin-dependent transcriptional activity in multiple cell types, including pyramidal neurons, interneurons and oligodendrocytes, cells which are becoming increasingly relevant in the study of ASD. We conclude that the level of Wnt/β-catenin signaling activation could explain the high phenotypical heterogeneity of ASD and be instrumental in the development of new diagnostics tools and therapies.
Collapse
Affiliation(s)
- Mario O. Caracci
- Faculty of Medicine, Institute of Biomedical Sciences, Universidad Andres Bello, Santiago, Chile
- Faculty of Life Sciences, Institute of Biomedical Sciences, Universidad Andres Bello, Santiago, Chile
| | - Miguel E. Avila
- Faculty of Veterinary Medicine and Agronomy, Nucleus of Applied Research in Veterinary and Agronomic Sciences (NIAVA), Institute of Natural Sciences, Universidad de Las Américas, Santiago, Chile
| | - Francisca A. Espinoza-Cavieres
- Faculty of Medicine, Institute of Biomedical Sciences, Universidad Andres Bello, Santiago, Chile
- Faculty of Life Sciences, Institute of Biomedical Sciences, Universidad Andres Bello, Santiago, Chile
| | - Héctor R. López
- Faculty of Medicine, Institute of Biomedical Sciences, Universidad Andres Bello, Santiago, Chile
- Faculty of Life Sciences, Institute of Biomedical Sciences, Universidad Andres Bello, Santiago, Chile
| | - Giorgia D. Ugarte
- Faculty of Medicine, Institute of Biomedical Sciences, Universidad Andres Bello, Santiago, Chile
- Faculty of Life Sciences, Institute of Biomedical Sciences, Universidad Andres Bello, Santiago, Chile
| | - Giancarlo V. De Ferrari
- Faculty of Medicine, Institute of Biomedical Sciences, Universidad Andres Bello, Santiago, Chile
- Faculty of Life Sciences, Institute of Biomedical Sciences, Universidad Andres Bello, Santiago, Chile
| |
Collapse
|
10
|
Myers L, Pan P, Remnélius KL, Neufeld J, Marschik PB, Jonsson U, Bölte S. Behavioral and biological divergence in monozygotic twin pairs discordant for autism phenotypes: A systematic review. JCPP ADVANCES 2021. [DOI: 10.1111/jcv2.12017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Lynnea Myers
- Department of Women's and Children's Health Karolinska Institutet Center of Neurodevelopmental Disorders Centre for Psychiatry Research Karolinska Institutet & Stockholm Health Care Services Stockholm Sweden
- Department of Nursing Gustavus Adolphus College St. Peter Minnesota USA
| | - Pei‐Yin Pan
- Department of Women's and Children's Health Karolinska Institutet Center of Neurodevelopmental Disorders Centre for Psychiatry Research Karolinska Institutet & Stockholm Health Care Services Stockholm Sweden
| | - Karl Lundin Remnélius
- Department of Women's and Children's Health Karolinska Institutet Center of Neurodevelopmental Disorders Centre for Psychiatry Research Karolinska Institutet & Stockholm Health Care Services Stockholm Sweden
| | - Janina Neufeld
- Department of Women's and Children's Health Karolinska Institutet Center of Neurodevelopmental Disorders Centre for Psychiatry Research Karolinska Institutet & Stockholm Health Care Services Stockholm Sweden
| | - Peter B. Marschik
- Department of Women's and Children's Health Karolinska Institutet Center of Neurodevelopmental Disorders Centre for Psychiatry Research Karolinska Institutet & Stockholm Health Care Services Stockholm Sweden
- Department of Child and Adolescent Psychiatry and Psychotherapy University Medical Center Göttingen & Leibniz Science Campus Göttingen Germany
- Department of Phoniatrics D –Interdisciplinary Developmental Neuroscience Medical University of Graz Graz Steiermark Austria
| | - Ulf Jonsson
- Department of Women's and Children's Health Karolinska Institutet Center of Neurodevelopmental Disorders Centre for Psychiatry Research Karolinska Institutet & Stockholm Health Care Services Stockholm Sweden
- Department of Neuroscience, Child and Adolescent Psychiatry Uppsala University Uppsala Sweden
| | - Sven Bölte
- Department of Women's and Children's Health Karolinska Institutet Center of Neurodevelopmental Disorders Centre for Psychiatry Research Karolinska Institutet & Stockholm Health Care Services Stockholm Sweden
- Department of Child and Adolescent Psychiatry Stockholm Health Care Services Stockholm Sweden
- Curtin Autism Research Group School of Occupational Therapy, Social Work and Speech Pathology Curtin University Perth Western Australia Australia
| |
Collapse
|
11
|
Mepham JR, MacFabe DF, Boon FH, Foley KA, Cain DP, Ossenkopp KP. Examining the non-spatial pretraining effect on a water maze spatial learning task in rats treated with multiple intracerebroventricular (ICV) infusions of propionic acid: Contributions to a rodent model of ASD. Behav Brain Res 2021; 403:113140. [PMID: 33508348 DOI: 10.1016/j.bbr.2021.113140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 01/06/2023]
Abstract
Propionic acid (PPA) is produced by enteric gut bacteria and is a dietary short chain fatty acid. Intracerebroventricular (ICV) infusions of PPA in rodents have been shown to produce behavioural changes, including adverse effects on cognition, similar to those seen in autism spectrum disorders (ASD). Previous research has shown that repeated ICV infusions of PPA result in impaired spatial learning in a Morris water maze (MWM) as evidenced by increased search latencies, fewer direct and circle swims, and more time spent in the periphery of the maze than control rats. In the current study rats were first given non-spatial pretraining (NSP) in the water maze in order to familiarize the animals with the general requirements of the non-spatial aspects of the task before spatial training was begun. Then the effects of ICV infusions of PPA on acquisition of spatial learning were examined. PPA treated rats failed to show the positive effects of the non-spatial pretraining procedure, relative to controls, as evidenced by increased search latencies, longer distances travelled, fewer direct and circle swims, and more time spent in the periphery of the maze than PBS controls. Thus, PPA treatment blocked the effects of the pretraining procedure, likely by impairing sensorimotor components or memory of the pretraining.
Collapse
Affiliation(s)
- Jennifer R Mepham
- Graduate Program in Neuroscience, Western University, London, Ontario, Canada; The Kilee Patchell-Evans Autism Research Group, Department of Psychology, Western University, London, Ontario, Canada
| | - Derrick F MacFabe
- Department of Psychology, Western University, London, Ontario, Canada; The Kilee Patchell-Evans Autism Research Group, Department of Psychology, Western University, London, Ontario, Canada
| | - Francis H Boon
- Department of Psychology, Western University, London, Ontario, Canada; The Kilee Patchell-Evans Autism Research Group, Department of Psychology, Western University, London, Ontario, Canada
| | - Kelly A Foley
- Graduate Program in Neuroscience, Western University, London, Ontario, Canada; The Kilee Patchell-Evans Autism Research Group, Department of Psychology, Western University, London, Ontario, Canada
| | - Donald P Cain
- Graduate Program in Neuroscience, Western University, London, Ontario, Canada; Department of Psychology, Western University, London, Ontario, Canada; The Kilee Patchell-Evans Autism Research Group, Department of Psychology, Western University, London, Ontario, Canada
| | - Klaus-Peter Ossenkopp
- Graduate Program in Neuroscience, Western University, London, Ontario, Canada; Department of Psychology, Western University, London, Ontario, Canada; The Kilee Patchell-Evans Autism Research Group, Department of Psychology, Western University, London, Ontario, Canada.
| |
Collapse
|
12
|
Hu VW, Bi C. Phenotypic Subtyping and Re-analyses of Existing Transcriptomic Data from Autistic Probands in Simplex Families Reveal Differentially Expressed and ASD Trait-Associated Genes. Front Neurol 2020; 11:578972. [PMID: 33281715 PMCID: PMC7689346 DOI: 10.3389/fneur.2020.578972] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/21/2020] [Indexed: 12/25/2022] Open
Abstract
Autism spectrum disorder (ASD) describes a collection of neurodevelopmental disorders characterized by core symptoms that include social communication deficits and repetitive, stereotyped behaviors often coupled with restricted interests. Primary challenges to understanding and treating ASD are the genetic and phenotypic heterogeneity of cases that complicates all omics analyses as well as a lack of information on relationships among genes, pathways, and autistic traits. In this study, we re-analyze existing transcriptomic data from simplex families by subtyping individuals with ASD according to multivariate cluster analyses of clinical ADI-R scores that encompass a broad range of behavioral symptoms. We also correlate multiple ASD traits, such as deficits in verbal and non-verbal communication, play and social skills, ritualistic behaviors, and savant skills, with expression profiles using Weighted Gene Correlation Network Analyses (WGCNA). Our results show that subtyping greatly enhances the ability to identify differentially expressed genes involved in specific canonical pathways and biological functions associated with ASD within each phenotypic subgroup. Moreover, using WGCNA, we identify gene modules that correlate significantly with specific ASD traits. Network prediction analyses of the genes in these modules reveal canonical pathways as well as neurological functions and disorders relevant to the pathobiology of ASD. Finally, we compare the WGCNA-derived data on autistic traits in simplex families with analogous data from multiplex families using transcriptomic data from our previous studies. The comparison reveals overlapping trait-associated pathways as well as upstream regulators of the module-associated genes that may serve as useful targets for a precision medicine approach to ASD.
Collapse
Affiliation(s)
- Valerie W Hu
- Department of Biochemistry and Molecular Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Chongfeng Bi
- Department of Biochemistry and Molecular Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| |
Collapse
|
13
|
Imamura A, Morimoto Y, Ono S, Kurotaki N, Kanegae S, Yamamoto N, Kinoshita H, Tsujita T, Okazaki Y, Ozawa H. Genetic and environmental factors of schizophrenia and autism spectrum disorder: insights from twin studies. J Neural Transm (Vienna) 2020; 127:1501-1515. [PMID: 32285255 PMCID: PMC7578126 DOI: 10.1007/s00702-020-02188-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 04/05/2020] [Indexed: 02/06/2023]
Abstract
Twin studies of psychiatric disorders such as schizophrenia and autism spectrum disorder have employed epidemiological approaches that determine heritability by comparing the concordance rate between monozygotic twins (MZs) and dizygotic twins. The basis for these studies is that MZs share 100% of their genetic information. Recently, biological studies based on molecular methods are now being increasingly applied to examine the differences between MZs discordance for psychiatric disorders to unravel their possible causes. Although recent advances in next-generation sequencing have increased the accuracy of this line of research, there has been greater emphasis placed on epigenetic changes versus DNA sequence changes as the probable cause of discordant psychiatric disorders in MZs. Since the epigenetic status differs in each tissue type, in addition to the DNA from the peripheral blood, studies using DNA from nerve cells induced from postmortem brains or induced pluripotent stem cells are being carried out. Although it was originally thought that epigenetic changes occurred as a result of environmental factors, and thus were not transmittable, it is now known that such changes might possibly be transmitted between generations. Therefore, the potential possible effects of intestinal flora inside the body are currently being investigated as a cause of discordance in MZs. As a result, twin studies of psychiatric disorders are greatly contributing to the elucidation of genetic and environmental factors in the etiology of psychiatric conditions.
Collapse
Affiliation(s)
- Akira Imamura
- Child and Adolescent Psychiatry Community Partnership Unit, Nagasaki University Hospital, Nagasaki, Japan.
| | - Yoshiro Morimoto
- Unit of Translation Medicine, Department of Neuropsychiatry, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Department of Human Genetics, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Shinji Ono
- Department of Human Genetics, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Naohiro Kurotaki
- Department of Clinical Psychiatry, Graduate School of Medicine, Kagawa University, Kita-gun, Japan
| | - Shinji Kanegae
- Child and Adolescent Psychiatry Community Partnership Unit, Nagasaki University Hospital, Nagasaki, Japan
| | - Naoki Yamamoto
- Child and Adolescent Psychiatry Community Partnership Unit, Nagasaki University Hospital, Nagasaki, Japan
- Unit of Translation Medicine, Department of Neuropsychiatry, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Hirohisa Kinoshita
- Unit of Translation Medicine, Department of Neuropsychiatry, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | | | - Yuji Okazaki
- Koseikai Michinoo Hospital, Nagasaki, Japan
- Tokyo Metropolitan Matsuzawa Hospital, Tokyo, Japan
| | - Hiroki Ozawa
- Child and Adolescent Psychiatry Community Partnership Unit, Nagasaki University Hospital, Nagasaki, Japan
- Unit of Translation Medicine, Department of Neuropsychiatry, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
14
|
Lee EC, Hu VW. Phenotypic Subtyping and Re-Analysis of Existing Methylation Data from Autistic Probands in Simplex Families Reveal ASD Subtype-Associated Differentially Methylated Genes and Biological Functions. Int J Mol Sci 2020; 21:E6877. [PMID: 32961747 PMCID: PMC7555936 DOI: 10.3390/ijms21186877] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/14/2020] [Accepted: 09/17/2020] [Indexed: 12/27/2022] Open
Abstract
Autism spectrum disorder (ASD) describes a group of neurodevelopmental disorders with core deficits in social communication and manifestation of restricted, repetitive, and stereotyped behaviors. Despite the core symptomatology, ASD is extremely heterogeneous with respect to the severity of symptoms and behaviors. This heterogeneity presents an inherent challenge to all large-scale genome-wide omics analyses. In the present study, we address this heterogeneity by stratifying ASD probands from simplex families according to the severity of behavioral scores on the Autism Diagnostic Interview-Revised diagnostic instrument, followed by re-analysis of existing DNA methylation data from individuals in three ASD subphenotypes in comparison to that of their respective unaffected siblings. We demonstrate that subphenotyping of cases enables the identification of over 1.6 times the number of statistically significant differentially methylated regions (DMR) and DMR-associated genes (DAGs) between cases and controls, compared to that identified when all cases are combined. Our analyses also reveal ASD-related neurological functions and comorbidities that are enriched among DAGs in each phenotypic subgroup but not in the combined case group. Moreover, relational gene networks constructed with the DAGs reveal signaling pathways associated with specific functions and comorbidities. In addition, a network comprised of DAGs shared among all ASD subgroups and the combined case group is enriched in genes involved in inflammatory responses, suggesting that neuroinflammation may be a common theme underlying core features of ASD. These findings demonstrate the value of phenotype definition in methylomic analyses of ASD and may aid in the development of subtype-directed diagnostics and therapeutics.
Collapse
Affiliation(s)
| | - Valerie W. Hu
- Department of Biochemistry and Molecular Medicine, The George Washington University, School of Medicine and Health Sciences, Washington, DC 20037, USA;
| |
Collapse
|
15
|
Proteomics and Metabolomics Approaches towards a Functional Insight onto AUTISM Spectrum Disorders: Phenotype Stratification and Biomarker Discovery. Int J Mol Sci 2020; 21:ijms21176274. [PMID: 32872562 PMCID: PMC7504551 DOI: 10.3390/ijms21176274] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 08/25/2020] [Accepted: 08/27/2020] [Indexed: 12/19/2022] Open
Abstract
Autism spectrum disorders (ASDs) are neurodevelopmental disorders characterized by behavioral alterations and currently affect about 1% of children. Significant genetic factors and mechanisms underline the causation of ASD. Indeed, many affected individuals are diagnosed with chromosomal abnormalities, submicroscopic deletions or duplications, single-gene disorders or variants. However, a range of metabolic abnormalities has been highlighted in many patients, by identifying biofluid metabolome and proteome profiles potentially usable as ASD biomarkers. Indeed, next-generation sequencing and other omics platforms, including proteomics and metabolomics, have uncovered early age disease biomarkers which may lead to novel diagnostic tools and treatment targets that may vary from patient to patient depending on the specific genomic and other omics findings. The progressive identification of new proteins and metabolites acting as biomarker candidates, combined with patient genetic and clinical data and environmental factors, including microbiota, would bring us towards advanced clinical decision support systems (CDSSs) assisted by machine learning models for advanced ASD-personalized medicine. Herein, we will discuss novel computational solutions to evaluate new proteome and metabolome ASD biomarker candidates, in terms of their recurrence in the reviewed literature and laboratory medicine feasibility. Moreover, the way to exploit CDSS, performed by artificial intelligence, is presented as an effective tool to integrate omics data to electronic health/medical records (EHR/EMR), hopefully acting as added value in the near future for the clinical management of ASD.
Collapse
|
16
|
Transcriptome signatures from discordant sibling pairs reveal changes in peripheral blood immune cell composition in Autism Spectrum Disorder. Transl Psychiatry 2020; 10:106. [PMID: 32291385 PMCID: PMC7156413 DOI: 10.1038/s41398-020-0778-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 02/14/2020] [Accepted: 02/26/2020] [Indexed: 12/22/2022] Open
Abstract
Notwithstanding several research efforts in the past years, robust and replicable molecular signatures for autism spectrum disorders from peripheral blood remain elusive. The available literature on blood transcriptome in ASD suggests that through accurate experimental design it is possible to extract important information on the disease pathophysiology at the peripheral level. Here we exploit the availability of a resource for molecular biomarkers in ASD, the Italian Autism Network (ITAN) collection, for the investigation of transcriptomic signatures in ASD based on a discordant sibling pair design. Whole blood samples from 75 discordant sibling pairs selected from the ITAN network where submitted to RNASeq analysis and data analyzed by complementary approaches. Overall, differences in gene expression between affected and unaffected siblings were small. In order to assess the contribution of differences in the relative proportion of blood cells between discordant siblings, we have applied two different cell deconvolution algorithms, showing that the observed molecular signatures mainly reflect changes in peripheral blood immune cell composition, in particular NK cells. The results obtained by the cell deconvolution approach are supported by the analysis performed by WGCNA. Our report describes the largest differential gene expression profiling in peripheral blood of ASD subjects and controls conducted by RNASeq. The observed signatures are consistent with the hypothesis of immune alterations in autism and an increased risk of developing autism in subjects exposed to prenatal infections or stress. Our study also points to a potential role of NMUR1, HMGB3, and PTPRN2 in ASD.
Collapse
|
17
|
Price KM, Wigg KG, Feng Y, Blokland K, Wilkinson M, He G, Kerr EN, Carter TC, Guger SL, Lovett MW, Strug LJ, Barr CL. Genome-wide association study of word reading: Overlap with risk genes for neurodevelopmental disorders. GENES BRAIN AND BEHAVIOR 2020; 19:e12648. [PMID: 32108986 DOI: 10.1111/gbb.12648] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 01/28/2020] [Accepted: 02/24/2020] [Indexed: 12/12/2022]
Abstract
Reading disabilities (RD) are the most common neurocognitive disorder, affecting 5% to 17% of children in North America. These children often have comorbid neurodevelopmental/psychiatric disorders, such as attention deficit/hyperactivity disorder (ADHD). The genetics of RD and their overlap with other disorders is incompletely understood. To contribute to this, we performed a genome-wide association study (GWAS) for word reading. Then, using summary statistics from neurodevelopmental/psychiatric disorders, we computed polygenic risk scores (PRS) and used them to predict reading ability in our samples. This enabled us to test the shared aetiology between RD and other disorders. The GWAS consisted of 5.3 million single nucleotide polymorphisms (SNPs) and two samples; a family-based sample recruited for reading difficulties in Toronto (n = 624) and a population-based sample recruited in Philadelphia [Philadelphia Neurodevelopmental Cohort (PNC)] (n = 4430). The Toronto sample SNP-based analysis identified suggestive SNPs (P ~ 5 × 10-7 ) in the ARHGAP23 gene, which is implicated in neuronal migration/axon pathfinding. The PNC gene-based analysis identified significant associations (P < 2.72 × 10-6 ) for LINC00935 and CCNT1, located in the region of the KANSL2/CCNT1/LINC00935/SNORA2B/SNORA34/MIR4701/ADCY6 genes on chromosome 12q, with near significant SNP-based analysis. PRS identified significant overlap between word reading and intelligence (R2 = 0.18, P = 7.25 × 10-181 ), word reading and educational attainment (R2 = 0.07, P = 4.91 × 10-48 ) and word reading and ADHD (R2 = 0.02, P = 8.70 × 10-6 ; threshold for significance = 7.14 × 10-3 ). Overlap was also found between RD and autism spectrum disorder (ASD) as top-ranked genes were previously implicated in autism by rare and copy number variant analyses. These findings support shared risk between word reading, cognitive measures, educational outcomes and neurodevelopmental disorders, including ASD.
Collapse
Affiliation(s)
- Kaitlyn M Price
- Genetics and Development Division, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Program in Neuroscience and Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Karen G Wigg
- Genetics and Development Division, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Yu Feng
- Genetics and Development Division, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Kirsten Blokland
- Program in Neuroscience and Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Margaret Wilkinson
- Program in Neuroscience and Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Gengming He
- Genetics and Genome Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Elizabeth N Kerr
- Department of Psychology, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Tasha-Cate Carter
- Program in Neuroscience and Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada.,Holland Bloorview Rehabilitation Hospital, Toronto, Ontario, Canada
| | - Sharon L Guger
- Department of Psychology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Maureen W Lovett
- Program in Neuroscience and Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Lisa J Strug
- Genetics and Genome Biology, Hospital for Sick Children, Toronto, Ontario, Canada.,Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Cathy L Barr
- Genetics and Development Division, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Program in Neuroscience and Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
18
|
New Horizons for Molecular Genetics Diagnostic and Research in Autism Spectrum Disorder. ADVANCES IN NEUROBIOLOGY 2020; 24:43-81. [PMID: 32006356 DOI: 10.1007/978-3-030-30402-7_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Autism spectrum disorder (ASD) is a highly heritable, heterogeneous, and complex pervasive neurodevelopmental disorder (PND) characterized by distinctive abnormalities of human cognitive functions, social interaction, and speech development.Nowadays, several genetic changes including chromosome abnormalities, genetic variations, transcriptional epigenetics, and noncoding RNA have been identified in ASD. However, the association between these genetic modifications and ASDs has not been confirmed yet.The aim of this review is to summarize the key findings in ASD from genetic viewpoint that have been identified from the last few decades of genetic and molecular research.
Collapse
|
19
|
Association of genes with phenotype in autism spectrum disorder. Aging (Albany NY) 2019; 11:10742-10770. [PMID: 31744938 PMCID: PMC6914398 DOI: 10.18632/aging.102473] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 11/08/2019] [Indexed: 12/27/2022]
Abstract
Autism spectrum disorder (ASD) is a genetic heterogeneous neurodevelopmental disorder that is characterized by impairments in social interaction and speech development and is accompanied by stereotypical behaviors such as body rocking, hand flapping, spinning objects, sniffing and restricted behaviors. The considerable significance of the genetics associated with autism has led to the identification of many risk genes for ASD used for the probing of ASD specificity and shared cognitive features over the past few decades. Identification of ASD risk genes helps to unravel various genetic variants and signaling pathways which are involved in ASD. This review highlights the role of ASD risk genes in gene transcription and translation regulation processes, as well as neuronal activity modulation, synaptic plasticity, disrupted key biological signaling pathways, and the novel candidate genes that play a significant role in the pathophysiology of ASD. The current emphasis on autism spectrum disorders has generated new opportunities in the field of neuroscience, and further advancements in the identification of different biomarkers, risk genes, and genetic pathways can help in the early diagnosis and development of new clinical and pharmacological treatments for ASD.
Collapse
|
20
|
Saffari A, Arno M, Nasser E, Ronald A, Wong CCY, Schalkwyk LC, Mill J, Dudbridge F, Meaburn EL. RNA sequencing of identical twins discordant for autism reveals blood-based signatures implicating immune and transcriptional dysregulation. Mol Autism 2019; 10:38. [PMID: 31719968 PMCID: PMC6839145 DOI: 10.1186/s13229-019-0285-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 09/01/2019] [Indexed: 11/13/2022] Open
Abstract
Background A gap exists in our mechanistic understanding of how genetic and environmental risk factors converge at the molecular level to result in the emergence of autism symptoms. We compared blood-based gene expression signatures in identical twins concordant and discordant for autism spectrum condition (ASC) to differentiate genetic and environmentally driven transcription differences, and establish convergent evidence for biological mechanisms involved in ASC. Methods Genome-wide gene expression data were generated using RNA-seq on whole blood samples taken from 16 pairs of monozygotic (MZ) twins and seven twin pair members (39 individuals in total), who had been assessed for ASC and autism traits at age 12. Differential expression (DE) analyses were performed between (a) affected and unaffected subjects (N = 36) and (b) within discordant ASC MZ twin pairs (total N = 11) to identify environmental-driven DE. Gene set enrichment and pathway testing was performed on DE gene lists. Finally, an integrative analysis using DNA methylation data aimed to identify genes with consistent evidence for altered regulation in cis. Results In the discordant twin analysis, three genes showed evidence for DE at FDR < 10%: IGHG4, EVI2A and SNORD15B. In the case-control analysis, four DE genes were identified at FDR < 10% including IGHG4, PRR13P5, DEPDC1B, and ZNF501. We find enrichment for DE of genes curated in the SFARI human gene database. Pathways showing evidence of enrichment included those related to immune cell signalling and immune response, transcriptional control and cell cycle/proliferation. Integrative methylomic and transcriptomic analysis identified a number of genes showing suggestive evidence for cis dysregulation. Limitations Identical twins stably discordant for ASC are rare, and as such the sample size was limited and constrained to the use of peripheral blood tissue for transcriptomic and methylomic profiling. Given these primary limitations, we focused on transcript-level analysis. Conclusions Using a cohort of ASC discordant and concordant MZ twins, we add to the growing body of transcriptomic-based evidence for an immune-based component in the molecular aetiology of ASC. Whilst the sample size was limited, the study demonstrates the utility of the discordant MZ twin design combined with multi-omics integration for maximising the potential to identify disease-associated molecular signals.
Collapse
Affiliation(s)
- Ayden Saffari
- 1Department of Non-communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK
- 2Centre for Brain and Cognitive Development, Department of Psychological Sciences, Birkbeck, University of London, London, UK
| | - Matt Arno
- 3Edinburgh Genomics, University of Edinburgh, Edinburgh, Scotland UK
- 4King's Genomics Centre, King's College London, London, UK
| | - Eric Nasser
- 4King's Genomics Centre, King's College London, London, UK
| | - Angelica Ronald
- 2Centre for Brain and Cognitive Development, Department of Psychological Sciences, Birkbeck, University of London, London, UK
| | - Chloe C Y Wong
- 5Social Genetic and Developmental Psychology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | | | - Jonathan Mill
- 7University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Frank Dudbridge
- 1Department of Non-communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK
- 8Department of Health Sciences, University of Leicester, Leicester, UK
| | - Emma L Meaburn
- 2Centre for Brain and Cognitive Development, Department of Psychological Sciences, Birkbeck, University of London, London, UK
| |
Collapse
|
21
|
Gender Related Changes in Gene Expression Induced by Valproic Acid in A Mouse Model of Autism and the Correction by S-adenosyl Methionine. Does It Explain the Gender Differences in Autistic Like Behavior? Int J Mol Sci 2019; 20:ijms20215278. [PMID: 31652960 PMCID: PMC6862653 DOI: 10.3390/ijms20215278] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 12/14/2022] Open
Abstract
In previous studies we produced autism like behavioral changes in mice by Valproic acid (VPA) with significant differences between genders. S-adenosine methionine (SAM) prevented the autism like behavior in both genders. The expression of 770 genes of pathways involved in neurophysiology and neuropathology was studied in the prefrontal cortex of 60 days old male and female mice using the NanoString nCounter. In females, VPA induced statistically significant changes in the expression of 146 genes; 71 genes were upregulated and 75 downregulated. In males, VPA changed the expression of only 19 genes, 16 were upregulated and 3 downregulated. Eight genes were similarly changed in both genders. When considering only the genes that were changed by at least 50%, VPA changed the expression of 15 genes in females and 3 in males. Only Nts was similarly downregulated in both genders. SAM normalized the expression of most changed genes in both genders. We presume that genes that are involved in autism like behavior in our model were similarly changed in both genders and corrected by SAM. The behavioral and other differences between genders may be related to genes that were differently affected by VPA in males and females and/or differently affected by SAM.
Collapse
|
22
|
Gazestani VH, Pramparo T, Nalabolu S, Kellman BP, Murray S, Lopez L, Pierce K, Courchesne E, Lewis NE. A perturbed gene network containing PI3K-AKT, RAS-ERK and WNT-β-catenin pathways in leukocytes is linked to ASD genetics and symptom severity. Nat Neurosci 2019; 22:1624-1634. [PMID: 31551593 PMCID: PMC6764590 DOI: 10.1038/s41593-019-0489-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 08/07/2019] [Indexed: 12/14/2022]
Abstract
Hundreds of genes are implicated in autism spectrum disorder (ASD) but the mechanisms through which they contribute to ASD pathophysiology remain elusive. Here, we analyzed leukocyte transcriptomics from 1–4 year-old male toddlers with ASD or typical development from the general population. We discovered a perturbed gene network that includes genes that are highly expressed during fetal brain development and which is dysregulated in hiPSC-derived neuron models of ASD. High-confidence ASD risk genes emerge as upstream regulators of the network, and many risk genes may impact the network by modulating RAS/ERK, PI3K/AKT, and WNT/β-catenin signaling pathways. We found that the degree of dysregulation in this network correlated with the severity of ASD symptoms in the toddlers. These results demonstrate how the heterogeneous genetics of ASD may dysregulate a core network to influence brain development at prenatal and very early postnatal ages and, thereby, the severity of later ASD symptoms.
Collapse
Affiliation(s)
- Vahid H Gazestani
- Autism Center of Excellence, Department of Neuroscience, University of California San Diego, La Jolla, CA, USA.,Department of Pediatrics, University of California San Diego, La Jolla, CA, USA.,Novo Nordisk Foundation Center for Biosustainability, University of California San Diego, La Jolla, CA, USA
| | - Tiziano Pramparo
- Autism Center of Excellence, Department of Neuroscience, University of California San Diego, La Jolla, CA, USA
| | - Srinivasa Nalabolu
- Autism Center of Excellence, Department of Neuroscience, University of California San Diego, La Jolla, CA, USA
| | - Benjamin P Kellman
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA.,Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, USA
| | - Sarah Murray
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Linda Lopez
- Autism Center of Excellence, Department of Neuroscience, University of California San Diego, La Jolla, CA, USA
| | - Karen Pierce
- Autism Center of Excellence, Department of Neuroscience, University of California San Diego, La Jolla, CA, USA
| | - Eric Courchesne
- Autism Center of Excellence, Department of Neuroscience, University of California San Diego, La Jolla, CA, USA.
| | - Nathan E Lewis
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA. .,Novo Nordisk Foundation Center for Biosustainability, University of California San Diego, La Jolla, CA, USA. .,Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, USA. .,Department of Bioengineering, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
23
|
Talebizadeh Z, Shah A, DiTacchio L. The potential role of a retrotransposed gene and a long noncoding RNA in regulating an X-linked chromatin gene (KDM5C): Novel epigenetic mechanism in autism. Autism Res 2019; 12:1007-1021. [PMID: 31087518 DOI: 10.1002/aur.2116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 03/11/2019] [Accepted: 03/25/2019] [Indexed: 12/22/2022]
Abstract
A growing body of evidence supports the potential role of the circadian system and chromatin remodeling genes in autism. Considering the heterogeneity and gender discrepancy in autism, and the complex nature of the epigenetic landscape, identification of biologically relevant epigenetic factors requires reducing heterogeneity using proper subtyping. For this study, we used X chromosome inactivation (XCI) status in females with autism as an epigenetic marker for subtyping and examined the expression level of members of KDM5, a chromatin remodeling gene family. KDM5 are histone demethylases involved in the circadian molecular machinery. We used human blood samples to characterize alternatively spliced KDM5 isoforms and noticed that KDM5C undergoes a complex splicing process. We also identified a KDM5C isoform (KDM5C-3'UTR-lncRNA) containing a novel 3'UTR originated from a retrotransposed gene (retro-SUV39H2) of an autosomal methyltransferase (SUV39H2). This 3'UTR shows 84% sequence homology with long ncRNAs (lncRNAs) and is located 32 kb downstream of KDM5C. The KDM5C-3'UTR-lncRNA isoform was differentially expressed in autistic females with XCI skewness compared with controls. KDM5C plays a crucial role in balancing histone H3K4 methylation states. The identified retro-SUV39H2 originated lncRNA also shows H3K4 marks. By assessing the expression level of alternatively spliced Kdm5 isoforms at different circadian time-points, we showed that some isoforms follow a circadian oscillation pattern in wild type mouse brain.This study provides the first evidence and a suggestive model for the potential role of retrotransposed elements in autism through linking methylases and demethylases, two functionally complementary components of chromatin remodeling, which may collectively contribute to disease etiology through lncRNAs. Autism Res 2019, 12: 1007-1021. © 2019 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY: Genes do not function in isolated conditions and their proper expression level also depends on a mechanism called gene regulation. An example of gene regulation is when changes outside DNA sequences influence the function of autism susceptibility genes. Alternative splicing is one type of gene regulation, which produces several versions of a gene (called variants) that may slightly differ from each other and be expressed at different levels in response to environmental changes. The circadian clock is an essential timing mechanism that enables organisms to maintain internal processes in sync with the dynamic environment brought about by the day-night cycle. The goal of this study was to assess if a subset of females with autism with certain genetic marker had a unique pattern of alternative splicing of three circadian genes. We identified a novel variant that is differentially expressed in this subset. Our study provides a novel subject stratification strategy, and a suggestive model of how biologically relevant components of a gene regulatory process may be linked and, possibly, collectively contribute to the etiology of autism.
Collapse
Affiliation(s)
- Zohreh Talebizadeh
- Children's Mercy Hospital and University of Missouri-Kansas City School of Medicine, Kansas City, Missouri
| | - Ayten Shah
- Children's Mercy Hospital and University of Missouri-Kansas City School of Medicine, Kansas City, Missouri
| | | |
Collapse
|
24
|
Pichitpunpong C, Thongkorn S, Kanlayaprasit S, Yuwattana W, Plaingam W, Sangsuthum S, Aizat WM, Baharum SN, Tencomnao T, Hu VW, Sarachana T. Phenotypic subgrouping and multi-omics analyses reveal reduced diazepam-binding inhibitor (DBI) protein levels in autism spectrum disorder with severe language impairment. PLoS One 2019; 14:e0214198. [PMID: 30921354 PMCID: PMC6438570 DOI: 10.1371/journal.pone.0214198] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 03/08/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The mechanisms underlying autism spectrum disorder (ASD) remain unclear, and clinical biomarkers are not yet available for ASD. Differences in dysregulated proteins in ASD have shown little reproducibility, which is partly due to ASD heterogeneity. Recent studies have demonstrated that subgrouping ASD cases based on clinical phenotypes is useful for identifying candidate genes that are dysregulated in ASD subgroups. However, this strategy has not been employed in proteome profiling analyses to identify ASD biomarker proteins for specific subgroups. METHODS We therefore conducted a cluster analysis of the Autism Diagnostic Interview-Revised (ADI-R) scores from 85 individuals with ASD to predict subgroups and subsequently identified dysregulated genes by reanalyzing the transcriptome profiles of individuals with ASD and unaffected individuals. Proteome profiling of lymphoblastoid cell lines from these individuals was performed via 2D-gel electrophoresis, and then mass spectrometry. Disrupted proteins were identified and compared to the dysregulated transcripts and reported dysregulated proteins from previous proteome studies. Biological functions were predicted using the Ingenuity Pathway Analysis (IPA) program. Selected proteins were also analyzed by Western blotting. RESULTS The cluster analysis of ADI-R data revealed four ASD subgroups, including ASD with severe language impairment, and transcriptome profiling identified dysregulated genes in each subgroup. Screening via proteome analysis revealed 82 altered proteins in the ASD subgroup with severe language impairment. Eighteen of these proteins were further identified by nano-LC-MS/MS. Among these proteins, fourteen were predicted by IPA to be associated with neurological functions and inflammation. Among these proteins, diazepam-binding inhibitor (DBI) protein was confirmed by Western blot analysis to be expressed at significantly decreased levels in the ASD subgroup with severe language impairment, and the DBI expression levels were correlated with the scores of several ADI-R items. CONCLUSIONS By subgrouping individuals with ASD based on clinical phenotypes, and then performing an integrated transcriptome-proteome analysis, we identified DBI as a novel candidate protein for ASD with severe language impairment. The mechanisms of this protein and its potential use as an ASD biomarker warrant further study.
Collapse
Affiliation(s)
- Chatravee Pichitpunpong
- M.Sc. Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Surangrat Thongkorn
- PhD Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Songphon Kanlayaprasit
- PhD Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Wasana Yuwattana
- B.Sc. Program in Medical Technology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Waluga Plaingam
- College of Oriental Medicine, Rangsit University, Pathum Thani, Thailand
| | - Siriporn Sangsuthum
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Wan Mohd Aizat
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Syarul Nataqain Baharum
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Tewin Tencomnao
- Age-related Inflammation and Degeneration Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Valerie Wailin Hu
- Department of Biochemistry and Molecular Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC, United States of America
| | - Tewarit Sarachana
- Age-related Inflammation and Degeneration Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
25
|
Shen L, Feng C, Zhang K, Chen Y, Gao Y, Ke J, Chen X, Lin J, Li C, Iqbal J, Zhao Y, Wang W. Proteomics Study of Peripheral Blood Mononuclear Cells (PBMCs) in Autistic Children. Front Cell Neurosci 2019; 13:105. [PMID: 30941018 PMCID: PMC6433831 DOI: 10.3389/fncel.2019.00105] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 03/01/2019] [Indexed: 12/13/2022] Open
Abstract
Autism is one of the most common neurological developmental disorder associated with social isolation and restricted interests in children. The etiology of this disorder is still unknown. There is neither any confirmed laboratory test nor any effective therapeutic strategy to diagnose or cure it. To search for biomarkers for early detection and exploration of the disease mechanisms, here, we investigated the protein expression signatures of peripheral blood mononuclear cells (PBMCs) in autistic children compared with healthy controls by using isobaric tags for relative and absolute quantitation (iTRAQ) proteomics approach. The results showed a total of 41 proteins as differentially expressed in autistic group as compared to control. These proteins are found associated with metabolic pathways, endoplasmic reticulum (ER) stress and protein folding, endocytosis, immune and inflammatory response, plasma lipoprotein particle organization, and cell adhesion. Among these, 17 proteins (13 up-regulated and four down-regulated) are found to be linked with mitochondria. Eight proteins including three already reported proteins in our previous studies were selected to be verified. Five already reported autism associated pro-inflammatory cytokines [interferon-γ (IFN-γ), interleukin-1β (IL-1β), IL-6, IL-12, and tumor necrosis factor-α (TNF-α)] were detected in plasma by enzyme-linked immunosorbent assay (ELISA) analysis. The results were consistent with proteomic results and reports from previous literature. These results proposed that PBMCs from autistic children might be activated, and ER stress, unfolded protein response (UPR), acute-phase response (APR), inflammatory response, and endocytosis may be involved in autism occurrence. These reported proteins may serve as potential biomarkers for early diagnosis of autism. More specifically, simultaneous detection of three proteins [complement C3 (C3), calreticulin (CALR), and SERPINA1] in the plasma and PBMCs could increase the authenticity of detection.
Collapse
Affiliation(s)
- Liming Shen
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, China
| | - Chengyun Feng
- Maternal and Child Health Hospital of Baoan, Shenzhen, China
| | - Kaoyuan Zhang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, China
| | - Youjiao Chen
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, China
- Xiang Ya Changde Hospital, Changde, China
| | - Yan Gao
- Maternal and Child Health Hospital of Baoan, Shenzhen, China
| | - Junyan Ke
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, China
| | - Xinqian Chen
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, China
| | - Jing Lin
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, China
| | - Cuihua Li
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, China
| | - Javed Iqbal
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, China
| | - Yuxi Zhao
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, China
| | - Weibin Wang
- School of Art, Shenzhen University, Shenzhen, China
| |
Collapse
|
26
|
Impaired Spatial Cognition in Adult Rats Treated with Multiple Intracerebroventricular (ICV) Infusions of the Enteric Bacterial Metabolite, Propionic Acid, and Return to Baseline After 1 Week of No Treatment: Contribution to a Rodent Model of ASD. Neurotox Res 2019; 35:823-837. [DOI: 10.1007/s12640-019-0002-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 12/23/2018] [Accepted: 01/15/2019] [Indexed: 02/07/2023]
|
27
|
Beversdorf DQ, Stevens HE, Margolis KG, Van de Water J. Prenatal Stress and Maternal Immune Dysregulation in Autism Spectrum Disorders: Potential Points for Intervention. Curr Pharm Des 2019; 25:4331-4343. [PMID: 31742491 PMCID: PMC7100710 DOI: 10.2174/1381612825666191119093335] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 11/15/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND Genetics is a major etiological contributor to autism spectrum disorder (ASD). Environmental factors, however, also appear to contribute. ASD pathophysiology due to gene x environment is also beginning to be explored. One reason to focus on environmental factors is that they may allow opportunities for intervention or prevention. METHODS AND RESULTS Herein, we review two such factors that have been associated with a significant proportion of ASD risk, prenatal stress exposure and maternal immune dysregulation. Maternal stress susceptibility appears to interact with prenatal stress exposure to affect offspring neurodevelopment. We also explore how maternal stress may interact with the microbiome in the neurodevelopmental setting. Additionally, understanding of the impact of maternal immune dysfunction on ASD has recently been advanced by recognition of specific fetal brain proteins targeted by maternal autoantibodies, and identification of unique mid-gestational maternal immune profiles. This might also be interrelated with maternal stress exposure. Animal models have been developed to explore pathophysiology targeting each of these factors. CONCLUSION We are beginning to understand the behavioral, pharmacopathological, and epigenetic effects related to these interactions, and we are beginning to explore potential mitigating factors. Continued growth in understanding of these mechanisms may ultimately allow for the identification of multiple potential targets for prevention or intervention for this subset of environmental-associated ASD cases.
Collapse
Affiliation(s)
- David Q. Beversdorf
- Departments of Radiology, Neurology, and Psychological Sciences, and The Thompson Center for Neurodevelopmental Disorders, University of Missouri, William and Nancy Thompson Endowed Chair in Radiology
| | - Hanna E. Stevens
- Departments of Psychiatry and Pediatrics, Iowa Neuroscience Institute, University of Iowa
| | - Kara Gross Margolis
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology and Nutrition, Morgan Stanley Children’s Hospital, Columbia University Medical Center
| | - Judy Van de Water
- Department of Internal Medicine, Division of Rheumatology, Allergy, and Clinical Immunology, And the MIND Institute, University of California, Davis
| |
Collapse
|
28
|
Shen L, Zhao Y, Zhang H, Feng C, Gao Y, Zhao D, Xia S, Hong Q, Iqbal J, Liu XK, Yao F. Advances in Biomarker Studies in Autism Spectrum Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1118:207-233. [PMID: 30747425 DOI: 10.1007/978-3-030-05542-4_11] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Autism spectrum disorder (ASD) is a neurological and developmental condition that begins early in childhood and lasts throughout life. The epidemiology of ASD is continuously increasing all over the world with huge social and economical burdens. As the etiology of autism is not completely understood, there is still no medication available for the treatment of this disorder. However, some behavioral interventions are available to improve the core and associated symptoms of autism, particularly when initiated at an early stage. Thus, there is an increasing demand for finding biomarkers for ASD. Although diagnostic biomarkers have not yet been established, research efforts have been carried out in neuroimaging and biological analyses including genomics and gene testing, proteomics, metabolomics, transcriptomics, and studies of the immune system, inflammation, and microRNAs. Here, we will review the current progress in these fields and focus on new methods, developments, research strategies, and studies of blood-based biomarkers.
Collapse
Affiliation(s)
- Liming Shen
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, People's Republic of China.
| | - Yuxi Zhao
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, People's Republic of China
| | - Huajie Zhang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, People's Republic of China
| | - Chengyun Feng
- Maternal and Child Health Hospital of Baoan, Shenzhen, People's Republic of China
| | - Yan Gao
- Maternal and Child Health Hospital of Baoan, Shenzhen, People's Republic of China
| | - Danqing Zhao
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guizhou Medical University, Guiyang, People's Republic of China
| | - Sijian Xia
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, People's Republic of China
| | - Qi Hong
- Maternal and Child Health Hospital of Baoan, Shenzhen, People's Republic of China
| | - Javed Iqbal
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, People's Republic of China
| | - Xu Kun Liu
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, People's Republic of China
| | - Fang Yao
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, People's Republic of China
| |
Collapse
|
29
|
Park SM, Plachez C, Huang S. Sex-Dependent Motor Deficit and Increased Anxiety-Like States in Mice Lacking Autism-Associated Gene Slit3. Front Behav Neurosci 2018; 12:261. [PMID: 30483073 PMCID: PMC6243047 DOI: 10.3389/fnbeh.2018.00261] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/15/2018] [Indexed: 12/28/2022] Open
Abstract
Altered neuronal connectivity has been implicated in the pathophysiology of Autism Spectrum Disorder (ASD). SLIT/ROBO signaling plays an important role in developmental processes of neuronal connectivity, including axon guidance, neuronal migration, and axonal and dendritic branching. Genetic evidence supports that SLIT3, one of the genes encoding SLITs, is associated with ASD. Yet the causal link between SLIT3 mutation and autism symptoms has not been examined. Here we assessed ASD-associated behaviors in Slit3 knockout (KO) mice. Our data showed that Slit3-KO mice exhibited reduced marble burying behaviors but normal social behaviors. In addition, Slit3-KO mice displayed hypolocomotion in the open field test and impaired motor coordination in the rotarod test. Anxiety-like behaviors were mainly observed in female KO mice assessed by three types of behavioral tests, namely, the open field test, elevated plus maze test, and light/dark box test. No differences were observed between KO and wildtype mice in recognition memory in the novel object recognition test or depression-like behavior in the tail suspension test. Taken together, loss of Slit3 may result in disrupted neural circuits related to motor function and increased anxiety-like states, which are co-occurring symptoms in ASD.
Collapse
Affiliation(s)
- Su Mi Park
- Laboratory of Neural Circuits & Behavior, Program in Neuroscience, Hussman Institute for Autism, Baltimore, MD, United States
| | - Céline Plachez
- Autism & Brain Development Laboratory, Program in Neuroscience, Hussman Institute for Autism, Baltimore, MD, United States
| | - Shiyong Huang
- Laboratory of Neural Circuits & Behavior, Program in Neuroscience, Hussman Institute for Autism, Baltimore, MD, United States
| |
Collapse
|
30
|
Abbasy S, Shahraki F, Haghighatfard A, Qazvini MG, Rafiei ST, Noshadirad E, Farhadi M, Rezvani Asl H, Shiryazdi AA, Ghamari R, Tabrizi Z, Mehrfard R, Esmaili Kakroudi F, Azarnoosh M, Younesi F, Parsamehr N, Garaei N, Abyari S, Salehi M, Gholami M, Zolfaghari P, Bagheri SM, Pourmehrabi M, Rastegarimogaddam E, Nobakht E, Nobakht E, Partovi R. Neuregulin1 types mRNA level changes in autism spectrum disorder, and is associated with deficit in executive functions. EBioMedicine 2018; 37:483-488. [PMID: 30415889 PMCID: PMC6284419 DOI: 10.1016/j.ebiom.2018.10.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/03/2018] [Accepted: 10/09/2018] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a pediatric heterogeneous psychiatric and neurodevelopmental disorder with social and communication deficits, language impairment and ritualistic or repetitive behaviors. ASD has significant genetic bases but candidate genes and molecular mechanisms of disorder are not clarified. Neuregulin1 (NRG1) gene, located in 8p12 is involved in development of central nervous system and was indicated as candidate gene in schizophrenia. METHODS mRNA level of types I, II and III of NRG1 gene were studied in peripheral blood of 1540 ASD patients (IQ > 70) and 1490 control children by quantitative Real Time PCR. Also three domains of executive functions (working memory, response inhibition and vigilance) were examined in all subjects. FINDINGS All three types were significantly down regulated in ASD patients. Significant deficiencies in executive functions (EF) were found in ASD patients. EF deficiencies mostly were associated with down expression of mRNA level of types I and III. Also correlations were found between NRG1 expression with gender and severity of ASD symptoms. INTERPRETATIONS Findings primarily have been suggested involvement of NRG1 in etiology of ASD. Also correlation of NRG1 mRNA level with EF deficiencies could shed lights on EF mechanisms and may suggest targeted treatments to improve particular executive functions. FUND: Young researchers and elites club funded the project due to the annual grant of special talents of Club that gave to Arvin Haghighatfard.
Collapse
Affiliation(s)
- Samane Abbasy
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran; Sarem Cell Research Center, Sarem Women's Hospital, Tehran, Iran
| | - Fazlollah Shahraki
- Department of Mind- Brain-Education, Institute for Cognitive Science Studies, Tehran, Iran
| | - Arvin Haghighatfard
- Department of Biology, North Tehran Branch, Islamic Azad University, Tehran, Iran; Department of Genetic, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran.
| | | | - Sahel Towfigh Rafiei
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Elnaz Noshadirad
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mahdi Farhadi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | | | - Rana Ghamari
- Department of Genetic, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Zeinab Tabrizi
- Department of Medical Genetics, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Rashed Mehrfard
- Department of Microbiology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | | | - Mahsima Azarnoosh
- Department of Genetic, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Faeghe Younesi
- Department of Genetic, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Narges Parsamehr
- Department of Genetic, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Nooriyeh Garaei
- Department of Genetic, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Soroush Abyari
- Department of Genetic, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Maede Salehi
- Department of Genetic, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Maryam Gholami
- Department of Genetic, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Pardis Zolfaghari
- Department of Genetic, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Seyede Mahsa Bagheri
- Department of Genetic, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Melika Pourmehrabi
- Department of Genetic, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | | | - Elnaz Nobakht
- Department of Microbiology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Elmira Nobakht
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Rayan Partovi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
31
|
Jeon SJ, Gonzales EL, Mabunga DFN, Valencia ST, Kim DG, Kim Y, Adil KJL, Shin D, Park D, Shin CY. Sex-specific Behavioral Features of Rodent Models of Autism Spectrum Disorder. Exp Neurobiol 2018; 27:321-343. [PMID: 30429643 PMCID: PMC6221834 DOI: 10.5607/en.2018.27.5.321] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 10/08/2018] [Accepted: 10/10/2018] [Indexed: 12/13/2022] Open
Abstract
Sex is an important factor in understanding the clinical presentation, management, and developmental trajectory of children with neuropsychiatric disorders. While much is known about the clinical and neurobehavioral profiles of males with neuropsychiatric disorders, surprisingly little is known about females in this respect. Animal models may provide detailed mechanistic information about sex differences in autism spectrum disorder (ASD) in terms of manifestation, disease progression, and development of therapeutic options. This review aims to widen our understanding of the role of sex in autism spectrum disorder, by summarizing and comparing behavioral characteristics of animal models. Our current understanding of how differences emerge in boys and girls with neuropsychiatric disorders is limited: Information derived from animal studies will stimulate future research on the role of biological maturation rates, sex hormones, sex-selective protective (or aggravating) factors and psychosocial factors, which are essential to devise sex precision medicine and to improve diagnostic accuracy. Moreover, there is a strong need of novel strategies to elucidate the major mechanisms leading to sex-specific autism features, as well as novel models or methods to examine these sex differences.
Collapse
Affiliation(s)
- Se Jin Jeon
- Center for Neuroscience, Korea Institute of Science & Technology, Seoul 02792, Korea.,Department of Pharmacology and Advanced Translational Medicine, School of Medicine, Konkuk University, Seoul 05029, Korea
| | - Edson Luck Gonzales
- Department of Pharmacology and Advanced Translational Medicine, School of Medicine, Konkuk University, Seoul 05029, Korea.,Department of Neuroscience, School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul 05029, Korea
| | - Darine Froy N Mabunga
- Department of Pharmacology and Advanced Translational Medicine, School of Medicine, Konkuk University, Seoul 05029, Korea.,Department of Neuroscience, School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul 05029, Korea
| | - Schley T Valencia
- Department of Pharmacology and Advanced Translational Medicine, School of Medicine, Konkuk University, Seoul 05029, Korea.,Department of Neuroscience, School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul 05029, Korea
| | - Do Gyeong Kim
- Department of Pharmacology and Advanced Translational Medicine, School of Medicine, Konkuk University, Seoul 05029, Korea.,Department of Neuroscience, School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul 05029, Korea
| | - Yujeong Kim
- Department of Pharmacology and Advanced Translational Medicine, School of Medicine, Konkuk University, Seoul 05029, Korea.,Department of Neuroscience, School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul 05029, Korea
| | - Keremkleroo Jym L Adil
- Department of Pharmacology and Advanced Translational Medicine, School of Medicine, Konkuk University, Seoul 05029, Korea.,Department of Neuroscience, School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul 05029, Korea
| | - Dongpil Shin
- Department of Pharmacology and Advanced Translational Medicine, School of Medicine, Konkuk University, Seoul 05029, Korea.,Department of Neuroscience, School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul 05029, Korea
| | - Donghyun Park
- Department of Pharmacology and Advanced Translational Medicine, School of Medicine, Konkuk University, Seoul 05029, Korea.,Department of Neuroscience, School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul 05029, Korea
| | - Chan Young Shin
- Department of Pharmacology and Advanced Translational Medicine, School of Medicine, Konkuk University, Seoul 05029, Korea.,Department of Neuroscience, School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul 05029, Korea.,KU Open Innovation Center, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
32
|
Beversdorf DQ, Stevens HE, Jones KL. Prenatal Stress, Maternal Immune Dysregulation, and Their Association With Autism Spectrum Disorders. Curr Psychiatry Rep 2018; 20:76. [PMID: 30094645 PMCID: PMC6369590 DOI: 10.1007/s11920-018-0945-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
PURPOSE OF REVIEW While genetic factors are a major etiological contributor to autism spectrum disorder (ASD), evidence also supports a role for environmental factors. Herein, we will discuss two such factors that have been associated with a significant proportion of ASD risk: prenatal stress exposure and maternal immune dysregulation, and how sex and gender relate to these factors. RECENT FINDINGS Recent evidence suggests that maternal stress susceptibility interacts with prenatal stress exposure to affect offspring neurodevelopment. Additionally, understanding of the impact of maternal immune dysfunction on ASD has recently been advanced by recognition of specific fetal brain proteins targeted by maternal autoantibodies, and identification of unique mid-gestational maternal immune profiles. Animal models have been developed to explore pathophysiology targeting both of these factors, with limited sex-specific effects observed. While prenatal stress and maternal immune dysregulation are associated with ASD, most cases of these prenatal exposures do not result in ASD, suggesting interaction with multiple other risks. We are beginning to understand the behavioral, pharmacopathological, and epigenetic effects related to these interactions, as well as potential mitigating factors. Sex differences of these risks have been understudied but are crucial for understanding the higher prevalence of ASD in boys. Continued growth in understanding of these mechanisms may ultimately allow for the identification of multiple potential points for prevention or intervention, and for a personalized medicine approach for this subset of environmental-associated ASD cases.
Collapse
Affiliation(s)
- David Q. Beversdorf
- Departments of Radiology, Neurology, and Psychological Sciences And The Thompson Center for Neurodevelopmental Disorders, University of Missouri, Columbia, MO, USA,Department of Radiology, University of Missouri, DC 069.10, One Hospital Drive, Columbia, MO 65212, USA
| | - Hanna E. Stevens
- Departments of Psychiatry and Pediatrics, Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
| | - Karen L. Jones
- Department of Internal Medicine, Division of Rheumatology, Allergy, and Clinical Immunology, And the MIND Institute, University of California, Davis, Davis, CA, USA
| |
Collapse
|
33
|
Ikezu T, Chen C, DeLeo AM, Zeldich E, Fallin MD, Kanaan NM, Lunetta KL, Abraham CR, Logue MW, Farrer LA. Tau Phosphorylation is Impacted by Rare AKAP9 Mutations Associated with Alzheimer Disease in African Americans. J Neuroimmune Pharmacol 2018. [PMID: 29516269 PMCID: PMC5928172 DOI: 10.1007/s11481-018-9781-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
We studied the effect of two rare mutations (rs144662445 and rs149979685) in the A-kinase anchoring protein 9 (AKAP9) gene, previously associated with Alzheimer disease (AD) in African Americans (AA), on post-translational modifications of AD-related pathogenic molecules, amyloid precursor protein (APP) and microtubule-associated protein Tau using lymphoblastoid cell lines (LCLs) from 11 AA subjects with at least one AKAP9 mutation and 17 AA subjects lacking these mutations. LCLs were transduced by viral vectors expressing causative AD mutations in APP or human full-length wild type Tau. Cell lysates were analyzed for total APP, Aβ40, and total and T181 phospho-Tau (pTau). AKAP9 mutations had no effect on Aβ40/APP, but significantly increased pTau/Tau ratio in LCLs treated with phosphodiesterase-4 inhibitor rolipram, which activates protein kinase A. Proteomic analysis of Tau interactome revealed enrichment of RNA binding proteins and decrease of proteasomal molecules in rolipram-treated cells with AKAP9 mutations. This study shows the impact of rare functional AKAP9 mutations on Tau, a central mechanism of AD pathogenesis, in LCLs derived from AD and control subjects.
Collapse
Affiliation(s)
- Tsuneya Ikezu
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, 02118, USA.,Department of Neurology, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Cidi Chen
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Annina M DeLeo
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Ella Zeldich
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, 02118, USA
| | - M Daniele Fallin
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Nicholas M Kanaan
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI, 49503, USA
| | - Kathryn L Lunetta
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, 02118, USA
| | - Carmela R Abraham
- Department of Neurology, Boston University School of Medicine, Boston, MA, 02118, USA.,Department of Biochemistry, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Mark W Logue
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, E200, 72 East Concord St., Boston, MA, 02118, USA.,Department of Psychiatry, Boston University School of Medicine, Boston, MA, 02118, USA.,The National Center for PTSD, Behavioral Science Division, VA Boston Healthcare System, Boston, MA, 02130, USA
| | - Lindsay A Farrer
- Department of Neurology, Boston University School of Medicine, Boston, MA, 02118, USA. .,Department of Biostatistics, Boston University School of Public Health, Boston, MA, 02118, USA. .,Department of Medicine (Biomedical Genetics), Boston University School of Medicine, E200, 72 East Concord St., Boston, MA, 02118, USA. .,Department of Ophthalmology, Boston University School of Medicine, Boston, MA, 02118, USA. .,Department of Epidemiology, Boston University School of Public Health, Boston, MA, 02118, USA.
| |
Collapse
|
34
|
Abstract
PURPOSE OF REVIEW Neurodevelopmental disorders disproportionately affect males. The mechanisms underlying male vulnerability or female protection are not known and remain understudied. Determining the processes involved is crucial to understanding the etiology and advancing treatment of neurodevelopmental disorders. Here, we review current findings and theories that contribute to male preponderance of neurodevelopmental disorders, with a focus on autism. RECENT FINDINGS Recent work on the biological basis of the male preponderance of autism and other neurodevelopmental disorders includes discussion of a higher genetic burden in females and sex-specific gene mutations or epigenetic changes that differentially confer risk to males or protection to females. Other mechanisms discussed are sex chromosome and sex hormone involvement. Specifically, fetal testosterone is involved in many aspects of development and may interact with neurotransmitter, neuropeptide, or immune pathways to contribute to male vulnerability. Finally, the possibilities of female underdiagnosis and a multi-hit hypothesis are discussed. This review highlights current theories of male bias in developmental disorders. Topics include environmental, genetic, and epigenetic mechanisms; theories of sex chromosomes, hormones, neuroendocrine, and immune function; underdiagnosis of females; and a multi-hit hypothesis.
Collapse
Affiliation(s)
- Sarah L. Ferri
- Department of Molecular Physiology and Biophysics, Iowa Neuroscience Institute, University of Iowa, Pappajohn Biomedical Discovery Building, 169 Newton Road, Iowa City, IA 52242 USA
| | - Ted Abel
- Department of Molecular Physiology and Biophysics, Iowa Neuroscience Institute, University of Iowa, Pappajohn Biomedical Discovery Building, 169 Newton Road, Iowa City, IA 52242 USA
| | - Edward S. Brodkin
- Center for Neurobiology and Behavior, Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Translational Research Laboratory, 125 South 31 Street, Room 2202, Philadelphia, PA 19104-3403 USA
| |
Collapse
|
35
|
Choi J, Lee S, Won J, Jin Y, Hong Y, Hur TY, Kim JH, Lee SR, Hong Y. Pathophysiological and neurobehavioral characteristics of a propionic acid-mediated autism-like rat model. PLoS One 2018; 13:e0192925. [PMID: 29447237 PMCID: PMC5814017 DOI: 10.1371/journal.pone.0192925] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 02/01/2018] [Indexed: 12/22/2022] Open
Abstract
Autism spectrum disorder (ASD) is induced by complex hereditary and environmental factors. However, the mechanisms of ASD development are poorly understood. The purpose of this study was to identify standard indicators of this condition by comparing clinical, pathophysiological, and neurobehavioral features in an autism-like animal model. A total of 22 male Sprague-Dawley rats were randomly divided into control and 500 mg/kg propionic acid (PPA)-treated groups. Rats were subjected to behavioral tests, gene expression analyses, and histological analyses to detect pathophysiological and neurobehavioral alterations. Exploratory activity and non-aggressive behavior were significantly reduced in PPA-treated rats, whereas enhanced aggressive behavior during adjacent interactions was observed on day 14 after PPA administration. To evaluate gene expression after PPA administration, we analyzed hippocampal tissue using reverse transcription PCR. Glial fibrillary acidic protein was augmented in the PPA-treated group on day 14 after appearance of ASD-like behaviors by PPA administration, whereas octamer-binding transcription factor 4 expression was significantly decreased in the PPA-treated group. Histological evaluation revealed significantly reduced diameter and layer thickness of granule cells in PPA-treated rats compared with control rats. We conclude that PPA administration induced abnormal neural cell organization, which may have led to autism-like neurobehaviors, including increased aggressive behavior, reduced exploratory activity, and isolative and passive behaviors.
Collapse
Affiliation(s)
- Jeonghyun Choi
- Department of Rehabilitation Science, Graduate School of Inje University, Gimhae, Korea
- Biohealth Products Research Center (BPRC), Inje University, Gimhae, Korea
- Ubiquitous Healthcare & Anti-aging Research Center (u-HARC), Inje University, Gimhae, Korea
| | - Seunghoon Lee
- Department of Rehabilitation Science, Graduate School of Inje University, Gimhae, Korea
- Biohealth Products Research Center (BPRC), Inje University, Gimhae, Korea
- Ubiquitous Healthcare & Anti-aging Research Center (u-HARC), Inje University, Gimhae, Korea
| | - Jinyoung Won
- Department of Rehabilitation Science, Graduate School of Inje University, Gimhae, Korea
- Biohealth Products Research Center (BPRC), Inje University, Gimhae, Korea
- Ubiquitous Healthcare & Anti-aging Research Center (u-HARC), Inje University, Gimhae, Korea
| | - Yunho Jin
- Department of Rehabilitation Science, Graduate School of Inje University, Gimhae, Korea
- Biohealth Products Research Center (BPRC), Inje University, Gimhae, Korea
- Ubiquitous Healthcare & Anti-aging Research Center (u-HARC), Inje University, Gimhae, Korea
| | - Yunkyung Hong
- Department of Rehabilitation Science, Graduate School of Inje University, Gimhae, Korea
- Biohealth Products Research Center (BPRC), Inje University, Gimhae, Korea
- Ubiquitous Healthcare & Anti-aging Research Center (u-HARC), Inje University, Gimhae, Korea
- Department of Physical Therapy, College of Healthcare Medical Science & Engineering, Inje University, Gimhae, Korea
| | - Tai-Young Hur
- Animal Biotechnology Division, National Institute of Animal Science, Wanju, Korea
| | - Joo-Heon Kim
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, Korea
| | - Sang-Rae Lee
- National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Ochang, Korea
- * E-mail: (YH); (SRL)
| | - Yonggeun Hong
- Department of Rehabilitation Science, Graduate School of Inje University, Gimhae, Korea
- Biohealth Products Research Center (BPRC), Inje University, Gimhae, Korea
- Ubiquitous Healthcare & Anti-aging Research Center (u-HARC), Inje University, Gimhae, Korea
- Department of Physical Therapy, College of Healthcare Medical Science & Engineering, Inje University, Gimhae, Korea
- * E-mail: (YH); (SRL)
| |
Collapse
|
36
|
Jacob-Hirsch J, Eyal E, Knisbacher BA, Roth J, Cesarkas K, Dor C, Farage-Barhom S, Kunik V, Simon AJ, Gal M, Yalon M, Moshitch-Moshkovitz S, Tearle R, Constantini S, Levanon EY, Amariglio N, Rechavi G. Whole-genome sequencing reveals principles of brain retrotransposition in neurodevelopmental disorders. Cell Res 2018; 28:187-203. [PMID: 29327725 DOI: 10.1038/cr.2018.8] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 11/10/2017] [Accepted: 11/20/2017] [Indexed: 02/07/2023] Open
Abstract
Neural progenitor cells undergo somatic retrotransposition events, mainly involving L1 elements, which can be potentially deleterious. Here, we analyze the whole genomes of 20 brain samples and 80 non-brain samples, and characterized the retrotransposition landscape of patients affected by a variety of neurodevelopmental disorders including Rett syndrome, tuberous sclerosis, ataxia-telangiectasia and autism. We report that the number of retrotranspositions in brain tissues is higher than that observed in non-brain samples and even higher in pathologic vs normal brains. The majority of somatic brain retrotransposons integrate into pre-existing repetitive elements, preferentially A/T rich L1 sequences, resulting in nested insertions. Our findings document the fingerprints of encoded endonuclease independent mechanisms in the majority of L1 brain insertion events. The insertions are "non-classical" in that they are truncated at both ends, integrate in the same orientation as the host element, and their target sequences are enriched with a CCATT motif in contrast to the classical endonuclease motif of most other retrotranspositions. We show that L1Hs elements integrate preferentially into genes associated with neural functions and diseases. We propose that pre-existing retrotransposons act as "lightning rods" for novel insertions, which may give fine modulation of gene expression while safeguarding from deleterious events. Overwhelmingly uncontrolled retrotransposition may breach this safeguard mechanism and increase the risk of harmful mutagenesis in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Jasmine Jacob-Hirsch
- Cancer Research Center and the Wohl Institute of Translational Medicine, the Chaim Sheba Medical Center, Tel Hashomer, Israel.,Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Israel
| | - Eran Eyal
- Cancer Research Center and the Wohl Institute of Translational Medicine, the Chaim Sheba Medical Center, Tel Hashomer, Israel
| | | | - Jonathan Roth
- Department of Pediatric Neurosurgery, Dana Children's Hospital, Tel Aviv Medical Center, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Karen Cesarkas
- Cancer Research Center and the Wohl Institute of Translational Medicine, the Chaim Sheba Medical Center, Tel Hashomer, Israel
| | - Chen Dor
- Cancer Research Center and the Wohl Institute of Translational Medicine, the Chaim Sheba Medical Center, Tel Hashomer, Israel
| | - Sarit Farage-Barhom
- Cancer Research Center and the Wohl Institute of Translational Medicine, the Chaim Sheba Medical Center, Tel Hashomer, Israel
| | - Vered Kunik
- Cancer Research Center and the Wohl Institute of Translational Medicine, the Chaim Sheba Medical Center, Tel Hashomer, Israel
| | - Amos J Simon
- Cancer Research Center and the Wohl Institute of Translational Medicine, the Chaim Sheba Medical Center, Tel Hashomer, Israel
| | - Moran Gal
- Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Israel
| | - Michal Yalon
- Department of Pediatric Hematology-Oncology, Edmond and Lily Safra Children's Hospital, The Chaim Sheba Medical Center, Tel Hashomer, Israel
| | - Sharon Moshitch-Moshkovitz
- Cancer Research Center and the Wohl Institute of Translational Medicine, the Chaim Sheba Medical Center, Tel Hashomer, Israel
| | - Rick Tearle
- Complete Genomics, 2071 Stierlin Court, Mountain View, CA 94043, USA
| | - Shlomi Constantini
- Department of Pediatric Neurosurgery, Dana Children's Hospital, Tel Aviv Medical Center, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Erez Y Levanon
- Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Israel
| | - Ninette Amariglio
- Cancer Research Center and the Wohl Institute of Translational Medicine, the Chaim Sheba Medical Center, Tel Hashomer, Israel.,Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Israel
| | - Gideon Rechavi
- Cancer Research Center and the Wohl Institute of Translational Medicine, the Chaim Sheba Medical Center, Tel Hashomer, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
37
|
Rai-Bhogal R, Ahmad E, Li H, Crawford DA. Microarray analysis of gene expression in the cyclooxygenase knockout mice - a connection to autism spectrum disorder. Eur J Neurosci 2017; 47:750-766. [PMID: 29161772 DOI: 10.1111/ejn.13781] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 11/11/2017] [Accepted: 11/14/2017] [Indexed: 02/07/2023]
Abstract
The cellular and molecular events that take place during brain development play an important role in governing function of the mature brain. Lipid-signalling molecules such as prostaglandin E2 (PGE2 ) play an important role in healthy brain development. Abnormalities along the COX-PGE2 signalling pathway due to genetic or environmental causes have been linked to autism spectrum disorder (ASD). This study aims to evaluate the effect of altered COX-PGE2 signalling on development and function of the prenatal brain using male mice lacking cyclooxygenase-1 and cyclooxygenase-2 (COX-1-/- and COX-2-/- ) as potential model systems of ASD. Microarray analysis was used to determine global changes in gene expression during embryonic days 16 (E16) and 19 (E19). Gene Ontology: Biological Process (GO:BP) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were implemented to identify affected developmental genes and cellular processes. We found that in both knockouts the brain at E16 had nearly twice as many differentially expressed genes, and affected biological pathways containing various ASD-associated genes important in neuronal function. Interestingly, using GeneMANIA and Cytoscape we also show that the ASD-risk genes identified in both COX-1-/- and COX-2-/- models belong to protein-interaction networks important for brain development despite of different cellular localization of these enzymes. Lastly, we identified eight genes that belong to the Wnt signalling pathways exclusively in the COX-2-/- mice at E16. The level of PKA-phosphorylated β-catenin (S552), a major activator of the Wnt pathway, was increased in this model, suggesting crosstalk between the COX-2-PGE2 and Wnt pathways during early brain development. Overall, these results provide further molecular insight into the contribution of the COX-PGE2 pathways to ASD and demonstrate that COX-1-/- and COX-2-/- animals might be suitable new model systems for studying the disorders.
Collapse
Affiliation(s)
- Ravneet Rai-Bhogal
- Neuroscience Graduate Diploma Program, York University, Toronto, ON, M3J 1P3, Canada.,Department of Biology, York University, Toronto, ON, Canada
| | - Eizaaz Ahmad
- Neuroscience Graduate Diploma Program, York University, Toronto, ON, M3J 1P3, Canada.,Department of Biology, York University, Toronto, ON, Canada
| | - Hongyan Li
- School of Kinesiology and Health Science, York University, Toronto, ON, Canada
| | - Dorota A Crawford
- Neuroscience Graduate Diploma Program, York University, Toronto, ON, M3J 1P3, Canada.,Department of Biology, York University, Toronto, ON, Canada.,School of Kinesiology and Health Science, York University, Toronto, ON, Canada
| |
Collapse
|
38
|
Kalkman HO, Feuerbach D. Microglia M2A Polarization as Potential Link between Food Allergy and Autism Spectrum Disorders. Pharmaceuticals (Basel) 2017; 10:ph10040095. [PMID: 29232822 PMCID: PMC5748650 DOI: 10.3390/ph10040095] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 12/05/2017] [Accepted: 12/05/2017] [Indexed: 12/18/2022] Open
Abstract
Atopic diseases are frequently co-morbid with autism spectrum disorders (ASD). Allergic responses are associated with an activation of mast cells, innate lymphoid cells, and Th2 cells. These cells produce type-2 cytokines (IL4 and IL13), which stimulate microglia and macrophages to adopt a phenotype referred to as ‘alternative activation’ or ‘M2A’. M2A-polarized macrophages and microglia play a physiological role in tissue repair by secreting growth factors such as brain-derived neurotrophic factor (BDNF) and insulin-like growth factor-1. In ASD there is evidence for increased type-2 cytokines, microglia activation, M2A polarization, and increased levels of growth factors. In neurons, these growth factors drive a signal transduction pathway that leads to activation of the enzyme mammalian Target of Rapamycin (mTOR), and thereby to the inhibition of autophagy. Activation of mTOR is an effect that is also common to several of the genetic forms of autism. In the central nervous system, redundant synapses are removed via an autophagic process. Activation of mTOR would diminish the pruning of redundant synapses, which in the context of ASD is likely to be undesired. Based on this line of reasoning, atopic diseases like food allergy, eczema or asthma would represent risk factors for autism spectrum disorders.
Collapse
|
39
|
Sampino S, Stankiewicz AM, Zacchini F, Goscik J, Szostak A, Swiergiel AH, Drago G, Modlinski JA, Ptak GE. Pregnancy at Advanced Maternal Age Affects Behavior and Hippocampal Gene Expression in Mouse Offspring. J Gerontol A Biol Sci Med Sci 2017; 72:1465-1473. [PMID: 28329103 PMCID: PMC5861961 DOI: 10.1093/gerona/glx016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 01/20/2017] [Indexed: 12/28/2022] Open
Abstract
There is growing evidence that advanced maternal age is a risk factor for neurological and neuropsychiatric disorders in offspring. However, it remains unclear whether the altered brain programming induced by advanced maternal age is mediated by pre- or postnatal factors. Here, a mouse model was used to investigate whether pregnancy at advanced age may provoke behavioral and brain gene expression changes in offspring. Swiss Albino mice conceived by 3-month-old males and either 15-18-month-old (n = 11) or 3-month-old control females (n = 5), were delivered by cesarean section, fostered after birth by 3-month-old dams and subjected to a battery of behavioral tests. Furthermore, genome-wide mRNA expression was analyzed in the hippocampi of 4-month-old males offspring using microarrays. Offspring conceived by old mothers exhibited increased ultrasound vocalization activity during separation from the foster mother, increased anxiety-like behaviors in adult life, and altered patterns of hippocampal gene expression, compared to controls. These effects were not reversed by the postnatal maternal care provided by the young foster mothers, suggesting that the altered brain programming is already established at birth, consistent with prenatal effects related to maternal aging.
Collapse
Affiliation(s)
- Silvestre Sampino
- Department of Experimental Embryology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzebiec, Poland
- Faculty of Veterinary Medicine, University of Teramo, Italy
| | - Adrian Mateusz Stankiewicz
- Department of Molecular Biology, Institute of Genetics and Animal Breeding of The Polish Academy of Sciences, Jastrzebiec, Poland
| | - Federica Zacchini
- Department of Experimental Embryology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzebiec, Poland
| | - Joanna Goscik
- Faculty of Computer Science, Bialystok University of Technology, Poland
| | - Agnieszka Szostak
- Department of Genomics and Biodiversity, Institute of Genetics and Animal Breeding of The Polish Academy of Sciences, Jastrzebiec, Poland
| | - Artur Hugo Swiergiel
- Faculty of Biology, University of Gdansk, Poland
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center, Shreveport
| | - Gaspare Drago
- Laboratory of Clinical Epidemiology, Institute of Biomedicine and Molecular Immunology, National Research Center of Italy, Palermo
| | - Jacek Andrzej Modlinski
- Department of Experimental Embryology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzebiec, Poland
| | - Grazyna Ewa Ptak
- Department of Experimental Embryology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzebiec, Poland
- Faculty of Veterinary Medicine, University of Teramo, Italy
- Department of Animal Reproduction Biotechnology, National Research Institute of Animal Production, Balice, Poland
| |
Collapse
|
40
|
Lopes-Ramos CM, Paulson JN, Chen CY, Kuijjer ML, Fagny M, Platig J, Sonawane AR, DeMeo DL, Quackenbush J, Glass K. Regulatory network changes between cell lines and their tissues of origin. BMC Genomics 2017; 18:723. [PMID: 28899340 PMCID: PMC5596945 DOI: 10.1186/s12864-017-4111-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 09/01/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cell lines are an indispensable tool in biomedical research and often used as surrogates for tissues. Although there are recognized important cellular and transcriptomic differences between cell lines and tissues, a systematic overview of the differences between the regulatory processes of a cell line and those of its tissue of origin has not been conducted. The RNA-Seq data generated by the GTEx project is the first available data resource in which it is possible to perform a large-scale transcriptional and regulatory network analysis comparing cell lines with their tissues of origin. RESULTS We compared 127 paired Epstein-Barr virus transformed lymphoblastoid cell lines (LCLs) and whole blood samples, and 244 paired primary fibroblast cell lines and skin samples. While gene expression analysis confirms that these cell lines carry the expression signatures of their primary tissues, albeit at reduced levels, network analysis indicates that expression changes are the cumulative result of many previously unreported alterations in transcription factor (TF) regulation. More specifically, cell cycle genes are over-expressed in cell lines compared to primary tissues, and this alteration in expression is a result of less repressive TF targeting. We confirmed these regulatory changes for four TFs, including SMAD5, using independent ChIP-seq data from ENCODE. CONCLUSIONS Our results provide novel insights into the regulatory mechanisms controlling the expression differences between cell lines and tissues. The strong changes in TF regulation that we observe suggest that network changes, in addition to transcriptional levels, should be considered when using cell lines as models for tissues.
Collapse
Affiliation(s)
- Camila M. Lopes-Ramos
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA USA
| | - Joseph N. Paulson
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA USA
| | - Cho-Yi Chen
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA USA
| | - Marieke L. Kuijjer
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA USA
| | - Maud Fagny
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA USA
| | - John Platig
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA USA
| | - Abhijeet R. Sonawane
- Channing Division of Network Medicine, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA USA
| | - Dawn L. DeMeo
- Channing Division of Network Medicine, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA USA
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, MA USA
| | - John Quackenbush
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA USA
- Channing Division of Network Medicine, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215 USA
| | - Kimberly Glass
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA USA
- Channing Division of Network Medicine, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA USA
| |
Collapse
|
41
|
Gurwitz D. Human iPSC-derived neurons and lymphoblastoid cells for personalized medicine research in neuropsychiatric disorders. DIALOGUES IN CLINICAL NEUROSCIENCE 2017. [PMID: 27757061 PMCID: PMC5067144 DOI: 10.31887/dcns.2016.18.3/dgurwitz] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The development and clinical implementation of personalized medicine crucially depends on the availability of high-quality human biosamples; animal models, although capable of modeling complex human diseases, cannot reflect the large variation in the human genome, epigenome, transcriptome, proteome, and metabolome. Although the biosamples available from public biobanks that store human tissues and cells may represent the large human diversity for most diseases, these samples are not always sufficient for developing biomarkers for patient-tailored therapies for neuropsychiatric disorders. Postmortem human tissues are available from many biobanks; nevertheless, collections of neuronal human cells from large patient cohorts representing the human diversity remain scarce. Two tools are gaining popularity for personalized medicine research on neuropsychiatric disorders: human induced pluripotent stem cell-derived neurons and human lymphoblastoid cell lines. This review examines and contrasts the advantages and limitations of each tool for personalized medicine research.
Collapse
Affiliation(s)
- David Gurwitz
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
42
|
Hamza M, Halayem S, Mrad R, Bourgou S, Charfi F, Belhadj A. Implication de l’épigénétique dans les troubles du spectre autistique : revue de la littérature. Encephale 2017; 43:374-381. [DOI: 10.1016/j.encep.2016.07.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 07/04/2016] [Accepted: 07/04/2016] [Indexed: 01/24/2023]
|
43
|
Reilly J, Gallagher L, Chen JL, Leader G, Shen S. Bio-collections in autism research. Mol Autism 2017; 8:34. [PMID: 28702161 PMCID: PMC5504648 DOI: 10.1186/s13229-017-0154-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 06/23/2017] [Indexed: 01/06/2023] Open
Abstract
Autism spectrum disorder (ASD) is a group of complex neurodevelopmental disorders with diverse clinical manifestations and symptoms. In the last 10 years, there have been significant advances in understanding the genetic basis for ASD, critically supported through the establishment of ASD bio-collections and application in research. Here, we summarise a selection of major ASD bio-collections and their associated findings. Collectively, these include mapping ASD candidate genes, assessing the nature and frequency of gene mutations and their association with ASD clinical subgroups, insights into related molecular pathways such as the synapses, chromatin remodelling, transcription and ASD-related brain regions. We also briefly review emerging studies on the use of induced pluripotent stem cells (iPSCs) to potentially model ASD in culture. These provide deeper insight into ASD progression during development and could generate human cell models for drug screening. Finally, we provide perspectives concerning the utilities of ASD bio-collections and limitations, and highlight considerations in setting up a new bio-collection for ASD research.
Collapse
Affiliation(s)
- Jamie Reilly
- Regenerative Medicine Institute, School of Medicine, BioMedical Sciences Building, National University of Ireland (NUI), Galway, Ireland
| | - Louise Gallagher
- Trinity Translational Medicine Institute and Department of Psychiatry, Trinity Centre for Health Sciences, St. James Hospital Street, Dublin 8, Ireland
| | - June L Chen
- Department of Special Education, Faculty of Education, East China Normal University, Shanghai, 200062 China
| | - Geraldine Leader
- Irish Centre for Autism and Neurodevelopmental Research (ICAN), Department of Psychology, National University of Ireland Galway, University Road, Galway, Ireland
| | - Sanbing Shen
- Regenerative Medicine Institute, School of Medicine, BioMedical Sciences Building, National University of Ireland (NUI), Galway, Ireland
| |
Collapse
|
44
|
A part of patients with autism spectrum disorder has haploidy of HPC-1/syntaxin1A gene that possibly causes behavioral disturbance as in experimentally gene ablated mice. Neurosci Lett 2017; 644:5-9. [DOI: 10.1016/j.neulet.2017.02.052] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Revised: 01/25/2017] [Accepted: 02/20/2017] [Indexed: 01/02/2023]
|
45
|
Meguid NA, Ghozlan SAS, Mohamed MF, Ibrahim MK, Dawood RM, Din NGBE, Abdelhafez TH, Hemimi M, Awady MKE. Expression of Reactive Oxygen Species-Related Transcripts in Egyptian Children With Autism. Biomark Insights 2017; 12:1177271917691035. [PMID: 28469396 PMCID: PMC5391985 DOI: 10.1177/1177271917691035] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 01/04/2017] [Indexed: 12/27/2022] Open
Abstract
The molecular basis of the pathophysiological role of oxidative stress in autism is understudied. Herein, we used polymerase chain reaction (PCR) array to analyze transcriptional pattern of 84 oxidative stress genes in peripheral blood mononuclear cell pools isolated from 32 autistic patients (16 mild/moderate and 16 severe) and 16 healthy subjects (each sample is a pool from 4 autistic patients or 4 controls). The PCR array data were further validated by quantitative real-time PCR in 80 autistic children (55 mild/moderate and 25 severe) and 60 healthy subjects. Our data revealed downregulation in GCLM, SOD2, NCF2, PRNP, and PTGS2 transcripts (1.5, 3.8, 1.2, 1.7, and 2.2, respectively;P < .05 for all) in autistic group compared with controls. In addition, TXN and FTH1 exhibited 1.4- and 1.7-fold downregulation, respectively, in severe autistic patients when compared with mild/moderate group (P = .005 and .0008, respectively). This study helps in a better understanding of the underlying biology and related genetic factors of autism, and most importantly, it presents suggested candidate biomarkers for diagnosis and prognosis purposes as well as targets for therapeutic intervention.
Collapse
Affiliation(s)
- Nagwa A Meguid
- Department of Research on Children with Special Needs, Medical Research Division, National Research Centre, Giza, Egypt
| | - Said A S Ghozlan
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| | - Magda F Mohamed
- Department of Chemistry (Biochemistry Branch), Faculty of Science, Cairo University, Giza, Egypt
| | - Marwa K Ibrahim
- Microbial Biotechnology Department, Genetic Engineering Division, National Research Centre, Giza, Egypt
| | - Reham M Dawood
- Microbial Biotechnology Department, Genetic Engineering Division, National Research Centre, Giza, Egypt
| | - Noha G Bader El Din
- Microbial Biotechnology Department, Genetic Engineering Division, National Research Centre, Giza, Egypt
| | - Tawfeek H Abdelhafez
- Microbial Biotechnology Department, Genetic Engineering Division, National Research Centre, Giza, Egypt
| | - Maha Hemimi
- Department of Research on Children with Special Needs, Medical Research Division, National Research Centre, Giza, Egypt
| | - Mostafa K El Awady
- Microbial Biotechnology Department, Genetic Engineering Division, National Research Centre, Giza, Egypt
| |
Collapse
|
46
|
Mehling MH, Tassé MJ. Severity of Autism Spectrum Disorders: Current Conceptualization, and Transition to DSM-5. J Autism Dev Disord 2017; 46:2000-2016. [PMID: 26873143 DOI: 10.1007/s10803-016-2731-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Mirroring the evolution of the conceptualization of autism has been changes in the diagnostic process, including the most recent revisions to the DSM-5 and the addition of severity-based diagnostic modifiers assigned on the basis of intensity of needed supports. A review of recent literature indicates that in research stratifying individuals on the basis of autism severity, core ASD symptomology is the primary consideration. This conceptualization is disparate from the conceptualization put forth in DSM-5 in which severity determination is based on level of needed support, which is also impacted by cognitive, language, behavioral, and adaptive functioning. This paper reviews literature in this area and discusses possible instruments that may be useful to inform clinical judgment in determining ASD severity levels.
Collapse
Affiliation(s)
- Margaret H Mehling
- Nisonger Center, The Ohio State University, McCampbell Hall Room 279, 1581 Dodd Dr, Columbus, OH, 43210, USA.
| | - Marc J Tassé
- Nisonger Center, The Ohio State University, McCampbell Hall Room 279, 1581 Dodd Dr, Columbus, OH, 43210, USA
| |
Collapse
|
47
|
Khademul Islam ABMM. Intronic miRNA miR-3666 Modulates its Host Gene FOXP2 Functions in Neurodevelopment and May Contribute to Pathogenesis of Neurological Disorders Schizophrenia and Autism. ACTA ACUST UNITED AC 2017. [DOI: 10.15406/jabb.2017.02.00022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
48
|
Liu X, Xu C, Duan Z. A Simple Red Blood Cell Lysis Method for the Establishment of B Lymphoblastoid Cell Lines. J Vis Exp 2017. [PMID: 28117797 DOI: 10.3791/55191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
A number of methods exist for the transformation of B lymphocytes by the Epstein Barr virus in vitro into immortalized cell lines. We have developed a new method with a powerful and simple strategy for the establishment of B-LCLs, the red blood cell lysis method. This method simplified the PBMC separation procedure with red blood cell removal, and used as little as 0.5 mL of whole blood for establishing EBV-immortalized cell lines, which can proliferate to large cell numbers in a relatively short amount time with a 100% success rate. The method is simple, reliable, time saving, and applicable to treating a large number of the clinical samples.
Collapse
Affiliation(s)
- Xi Liu
- Wuhan Institute of Virology, Chinese Academy of Sciences; Genetic Resources Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences
| | - Chongfeng Xu
- Genetic Resources Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences
| | - Ziyuan Duan
- Genetic Resources Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences;
| |
Collapse
|
49
|
Ansel A, Rosenzweig JP, Zisman PD, Melamed M, Gesundheit B. Variation in Gene Expression in Autism Spectrum Disorders: An Extensive Review of Transcriptomic Studies. Front Neurosci 2017; 10:601. [PMID: 28105001 PMCID: PMC5214812 DOI: 10.3389/fnins.2016.00601] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 12/15/2016] [Indexed: 01/01/2023] Open
Abstract
Autism spectrum disorders (ASDs) are a group of complex neurodevelopmental conditions that present in early childhood and have a current estimated prevalence of about 1 in 68 US children, 1 in 42 boys. ASDs are heterogeneous, and arise from epigenetic, genetic and environmental origins, yet, the exact etiology of ASDs still remains unknown. Individuals with ASDs are characterized by having deficits in social interaction, impaired communication and a range of stereotyped and repetitive behaviors. Currently, a diagnosis of ASD is based solely on behavioral assessments and phenotype. Hundreds of diverse ASD susceptibility genes have been identified, yet none of the mutations found account for more than a small subset of autism cases. Therefore, a genetic diagnosis is not yet possible for the majority of the ASD population. The susceptibility genes that have been identified are involved in a wide and varied range of biological functions. Since the genetics of ASDs is so diverse, information on genome function as provided by transcriptomic data is essential to further our understanding. Gene expression studies have been extremely useful in comparing groups of individuals with ASD and control samples in order to measure which genes (or group of genes) are dysregulated in the ASD group. Transcriptomic studies are essential as a key link between measuring protein levels and analyzing genetic information. This review of recent autism gene expression studies highlights genes that are expressed in the brain, immune system, and processes such as cell metabolism and embryology. Various biological processes have been shown to be implicated with ASD individuals as well as differences in gene expression levels between different types of biological tissues. Some studies use gene expression to attempt to separate autism into different subtypes. An updated list of genes shown to be significantly dysregulated in individuals with autism from all recent ASD expression studies will help further research isolate any patterns useful for diagnosis or understanding the mechanisms involved. The functional relevance of transcriptomic studies as a method of classifying and diagnosing ASD cannot be underestimated despite the possible limitations of transcriptomic studies.
Collapse
|
50
|
Martin PM, Cifuentes-Diaz C, Devaux J, Garcia M, Bureau J, Thomasseau S, Klingler E, Girault JA, Goutebroze L. Schwannomin-interacting Protein 1 Isoform IQCJ-SCHIP1 Is a Multipartner Ankyrin- and Spectrin-binding Protein Involved in the Organization of Nodes of Ranvier. J Biol Chem 2016; 292:2441-2456. [PMID: 27979964 DOI: 10.1074/jbc.m116.758029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 12/14/2016] [Indexed: 11/06/2022] Open
Abstract
The nodes of Ranvier are essential regions for action potential conduction in myelinated fibers. They are enriched in multimolecular complexes composed of voltage-gated Nav and Kv7 channels associated with cell adhesion molecules. Cytoskeletal proteins ankyrin-G (AnkG) and βIV-spectrin control the organization of these complexes and provide mechanical support to the plasma membrane. IQCJ-SCHIP1 is a cytoplasmic protein present in axon initial segments and nodes of Ranvier. It interacts with AnkG and is absent from nodes and axon initial segments of βIV-spectrin and AnkG mutant mice. Here, we show that IQCJ-SCHIP1 also interacts with βIV-spectrin and Kv7.2/3 channels and self-associates, suggesting a scaffolding role in organizing nodal proteins. IQCJ-SCHIP1 binding requires a βIV-spectrin-specific domain and Kv7 channel 1-5-10 calmodulin-binding motifs. We then investigate the role of IQCJ-SCHIP1 in vivo by studying peripheral myelinated fibers in Schip1 knock-out mutant mice. The major nodal proteins are normally enriched at nodes in these mice, indicating that IQCJ-SCHIP1 is not required for their nodal accumulation. However, morphometric and ultrastructural analyses show an altered shape of nodes similar to that observed in βIV-spectrin mutant mice, revealing that IQCJ-SCHIP1 contributes to nodal membrane-associated cytoskeleton organization, likely through its interactions with the AnkG/βIV-spectrin network. Our work reveals that IQCJ-SCHIP1 interacts with several major nodal proteins, and we suggest that it contributes to a higher organizational level of the AnkG/βIV-spectrin network critical for node integrity.
Collapse
Affiliation(s)
- Pierre-Marie Martin
- From INSERM, UMR-S 839, F-75005 Paris.,the Université Pierre et Marie Curie (UPMC)-Sorbonne Universités, UMR-S 839, 75005 Paris.,the Institut du Fer à Moulin, 75005 Paris, and
| | - Carmen Cifuentes-Diaz
- From INSERM, UMR-S 839, F-75005 Paris.,the Université Pierre et Marie Curie (UPMC)-Sorbonne Universités, UMR-S 839, 75005 Paris.,the Institut du Fer à Moulin, 75005 Paris, and
| | - Jérôme Devaux
- the Aix Marseille University, CNRS, CRN2M, 13344 Marseille, France
| | - Marta Garcia
- From INSERM, UMR-S 839, F-75005 Paris.,the Université Pierre et Marie Curie (UPMC)-Sorbonne Universités, UMR-S 839, 75005 Paris.,the Institut du Fer à Moulin, 75005 Paris, and
| | - Jocelyne Bureau
- From INSERM, UMR-S 839, F-75005 Paris.,the Université Pierre et Marie Curie (UPMC)-Sorbonne Universités, UMR-S 839, 75005 Paris.,the Institut du Fer à Moulin, 75005 Paris, and
| | - Sylvie Thomasseau
- From INSERM, UMR-S 839, F-75005 Paris.,the Université Pierre et Marie Curie (UPMC)-Sorbonne Universités, UMR-S 839, 75005 Paris.,the Institut du Fer à Moulin, 75005 Paris, and
| | - Esther Klingler
- From INSERM, UMR-S 839, F-75005 Paris.,the Université Pierre et Marie Curie (UPMC)-Sorbonne Universités, UMR-S 839, 75005 Paris.,the Institut du Fer à Moulin, 75005 Paris, and
| | - Jean-Antoine Girault
- From INSERM, UMR-S 839, F-75005 Paris.,the Université Pierre et Marie Curie (UPMC)-Sorbonne Universités, UMR-S 839, 75005 Paris.,the Institut du Fer à Moulin, 75005 Paris, and
| | - Laurence Goutebroze
- the Université Pierre et Marie Curie (UPMC)-Sorbonne Universités, UMR-S 839, 75005 Paris, .,the Institut du Fer à Moulin, 75005 Paris, and
| |
Collapse
|