1
|
Van Brempt N, Sgammato R, Beirinckx Q, Hammerschmid D, Sobott F, Dewilde S, Moens L, Herrebout W, Johannessen C, Van Doorslaer S. The effect of pH and nitrite on the haem pocket of GLB-33, a globin-coupled neuronal transmembrane receptor of Caenorhabditis elegans. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2023; 1871:140913. [PMID: 37004900 DOI: 10.1016/j.bbapap.2023.140913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/25/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
Out of the 34 globins in Caenorhabditis elegans, GLB-33 is a putative globin-coupled transmembrane receptor with a yet unknown function. The globin domain (GD) contains a particularly hydrophobic haem pocket, that rapidly oxidizes to a low-spin hydroxide-ligated haem state at physiological pH. Moreover, the GD has one of the fastest nitrite reductase activity ever reported for globins. Here, we use a combination of electronic circular dichroism, resonance Raman and electron paramagnetic resonance (EPR) spectroscopy with mass spectrometry to study the pH dependence of the ferric form of the recombinantly over-expressed GD in the presence and absence of nitrite. The competitive binding of nitrite and hydroxide is examined as well as nitrite-induced haem modifications at acidic pH. Comparison of the spectroscopic results with data from other haem proteins allows to deduce the important effect of Arg at position E10 in stabilization of exogenous ligands. Furthermore, continuous-wave and pulsed EPR indicate that ligation of nitrite occurs in a nitrito mode at pH 5.0 and above. At pH 4.0, an additional formation of a nitro-bound haem form is observed along with fast formation of a nitri-globin.
Collapse
Affiliation(s)
- Niels Van Brempt
- Department of Chemistry, University of Antwerp, 2610 Antwerp, Belgium; Department of Biomedical Sciences, University of Antwerp, 2610 Antwerp, Belgium
| | - Roberta Sgammato
- Department of Chemistry, University of Antwerp, 2610 Antwerp, Belgium
| | - Quinten Beirinckx
- Department of Chemistry, University of Antwerp, 2610 Antwerp, Belgium
| | | | - Frank Sobott
- Department of Chemistry, University of Antwerp, 2610 Antwerp, Belgium
| | - Sylvia Dewilde
- Department of Biomedical Sciences, University of Antwerp, 2610 Antwerp, Belgium
| | - Luc Moens
- Department of Biomedical Sciences, University of Antwerp, 2610 Antwerp, Belgium
| | - Wouter Herrebout
- Department of Chemistry, University of Antwerp, 2610 Antwerp, Belgium
| | | | | |
Collapse
|
2
|
Kim SH, Yang D, Bae YA. Hypoxic and nitrosative stress conditions modulate expression of myoglobin genes in a carcinogenic hepatobiliary trematode, Clonorchis sinensis. PLoS Negl Trop Dis 2021; 15:e0009811. [PMID: 34591853 PMCID: PMC8483323 DOI: 10.1371/journal.pntd.0009811] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 09/13/2021] [Indexed: 11/18/2022] Open
Abstract
Despite recent evidence suggesting that adult trematodes require oxygen for the generation of bioenergy and eggshells, information on the molecular mechanism by which the parasites acquire oxygen remains largely elusive. In this study, the structural and expressional features of globin genes identified in Clonorchis sinensis, a carcinogenic trematode parasite that invades the hypoxic biliary tracts of mammalian hosts, were investigated to gain insight into the molecules that enable oxygen metabolism. The number of globin paralogs substantially differed among parasitic platyhelminths, ranging from one to five genes, and the C. sinensis genome encoded at least five globin genes. The expression of these Clonorchis genes, named CsMb (CsMb1—CsMb3), CsNgb, and CsGbX, according to their preferential similarity patterns toward respective globin subfamilies, exponentially increased in the worms coinciding with their sexual maturation, after being downregulated in early juveniles compared to those in metacercariae. The CsMb1 protein was detected throughout the parenchymal region of adult worms as well as in excretory-secretory products, whereas the other proteins were localized exclusively in the sexual organs and intrauterine eggs. Stimuli generated by exogenous oxygen, nitric oxide (NO), and nitrite as well as co-incubation with human cholangiocytes variously affected globin gene expression in live C. sinensis adults. Together with the specific histological distributions, these hypoxia-induced patterns may suggest that oxygen molecules transported by CsMb1 from host environments are provided to cells in the parenchyma and intrauterine eggs/sex organs of the worms for energy metabolism and/or, more importantly, eggshell formation by CsMb1 and CsMb3, respectively. Other globin homologs are likely to perform non-respiratory functions. Based on the responsive expression profile against nitrosative stress, an oxygenated form of secreted CsMb1 is suggested to play a pivotal role in parasite survival by scavenging NO generated by host immune cells via its NO dioxygenase activity. Trematode parasites that invade mammalian tissues have long been believed to produce bioenergy via anaerobic respiration in their definitive hosts. However, recent studies have revealed that these parasites require considerable amounts of oxygen for the generation of hard eggshells during sexual reproduction as well as energy metabolism. Despite these findings, information on the biological mechanisms and relevant molecules responsible for oxygen uptake in the host environment remains largely elusive. Clonorchis sinensis is a carcinogenic trematode parasite that causes clonorchiasis in humans by infecting the bile ducts. Here, we investigated globin genes/proteins in the liver fluke. The genome of C. sinensis encoded at least five globin paralogs (CsMb1, CsMb2, CsMb3, CsNgb, and CsGbX). Temporal expression of these globin genes coincided with the sexual maturation of C. sinensis. Based on the histological localities and induction profiles upon hypoxia, it could be postulated that the oxygen molecules transported by CsMb1 from host environments are provided to cells in the parenchyma and intrauterine eggs/sex organs of the worms by CsMb1 and CsMb3, respectively, for energy metabolism and eggshell formation. Other globin homologs were likely to perform non-respiratory functions. In addition, the oxygenated form of secreted CsMb1 seemed to participate in the scavenging of nitric oxide generated by host immune cells via its nitric oxide dioxygenase activity to increase the survival of the parasite.
Collapse
Affiliation(s)
- Seon-Hee Kim
- Department of Microbiology, Lee Gil Ya Cancer and Diabetes Institute, Gachon University College of Medicine, Incheon, Republic of Korea
| | - Dongki Yang
- Department of Physiology, Lee Gil Ya Cancer and Diabetes Institute, Gachon University College of Medicine, Incheon, Republic of Korea
- * E-mail: (DY); (Y-AB)
| | - Young-An Bae
- Department of Microbiology, Lee Gil Ya Cancer and Diabetes Institute, Gachon University College of Medicine, Incheon, Republic of Korea
- * E-mail: (DY); (Y-AB)
| |
Collapse
|
3
|
Lessons from the post-genomic era: Globin diversity beyond oxygen binding and transport. Redox Biol 2020; 37:101687. [PMID: 32863222 PMCID: PMC7475203 DOI: 10.1016/j.redox.2020.101687] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/11/2020] [Accepted: 08/11/2020] [Indexed: 12/16/2022] Open
Abstract
Vertebrate hemoglobin (Hb) and myoglobin (Mb) were among the first proteins whose structures and sequences were determined over 50 years ago. In the subsequent pregenomic period, numerous related proteins came to light in plants, invertebrates and bacteria, that shared the myoglobin fold, a signature sequence motif characteristic of a 3-on-3 α-helical sandwich. Concomitantly, eukaryote and bacterial globins with a truncated 2-on-2 α-helical fold were discovered. Genomic information over the last 20 years has dramatically expanded the list of known globins, demonstrating their existence in a limited number of archaeal genomes, a majority of bacterial genomes and an overwhelming majority of eukaryote genomes. In vertebrates, 6 additional globin types were identified, namely neuroglobin (Ngb), cytoglobin (Cygb), globin E (GbE), globin X (GbX), globin Y (GbY) and androglobin (Adgb). Furthermore, functions beyond the familiar oxygen transport and storage have been discovered within the vertebrate globin family, including NO metabolism, peroxidase activity, scavenging of free radicals, and signaling functions. The extension of the knowledge on globin functions suggests that the original roles of bacterial globins must have been enzymatic, involved in defense against NO toxicity, and perhaps also as sensors of O2, regulating taxis away or towards high O2 concentrations. In this review, we aimed to discuss the evolution and remarkable functional diversity of vertebrate globins with particular focus on the variety of non-canonical expression sites of mammalian globins and their according impressive variability of atypical functions.
Collapse
|
4
|
Kim J, Fukuda Y, Inoue T. Crystal structure of Kumaglobin: a hexacoordinated heme protein from an anhydrobiotic tardigrade,
Ramazzottius varieornatus. FEBS J 2018; 286:1287-1304. [DOI: 10.1111/febs.14713] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 09/28/2018] [Accepted: 11/29/2018] [Indexed: 01/05/2023]
Affiliation(s)
- JeeEun Kim
- Department of Applied Chemistry Graduate School of Engineering Osaka University Suita Japan
| | - Yohta Fukuda
- Department of Applied Chemistry Graduate School of Engineering Osaka University Suita Japan
| | - Tsuyoshi Inoue
- Department of Applied Chemistry Graduate School of Engineering Osaka University Suita Japan
- Graduate School of Pharmaceutical Science Suita Japan
| |
Collapse
|
5
|
Huang HW, Lin YH, Lin MH, Huang YR, Chou CH, Hong HC, Wang MR, Tseng YT, Liao PC, Chung MC, Ma YJ, Wu SC, Chuang YJ, Wang HD, Wang YM, Huang HD, Lu TT, Liaw WF. Extension of C. elegans lifespan using the ·NO-delivery dinitrosyl iron complexes. J Biol Inorg Chem 2018; 23:775-784. [DOI: 10.1007/s00775-018-1569-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 05/18/2018] [Indexed: 12/12/2022]
|
6
|
Abstract
While the biological role of nitric oxide (NO) synthase (NOS) is appreciated, several fundamental aspects of the NOS/NO-related signaling pathway(s) remain incompletely understood. Canonically, the NOS-derived NO diffuses through the (inter)cellular milieu to bind the prosthetic ferro(Fe2+)-heme group of the soluble guanylyl cyclase (sGC). The formation of ternary NO-ferroheme-sGC complex results in the enzyme activation and accelerated production of the second messenger, cyclic GMP. This paper argues that cells dynamically generate mobile/exchangeable NO-ferroheme species, which activate sGC and regulate the function of some other biomolecules. In contrast to free NO, the mobile NO-ferroheme may ensure safe, efficient and coordinated delivery of the signal within and between cells. The NO-heme signaling may contribute to a number of NOS/NO-related phenomena (e.g. nitrite bioactivity, selective protein S-(N-)nitrosation, endothelium and erythrocyte-dependent vasodilation, some neural and immune NOS functions) and predicts new NO-related discoveries, diagnostics and therapeutics.
Collapse
Affiliation(s)
- Andrei L Kleschyov
- Laboratory of Biophysics, Freiberg Instruments GmbH, 09599 Freiberg, Germany.
| |
Collapse
|
7
|
Tan QQ, Liu W, Zhu F, Lei CL, Hahn DA, Wang XP. Describing the Diapause-Preparatory Proteome of the Beetle Colaphellus bowringi and Identifying Candidates Affecting Lipid Accumulation Using Isobaric Tags for Mass Spectrometry-Based Proteome Quantification (iTRAQ). Front Physiol 2017; 8:251. [PMID: 28491041 PMCID: PMC5405119 DOI: 10.3389/fphys.2017.00251] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Accepted: 04/10/2017] [Indexed: 11/23/2022] Open
Abstract
Prior to entering diapause, insects must prepare themselves physiologically to withstand the stresses of arresting their development for a lengthy period. While studies describing the biochemical and cellular milieu of the maintenance phase of diapause are accumulating, few studies have taken an “omics” approach to describing molecular events during the diapause preparatory phase. We used isobaric tags and mass spectrometry (iTRAQ) to quantitatively compare the expression profiles of proteins identified during the onset of diapause preparation phase in the heads of adult female cabbage beetles, Colaphellus bowringi. A total of 3,175 proteins were identified, 297 of which were differentially expressed between diapause-destined and non-diapause-destined female adults and could therefore be involved in diapause preparation in this species. Comparison of identified proteins with protein function databases shows that many of these differentially expressed proteins enhanced in diapause destined beetles are involved in energy production and conversion, carbohydrate metabolism and transport, and lipid metabolism. Further hand annotation of differentially abundant peptides nominates several associated with stress hardiness, including HSPs and antioxidants, as well as neural development. In contrast, non-diapause destined beetles show substantial increases in cuticle proteins, suggesting additional post-emergence growth. Using RNA interference to silence a fatty acid-binding protein (FABP) that was highly abundant in the head of diapause-destined females prevented the accumulation of lipids in the fat body, a common product of diapause preparation in this species and others. Surprisingly, RNAi against the FABP also affected the transcript abundance of several heat shock proteins. These results suggest that the identified differentially expressed proteins that play vital roles in lipid metabolism may also contribute somehow to enhanced hardiness to environmental stress that is characteristic of diapause.
Collapse
Affiliation(s)
- Qian-Qian Tan
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Wen Liu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Fen Zhu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Chao-Liang Lei
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Daniel A Hahn
- Department of Entomology and Nematology, University of FloridaGainesville, FL, USA
| | - Xiao-Ping Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| |
Collapse
|
8
|
Braeckman BP, Smolders A, Back P, De Henau S. In Vivo Detection of Reactive Oxygen Species and Redox Status in Caenorhabditis elegans. Antioxid Redox Signal 2016; 25:577-92. [PMID: 27306519 PMCID: PMC5041511 DOI: 10.1089/ars.2016.6751] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 06/14/2016] [Indexed: 12/21/2022]
Abstract
SIGNIFICANCE Due to its large families of redox-active enzymes, genetic amenability, and complete transparency, the nematode Caenorhabditis elegans has the potential to become an important model for the in vivo study of redox biology. RECENT ADVANCES The recent development of several genetically encoded ratiometric reactive oxygen species (ROS) and redox sensors has revolutionized the quantification and precise localization of ROS and redox signals in living organisms. Only few exploratory studies have applied these sensors in C. elegans and undoubtedly much remains to be discovered in this model. As a follow-up to our recent findings that the C. elegans somatic gonad uses superoxide and hydrogen peroxide (H2O2) signals to communicate with the germline, we here analyze the patterns of H2O2 inside the C. elegans germline. CRITICAL ISSUES Despite the advantages of genetically encoded ROS and redox sensors over classic chemical sensors, still several general as well as C. elegans-specific issues need to be addressed. The major concerns for the application of these sensors in C. elegans are (i) decreased vitality of some reporter strains, (ii) interference of autofluorescent compartments with the sensor signal, and (iii) the use of immobilization methods that do not influence the worm's redox physiology. FUTURE DIRECTIONS We propose that several of the current issues may be solved by designing reporter strains carrying single copies of codon-optimized sensors. Preferably, these sensors should have their emission wavelengths in the red region, where autofluorescence is absent. Worm analysis could be optimized using four-dimensional ratiometric fluorescence microscopy of worms immobilized in microfluidic chips. Antioxid. Redox Signal. 25, 577-592.
Collapse
Affiliation(s)
| | - Arne Smolders
- Biology Department, Ghent University, Ghent, Belgium
| | - Patricia Back
- Biology Department, Ghent University, Ghent, Belgium
| | - Sasha De Henau
- Biology Department, Ghent University, Ghent, Belgium
- Biomedical Genetics, University Medical Center Untrecht, Utrecht, The Netherlands
| |
Collapse
|
9
|
Morrill GA, Kostellow AB. Molecular Properties of Globin Channels and Pores: Role of Cholesterol in Ligand Binding and Movement. Front Physiol 2016; 7:360. [PMID: 27656147 PMCID: PMC5011150 DOI: 10.3389/fphys.2016.00360] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 08/08/2016] [Indexed: 02/02/2023] Open
Abstract
Globins contain one or more cavities that control or affect such functions as ligand movement and ligand binding. Here we report that the extended globin family [cytoglobin (Cygb); neuroglobin (Ngb); myoglobin (Mb); hemoglobin (Hb) subunits Hba(α); and Hbb(β)] contain either a transmembrane (TM) helix or pore-lining region as well as internal cavities. Protein motif/domain analyses indicate that Ngb and Hbb each contain 5 cholesterol- binding (CRAC/CARC) domains and 1 caveolin binding motif, whereas the Cygb dimer has 6 cholesterol-binding domains but lacks caveolin-binding motifs. Mb and Hba each exhibit 2 cholesterol-binding domains and also lack caveolin-binding motifs. The Hb αβ-tetramer contains 14 cholesterol-binding domains. Computer algorithms indicate that Cygb and Ngb cavities display multiple partitions and C-terminal pore-lining regions, whereas Mb has three major cavities plus a C-terminal pore-lining region. The Hb tetramer exhibits a large internal cavity but the subunits differ in that they contain a C-terminal TM helix (Hba) and pore-lining region (Hbb). The cavities include 43 of 190 Cygb residues, 38 of 151 of Ngb residues, 55 of 154 Mb residues, and 137 of 688 residues in the Hb tetramer. Each cavity complex includes 6 to 8 residues of the TM helix or pore-lining region and CRAC/CARC domains exist within all cavities. Erythrocyte Hb αβ-tetramers are largely cytosolic but also bind to a membrane anion exchange protein, "band 3," which contains a large internal cavity and 12 TM helices (5 being pore-lining regions). The Hba TM helix may be the erythrocyte membrane "band 3" attachment site. "Band 3" contributes 4 caveolin binding motifs and 10 CRAC/CARC domains. Cholesterol binding may create lipid-disordered phases that alter globin cavities and facilitate ligand movement, permitting ion channel formation and conformational changes that orchestrate anion and ligand (O2, CO2, NO) movement within the large internal cavities and channels of the globins.
Collapse
Affiliation(s)
- Gene A Morrill
- Department of Physiology and Biophysics, Albert Einstein College of Medicine Bronx, NY, USA
| | - Adele B Kostellow
- Department of Physiology and Biophysics, Albert Einstein College of Medicine Bronx, NY, USA
| |
Collapse
|
10
|
Kamkina P, Snoek LB, Grossmann J, Volkers RJM, Sterken MG, Daube M, Roschitzki B, Fortes C, Schlapbach R, Roth A, von Mering C, Hengartner MO, Schrimpf SP, Kammenga JE. Natural Genetic Variation Differentially Affects the Proteome and Transcriptome in Caenorhabditis elegans. Mol Cell Proteomics 2016; 15:1670-80. [PMID: 26944343 DOI: 10.1074/mcp.m115.052548] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Indexed: 11/06/2022] Open
Abstract
Natural genetic variation is the raw material of evolution and influences disease development and progression. An important question is how this genetic variation translates into variation in protein abundance. To analyze the effects of the genetic background on gene and protein expression in the nematode Caenorhabditis elegans, we quantitatively compared the two genetically highly divergent wild-type strains N2 and CB4856. Gene expression was analyzed by microarray assays, and proteins were quantified using stable isotope labeling by amino acids in cell culture. Among all transcribed genes, we found 1,532 genes to be differentially transcribed between the two wild types. Of the total 3,238 quantified proteins, 129 proteins were significantly differentially expressed between N2 and CB4856. The differentially expressed proteins were enriched for genes that function in insulin-signaling and stress-response pathways, underlining strong divergence of these pathways in nematodes. The protein abundance of the two wild-type strains correlates more strongly than protein abundance versus transcript abundance within each wild type. Our findings indicate that in C. elegans only a fraction of the changes in protein abundance can be explained by the changes in mRNA abundance. These findings corroborate with the observations made across species.
Collapse
Affiliation(s)
- Polina Kamkina
- From the ‡Institute of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland; §Ph.D. Program in Molecular Life Sciences Zurich, 8057 Zurich, Switzerland
| | - L Basten Snoek
- ‖Laboratory of Nematology, Wageningen University, Wageningen 6708 PB, The Netherlands
| | - Jonas Grossmann
- **Functional Genomics Center Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, 8057 Zurich, Switzerland
| | - Rita J M Volkers
- ‖Laboratory of Nematology, Wageningen University, Wageningen 6708 PB, The Netherlands
| | - Mark G Sterken
- ‖Laboratory of Nematology, Wageningen University, Wageningen 6708 PB, The Netherlands
| | - Michael Daube
- From the ‡Institute of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| | - Bernd Roschitzki
- **Functional Genomics Center Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, 8057 Zurich, Switzerland
| | - Claudia Fortes
- **Functional Genomics Center Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, 8057 Zurich, Switzerland
| | - Ralph Schlapbach
- **Functional Genomics Center Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, 8057 Zurich, Switzerland
| | - Alexander Roth
- From the ‡Institute of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| | - Christian von Mering
- From the ‡Institute of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| | - Michael O Hengartner
- From the ‡Institute of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| | - Sabine P Schrimpf
- From the ‡Institute of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland;
| | - Jan E Kammenga
- ‖Laboratory of Nematology, Wageningen University, Wageningen 6708 PB, The Netherlands;
| |
Collapse
|
11
|
De Henau S, Tilleman L, Vangheel M, Luyckx E, Trashin S, Pauwels M, Germani F, Vlaeminck C, Vanfleteren JR, Bert W, Pesce A, Nardini M, Bolognesi M, De Wael K, Moens L, Dewilde S, Braeckman BP. A redox signalling globin is essential for reproduction in Caenorhabditis elegans. Nat Commun 2015; 6:8782. [PMID: 26621324 PMCID: PMC4686822 DOI: 10.1038/ncomms9782] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 10/02/2015] [Indexed: 12/17/2022] Open
Abstract
Moderate levels of reactive oxygen species (ROS) are now recognized as redox signalling molecules. However, thus far, only mitochondria and NADPH oxidases have been identified as cellular sources of ROS in signalling. Here we identify a globin (GLB-12) that produces superoxide, a type of ROS, which serves as an essential signal for reproduction in C. elegans. We find that GLB-12 has an important role in the regulation of multiple aspects in germline development, including germ cell apoptosis. We further describe how GLB-12 displays specific molecular, biochemical and structural properties that allow this globin to act as a superoxide generator. In addition, both an intra- and extracellular superoxide dismutase act as key partners of GLB-12 to create a transmembrane redox signal. Our results show that a globin can function as a driving factor in redox signalling, and how this signal is regulated at the subcellular level by multiple control layers.
Collapse
Affiliation(s)
- Sasha De Henau
- Department of Biology, Ghent University, Ghent B-9000, Belgium
| | - Lesley Tilleman
- Department of Biomedical Sciences, University of Antwerp, Antwerp B-2000, Belgium
| | | | - Evi Luyckx
- Department of Biomedical Sciences, University of Antwerp, Antwerp B-2000, Belgium
| | - Stanislav Trashin
- Department of Chemistry, University of Antwerp, Antwerp B-2000, Belgium
| | - Martje Pauwels
- Department of Chemistry, University of Antwerp, Antwerp B-2000, Belgium
| | - Francesca Germani
- Department of Biomedical Sciences, University of Antwerp, Antwerp B-2000, Belgium
| | | | | | - Wim Bert
- Department of Biology, Ghent University, Ghent B-9000, Belgium
| | - Alessandra Pesce
- Department of Physics, University of Genova, Genova I-16146, Italy
| | - Marco Nardini
- Department of Biosciences, University of Milano, Milano I-20133, Italy
| | - Martino Bolognesi
- Department of Biosciences, University of Milano, Milano I-20133, Italy
- CNR-IBF and CIMAINA, University of Milano, Milano I-20133, Italy
| | - Karolien De Wael
- Department of Chemistry, University of Antwerp, Antwerp B-2000, Belgium
| | - Luc Moens
- Department of Biomedical Sciences, University of Antwerp, Antwerp B-2000, Belgium
| | - Sylvia Dewilde
- Department of Biomedical Sciences, University of Antwerp, Antwerp B-2000, Belgium
| | | |
Collapse
|
12
|
Wang L, Cui S, Ma L, Kong L, Geng X. Current advances in the novel functions of hypoxia-inducible factor and prolyl hydroxylase in invertebrates. INSECT MOLECULAR BIOLOGY 2015; 24:634-648. [PMID: 26387499 DOI: 10.1111/imb.12189] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Oxygen is essential for aerobic life, and hypoxia has very severe consequences. Organisms need to overcome low oxygen levels to maintain biological functions during normal development and in disease states. The mechanism underlying the hypoxic response has been widely investigated in model animals such as Drosophila melanogaster and Caenorhabditis elegans. Hypoxia-inducible factor (HIF), a key gene product in the response to oxygen deprivation, is primarily regulated by prolyl hydroxylase domain enzymes (PHDs). However, recent findings have uncovered novel HIF-independent functions of PHDs. This review provides an overview of how invertebrates are able to sustain hypoxic damages, and highlights some recent discoveries in the regulation of cellular signalling by PHDs. Given that some core genes and major pathways are evolutionarily conserved, these research findings could provide insight into oxygen-sensitive signalling in mammals, and have biomedical implications for human diseases.
Collapse
Affiliation(s)
- L Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Shanghai, China
| | - S Cui
- School of Agriculture and Biology, Shanghai Jiao Tong University, Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Shanghai, China
| | - L Ma
- School of Agriculture and Biology, Shanghai Jiao Tong University, Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Shanghai, China
| | - L Kong
- School of Agriculture and Biology, Shanghai Jiao Tong University, Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Shanghai, China
| | - X Geng
- School of Agriculture and Biology, Shanghai Jiao Tong University, Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Shanghai, China
| |
Collapse
|
13
|
Electron self-exchange in hemoglobins revealed by deutero-hemin substitution. J Inorg Biochem 2015; 150:139-47. [DOI: 10.1016/j.jinorgbio.2015.06.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 06/11/2015] [Accepted: 06/14/2015] [Indexed: 11/20/2022]
|
14
|
Schiavi A, Maglioni S, Palikaras K, Shaik A, Strappazzon F, Brinkmann V, Torgovnick A, Castelein N, De Henau S, Braeckman BP, Cecconi F, Tavernarakis N, Ventura N. Iron-Starvation-Induced Mitophagy Mediates Lifespan Extension upon Mitochondrial Stress in C. elegans. Curr Biol 2015; 25:1810-22. [PMID: 26144971 DOI: 10.1016/j.cub.2015.05.059] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 05/04/2015] [Accepted: 05/27/2015] [Indexed: 12/20/2022]
Abstract
Frataxin is a nuclear-encoded mitochondrial protein involved in the biogenesis of Fe-S-cluster-containing proteins and consequently in the functionality of the mitochondrial respiratory chain. Similar to other proteins that regulate mitochondrial respiration, severe frataxin deficiency leads to pathology in humans--Friedreich's ataxia, a life-threatening neurodegenerative disorder--and to developmental arrest in the nematode C. elegans. Interestingly, partial frataxin depletion extends C. elegans lifespan, and a similar anti-aging effect is prompted by reduced expression of other mitochondrial regulatory proteins from yeast to mammals. The beneficial adaptive responses to mild mitochondrial stress are still largely unknown and, if characterized, may suggest novel potential targets for the treatment of human mitochondria-associated, age-related disorders. Here we identify mitochondrial autophagy as an evolutionarily conserved response to frataxin silencing, and show for the first time that, similar to mammals, mitophagy is activated in C. elegans in response to mitochondrial stress in a pdr-1/Parkin-, pink-1/Pink-, and dct-1/Bnip3-dependent manner. The induction of mitophagy is part of a hypoxia-like, iron starvation response triggered upon frataxin depletion and causally involved in animal lifespan extension. We also identify non-overlapping hif-1 upstream (HIF-1-prolyl-hydroxylase) and downstream (globins) regulatory genes mediating lifespan extension upon frataxin and iron depletion. Our findings indicate that mitophagy induction is part of an adaptive iron starvation response induced as a protective mechanism against mitochondrial stress, thus suggesting novel potential therapeutic strategies for the treatment of mitochondrial-associated, age-related disorders.
Collapse
Affiliation(s)
- Alfonso Schiavi
- IUF-Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany; Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Silvia Maglioni
- Institute for Clinical Chemistry and Laboratory Diagnostic, Medical Faculty of the Heinrich Heine University, 40225 Düsseldorf, Germany; IUF-Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
| | - Konstantinos Palikaras
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, Heraklion 70013, Crete, Greece
| | - Anjumara Shaik
- Institute for Clinical Chemistry and Laboratory Diagnostic, Medical Faculty of the Heinrich Heine University, 40225 Düsseldorf, Germany; IUF-Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
| | - Flavie Strappazzon
- IRCCS Fondazione Santa Lucia, 00143 Rome, Italy; Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Vanessa Brinkmann
- IUF-Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
| | - Alessandro Torgovnick
- IUF-Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
| | | | - Sasha De Henau
- Biology Department, Ghent University, 9000 Ghent, Belgium
| | | | - Francesco Cecconi
- IRCCS Fondazione Santa Lucia, 00143 Rome, Italy; Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy; Unit of Cell Stress and Survival, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, Heraklion 70013, Crete, Greece; Department of Basic Sciences, Faculty of Medicine, University of Crete, Heraklion 71110, Crete, Greece
| | - Natascia Ventura
- Institute for Clinical Chemistry and Laboratory Diagnostic, Medical Faculty of the Heinrich Heine University, 40225 Düsseldorf, Germany; IUF-Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany; Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy.
| |
Collapse
|
15
|
GLOBIN-5-dependent O2 responses are regulated by PDL-1/PrBP that targets prenylated soluble guanylate cyclases to dendritic endings. J Neurosci 2015; 34:16726-38. [PMID: 25505325 DOI: 10.1523/jneurosci.5368-13.2014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aerobic animals constantly monitor and adapt to changes in O2 levels. The molecular mechanisms involved in sensing O2 are, however, incompletely understood. Previous studies showed that a hexacoordinated globin called GLB-5 tunes the dynamic range of O2-sensing neurons in natural C. elegans isolates, but is defective in the N2 lab reference strain (McGrath et al., 2009; Persson et al., 2009). GLB-5 enables a sharp behavioral switch when O2 changes between 21 and 17%. Here, we show that GLB-5 also confers rapid behavioral and cellular recovery from exposure to hypoxia. Hypoxia reconfigures O2-evoked Ca(2+) responses in the URX O2 sensors, and GLB-5 enables rapid recovery of these responses upon re-oxygenation. Forward genetic screens indicate that GLB-5's effects on O2 sensing require PDL-1, the C. elegans ortholog of mammalian PrBP/PDE6δ protein. In mammals, PDE6δ regulates the traffic and activity of prenylated proteins (Zhang et al., 2004; Norton et al., 2005). PDL-1 promotes localization of GCY-33 and GCY-35, atypical soluble guanylate cyclases that act as O2 sensors, to the dendritic endings of URX and BAG neurons, where they colocalize with GLB-5. Both GCY-33 and GCY-35 are predicted to be prenylated. Dendritic localization is not essential for GCY-35 to function as an O2 sensor, but disrupting pdl-1 alters the URX neuron's O2 response properties. Functional GLB-5 can restore dendritic localization of GCY-33 in pdl-1 mutants, suggesting GCY-33 and GLB-5 are in a complex. Our data suggest GLB-5 and the soluble guanylate cyclases operate in close proximity to sculpt O2 responses.
Collapse
|
16
|
Tilleman L, Germani F, De Henau S, Helbo S, Desmet F, Berghmans H, Van Doorslaer S, Hoogewijs D, Schoofs L, Braeckman BP, Moens L, Fago A, Dewilde S. A globin domain in a neuronal transmembrane receptor of Caenorhabditis elegans and Ascaris suum: molecular modeling and functional properties. J Biol Chem 2015; 290:10336-52. [PMID: 25666609 DOI: 10.1074/jbc.m114.576520] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Indexed: 01/12/2023] Open
Abstract
We report the structural and biochemical characterization of GLB-33, a putative neuropeptide receptor that is exclusively expressed in the nervous system of the nematode Caenorhabditis elegans. This unique chimeric protein is composed of a 7-transmembrane domain (7TM), GLB-33 7TM, typical of a G-protein-coupled receptor, and of a globin domain (GD), GLB-33 GD. Comprehensive sequence similarity searches in the genome of the parasitic nematode, Ascaris suum, revealed a chimeric protein that is similar to a Phe-Met-Arg-Phe-amide neuropeptide receptor. The three-dimensional structures of the separate domains of both species and of the full-length proteins were modeled. The 7TM domains of both proteins appeared very similar, but the globin domain of the A. suum receptor surprisingly seemed to lack several helices, suggesting a novel truncated globin fold. The globin domain of C. elegans GLB-33, however, was very similar to a genuine myoglobin-type molecule. Spectroscopic analysis of the recombinant GLB-33 GD showed that the heme is pentacoordinate when ferrous and in the hydroxide-ligated form when ferric, even at neutral pH. Flash-photolysis experiments showed overall fast biphasic CO rebinding kinetics. In its ferrous deoxy form, GLB-33 GD is capable of reversibly binding O2 with a very high affinity and of reducing nitrite to nitric oxide faster than other globins. Collectively, these properties suggest that the globin domain of GLB-33 may serve as a highly sensitive oxygen sensor and/or as a nitrite reductase. Both properties are potentially able to modulate the neuropeptide sensitivity of the neuronal transmembrane receptor.
Collapse
Affiliation(s)
| | | | - Sasha De Henau
- the Department of Biology, Ghent University, 9000 Ghent, Belgium
| | - Signe Helbo
- the Department of Bioscience, Aarhus University, 8000 Aarhus, Denmark
| | - Filip Desmet
- Physics, University of Antwerp, 2610 Antwerp, Belgium
| | | | | | - David Hoogewijs
- the Institute of Physiology and Zürich Center for Integrative Human Physiology, University of Zürich, 8006 Zürich, Switzerland, Institute of Physiology, University of Duisburg-Essen, D-45147 Essen, Germany, and
| | - Liliane Schoofs
- the Functional Genomics and Proteomics Group, KU Leuven, 3000 Leuven, Belgium
| | - Bart P Braeckman
- the Department of Biology, Ghent University, 9000 Ghent, Belgium
| | - Luc Moens
- From the Departments of Biomedical Sciences and
| | - Angela Fago
- the Department of Bioscience, Aarhus University, 8000 Aarhus, Denmark
| | | |
Collapse
|
17
|
Jusman SW, Iswanti FC, Suyatna FD, Ferdinal F, Wanandi SI, Sadikin M. Cytoglobin expression in oxidative stressed liver during systemic chronic normobaric hypoxia and relation with HIF-1α. MEDICAL JOURNAL OF INDONESIA 2014. [DOI: 10.13181/mji.v23i3.1025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Background: Liver is sensitive against hypoxia and hypoxia will stabilize HIF-1α. At the same time, hypoxia will produce reactive oxygen species (ROS) which can be scavenged by Cygb. The purpose of our study is to know, if normobaric hypoxia can induce Cygb expression and its association with HIF-1α stabilization.Methods: This is an experimental study using 28 male Sprague-Dawley rats, 150-200 g weight. Rats are divided into 7 groups: control group and treatment groups that are kept in hypoxic chamber (10% O2: 90% N2) for 6 hours, 1, 2, 3, 7 and 14 days. All rats are euthanized after treatment and liver tissue are isolated, homogenized and analyzed for oxidative stress parameter, expression of Cygb and HIF-1α.Results: Expression of Cygb mRNA and protein was increased on the day-1 after treatment and reach the maximum expression on the day-2 of hypoxia treatment. But, the expression was decreased after the day-3 and slightly increased at the day-14 of hypoxia. The correlation between expression of Cygb and oxidative stress parameter was strongly correlated. Cygb mRNA, as well as protein, showed the same kinetic as the HIF-1, all increased about day-1 and day-2.Conclusion: Systemic chronic hypoxia and/or oxidative stress up-regulated HIF-1α mRNA which is correlated with the Cygb mRNA and protein expression. Cygb mRNA as well as Cygb protein showed the same kinetic as the HIF-1, all increased about day-1 and day-2 suggesting that Cygb could be under the regulation of HIF-1, but could be controlled also by other factor than HIF-1.
Collapse
|
18
|
Smith DR, Vinogradov SN, Hoogewijs D. Hemoglobins in the genome of the cryptomonad Guillardia theta. Biol Direct 2014; 9:7. [PMID: 24885221 PMCID: PMC4101818 DOI: 10.1186/1745-6150-9-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 04/29/2014] [Indexed: 11/10/2022] Open
Abstract
Cryptomonads, are a lineage of unicellular and mostly photosynthetic algae, that acquired their plastids through the "secondary" endosymbiosis of a red alga - and still retain the nuclear genome (nucleomorph) of the latter. We find that the genome of the cryptomonad Guillardia theta comprises genes coding for 13 globin domains, of which 6 occur within two large chimeric proteins. All the sequences adhere to the vertebrate 3/3 myoglobin fold. Although several globins have no introns, the remainder have atypical intron locations. Bayesian phylogenetic analyses suggest that the G. theta Hbs are related to the stramenopile and chlorophyte single domain globins.
Collapse
Affiliation(s)
| | | | - David Hoogewijs
- Institute of Physiology and Zürich, Center for Integrative Human Physiology, University of Zürich, Winterthurerstrasse 190, Zürich CH-8057, Switzerland.
| |
Collapse
|
19
|
Depuydt G, Xie F, Petyuk VA, Shanmugam N, Smolders A, Dhondt I, Brewer HM, Camp DG, Smith RD, Braeckman BP. Reduced insulin/insulin-like growth factor-1 signaling and dietary restriction inhibit translation but preserve muscle mass in Caenorhabditis elegans. Mol Cell Proteomics 2013; 12:3624-39. [PMID: 24002365 PMCID: PMC3861712 DOI: 10.1074/mcp.m113.027383] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Reduced signaling through the C. elegans insulin/insulin-like growth factor-1-like tyrosine kinase receptor daf-2 and dietary restriction via bacterial dilution are two well-characterized lifespan-extending interventions that operate in parallel or through (partially) independent mechanisms. Using accurate mass and time tag LC-MS/MS quantitative proteomics, we detected that the abundance of a large number of ribosomal subunits is decreased in response to dietary restriction, as well as in the daf-2(e1370) insulin/insulin-like growth factor-1-receptor mutant. In addition, general protein synthesis levels in these long-lived worms are repressed. Surprisingly, ribosomal transcript levels were not correlated to actual protein abundance, suggesting that post-transcriptional regulation determines ribosome content. Proteomics also revealed the increased presence of many structural muscle cell components in long-lived worms, which appeared to result from the prioritized preservation of muscle cell volume in nutrient-poor conditions or low insulin-like signaling. Activation of DAF-16, but not diet restriction, stimulates mRNA expression of muscle-related genes to prevent muscle atrophy. Important daf-2-specific proteome changes include overexpression of aerobic metabolism enzymes and general activation of stress-responsive and immune defense systems, whereas the increased abundance of many protein subunits of the proteasome core complex is a dietary-restriction-specific characteristic.
Collapse
Affiliation(s)
- Geert Depuydt
- Biology Department, Ghent University, Proeftuinstraat 86 N1, B-9000 Ghent, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Ren C, Li Y, Han R, Gao D, Li W, Shi J, Hoogewijs D, Braeckman BP, De Henau S, Lu Y, Qu W, Gao Y, Wu Y, Li Z, Liu H, Wang Z, Zhang C. GLB-13 is associated with oxidative stress resistance incaenorhabditis elegans. IUBMB Life 2013; 65:423-34. [DOI: 10.1002/iub.1132] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2012] [Accepted: 12/13/2012] [Indexed: 11/10/2022]
|
21
|
Mortimer NT, Moberg KH. The archipelago ubiquitin ligase subunit acts in target tissue to restrict tracheal terminal cell branching and hypoxic-induced gene expression. PLoS Genet 2013; 9:e1003314. [PMID: 23459416 PMCID: PMC3573119 DOI: 10.1371/journal.pgen.1003314] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 12/22/2012] [Indexed: 12/20/2022] Open
Abstract
The Drosophila melanogaster gene archipelago (ago) encodes the F-box/WD-repeat protein substrate specificity factor for an SCF (Skp/Cullin/F-box)-type polyubiquitin ligase that inhibits tumor-like growth by targeting proteins for degradation by the proteasome. The Ago protein is expressed widely in the fly embryo and larva and promotes degradation of pro-proliferative proteins in mitotically active cells. However the requirement for Ago in post-mitotic developmental processes remains largely unexplored. Here we show that Ago is an antagonist of the physiologic response to low oxygen (hypoxia). Reducing Ago activity in larval muscle cells elicits enhanced branching of nearby tracheal terminal cells in normoxia. This tracheogenic phenotype shows a genetic dependence on sima, which encodes the HIF-1α subunit of the hypoxia-inducible transcription factor dHIF and its target the FGF ligand branchless (bnl), and is enhanced by depletion of the Drosophila Von Hippel Lindau (dVHL) factor, which is a subunit of an oxygen-dependent ubiquitin ligase that degrades Sima/HIF-1α protein in metazoan cells. Genetic reduction of ago results in constitutive expression of some hypoxia-inducible genes in normoxia, increases the sensitivity of others to mild hypoxic stimulus, and enhances the ability of adult flies to recover from hypoxic stupor. As a molecular correlate to these genetic data, we find that Ago physically associates with Sima and restricts Sima levels in vivo. Collectively, these findings identify Ago as a required element of a circuit that suppresses the tracheogenic activity of larval muscle cells by antagonizing the Sima-mediated transcriptional response to hypoxia.
Collapse
Affiliation(s)
- Nathan T. Mortimer
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, United States of America
- ¤ Current address: Department of Biology, Emory University, Atlanta, Georgia, United States of America
| | - Kenneth H. Moberg
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
22
|
Gardner PR. Hemoglobin: a nitric-oxide dioxygenase. SCIENTIFICA 2012; 2012:683729. [PMID: 24278729 PMCID: PMC3820574 DOI: 10.6064/2012/683729] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 10/04/2012] [Indexed: 05/09/2023]
Abstract
Members of the hemoglobin superfamily efficiently catalyze nitric-oxide dioxygenation, and when paired with native electron donors, function as NO dioxygenases (NODs). Indeed, the NOD function has emerged as a more common and ancient function than the well-known role in O2 transport-storage. Novel hemoglobins possessing a NOD function continue to be discovered in diverse life forms. Unique hemoglobin structures evolved, in part, for catalysis with different electron donors. The mechanism of NOD catalysis by representative single domain hemoglobins and multidomain flavohemoglobin occurs through a multistep mechanism involving O2 migration to the heme pocket, O2 binding-reduction, NO migration, radical-radical coupling, O-atom rearrangement, nitrate release, and heme iron re-reduction. Unraveling the physiological functions of multiple NODs with varying expression in organisms and the complexity of NO as both a poison and signaling molecule remain grand challenges for the NO field. NOD knockout organisms and cells expressing recombinant NODs are helping to advance our understanding of NO actions in microbial infection, plant senescence, cancer, mitochondrial function, iron metabolism, and tissue O2 homeostasis. NOD inhibitors are being pursued for therapeutic applications as antibiotics and antitumor agents. Transgenic NOD-expressing plants, fish, algae, and microbes are being developed for agriculture, aquaculture, and industry.
Collapse
Affiliation(s)
- Paul R. Gardner
- Miami Valley Biotech, 1001 E. 2nd Street, Suite 2445, Dayton, OH 45402, USA
| |
Collapse
|
23
|
An N-myristoylated globin with a redox-sensing function that regulates the defecation cycle in Caenorhabditis elegans. PLoS One 2012; 7:e48768. [PMID: 23251335 PMCID: PMC3520999 DOI: 10.1371/journal.pone.0048768] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 10/04/2012] [Indexed: 01/17/2023] Open
Abstract
Globins occur in all kingdoms of life where they fulfill a wide variety of functions. In the past they used to be primarily characterized as oxygen transport/storage proteins, but since the discovery of new members of the globin family like neuroglobin and cytoglobin, more diverse and complex functions have been assigned to this heterogeneous family. Here we propose a function for a membrane-bound globin of C. elegans, GLB-26. This globin was predicted to be myristoylated at its N-terminus, a post-translational modification only recently described in the globin family. In vivo, this globin is found in the membrane of the head mesodermal cell and in the tail stomato-intestinal and anal depressor muscle cells. Since GLB-26 is almost directly oxidized when exposed to oxygen, we postulate a possible function as electron transfer protein. Phenotypical studies show that GLB-26 takes part in regulating the length of the defecation cycle in C. elegans under oxidative stress conditions.
Collapse
|
24
|
Tilleman L, Germani F, De Henau S, Geuens E, Hoogewijs D, Braeckman BP, Vanfleteren JR, Moens L, Dewilde S. Globins in Caenorhabditis elegans. IUBMB Life 2011; 63:166-74. [PMID: 21445847 DOI: 10.1002/iub.443] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Extensive in silico search of the genome of Caenorhabditis elegans revealed the presence of 33 genes coding for globins that are all transcribed. These globins are very diverse in gene and protein structure and are localized in a variety of cells, mostly neurons. The large number of C. elegans globin genes is assumed to be the result of multiple evolutionary duplication and radiation events. Processes of subfunctionalization and diversification probably led to their cell-specific expression patterns and fixation into the genome. To date, four globins (GLB-1, GLB-5, GLB-6, and GLB-26) have been partially characterized physicochemically, and the crystallographic structure of two of them (GLB-1 and GLB-6) was solved. In this article, a three-dimensional model was designed for the other two globins (GLB-5 and GLB-26), and overlays of the globins were constructed to highlight the structural diversity among them. It is clear that although they all share the globin fold, small variations in the three-dimensional structure have major implications on their ligand-binding properties and possibly their function. We also review here all the information available so far on the globin family of C. elegans and suggest potential functions.
Collapse
Affiliation(s)
- Lesley Tilleman
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Kiger L, Tilleman L, Geuens E, Hoogewijs D, Lechauve C, Moens L, Dewilde S, Marden MC. Electron transfer function versus oxygen delivery: a comparative study for several hexacoordinated globins across the animal kingdom. PLoS One 2011; 6:e20478. [PMID: 21674044 PMCID: PMC3106018 DOI: 10.1371/journal.pone.0020478] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Accepted: 04/27/2011] [Indexed: 11/27/2022] Open
Abstract
Caenorhabditis elegans globin GLB-26 (expressed from gene T22C1.2) has been studied in comparison with human neuroglobin (Ngb) and cytoglobin (Cygb) for its electron transfer properties. GLB-26 exhibits no reversible binding for O(2) and a relatively low CO affinity compared to myoglobin-like globins. These differences arise from its mechanism of gaseous ligand binding since the heme iron of GLB-26 is strongly hexacoordinated in the absence of external ligands; the replacement of this internal ligand, probably the E7 distal histidine, is required before binding of CO or O(2) as for Ngb and Cygb. Interestingly the ferrous bis-histidyl GLB-26 and Ngb, another strongly hexacoordinated globin, can transfer an electron to cytochrome c (Cyt-c) at a high bimolecular rate, comparable to those of inter-protein electron transfer in mitochondria. In addition, GLB-26 displays an unexpectedly rapid oxidation of the ferrous His-Fe-His complex without O(2) actually binding to the iron atom, since the heme is oxidized by O(2) faster than the time for distal histidine dissociation. These efficient mechanisms for electron transfer could indicate a family of hexacoordinated globin which are functionally different from that of pentacoordinated globins.
Collapse
Affiliation(s)
- Laurent Kiger
- INSERM U779, Universities Paris VI and XI, Le Kremlin-Bicêtre, France.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Leiser SF, Kaeberlein M. The hypoxia-inducible factor HIF-1 functions as both a positive and negative modulator of aging. Biol Chem 2011; 391:1131-7. [PMID: 20707608 DOI: 10.1515/bc.2010.123] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In the past year and a half, five studies have independently established a direct connection between the hypoxic response transcription factor, HIF-1, and aging in Caenorhabditis elegans. These studies demonstrated that HIF-1 can both promote and limit longevity via pathways that are mechanistically distinct. Here, we review the current state of knowledge regarding modulation of aging by HIF-1 and speculate on potential aspects of HIF-1 function that could be relevant for mammalian longevity and healthspan.
Collapse
Affiliation(s)
- Scott F Leiser
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | | |
Collapse
|
27
|
Lushchak VI. Environmentally induced oxidative stress in aquatic animals. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2011; 101:13-30. [PMID: 21074869 DOI: 10.1016/j.aquatox.2010.10.006] [Citation(s) in RCA: 1394] [Impact Index Per Article: 107.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Revised: 10/04/2010] [Accepted: 10/11/2010] [Indexed: 05/23/2023]
Abstract
Reactive oxygen species (ROS) are an unenviable part of aerobic life. Their steady-state concentration is a balance between production and elimination providing certain steady-state ROS level. The dynamic equilibrium can be disturbed leading to enhanced ROS level and damage to cellular constituents which is called "oxidative stress". This review describes the general processes responsible for ROS generation in aquatic animals and critically analyses used markers for identification of oxidative stress. Changes in temperature, oxygen levels and salinity can cause the stress in natural and artificial conditions via induction of disbalance between ROS production and elimination. Human borne pollutants can also enhance ROS level in hydrobionts. The role of transition metal ions, such as copper, chromium, mercury and arsenic, and pesticides, namely insecticides, herbicides, and fungicides along with oil products in induction of oxidative stress is highlighted. Last years the research in biology of free radicals was refocused from only descriptive works to molecular mechanisms with particular interest to ones enhancing tolerance. The function of some transcription regulators (Keap1-Nrf2 and HIF-1α) in coordination of organisms' response to oxidative stress is discussed. The future directions in the field are related with more accurate description of oxidative stress, the identification of its general characteristics and mechanisms responsible for adaptation to the stress have been also discussed. The last part marks some perspectives in the study of oxidative stress in hydrobionts, which, in addition to classic use, became more and more popular to address general biological questions such as development, aging and pathologies.
Collapse
Affiliation(s)
- Volodymyr I Lushchak
- Department of Biochemistry and Biotechnology, Precarpathian National University named after Vassyl Stefanyk, Ivano-Frankivsk, Ukraine.
| |
Collapse
|
28
|
Li H, Ren C, Shi J, Hang X, Zhang F, Gao Y, Wu Y, Xu L, Chen C, Zhang C. A proteomic view of Caenorhabditis elegans caused by short-term hypoxic stress. Proteome Sci 2010; 8:49. [PMID: 20858264 PMCID: PMC2954870 DOI: 10.1186/1477-5956-8-49] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Accepted: 09/21/2010] [Indexed: 01/05/2023] Open
Abstract
Background The nematode Caenorhabditis elegans is both sensitive and tolerant to hypoxic stress, particularly when the evolutionarily conserved hypoxia response pathway HIF-1/EGL-9/VHL is involved. Hypoxia-induced changes in the expression of a number of genes have been analyzed using whole genome microarrays in C. elegans, but the changes at the protein level in response to hypoxic stress still remain unclear. Results Here, we utilized a quantitative proteomic approach to evaluate changes in the expression patterns of proteins during the early response to hypoxia in C. elegans. Two-dimensional difference gel electrophoresis (2D-DIGE) was used to compare the proteomic maps of wild type C. elegans strain N2 under a 4-h hypoxia treatment (0.2% oxygen) and under normoxia (control). A subsequent analysis by MALDI-TOF-TOF-MS revealed nineteen protein spots that were differentially expressed. Nine of the protein spots were significantly upregulated, and ten were downregulated upon hypoxic stress. Three of the upregulated proteins were involved in cytoskeletal function (LEV-11, MLC-1, ACT-4), while another three upregulated (ATP-2, ATP-5, VHA-8) were ATP synthases functionally related to energy metabolism. Four ribosomal proteins (RPL-7, RPL-8, RPL-21, RPS-8) were downregulated, indicating a decrease in the level of protein translation upon hypoxic stress. The overexpression of tropomyosin (LEV-11) was further validated by Western blot. In addition, the mutant strain of lev-11(x12) also showed a hypoxia-sensitive phenotype in subsequent analyses, confirming the proteomic findings. Conclusions Taken together, our data suggest that altered protein expression, structural protein remodeling, and the reduction of translation might play important roles in the early response to oxygen deprivation in C. elegans, and this information will help broaden our knowledge on the mechanism of hypoxia response.
Collapse
Affiliation(s)
- Hualing Li
- Life Science College of Nanjing Agriculture University, Nanjing 210095, China.,Beijing Institute of Radiation Medicine, State Key Laboratory of Proteomics, Beijing 100850, China.,Medical College of Yangzhou University, Yangzhou 225001, China
| | - Changhong Ren
- Beijing Institute of Radiation Medicine, State Key Laboratory of Proteomics, Beijing 100850, China
| | - Jinping Shi
- Beijing Institute of Radiation Medicine, State Key Laboratory of Proteomics, Beijing 100850, China
| | - Xingyi Hang
- Beijing Institute of Radiation Medicine, State Key Laboratory of Proteomics, Beijing 100850, China
| | - Feilong Zhang
- Beijing Institute of Radiation Medicine, State Key Laboratory of Proteomics, Beijing 100850, China
| | - Yan Gao
- Beijing Institute of Radiation Medicine, State Key Laboratory of Proteomics, Beijing 100850, China
| | - Yonghong Wu
- Beijing Institute of Radiation Medicine, State Key Laboratory of Proteomics, Beijing 100850, China
| | - Langlai Xu
- Life Science College of Nanjing Agriculture University, Nanjing 210095, China
| | - Changsheng Chen
- Department of Health Statistics, School of Military Preventive Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Chenggang Zhang
- Beijing Institute of Radiation Medicine, State Key Laboratory of Proteomics, Beijing 100850, China
| |
Collapse
|
29
|
Yoon J, Herzik MA, Winter MB, Tran R, Olea C, Marletta MA. Structure and properties of a bis-histidyl ligated globin from Caenorhabditis elegans. Biochemistry 2010; 49:5662-70. [PMID: 20518498 DOI: 10.1021/bi100710a] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Globins are heme-containing proteins that are best known for their roles in oxygen (O(2)) transport and storage. However, more diverse roles of globins in biology are being revealed, including gas and redox sensing. In the nematode Caenorhabditis elegans, 33 globin or globin-like genes were recently identified, some of which are known to be expressed in the sensory neurons of the worm and linked to O(2) sensing behavior. Here, we describe GLB-6, a novel globin-like protein expressed in the neurons of C. elegans. Recombinantly expressed full-length GLB-6 contains a heme site with spectral features that are similar to those of other bis-histidyl ligated globins, such as neuroglobin and cytoglobin. In contrast to these globins, however, ligands such as CO, NO, and CN(-) do not bind to the heme in GLB-6, demonstrating that the endogenous histidine ligands are likely very tightly coordinated. Additionally, GLB-6 exhibits rapid two-state autoxidation kinetics in the presence of physiological O(2) levels as well as a low redox potential (-193 +/- 2 mV). A high-resolution (1.40 A) crystal structure of the ferric form of the heme domain of GLB-6 confirms both the putative globin fold and bis-histidyl ligation and also demonstrates key structural features that can be correlated with the unusual ligand binding and redox properties exhibited by the full-length protein. Taken together, the biochemical properties of GLB-6 suggest that this neural protein would most likely serve as a physiological sensor for O(2) in C. elegans via redox signaling and/or electron transfer.
Collapse
Affiliation(s)
- Jungjoo Yoon
- California Institute for Quantitative Biosciences, University of California, Berkeley, California 94720, USA
| | | | | | | | | | | |
Collapse
|
30
|
Bogaerts A, Temmerman L, Boerjan B, Husson SJ, Schoofs L, Verleyen P. A differential proteomics study of Caenorhabditis elegans infected with Aeromonas hydrophila. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2010; 34:690-698. [PMID: 20149819 DOI: 10.1016/j.dci.2010.02.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2010] [Accepted: 02/02/2010] [Indexed: 05/28/2023]
Abstract
The striking similarities between the innate defences of vertebrates and invertebrates as well as the amenability of Caenorhabditis elegans for genetic analysis, have made this free-living ground nematode a popular model system in the study of bacterial pathogenesis. Although genetic studies have brought new insights, showing the inducibility and pathogen-specificity of the immune response, there is still much to be discovered about the exact mechanisms underlying resistance to infection. In this paper a different angle was adopted to study host-pathogen interactions in C. elegans. We report the application of differential gel electrophoresis (DIGE), combined with mass spectrometry to search for proteins that are differentially synthesised in the worm after infection with the gram-negative bacterium Aeromonas hydrophila. Given the dynamic nature of an immune response, the proteome of C. elegans was investigated at three different time-points after infection. A total of 65 differential proteins were identified. This study confirms the involvement of galectins, C-type lectins and lipid binding proteins in the immunity of C. elegans. In addition a number of unknown proteins, which might represent important players of the worm's defence system, were isolated and identified. This work gives a first indication of the complex changes that occur at the protein level during infection.
Collapse
Affiliation(s)
- Annelies Bogaerts
- Research Group of Functional Genomics and Proteomics, K.U. Leuven, Naamsestraat 59, 3000 Leuven, Belgium.
| | | | | | | | | | | |
Collapse
|
31
|
Geuens E, Hoogewijs D, Nardini M, Vinck E, Pesce A, Kiger L, Fago A, Tilleman L, De Henau S, Marden MC, Weber RE, Van Doorslaer S, Vanfleteren J, Moens L, Bolognesi M, Dewilde S. Globin-like proteins in Caenorhabditis elegans: in vivo localization, ligand binding and structural properties. BMC BIOCHEMISTRY 2010; 11:17. [PMID: 20361867 PMCID: PMC2867796 DOI: 10.1186/1471-2091-11-17] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Accepted: 04/02/2010] [Indexed: 11/10/2022]
Abstract
BACKGROUND The genome of the nematode Caenorhabditis elegans contains more than 30 putative globin genes that all are transcribed. Although their translated amino acid sequences fit the globin fold, a variety of amino-acid substitutions and extensions generate a wide structural diversity among the putative globins. No information is available on the physicochemical properties and the in vivo expression. RESULTS We expressed the globins in a bacterial system, characterized the purified proteins by optical and resonance Raman spectroscopy, measured the kinetics and equilibria of O2 binding and determined the crystal structure of GLB-1* (CysGH2 --> Ser mutant). Furthermore, we studied the expression patterns of glb-1 (ZK637.13) and glb-26 (T22C1.2) in the worms using green fluorescent protein technology and measured alterations of their transcript abundances under hypoxic conditions.GLB-1* displays the classical three-over-three alpha-helical sandwich of vertebrate globins, assembled in a homodimer associated through facing E- and F-helices. Within the heme pocket the dioxygen molecule is stabilized by a hydrogen bonded network including TyrB10 and GlnE7.GLB-1 exhibits high ligand affinity, which is, however, lower than in other globins with the same distal TyrB10-GlnE7 amino-acid pair. In the absence of external ligands, the heme ferrous iron of GLB-26 is strongly hexacoordinated with HisE7, which could explain its extremely low affinity for CO. This globin oxidizes instantly to the ferric form in the presence of oxygen and is therefore incapable of reversible oxygen binding. CONCLUSION The presented data indicate that GLB-1 and GLB-26 belong to two functionally-different globin classes.
Collapse
Affiliation(s)
- Eva Geuens
- Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Willett JD, Podugu N, Sudama G, Kopecky JJ, Isbister J. Applications of cold temperature stress to age fractionate Caenorhabditis elegans: a simple inexpensive technique. J Gerontol A Biol Sci Med Sci 2010; 65:457-67. [PMID: 20354064 PMCID: PMC2854889 DOI: 10.1093/gerona/glq036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The nematode Caenorhabditis elegans’s (CE) successful use in studies of aging is well documented. Cold temperature stress of mixed populations of CE provides a rapid inexpensive means of obtaining three life stage–specific cohorts. Cohorts are obtained in quantities that allow acquisition of replicate metabolite profiles of changes associated with development, aging, and senescence. The fractionation technique is effective with monoxenic and axenic CE cultures. Cohort Y contains 100% young worms, and Cohort A contains 75% adult worms. Cohort M, prereproductive and reproductive, contains some A and Y due to continuous egg laying and hatch. Principal component analysis of normalized data from metabolite profiles obtained using high-performance liquid chromatography electrochemical analysis clearly separates Cohort Y from Cohort A and monoxenic from axenic cultured worms. Access to replicate quantities of age-defined worms will aid studies of alterations in homeostatic controls associated with aging and senescence.
Collapse
Affiliation(s)
- James D Willett
- Department of Molecular and Microbiology, George Mason University, 161 Discovery Hall, PW, MSN: 4E3, Manassas, VA 20110, USA.
| | | | | | | | | |
Collapse
|
33
|
Zhang Y, Shao Z, Zhai Z, Shen C, Powell-Coffman JA. The HIF-1 hypoxia-inducible factor modulates lifespan in C. elegans. PLoS One 2009; 4:e6348. [PMID: 19633713 PMCID: PMC2711329 DOI: 10.1371/journal.pone.0006348] [Citation(s) in RCA: 141] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Accepted: 06/17/2009] [Indexed: 12/26/2022] Open
Abstract
During normal development or during disease, animal cells experience hypoxic (low oxygen) conditions, and the hypoxia-inducible factor (HIF) transcription factors implement most of the critical changes in gene expression that enable animals to adapt to this stress. Here, we examine the roles of HIF-1 in post-mitotic aging. We examined the effects of HIF-1 over-expression and of hif-1 loss-of-function mutations on longevity in C. elegans, a powerful genetic system in which adult somatic cells are post-mitotic. We constructed transgenic lines that expressed varying levels of HIF-1 protein and discovered a positive correlation between HIF-1 expression levels and lifespan. The data further showed that HIF-1 acted in parallel to the SKN-1/NRF and DAF-16/FOXO transcription factors to promote longevity. HIF-1 over-expression also conferred increased resistance to heat and oxidative stress. We isolated and characterized additional hif-1 mutations, and we found that each of 3 loss-of-function mutations conferred increased longevity in normal lab culture conditions, but, unlike HIF-1 over-expression, a hif-1 deletion mutation did not extend the lifespan of daf-16 or skn-1 mutants. We conclude that HIF-1 over-expression and hif-1 loss-of-function mutations promote longevity by different pathways. These data establish HIF-1 as one of the key stress-responsive transcription factors that modulate longevity in C. elegans and advance our understanding of the regulatory networks that link oxygen homeostasis and aging.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, Iowa, United States of America
| | - Zhiyong Shao
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, Iowa, United States of America
| | - Zhiwei Zhai
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, Iowa, United States of America
| | - Chuan Shen
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, Iowa, United States of America
| | - Jo Anne Powell-Coffman
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, Iowa, United States of America
- * E-mail:
| |
Collapse
|
34
|
Mehta R, Steinkraus KA, Sutphin GL, Ramos FJ, Shamieh LS, Huh A, Davis C, Chandler-Brown D, Kaeberlein M. Proteasomal regulation of the hypoxic response modulates aging in C. elegans. Science 2009; 324:1196-8. [PMID: 19372390 PMCID: PMC2737476 DOI: 10.1126/science.1173507] [Citation(s) in RCA: 185] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The Caenorhabditis elegans von Hippel-Lindau tumor suppressor homolog VHL-1 is a cullin E3 ubiquitin ligase that negatively regulates the hypoxic response by promoting ubiquitination and degradation of the hypoxic response transcription factor HIF-1. Here, we report that loss of VHL-1 significantly increased life span and enhanced resistance to polyglutamine and beta-amyloid toxicity. Deletion of HIF-1 was epistatic to VHL-1, indicating that HIF-1 acts downstream of VHL-1 to modulate aging and proteotoxicity. VHL-1 and HIF-1 control longevity by a mechanism distinct from both dietary restriction and insulin-like signaling. These findings define VHL-1 and the hypoxic response as an alternative longevity and protein homeostasis pathway.
Collapse
Affiliation(s)
- Ranjana Mehta
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Alkema MJ. Oxygen sensation: into thick air. Curr Biol 2009; 19:R407-9. [PMID: 19467207 DOI: 10.1016/j.cub.2009.03.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Two recent studies show that a neural globin tunes oxygen responses in the nematode Caenorhabditis elegans. Analysis of wild C. elegans strains suggests that the commonly used Bristol strain may have adapted to life in the laboratory.
Collapse
Affiliation(s)
- Mark J Alkema
- Department of Neurobiology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA.
| |
Collapse
|
36
|
Menuz V, Howell KS, Gentina S, Epstein S, Riezman I, Fornallaz-Mulhauser M, Hengartner MO, Gomez M, Riezman H, Martinou JC. Protection of C. elegans from anoxia by HYL-2 ceramide synthase. Science 2009; 324:381-4. [PMID: 19372430 DOI: 10.1126/science.1168532] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Oxygen deprivation is rapidly deleterious for most organisms. However, Caenorhabditis elegans has developed the ability to survive anoxia for at least 48 hours. Mutations in the DAF-2/DAF-16 insulin-like signaling pathway promote such survival. We describe a pathway involving the HYL-2 ceramide synthase that acts independently of DAF-2. Loss of the ceramide synthase gene hyl-2 results in increased sensitivity of C. elegans to anoxia. C. elegans has two ceramide synthases, hyl-1 and hyl-2, that participate in ceramide biogenesis and affect its ability to survive anoxic conditions. In contrast to hyl-2(lf) mutants, hyl-1(lf) mutants are more resistant to anoxia than normal animals. HYL-1 and HYL-2 have complementary specificities for fatty acyl chains. These data indicate that specific ceramides produced by HYL-2 confer resistance to anoxia.
Collapse
Affiliation(s)
- Vincent Menuz
- Department of Cell Biology, University of Geneva, CH-1211 Geneva 4, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
McGrath PT, Rockman MV, Zimmer M, Jang H, Macosko EZ, Kruglyak L, Bargmann CI. Quantitative mapping of a digenic behavioral trait implicates globin variation in C. elegans sensory behaviors. Neuron 2009; 61:692-9. [PMID: 19285466 DOI: 10.1016/j.neuron.2009.02.012] [Citation(s) in RCA: 175] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Revised: 02/05/2009] [Accepted: 02/19/2009] [Indexed: 11/16/2022]
Abstract
Most heritable behavioral traits have a complex genetic basis, but few multigenic traits are understood at a molecular level. Here we show that the C. elegans strains N2 and CB4856 have opposite behavioral responses to simultaneous changes in environmental O(2) and CO(2). We identify two quantitative trait loci (QTL) that affect this trait and map each QTL to a single-gene polymorphism. One gene, npr-1, encodes a previously described neuropeptide receptor whose high activity in N2 promotes CO(2) avoidance. The second gene, glb-5, encodes a neuronal globin domain protein whose high activity in CB4856 modifies behavioral responses to O(2) and combined O(2)/CO(2) stimuli. glb-5 acts in O(2)-sensing neurons to increase O(2)-evoked calcium signals, implicating globins in sensory signaling. An analysis of wild C. elegans strains indicates that the N2 alleles of npr-1 and glb-5 arose recently in the same strain background, possibly as an adaptation to laboratory conditions.
Collapse
Affiliation(s)
- Patrick T McGrath
- Howard Hughes Medical Institute, Laboratory of Neural Circuits and Behavior, The Rockefeller University, New York, NY 10065, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Persson A, Gross E, Laurent P, Busch KE, Bretes H, de Bono M. Natural variation in a neural globin tunes oxygen sensing in wild Caenorhabditis elegans. Nature 2009; 458:1030-3. [PMID: 19262507 DOI: 10.1038/nature07820] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2008] [Accepted: 01/21/2009] [Indexed: 11/09/2022]
Abstract
Behaviours evolve by iterations of natural selection, but we have few insights into the molecular and neural mechanisms involved. Here we show that some Caenorhabditis elegans wild strains switch between two foraging behaviours in response to subtle changes in ambient oxygen. This finely tuned switch is conferred by a naturally variable hexacoordinated globin, GLB-5. GLB-5 acts with the atypical soluble guanylate cyclases, which are a different type of oxygen binding protein, to tune the dynamic range of oxygen-sensing neurons close to atmospheric (21%) concentrations. Calcium imaging indicates that one group of these neurons is activated when oxygen rises towards 21%, and is inhibited as oxygen drops below 21%. The soluble guanylate cyclase GCY-35 is required for high oxygen to activate the neurons; GLB-5 provides inhibitory input when oxygen decreases below 21%. Together, these oxygen binding proteins tune neuronal and behavioural responses to a narrow oxygen concentration range close to atmospheric levels. The effect of the glb-5 gene on oxygen sensing and foraging is modified by the naturally variable neuropeptide receptor npr-1 (refs 4, 5), providing insights into how polygenic variation reshapes neural circuit function.
Collapse
Affiliation(s)
- Annelie Persson
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
| | | | | | | | | | | |
Collapse
|
39
|
Hunt PW, McNally J, Barris W, Blaxter ML. Duplication and divergence: the evolution of nematode globins. J Nematol 2009; 41:35-51. [PMID: 22661776 PMCID: PMC3365290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Indexed: 06/01/2023] Open
Abstract
In common with many other groups, nematodes express globins with unknown functions. Nematode globin-like genes can be divided into class 1 globins, similar to vertebrate myoglobins, and a wide range of additional classes. Here we show that class 1 nematode globins possess a huge amount of diversity in gene sequence and structure. There is evidence for multiple events of gene duplication, intron insertion and loss between species, and for allelic variation effecting both synonymous and non-synonymous sites within species. We have also examined gene expression patterns in class I globins from a variety of species. The results show variation in the degree of gene expression, but the tissue specificity and temporal specificity of expression may be more conserved in the phylum. Because the structure-function relationships for the binding and transport of oxygen by globins are well understood, the consequences of genetic variation causing amino acid changes are explored. The gene family shows great promise for discovering unique insights into both structure-function relationships of globins and their physiologial roles.
Collapse
Affiliation(s)
- P W Hunt
- Institute of Evolutionary Biology, University of Edinburgh, King's Buildings, Edinburgh EH9 3JT, United Kingdom. CSIRO, Locked Mail Bag 1, Armidale, NSW 2350, Australia. CSIRO, 306 Carmody Road, St Lucia QLD 4067, Australia
| | | | | | | |
Collapse
|
40
|
Hoogewijs D, De Henau S, Dewilde S, Moens L, Couvreur M, Borgonie G, Vinogradov SN, Roy SW, Vanfleteren JR. The Caenorhabditis globin gene family reveals extensive nematode-specific radiation and diversification. BMC Evol Biol 2008; 8:279. [PMID: 18844991 PMCID: PMC2576238 DOI: 10.1186/1471-2148-8-279] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Accepted: 10/09/2008] [Indexed: 01/27/2023] Open
Abstract
Background Globin isoforms with variant properties and functions have been found in the pseudocoel, body wall and cuticle of various nematode species and even in the eyespots of the insect-parasite Mermis nigrescens. In fact, much higher levels of complexity exist, as shown by recent whole genome analysis studies. In silico analysis of the genome of Caenorhabditis elegans revealed an unexpectedly high number of globin genes featuring a remarkable diversity in gene structure, amino acid sequence and expression profiles. Results In the present study we have analyzed whole genomic data from C. briggsae, C. remanei, Pristionchus pacificus and Brugia malayi and EST data from several other nematode species to study the evolutionary history of the nematode globin gene family. We find a high level of conservation of the C. elegans globin complement, with even distantly related nematodes harboring orthologs to many Caenorhabditis globins. Bayesian phylogenetic analysis resolves all nematode globins into two distinct globin classes. Analysis of the globin intron-exon structures suggests extensive loss of ancestral introns and gain of new positions in deep nematode ancestors, and mainly loss in the Caenorhabditis lineage. We also show that the Caenorhabditis globin genes are expressed in distinct, mostly non-overlapping, sets of cells and that they are all under strong purifying selection. Conclusion Our results enable reconstruction of the evolutionary history of the globin gene family in the nematode phylum. A duplication of an ancestral globin gene occurred before the divergence of the Platyhelminthes and the Nematoda and one of the duplicated genes radiated further in the nematode phylum before the split of the Spirurina and Rhabditina and was followed by further radiation in the lineage leading to Caenorhabditis. The resulting globin genes were subject to processes of subfunctionalization and diversification leading to cell-specific expression patterns. Strong purifying selection subsequently dampened further evolution and facilitated fixation of the duplicated genes in the genome.
Collapse
Affiliation(s)
- David Hoogewijs
- Department of Biology and Center for Molecular Phylogeny and Evolution, Ghent University, B-9000 Ghent, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|