1
|
Nguyen TN, Tuan PA, Sharma D, Ayele BT. Alteration in the balance between ABA and GA signaling mediates genetic variation in induction and retention of dormancy during seed maturation in wheat. JOURNAL OF PLANT PHYSIOLOGY 2025; 304:154394. [PMID: 39616728 DOI: 10.1016/j.jplph.2024.154394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/09/2024] [Accepted: 11/26/2024] [Indexed: 01/21/2025]
Abstract
Induction and retention of dormancy are among the physiological processes that take place during seed maturation; however, the molecular mechanisms underlying these events are poorly understood in wheat. This study revealed that seed maturation in wheat is associated with decreases in abscisic acid (ABA) and gibberellin (GA) levels irrespective of dormancy level exhibited by the seeds mainly via expression of specific ABA (TaCYP707A1) and GA (TaGA3ox2, TaGA2ox3 and TaGA2ox6) metabolism genes. Consistently, ABA to GA level ratio decreased during maturation in both highly dormant and low-dormant seeds with no apparent difference in the ratio of their levels between the two seed samples. Our data, however, showed a close association between the induction and retention of dormancy during seed maturation and modulation of the balance between ABA and GA signaling via expression of specific genes that acts as positive regulators seed response to ABA (TaPYL5 and TaABI5) and GA (TaGAMyb). Consistently, the highly dormant and low-dormant seeds exhibited substantial variation in their sensitivity to ABA and GA during their maturation. The findings of this study highlight that genetic variation in induction and retention of dormancy during wheat seed maturation can be mediated by a shift in balance between seed sensitivity to ABA and GA independent of a shift in balance between their levels.
Collapse
Affiliation(s)
- Tran-Nguyen Nguyen
- Department of Plant Science, 222 Agriculture Building, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Pham Anh Tuan
- Department of Plant Science, 222 Agriculture Building, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Deepak Sharma
- Department of Plant Science, 222 Agriculture Building, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Belay T Ayele
- Department of Plant Science, 222 Agriculture Building, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada.
| |
Collapse
|
2
|
Jain R, Dhaka N, Krishnan K, Yadav G, Priyam P, Sharma MK, Sharma RA. Temporal Gene Expression Profiles From Pollination to Seed Maturity in Sorghum Provide Core Candidates for Engineering Seed Traits. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39248611 DOI: 10.1111/pce.15134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/12/2024] [Accepted: 08/19/2024] [Indexed: 09/10/2024]
Abstract
Sorghum (Sorghum bicolor (L.) Moench) is a highly nutritional multipurpose millet crop. However, the genetic and molecular regulatory mechanisms governing sorghum grain development and the associated agronomic traits remain unexplored. In this study, we performed a comprehensive transcriptomic analysis of pistils collected 1-2 days before pollination, and developing seeds collected -2, 10, 20 and 30 days after pollination of S. bicolor variety M35-1. Out of 31 337 genes expressed in these stages, 12 804 were differentially expressed in the consecutive stages of seed development. These exhibited 10 dominant expression patterns correlated with the distinct pathways and gene functions. Functional analysis, based on the pathway mapping, transcription factor enrichment and orthology, delineated the key patterns associated with pollination, fertilization, early seed development, grain filling and seed maturation. Furthermore, colocalization with previously reported quantitative trait loci (QTLs) for grain weight/size revealed 48 differentially expressed genes mapping to these QTL regions. Comprehensive literature mining integrated with QTL mapping and expression data shortlisted 25, 17 and 8 core candidates for engineering grain size, starch and protein content, respectively.
Collapse
Affiliation(s)
- Rubi Jain
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Namrata Dhaka
- Department of Biotechnology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, Haryana, India
| | - Kushagra Krishnan
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Garima Yadav
- Department of Biotechnology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, Haryana, India
| | - Prachi Priyam
- Department of Biotechnology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, Haryana, India
| | | | - Rita A Sharma
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS) Pilani, Pilani, Rajasthan, India
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
| |
Collapse
|
3
|
Shi J, Zhao Y, Zhao P, Yang H, Wang C, Xia J, Zhao Z, Wang Z, Yang Z, Wang Z, Xu S, Zhang Y. Preferentially expressed endosperm genes reveal unique activities in wheat endosperm during grain filling. BMC Genomics 2024; 25:795. [PMID: 39174916 PMCID: PMC11340063 DOI: 10.1186/s12864-024-10713-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 08/14/2024] [Indexed: 08/24/2024] Open
Abstract
BACKGROUND Bread wheat (Triticum aestivum L.) endosperm contains starch and proteins, which determine the final yield, quality, and nutritional value of wheat grain. The preferentially expressed endosperm genes can precisely provide targets in the endosperm for improving wheat grain quality and nutrition using modern bioengineering technologies. However, the genes specifically expressed in developing endosperms remain largely unknown. RESULTS In this study, 315 preferentially expressed endosperm genes (PEEGs) in the spring wheat landrace, Chinese Spring, were screened using data obtained from an open bioinformatics database, which reveals a unique grain reserve deposition process and special signal transduction in a developing wheat endosperm. Furthermore, transcription and accumulation of storage proteins in the wheat cultivar, XC26 were evaluated. The results revealed that 315 PEEG plays a critical role in storage protein fragment deposition and is a potential candidate for modifying grain quality and nutrition. CONCLUSION These results provide new insights into endosperm development and candidate genes and promoters for improving wheat grain quality through genetic engineering and plant breeding techniques.
Collapse
Affiliation(s)
- Jia Shi
- Institute of Nuclear and Biological Technologies/Xinjiang Key Laboratory of Crop Biotechnology/Key Laboratory of Oasis-Desert Crop Physiology Ecology and Cultivation of Ministry of Agricultural and Rural Affairs/Crop Chemical Regulation Engineering Technology Research Center in Xinjiang, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China
| | - Yuqian Zhao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Peng Zhao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hongmei Yang
- Institute of Applied Microbiology/Xinjiang Laboratory of Special Environmental Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, Xinjiang, PR China
| | - Chunsheng Wang
- Institute of Nuclear and Biological Technologies/Xinjiang Key Laboratory of Crop Biotechnology/Key Laboratory of Oasis-Desert Crop Physiology Ecology and Cultivation of Ministry of Agricultural and Rural Affairs/Crop Chemical Regulation Engineering Technology Research Center in Xinjiang, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China
| | - Jianqiang Xia
- Institute of Nuclear and Biological Technologies/Xinjiang Key Laboratory of Crop Biotechnology/Key Laboratory of Oasis-Desert Crop Physiology Ecology and Cultivation of Ministry of Agricultural and Rural Affairs/Crop Chemical Regulation Engineering Technology Research Center in Xinjiang, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China
| | - Zhun Zhao
- Institute of Nuclear and Biological Technologies/Xinjiang Key Laboratory of Crop Biotechnology/Key Laboratory of Oasis-Desert Crop Physiology Ecology and Cultivation of Ministry of Agricultural and Rural Affairs/Crop Chemical Regulation Engineering Technology Research Center in Xinjiang, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China
| | - Zhenlong Wang
- Institute of Nuclear and Biological Technologies/Xinjiang Key Laboratory of Crop Biotechnology/Key Laboratory of Oasis-Desert Crop Physiology Ecology and Cultivation of Ministry of Agricultural and Rural Affairs/Crop Chemical Regulation Engineering Technology Research Center in Xinjiang, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China
| | - Zhenyu Yang
- Institute of Nuclear and Biological Technologies/Xinjiang Key Laboratory of Crop Biotechnology/Key Laboratory of Oasis-Desert Crop Physiology Ecology and Cultivation of Ministry of Agricultural and Rural Affairs/Crop Chemical Regulation Engineering Technology Research Center in Xinjiang, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China
| | - Zhong Wang
- Institute of Nuclear and Biological Technologies/Xinjiang Key Laboratory of Crop Biotechnology/Key Laboratory of Oasis-Desert Crop Physiology Ecology and Cultivation of Ministry of Agricultural and Rural Affairs/Crop Chemical Regulation Engineering Technology Research Center in Xinjiang, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China
| | - Shengbao Xu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Yueqiang Zhang
- Institute of Nuclear and Biological Technologies/Xinjiang Key Laboratory of Crop Biotechnology/Key Laboratory of Oasis-Desert Crop Physiology Ecology and Cultivation of Ministry of Agricultural and Rural Affairs/Crop Chemical Regulation Engineering Technology Research Center in Xinjiang, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China.
| |
Collapse
|
4
|
Abshire N, Hauck AL, Walia H, Obata T. Tissue- and time-dependent metabolite profiles during early grain development under normal and high night-time temperature conditions. BMC PLANT BIOLOGY 2024; 24:568. [PMID: 38886651 PMCID: PMC11184705 DOI: 10.1186/s12870-024-05190-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/23/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND Wheat grain development in the first few days after pollination determines the number of endosperm cells that influence grain yield potential and is susceptible to various environmental conditions, including high night temperatures (HNTs). Flag leaves and seed-associated bracts (glumes, awn, palea, and lemma) provide nutrients to the developing seed. However, the specific metabolic roles of these tissues are uncertain, especially their dynamics at different developmental stages and the time in a day. Tissue- and time-dependent metabolite profiling may hint at the metabolic roles of tissues and the mechanisms of how HNTs affect daytime metabolic status in early grain development. RESULTS The metabolite profiles of flag leaf, bract, seed (embryo and endosperm), and entire spike were analyzed at 12:00 (day) and 23:00 (night) on 2, 4, and 6 days after fertilization under control and HNT conditions. The metabolite levels in flag leaves and bracts showed day/night oscillations, while their behaviors were distinct between the tissues. Some metabolites, such as sucrose, cellobiose, and succinic acid, showed contrasting oscillations in the two photosynthetic tissues. In contrast, seed metabolite levels differed due to the days after fertilization rather than the time in a day. The seed metabolite profile altered earlier in the HNT than in the control condition, likely associated with accelerated grain development caused by HNT. HNT also disrupted the day/night oscillation of sugar accumulation in flag leaves and bracts. CONCLUSIONS These results highlight distinct metabolic roles of flag leaves and bracts during wheat early seed development. The seed metabolite levels are related to the developmental stages. The early metabolic events in the seeds and the disruption of the day/night metabolic cycle in photosynthetic tissues may partly explain the adverse effects of HNT on grain yield.
Collapse
Affiliation(s)
- Nathan Abshire
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Andrew L Hauck
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, USA
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Harkamal Walia
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, USA
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Toshihiro Obata
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA.
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, USA.
- Department of Biochemistry, Center for Plant Science Innovation, University of Nebraska-Lincoln, 1901 Vine Street, Lincoln, Nebraska, 68588, USA.
| |
Collapse
|
5
|
Kaushik M, Mulani E, Kumar A, Chauhan H, Saini MR, Bharati A, Gayatri, Iyyappan Y, Madhavan J, Sevanthi AM, Mandal PK. Starch and storage protein dynamics in the developing and matured grains of durum wheat and diploid progenitor species. Int J Biol Macromol 2024; 267:131177. [PMID: 38583842 DOI: 10.1016/j.ijbiomac.2024.131177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/18/2024] [Accepted: 03/26/2024] [Indexed: 04/09/2024]
Abstract
Durum wheat, less immunogenically intolerant than bread wheat, originates from diploid progenitors known for nutritional quality and stress tolerance. Present study involves the analysis of major grain parameters, viz. size, weight, sugar, starch, and protein content of Triticum durum (AABB genome) and its diploid progenitors, Triticum monococcum (AA genome) and Aegilops speltoides (BB genome). Samples were collected during 2-5 weeks after anthesis (WAA), and at maturity. The investigation revealed that T. durum displayed the maximum grain size and weight. Expression analysis of Grain Weight 2 (GW2) and Glutamine Synthase (GS2), negative and positive regulators of grain weight and size, respectively, revealed higher GW2 expression in Ae. speltoides and higher GS2 expression in T. durum. Further we explored total starch, sugar and protein content, observing higher levels of starch and sugar in durum wheat while AA genome species exhibited higher protein content dominated by the fractions of albumin/globulin. HPLC profiling revealed unique sub-fractions in all three genome species. Additionally, a comparative transcriptome analysis also corroborated with the starch and protein content in the grains. This study provides valuable insights into the genetic and biochemical distinctions among durum wheat and its diploid progenitors, offering a foundation for their nutritional composition.
Collapse
Affiliation(s)
- Megha Kaushik
- Indian Council of Agricultural Research - National Institute for Plant Biotechnology (ICAR-NIPB), LBS Building, Pusa Campus, New Delhi 110012, India
| | - Ekta Mulani
- Indian Council of Agricultural Research - National Institute for Plant Biotechnology (ICAR-NIPB), LBS Building, Pusa Campus, New Delhi 110012, India
| | - Amit Kumar
- Indian Council of Agricultural Research - National Institute for Plant Biotechnology (ICAR-NIPB), LBS Building, Pusa Campus, New Delhi 110012, India
| | - Harsh Chauhan
- Indian Council of Agricultural Research - National Institute for Plant Biotechnology (ICAR-NIPB), LBS Building, Pusa Campus, New Delhi 110012, India
| | - Manish Ranjan Saini
- Indian Council of Agricultural Research - National Institute for Plant Biotechnology (ICAR-NIPB), LBS Building, Pusa Campus, New Delhi 110012, India
| | - Alka Bharati
- Indian Council of Agricultural Research - National Institute for Plant Biotechnology (ICAR-NIPB), LBS Building, Pusa Campus, New Delhi 110012, India
| | - Gayatri
- Indian Council of Agricultural Research - National Institute for Plant Biotechnology (ICAR-NIPB), LBS Building, Pusa Campus, New Delhi 110012, India
| | - Yuvaraj Iyyappan
- Indian Council of Agricultural Research - National Institute for Plant Biotechnology (ICAR-NIPB), LBS Building, Pusa Campus, New Delhi 110012, India
| | - Jayanthi Madhavan
- Division of Genetics, ICAR - Indian Agriculture Research Institute, Pusa Campus, New Delhi 110012, India
| | - Amitha Mithra Sevanthi
- Indian Council of Agricultural Research - National Institute for Plant Biotechnology (ICAR-NIPB), LBS Building, Pusa Campus, New Delhi 110012, India
| | - Pranab Kumar Mandal
- Indian Council of Agricultural Research - National Institute for Plant Biotechnology (ICAR-NIPB), LBS Building, Pusa Campus, New Delhi 110012, India.
| |
Collapse
|
6
|
Mira JP, Arenas-M A, Calderini DF, Canales J. Integrated Transcriptome Analysis Identified Key Expansin Genes Associated with Wheat Cell Wall, Grain Weight and Yield. PLANTS (BASEL, SWITZERLAND) 2023; 12:2868. [PMID: 37571021 PMCID: PMC10421294 DOI: 10.3390/plants12152868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023]
Abstract
This research elucidates the dynamic expression of expansin genes during the wheat grain (Triticum aestivum L.) development process using comprehensive meta-analysis and experimental validation. We leveraged RNA-seq data from multiple public databases, applying stringent criteria for selection, and identified 60,852 differentially expressed genes across developmental stages. From this pool, 28,558 DEGs were found to exhibit significant temporal regulation in at least two different datasets and were enriched for processes integral to grain development such as carbohydrate metabolism and cell wall organization. Notably, 30% of the 241 known expansin genes showed differential expression during grain growth. Hierarchical clustering and expression level analysis revealed temporal regulation and distinct contributions of expansin subfamilies during the early stages of grain development. Further analysis using co-expression networks underscored the significance of expansin genes, revealing their substantial co-expression with genes involved in cell wall modification. Finally, qPCR validation and grain morphological analysis under field conditions indicated a significant negative correlation between the expression of select expansin genes, and grain size and weight. This study illuminates the potential role of expansin genes in wheat grain development and provides new avenues for targeted genetic improvements in wheat.
Collapse
Affiliation(s)
- Juan P. Mira
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5110566, Chile; (J.P.M.); (A.A.-M.)
| | - Anita Arenas-M
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5110566, Chile; (J.P.M.); (A.A.-M.)
- ANID-Millennium Science Initiative Program-Millennium Institute for Integrative Biology (iBio), Santiago 8331150, Chile
| | - Daniel F. Calderini
- Plant Production and Plant Protection Institute, Faculty of Agricultural Sciences, Universidad Austral de Chile, Valdivia 5110566, Chile
| | - Javier Canales
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5110566, Chile; (J.P.M.); (A.A.-M.)
- ANID-Millennium Science Initiative Program-Millennium Institute for Integrative Biology (iBio), Santiago 8331150, Chile
| |
Collapse
|
7
|
Zhong Y, Chen Y, Pan M, Wang H, Sun J, Chen Y, Cai J, Zhou Q, Wang X, Jiang D. Insights into the Functional Components in Wheat Grain: Spatial Pattern, Underlying Mechanism and Cultivation Regulation. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112192. [PMID: 37299171 DOI: 10.3390/plants12112192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/17/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023]
Abstract
Wheat is a staple crop; its production must achieve both high yield and good quality due to worldwide demands for food security and better quality of life. It has been found that the grain qualities vary greatly within the different layers of wheat kernels. In this paper, the spatial distributions of protein and its components, starch, dietary fiber, and microelements are summarized in detail. The underlying mechanisms regarding the formation of protein and starch, as well as spatial distribution, are discussed from the views of substrate supply and the protein and starch synthesis capacity. The regulating effects of cultivation practices on gradients in composition are identified. Finally, breakthrough solutions for exploring the underlying mechanisms of the spatial gradients of functional components are presented. This paper will provide research perspectives for producing wheat that is both high in yield and of good quality.
Collapse
Affiliation(s)
- Yingxin Zhong
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuhua Chen
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Mingsheng Pan
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Hengtong Wang
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiayu Sun
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yang Chen
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jian Cai
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Qin Zhou
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiao Wang
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Dong Jiang
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
8
|
Pei H, Li Y, Liu Y, Liu P, Zhang J, Ren X, Lu Z. Chromatin accessibility landscapes revealed the subgenome-divergent regulation networks during wheat grain development. ABIOTECH 2023; 4:8-19. [PMID: 37220536 PMCID: PMC10199822 DOI: 10.1007/s42994-023-00095-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/22/2023] [Indexed: 05/25/2023]
Abstract
Development of wheat (Triticum aestivum L.) grain mainly depends on the processes of starch synthesis and storage protein accumulation, which are critical for grain yield and quality. However, the regulatory network underlying the transcriptional and physiological changes of grain development is still not clear. Here, we combined ATAC-seq and RNA-seq to discover the chromatin accessibility and gene expression dynamics during these processes. We found that the chromatin accessibility changes are tightly associated with differential transcriptomic expressions, and the proportion of distal ACRs was increased gradually during grain development. Specific transcription factor (TF) binding sites were enriched at different stages and were diversified among the 3 subgenomes. We further predicted the potential interactions between key TFs and genes related with starch and storage protein biosynthesis and found different copies of some key TFs played diversified roles. Overall, our findings have provided numerous resources and illustrated the regulatory network during wheat grain development, which would shed light on the improvement of wheat yields and qualities. Supplementary Information The online version contains supplementary material available at 10.1007/s42994-023-00095-8.
Collapse
Affiliation(s)
- Hongcui Pei
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Yushan Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Yanhong Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Pan Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Jialin Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Xueni Ren
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Zefu Lu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| |
Collapse
|
9
|
Fu J, Bowden RL, Jagadish SVK, Prasad PVV. Genetic variation for terminal heat stress tolerance in winter wheat. FRONTIERS IN PLANT SCIENCE 2023; 14:1132108. [PMID: 36909445 PMCID: PMC9992403 DOI: 10.3389/fpls.2023.1132108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
In many regions worldwide wheat (Triticum aestivum L.) plants experience terminal high temperature stress during the grain filling stage, which is a leading cause for single seed weight decrease and consequently for grain yield reduction. An approach to mitigate high temperature damage is to develop tolerant cultivars using the conventional breeding approach which involves identifying tolerant lines and then incorporating the tolerant traits in commercial varieties. In this study, we evaluated the terminal heat stress tolerance of 304 diverse elite winter wheat lines from wheat breeding programs in the US, Australia, and Serbia in controlled environmental conditions. Chlorophyll content and yield traits were measured and calculated as the percentage of non-stress control. The results showed that there was significant genetic variation for chlorophyll retention and seed weight under heat stress conditions. The positive correlation between the percent of chlorophyll content and the percent of single seed weight was significant. Two possible mechanisms of heat tolerance during grain filling were proposed. One represented by wheat line OK05723W might be mainly through the current photosynthesis since the high percentage of single seed weight was accompanied with high percentages of chlorophyll content and high shoot dry weight, and the other represented by wheat Line TX04M410164 might be mainly through the relocation of reserves since the high percentage of single seed weight was accompanied with low percentages of chlorophyll content and low shoot dry weight under heat stress. The tolerant genotypes identified in this study should be useful for breeding programs after further validation.
Collapse
Affiliation(s)
- Jianming Fu
- Department of Agronomy, 2004 Throckmorton Plant Sciences Center, Kansas State University, Manhattan, KS, United States
| | - Robert L. Bowden
- USDA–ARS Hard Winter Wheat Genetics Research Unit, 4008 Throckmorton Plant Sciences Center, Kansas State University, Manhattan, KS, United States
| | | | - P. V. Vara Prasad
- Department of Agronomy, 2004 Throckmorton Plant Sciences Center, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
10
|
Abstract
Wheat grain development is an important biological process to determine grain yield and quality, which is controlled by the interplay of genetic, epigenetic, and environmental factors. Wheat grain development has been extensively characterized at the phenotypic and genetic levels. The advent of innovative molecular technologies allows us to characterize genes, proteins, and regulatory factors involved in wheat grain development, which have enhanced our understanding of the wheat seed development process. However, wheat is an allohexaploid with a large genome size, the molecular mechanisms underlying the wheat grain development have not been well understood as those in diploids. Understanding grain development, and how it is regulated, is of fundamental importance for improving grain yield and quality through conventional breeding or genetic engineering. Herein, we review the current discoveries on the molecular mechanisms underlying wheat grain development. Notably, only a handful of genes that control wheat grain development have, thus far, been well characterized, their interplay underlying the grain development remains elusive. The synergistic network-integrated genomics and epigenetics underlying wheat grain development and how the subgenome divergence dynamically and precisely regulates wheat grain development are unknown.
Collapse
Affiliation(s)
- Yiling Wang
- College of Life Science, Shanxi Normal University, Taiyuan, China
| | - Genlou Sun
- Biology Department, Saint Mary's University, Halifax, Canada
| |
Collapse
|
11
|
Transcriptome Analysis Reveals Potential Mechanism in Storage Protein Trafficking within Developing Grains of Common Wheat. Int J Mol Sci 2022; 23:ijms232314851. [PMID: 36499182 PMCID: PMC9738083 DOI: 10.3390/ijms232314851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/07/2022] [Accepted: 10/18/2022] [Indexed: 12/03/2022] Open
Abstract
Gluten proteins are the major storage protein fraction in the mature wheat grain. They are restricted to the starchy endosperm, which defines the viscoelastic properties of wheat dough. The synthesis of these storage proteins is controlled by the endoplasmic reticulum (ER) and is directed into the vacuole via the Golgi apparatus. In the present study, transcriptome analysis was used to explore the potential mechanism within critical stages of grain development of wheat cultivar "Shaannong 33" and its sister line used as the control (CK). Samples were collected at 10 DPA (days after anthesis), 14 DPA, 20 DPA, and 30 DPA for transcriptomic analysis. The comparative transcriptome analysis identified that a total of 18,875 genes were differentially expressed genes (DEGs) between grains of four groups "T10 vs. CK10, T14 vs. CK14, T20 vs. CK20, and T30 vs. CK30", including 2824 up-regulated and 5423 down-regulated genes in T30 vs. CK30. Further, the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment highlighted the maximum number of genes regulating protein processing in the endoplasmic reticulum (ER) during grain enlargement stages (10-20 DPA). In addition, KEGG database analysis reported 1362 and 788 DEGs involved in translation, ribosomal structure, biogenesis, flavonoid biosynthesis pathway and intracellular trafficking, secretion, and vesicular transport through protein processing within ER pathway (ko04141). Notably, consistent with the higher expression of intercellular storage protein trafficking genes at the initial 10 DPA, there was relatively low expression at later stages. Expression levels of nine randomly selected genes were verified by qRT-PCR, which were consistent with the transcriptome data. These data suggested that the initial stages of "cell division" played a significant role in protein quality control within the ER, thus maintaining the protein quality characteristics at grain maturity. Furthermore, our data suggested that the protein synthesis, folding, and trafficking pathways directed by a different number of genes during the grain enlargement stage contributed to the observed high-quality characteristics of gluten protein in Shaannong 33 (Triticum aestivum L.).
Collapse
|
12
|
Tomás D, Viegas W, Silva M. Grain Transcriptome Dynamics Induced by Heat in Commercial and Traditional Bread Wheat Genotypes. FRONTIERS IN PLANT SCIENCE 2022; 13:842599. [PMID: 35783979 PMCID: PMC9248373 DOI: 10.3389/fpls.2022.842599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
High temperature (HT) events have negative impact on wheat grains yield and quality. Transcriptome profiles of wheat developing grains of commercial genotypes (Antequera and Bancal) and landraces (Ardito and Magueija) submitted to heatwave-like treatments during grain filling were evaluated. Landraces showed significantly more differentially expressed genes (DEGs) and presented more similar responses than commercial genotypes. DEGs were more associated with transcription and RNA and protein synthesis in Antequera and with metabolism alterations in Bancal and landraces. Landraces upregulated genes encoding proteins already described as HT responsive, like heat shock proteins and cupins. Apart from the genes encoding HSP, two other genes were upregulated in all genotypes, one encoding for Adenylate kinase, essential for the cellular homeostasis, and the other for ferritin, recently related with increased tolerance to several abiotic stress in Arabidopsis. Moreover, a NAC transcription factor involved in plant development, known to be a negative regulator of starch synthesis and grain yield, was found to be upregulated in both commercial varieties and downregulated in Magueija landrace. The detected diversity of molecular processes involved in heat response of commercial and traditional genotypes contribute to understand the importance of genetic diversity and relevant pathways to cope with these extreme events.
Collapse
|
13
|
Li W, Yu Y, Chen X, Fang Q, Yang A, Chen X, Wu L, Wang C, Wu D, Ye S, Wu D, Sun G. N6-Methyladenosine dynamic changes and differential methylation in wheat grain development. PLANTA 2022; 255:125. [PMID: 35567638 DOI: 10.1007/s00425-022-03893-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 04/02/2022] [Indexed: 06/15/2023]
Abstract
More methylation changes occur in late interval than in early interval of wheat seed development with protein and the starch synthesis-related pathway enriched in the later stages. Wheat seed development is a critical process to determining wheat yield and quality, which is controlled by genetics, epigenetics and environments. The N6-methyladenosine (m6A) modification is a reversible and dynamic process and plays regulatory role in plant development and stress responses. To better understand the role of m6A in wheat grain development, we characterized the m6A modification at 10 day post-anthesis (DPA), 20 DPA and 30 DPA in wheat grain development. m6A-seq identified 30,615, 30,326, 27,676 high confidence m6A peaks from the 10DPA, 20DPA, and 30DPA, respectively, and enriched at 3'UTR. There were 29,964, 29,542 and 26,834 unique peaks identified in AN0942_10d, AN0942_20d and AN0942_30d. One hundred and forty-two genes were methylated by m6A throughout seed development, 940 genes methylated in early grain development (AN0942_20d vs AN0942_10d), 1542 genes in late grain development (AN0942_30d vs AN0942_20d), and 1190 genes between early and late development stage (AN0942_30d vs AN0942_10d). KEGG enrichment analysis found that protein-related pathways and the starch synthesis-related pathway were significantly enriched in the later stages of seed development. Our results provide novel knowledge on m6A dynamic changes and its roles in wheat grain development.
Collapse
Affiliation(s)
- Wenxiang Li
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Yi Yu
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Xuanrong Chen
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Qian Fang
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Anqi Yang
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Xinyu Chen
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Lei Wu
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Chengyu Wang
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, Anhui, China
- Key Laboratory of Wheat Biology and Genetic Improvement on South Yellow and Huai River Valley, Ministry of Agriculture, Hefei, 230036, China
| | - Dechuan Wu
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Sihong Ye
- Cotton Institute, Anhui Academy of Agricultural Sciences, Hefei, 230001, Anhui, China.
| | - Dexiang Wu
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, Anhui, China.
| | - Genlou Sun
- Biology Department, Saint Mary's University, Halifax, NS, B3H 3C3, Canada.
| |
Collapse
|
14
|
Arenas-M A, Castillo FM, Godoy D, Canales J, Calderini DF. Transcriptomic and Physiological Response of Durum Wheat Grain to Short-Term Heat Stress during Early Grain Filling. PLANTS (BASEL, SWITZERLAND) 2021; 11:plants11010059. [PMID: 35009063 PMCID: PMC8747107 DOI: 10.3390/plants11010059] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/15/2021] [Accepted: 12/21/2021] [Indexed: 05/14/2023]
Abstract
In a changing climate, extreme weather events such as heatwaves will be more frequent and could affect grain weight and the quality of crops such as wheat, one of the most significant crops in terms of global food security. In this work, we characterized the response of Triticum turgidum L. spp. durum wheat to short-term heat stress (HS) treatment at transcriptomic and physiological levels during early grain filling in glasshouse experiments. We found a significant reduction in grain weight (23.9%) and grain dimensions from HS treatment. Grain quality was also affected, showing a decrease in starch content (20.8%), in addition to increments in grain protein levels (14.6%), with respect to the control condition. Moreover, RNA-seq analysis of durum wheat grains allowed us to identify 1590 differentially expressed genes related to photosynthesis, response to heat, and carbohydrate metabolic process. A gene regulatory network analysis of HS-responsive genes uncovered novel transcription factors (TFs) controlling the expression of genes involved in abiotic stress response and grain quality, such as a member of the DOF family predicted to regulate glycogen and starch biosynthetic processes in response to HS in grains. In summary, our results provide new insights into the extensive transcriptome reprogramming that occurs during short-term HS in durum wheat grains.
Collapse
Affiliation(s)
- Anita Arenas-M
- Institute of Biochemistry and Microbiology, Faculty of Sciences, Universidad Austral de Chile, Valdivia 5110566, Chile; (A.A.-M.); (F.M.C.)
- ANID—Millennium Science Initiative Program-Millennium Institute for Integrative Biology (iBio), Santiago 8331150, Chile
| | - Francisca M. Castillo
- Institute of Biochemistry and Microbiology, Faculty of Sciences, Universidad Austral de Chile, Valdivia 5110566, Chile; (A.A.-M.); (F.M.C.)
- ANID—Millennium Science Initiative Program-Millennium Institute for Integrative Biology (iBio), Santiago 8331150, Chile
| | - Diego Godoy
- Plant Production and Plant Protection Institute, Faculty of Agricultural Sciences, Universidad Austral de Chile, Valdivia 5110566, Chile;
| | - Javier Canales
- Institute of Biochemistry and Microbiology, Faculty of Sciences, Universidad Austral de Chile, Valdivia 5110566, Chile; (A.A.-M.); (F.M.C.)
- ANID—Millennium Science Initiative Program-Millennium Institute for Integrative Biology (iBio), Santiago 8331150, Chile
- Correspondence: (J.C.); (D.F.C.)
| | - Daniel F. Calderini
- Plant Production and Plant Protection Institute, Faculty of Agricultural Sciences, Universidad Austral de Chile, Valdivia 5110566, Chile;
- Correspondence: (J.C.); (D.F.C.)
| |
Collapse
|
15
|
Liu P, Ma X, Wan H, Zheng J, Luo J, Hu Y, Pu Z. Effects of differential nitrogen application on wheat grain proteome. J Cereal Sci 2021. [DOI: 10.1016/j.jcs.2021.103367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Survase A, Furtado A, Thengane R, Henry R. Identification of genes associated with chapatti quality using transcriptome analysis. J Cereal Sci 2021. [DOI: 10.1016/j.jcs.2021.103276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Alotaibi F, Alharbi S, Alotaibi M, Al Mosallam M, Motawei M, Alrajhi A. Wheat omics: Classical breeding to new breeding technologies. Saudi J Biol Sci 2021; 28:1433-1444. [PMID: 33613071 PMCID: PMC7878716 DOI: 10.1016/j.sjbs.2020.11.083] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 11/26/2020] [Accepted: 11/29/2020] [Indexed: 12/26/2022] Open
Abstract
Wheat is an important cereal crop, and its significance is more due to compete for dietary products in the world. Many constraints facing by the wheat crop due to environmental hazardous, biotic, abiotic stress and heavy matters factors, as a result, decrease the yield. Understanding the molecular mechanism related to these factors is significant to figure out genes regulate under specific conditions. Classical breeding using hybridization has been used to increase the yield but not prospered at the desired level. With the development of newly emerging technologies in biological sciences i.e., marker assisted breeding (MAB), QTLs mapping, mutation breeding, proteomics, metabolomics, next-generation sequencing (NGS), RNA_sequencing, transcriptomics, differential expression genes (DEGs), computational resources and genome editing techniques i.e. (CRISPR cas9; Cas13) advances in the field of omics. Application of new breeding technologies develops huge data; considerable development is needed in bioinformatics science to interpret the data. However, combined omics application to address physiological questions linked with genetics is still a challenge. Moreover, viroid discovery opens the new direction for research, economics, and target specification. Comparative genomics important to figure gene of interest processes are further discussed about considering the identification of genes, genomic loci, and biochemical pathways linked with stress resilience in wheat. Furthermore, this review extensively discussed the omics approaches and their effective use. Integrated plant omics technologies have been used viroid genomes associated with CRISPR and CRISPR-associated Cas13a proteins system used for engineering of viroid interference along with high-performance multidimensional phenotyping as a significant limiting factor for increasing stress resistance in wheat.
Collapse
Affiliation(s)
- Fahad Alotaibi
- King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
| | - Saif Alharbi
- King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
| | - Majed Alotaibi
- King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
| | - Mobarak Al Mosallam
- King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
| | | | - Abdullah Alrajhi
- King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
| |
Collapse
|
18
|
Wan Y, Wang Y, Shi Z, Rentsch D, Ward JL, Hassall K, Sparks CA, Huttly AK, Buchner P, Powers S, Shewry PR, Hawkesford MJ. Wheat amino acid transporters highly expressed in grain cells regulate amino acid accumulation in grain. PLoS One 2021; 16:e0246763. [PMID: 33606697 PMCID: PMC7894817 DOI: 10.1371/journal.pone.0246763] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/25/2021] [Indexed: 11/18/2022] Open
Abstract
Amino acids are delivered into developing wheat grains to support the accumulation of storage proteins in the starchy endosperm, and transporters play important roles in regulating this process. RNA-seq, RT-qPCR, and promoter-GUS assays showed that three amino acid transporters are differentially expressed in the endosperm transfer cells (TaAAP2), starchy endosperm cells (TaAAP13), and aleurone cells and embryo of the developing grain (TaAAP21), respectively. Yeast complementation revealed that all three transporters can transport a broad spectrum of amino acids. RNAi-mediated suppression of TaAAP13 expression in the starchy endosperm did not reduce the total nitrogen content of the whole grain, but significantly altered the composition and distribution of metabolites in the starchy endosperm, with increasing concentrations of some amino acids (notably glutamine and glycine) from the outer to inner starchy endosperm cells compared with wild type. Overexpression of TaAAP13 under the endosperm-specific HMW-GS (high molecular weight glutenin subunit) promoter significantly increased grain size, grain nitrogen concentration, and thousand grain weight, indicating that the sink strength for nitrogen transport was increased by manipulation of amino acid transporters. However, the total grain number was reduced, suggesting that source nitrogen remobilized from leaves is a limiting factor for productivity. Therefore, simultaneously increasing loading of amino acids into the phloem and delivery to the spike would be required to increase protein content while maintaining grain yield.
Collapse
Affiliation(s)
- Yongfang Wan
- Plant Sciences Department, Rothamsted Research, Harpenden, Hertfordshire, United Kingdom
| | - Yan Wang
- Plant Sciences Department, Rothamsted Research, Harpenden, Hertfordshire, United Kingdom
- Triticeae Institute, Sichuan Agricultural University, Sichuan, P. R. China
| | - Zhiqiang Shi
- Plant Sciences Department, Rothamsted Research, Harpenden, Hertfordshire, United Kingdom
- National Technology Innovation Center for Regional Wheat Production, Key Laboratory of Crop Physiology, and Ecology and Production in Southern China, Ministry of Agriculture, National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing, P. R. China
| | - Doris Rentsch
- University of Bern, Molecular Plant Physiology, Bern, Switzerland
| | - Jane L. Ward
- Plant Sciences Department, Rothamsted Research, Harpenden, Hertfordshire, United Kingdom
| | - Kirsty Hassall
- Computational and Analytical Sciences Department, Rothamsted Research, Harpenden, Hertfordshire, United Kingdom
| | - Caroline A. Sparks
- Plant Sciences Department, Rothamsted Research, Harpenden, Hertfordshire, United Kingdom
| | - Alison K. Huttly
- Plant Sciences Department, Rothamsted Research, Harpenden, Hertfordshire, United Kingdom
| | - Peter Buchner
- Plant Sciences Department, Rothamsted Research, Harpenden, Hertfordshire, United Kingdom
| | - Stephen Powers
- Computational and Analytical Sciences Department, Rothamsted Research, Harpenden, Hertfordshire, United Kingdom
| | - Peter R. Shewry
- Plant Sciences Department, Rothamsted Research, Harpenden, Hertfordshire, United Kingdom
| | - Malcolm J. Hawkesford
- Plant Sciences Department, Rothamsted Research, Harpenden, Hertfordshire, United Kingdom
| |
Collapse
|
19
|
Khan A, Ahmad M, Ahmed M, Iftikhar Hussain M. Rising Atmospheric Temperature Impact on Wheat and Thermotolerance Strategies. PLANTS 2020; 10:plants10010043. [PMID: 33375473 PMCID: PMC7823633 DOI: 10.3390/plants10010043] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/22/2020] [Accepted: 12/22/2020] [Indexed: 02/07/2023]
Abstract
Temperature across the globe is increasing continuously at the rate of 0.15–0.17 °C per decade since the industrial revolution. It is influencing agricultural crop productivity. Therefore, thermotolerance strategies are needed to have sustainability in crop yield under higher temperature. However, improving thermotolerance in the crop is a challenging task for crop scientists. Therefore, this review work was conducted with the aim of providing information on the wheat response in three research areas, i.e., physiology, breeding, and advances in genetics, which could assist the researchers in improving thermotolerance. The optimum temperature for wheat growth at the heading, anthesis, and grain filling duration is 16 ± 2.3 °C, 23 ± 1.75 °C, and 26 ± 1.53 °C, respectively. The high temperature adversely influences the crop phenology, growth, and development. The pre-anthesis high temperature retards the pollen viability, seed formation, and embryo development. The post-anthesis high temperature declines the starch granules accumulation, stem reserve carbohydrates, and translocation of photosynthates into grains. A high temperature above 40 °C inhibits the photosynthesis by damaging the photosystem-II, electron transport chain, and photosystem-I. Our review work highlighted that genotypes which can maintain a higher accumulation of proline, glycine betaine, expression of heat shock proteins, stay green and antioxidant enzymes activity viz., catalase, peroxidase, super oxide dismutase, and glutathione reductase can tolerate high temperature efficiently through sustaining cellular physiology. Similarly, the pre-anthesis acclimation with heat treatment, inorganic fertilizer such as nitrogen, potassium nitrate and potassium chloride, mulches with rice husk, early sowing, presoaking of a 6.6 mM solution of thiourea, foliar application of 50 ppm dithiothreitol, 10 mg per kg of silicon at heading and zinc ameliorate the crop against the high temperature. Finally, it has been suggested that modern genomics and omics techniques should be used to develop thermotolerance in wheat.
Collapse
Affiliation(s)
- Adeel Khan
- Department of Plant Breeding and Genetics, PMAS-Arid Agriculture University Rawalpindi, Rawalpindi 46300, Pakistan; (A.K.); (M.A.)
| | - Munir Ahmad
- Department of Plant Breeding and Genetics, PMAS-Arid Agriculture University Rawalpindi, Rawalpindi 46300, Pakistan; (A.K.); (M.A.)
| | - Mukhtar Ahmed
- Department of Agricultural Research for Northern Sweden, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden
- Department of Agronomy, PMAS Arid Agriculture University, Rawalpindi 46300, Pakistan
- Correspondence:
| | - M. Iftikhar Hussain
- Department of Plant Biology & Soil Science, Faculty of Biology, University of Vigo, Campus As Lagoas Marcosende, 36310 Vigo, Spain;
- CITACA, Agri-Food Research and Transfer Cluster, Campus da Auga, University of Vigo, 32004 Ourense, Spain
| |
Collapse
|
20
|
Kirov I, Dudnikov M, Merkulov P, Shingaliev A, Omarov M, Kolganova E, Sigaeva A, Karlov G, Soloviev A. Nanopore RNA Sequencing Revealed Long Non-Coding and LTR Retrotransposon-Related RNAs Expressed at Early Stages of Triticale SEED Development. PLANTS 2020; 9:plants9121794. [PMID: 33348863 PMCID: PMC7765848 DOI: 10.3390/plants9121794] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/10/2020] [Accepted: 12/15/2020] [Indexed: 01/22/2023]
Abstract
The intergenic space of plant genomes encodes many functionally important yet unexplored RNAs. The genomic loci encoding these RNAs are often considered “junk”, DNA as they are frequently associated with repeat-rich regions of the genome. The latter makes the annotations of these loci and the assembly of the corresponding transcripts using short RNAseq reads particularly challenging. Here, using long-read Nanopore direct RNA sequencing, we aimed to identify these “junk” RNA molecules, including long non-coding RNAs (lncRNAs) and transposon-derived transcripts expressed during early stages (10 days post anthesis) of seed development of triticale (AABBRR, 2n = 6x = 42), an interspecific hybrid between wheat and rye. Altogether, we found 796 lncRNAs and 20 LTR retrotransposon-related transcripts (RTE-RNAs) expressed at this stage, with most of them being previously unannotated and located in the intergenic as well as intronic regions. Sequence analysis of the lncRNAs provide evidence for the frequent exonization of Class I (retrotransposons) and class II (DNA transposons) transposon sequences and suggest direct influence of “junk” DNA on the structure and origin of lncRNAs. We show that the expression patterns of lncRNAs and RTE-related transcripts have high stage specificity. In turn, almost half of the lncRNAs located in Genomes A and B have the highest expression levels at 10–30 days post anthesis in wheat. Detailed analysis of the protein-coding potential of the RTE-RNAs showed that 75% of them carry open reading frames (ORFs) for a diverse set of GAG proteins, the main component of virus-like particles of LTR retrotransposons. We further experimentally demonstrated that some RTE-RNAs originate from autonomous LTR retrotransposons with ongoing transposition activity during early stages of triticale seed development. Overall, our results provide a framework for further exploration of the newly discovered lncRNAs and RTE-RNAs in functional and genome-wide association studies in triticale and wheat. Our study also demonstrates that Nanopore direct RNA sequencing is an indispensable tool for the elucidation of lncRNA and retrotransposon transcripts.
Collapse
Affiliation(s)
- Ilya Kirov
- Laboratory of Marker-Assisted and Genomic Selection of Plants, All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya str. 42, 127550 Moscow, Russia; (M.D.); (P.M.); (A.S.); (M.O.); (E.K.); (A.S.); (G.K.); (A.S.)
- Kurchatov Genomics Center of ARRIAB, All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Street, 42, 127550 Moscow, Russia
- Correspondence:
| | - Maxim Dudnikov
- Laboratory of Marker-Assisted and Genomic Selection of Plants, All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya str. 42, 127550 Moscow, Russia; (M.D.); (P.M.); (A.S.); (M.O.); (E.K.); (A.S.); (G.K.); (A.S.)
- Kurchatov Genomics Center of ARRIAB, All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Street, 42, 127550 Moscow, Russia
| | - Pavel Merkulov
- Laboratory of Marker-Assisted and Genomic Selection of Plants, All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya str. 42, 127550 Moscow, Russia; (M.D.); (P.M.); (A.S.); (M.O.); (E.K.); (A.S.); (G.K.); (A.S.)
| | - Andrey Shingaliev
- Laboratory of Marker-Assisted and Genomic Selection of Plants, All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya str. 42, 127550 Moscow, Russia; (M.D.); (P.M.); (A.S.); (M.O.); (E.K.); (A.S.); (G.K.); (A.S.)
| | - Murad Omarov
- Laboratory of Marker-Assisted and Genomic Selection of Plants, All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya str. 42, 127550 Moscow, Russia; (M.D.); (P.M.); (A.S.); (M.O.); (E.K.); (A.S.); (G.K.); (A.S.)
- Faculty of Computer Science, National Research University Higher School of Economics, Pokrovsky Boulvar, 11, 109028 Moscow, Russia
| | - Elizaveta Kolganova
- Laboratory of Marker-Assisted and Genomic Selection of Plants, All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya str. 42, 127550 Moscow, Russia; (M.D.); (P.M.); (A.S.); (M.O.); (E.K.); (A.S.); (G.K.); (A.S.)
| | - Alexandra Sigaeva
- Laboratory of Marker-Assisted and Genomic Selection of Plants, All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya str. 42, 127550 Moscow, Russia; (M.D.); (P.M.); (A.S.); (M.O.); (E.K.); (A.S.); (G.K.); (A.S.)
| | - Gennady Karlov
- Laboratory of Marker-Assisted and Genomic Selection of Plants, All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya str. 42, 127550 Moscow, Russia; (M.D.); (P.M.); (A.S.); (M.O.); (E.K.); (A.S.); (G.K.); (A.S.)
| | - Alexander Soloviev
- Laboratory of Marker-Assisted and Genomic Selection of Plants, All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya str. 42, 127550 Moscow, Russia; (M.D.); (P.M.); (A.S.); (M.O.); (E.K.); (A.S.); (G.K.); (A.S.)
| |
Collapse
|
21
|
Liu Y, Hou J, Wang X, Li T, Majeed U, Hao C, Zhang X. The NAC transcription factor NAC019-A1 is a negative regulator of starch synthesis in wheat developing endosperm. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5794-5807. [PMID: 32803271 DOI: 10.1093/jxb/eraa333] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 07/29/2020] [Indexed: 05/20/2023]
Abstract
Starch is a major component of wheat (Triticum aestivum L.) endosperm and is an important part of the human diet. The functions of many starch synthesis genes have been elucidated. However, little is known about their regulatory mechanisms in wheat. Here, we identified a novel NAC transcription factor, TaNAC019-A1 (TraesCS3A02G077900), that negatively regulates starch synthesis in wheat and rice (Oryza sativa L.) endosperms. TaNAC019-A1 was highly expressed in the endosperm of developing grains and encoded a nucleus-localized transcriptional repressor. Overexpression of TaNAC019-A1 in rice and wheat led to significantly reduced starch content, kernel weight, and kernel width. The TaNAC019-A1-overexpression wheat lines had smaller A-type starch granules and fewer B-type starch granules than wild-type. Moreover, TaNAC019-A1 could directly bind to the 'ACGCAG' motif in the promoter regions of ADP-glucose pyrophosphorylase small subunit 1 (TaAGPS1-A1, TraesCS7A02G287400) and TaAGPS1-B1 (TraesCS7B02G183300) and repress their expression, thereby inhibiting starch synthesis in wheat endosperm. One haplotype of TaNAC019-B1 (TaNAC019-B1-Hap2, TraesCS3B02G092800) was positively associated with thousand-kernel weight and underwent positive selection during the Chinese wheat breeding process. Our data demonstrate that TaNAC019-A1 is a negative regulator of starch synthesis in wheat endosperm and provide novel insight into wheat yield improvement.
Collapse
Affiliation(s)
- Yunchuan Liu
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jian Hou
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaolu Wang
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tian Li
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Uzma Majeed
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chenyang Hao
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xueyong Zhang
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
22
|
Jacott CN, Boden SA. Feeling the heat: developmental and molecular responses of wheat and barley to high ambient temperatures. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5740-5751. [PMID: 32667992 PMCID: PMC7540836 DOI: 10.1093/jxb/eraa326] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 07/10/2020] [Indexed: 05/22/2023]
Abstract
The increasing demand for global food security in the face of a warming climate is leading researchers to investigate the physiological and molecular responses of cereals to rising ambient temperatures. Wheat and barley are temperate cereals whose yields are adversely affected by high ambient temperatures, with each 1 °C increase above optimum temperatures reducing productivity by 5-6%. Reproductive development is vulnerable to high-temperature stress, which reduces yields by decreasing grain number and/or size and weight. In recent years, analysis of early inflorescence development and genetic pathways that control the vegetative to floral transition have elucidated molecular processes that respond to rising temperatures, including those involved in the vernalization- and photoperiod-dependent control of flowering. In comparison, our understanding of genes that underpin thermal responses during later developmental stages remains poor, thus highlighting a key area for future research. This review outlines the responses of developmental genes to warmer conditions and summarizes our knowledge of the reproductive traits of wheat and barley influenced by high temperatures. We explore ways in which recent advances in wheat and barley research capabilities could help identify genes that underpin responses to rising temperatures, and how improved knowledge of the genetic regulation of reproduction and plant architecture could be used to develop thermally resilient cultivars.
Collapse
Affiliation(s)
- Catherine N Jacott
- Department of Crop Genetics, John Innes Centre, Colney Lane, Norwich, UK
| | - Scott A Boden
- Department of Crop Genetics, John Innes Centre, Colney Lane, Norwich, UK
- School of Agriculture, Food and Wine, Waite Research Institute, Waite Research Precinct, University of Adelaide, Glen Osmond, SA, Australia
- Correspondence:
| |
Collapse
|
23
|
Deciphering carbohydrate metabolism during wheat grain development via integrated transcriptome and proteome dynamics. Mol Biol Rep 2020; 47:5439-5449. [PMID: 32627139 DOI: 10.1007/s11033-020-05634-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 06/27/2020] [Indexed: 10/23/2022]
Abstract
Grain development of Triticum aestivum is being studied extensively using individual OMICS tools. However, integrated transcriptome and proteome studies are limited mainly due to complexity of genome. Current study focused to unravel the transcriptome-proteome coordination of key mechanisms underlying carbohydrate metabolism during whole wheat grain development. Wheat grains were manually dissected to obtain grain tissues for proteomics and transcriptomics analyses. Differentially expressed proteins and transcripts at the 11 stages of grain development were compared. Computational workflow for integration of two datasets related to carbohydrate metabolism was designed. For CM proteins, output peptide sequences of proteomic analyses (via LC-MS/MS) were used as source to search corresponding transcripts. The transcript that turned out with higher number of peptides was selected as bona fide ribonucleotide sequence for respective protein synthesis. More than 90% of hits resulted in successful identification of respective transcripts. Comparative analysis of protein and transcript expression profiles resulted in overall 32% concordance between these two series of data. However, during grain development correlation of two datasets gradually increased up to ~ tenfold from 152 to 655 °Cd and then dropped down. Proteins involved in carbohydrate metabolism were divided in five categories in accordance with their functions. Enzymes involved in starch and sucrose biosynthesis showed the highest correlations between proteome-transcriptome profiles. High percentage of identification and validation of protein-transcript hits highlighted the power of omics data integration approach over existing gene functional annotation tools. We found that correlation of two datasets is highly influenced by stage of grain development. Further, gene regulatory networks would be helpful in unraveling the mechanisms underlying the complex and significant traits such as grain weight and yield.
Collapse
|
24
|
Kaushik M, Rai S, Venkadesan S, Sinha SK, Mohan S, Mandal PK. Transcriptome Analysis Reveals Important Candidate Genes Related to Nutrient Reservoir, Carbohydrate Metabolism, and Defence Proteins during Grain Development of Hexaploid Bread Wheat and Its Diploid Progenitors. Genes (Basel) 2020; 11:E509. [PMID: 32380773 PMCID: PMC7290843 DOI: 10.3390/genes11050509] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/25/2020] [Accepted: 04/29/2020] [Indexed: 12/21/2022] Open
Abstract
Wheat grain development after anthesis is an important biological process, in which major components of seeds are synthesised, and these components are further required for germination and seed vigour. We have made a comparative RNA-Seq analysis between hexaploid wheat and its individual diploid progenitors to know the major differentially expressed genes (DEGs) involved during grain development. Two libraries from each species were generated with an average of 55.63, 55.23, 68.13, and 103.81 million reads, resulting in 79.3K, 113.7K, 90.6K, and 121.3K numbers of transcripts in AA, BB, DD, and AABBDD genome species respectively. Number of expressed genes in hexaploid wheat was not proportional to its genome size, but marginally higher than that of its diploid progenitors. However, to capture all the transcripts in hexaploid wheat, sufficiently higher number of reads was required. Functional analysis of DEGs, in all the three comparisons, showed their predominance in three major classes of genes during grain development, i.e., nutrient reservoirs, carbohydrate metabolism, and defence proteins; some of them were subsequently validated through real time quantitative Reverse Transcription Polymerase Chain Reaction (qRT-PCR). Further, developmental stage-specific gene expression showed most of the defence protein genes expressed during initial developmental stages in hexaploid contrary to the diploids at later stages. Genes related to carbohydrates anabolism expressed during early stages, whereas catabolism genes expressed at later stages in all the species. However, no trend was observed in case of different nutrient reservoirs gene expression. This data could be used to study the comparative gene expression among the three diploid species and homeologue-specific expression in hexaploid.
Collapse
Affiliation(s)
- Megha Kaushik
- Indian Council of Agricultural Research -National Institute on Plant Biotechnology (ICAR-NIPB), LBS Building, Pusa Campus, New Delhi-110012, India; (M.K.); (S.R.); (S.V.); (S.K.S.)
- Amity Institute of Biotechnology (AIB), Amity University, Sector 125, Noida, Uttar Pradesh 201313, India;
| | - Shubham Rai
- Indian Council of Agricultural Research -National Institute on Plant Biotechnology (ICAR-NIPB), LBS Building, Pusa Campus, New Delhi-110012, India; (M.K.); (S.R.); (S.V.); (S.K.S.)
| | - Sureshkumar Venkadesan
- Indian Council of Agricultural Research -National Institute on Plant Biotechnology (ICAR-NIPB), LBS Building, Pusa Campus, New Delhi-110012, India; (M.K.); (S.R.); (S.V.); (S.K.S.)
| | - Subodh Kumar Sinha
- Indian Council of Agricultural Research -National Institute on Plant Biotechnology (ICAR-NIPB), LBS Building, Pusa Campus, New Delhi-110012, India; (M.K.); (S.R.); (S.V.); (S.K.S.)
| | - Sumedha Mohan
- Amity Institute of Biotechnology (AIB), Amity University, Sector 125, Noida, Uttar Pradesh 201313, India;
| | - Pranab Kumar Mandal
- Indian Council of Agricultural Research -National Institute on Plant Biotechnology (ICAR-NIPB), LBS Building, Pusa Campus, New Delhi-110012, India; (M.K.); (S.R.); (S.V.); (S.K.S.)
| |
Collapse
|
25
|
Wang D, Li F, Cao S, Zhang K. Genomic and functional genomics analyses of gluten proteins and prospect for simultaneous improvement of end-use and health-related traits in wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:1521-1539. [PMID: 32020238 PMCID: PMC7214497 DOI: 10.1007/s00122-020-03557-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 01/24/2020] [Indexed: 05/09/2023]
Abstract
KEY MESSAGE Recent genomic and functional genomics analyses have substantially improved the understanding on gluten proteins, which are important determinants of wheat grain quality traits. The new insights obtained and the availability of precise, versatile and high-throughput genome editing technologies will accelerate simultaneous improvement of wheat end-use and health-related traits. Being a major staple food crop in the world, wheat provides an indispensable source of dietary energy and nutrients to the human population. As worldwide population grows and living standards rise in both developed and developing countries, the demand for wheat with high quality attributes increases globally. However, efficient breeding of high-quality wheat depends on critically the knowledge on gluten proteins, which mainly include several families of prolamin proteins specifically accumulated in the endospermic tissues of grains. Although gluten proteins have been studied for many decades, efficient manipulation of these proteins for simultaneous enhancement of end-use and health-related traits has been difficult because of high complexities in their expression, function and genetic variation. However, recent genomic and functional genomics analyses have substantially improved the understanding on gluten proteins. Therefore, the main objective of this review is to summarize the genomic and functional genomics information obtained in the last 10 years on gluten protein chromosome loci and genes and the cis- and trans-factors regulating their expression in the grains, as well as the efforts in elucidating the involvement of gluten proteins in several wheat sensitivities affecting genetically susceptible human individuals. The new insights gathered, plus the availability of precise, versatile and high-throughput genome editing technologies, promise to speed up the concurrent improvement of wheat end-use and health-related traits and the development of high-quality cultivars for different consumption needs.
Collapse
Affiliation(s)
- Daowen Wang
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Henan Agricultural University, 15 Longzi Lake College Park, Zhengzhou, 450046, China.
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Science, 1 West Beichen Road, Beijing, 100101, China.
| | - Feng Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Science, 1 West Beichen Road, Beijing, 100101, China
| | - Shuanghe Cao
- Institute of Crop Science, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, China
| | - Kunpu Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Science, 1 West Beichen Road, Beijing, 100101, China.
| |
Collapse
|
26
|
Hu H, Gutierrez‐Gonzalez JJ, Liu X, Yeats TH, Garvin DF, Hoekenga OA, Sorrells ME, Gore MA, Jannink J. Heritable temporal gene expression patterns correlate with metabolomic seed content in developing hexaploid oat seed. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:1211-1222. [PMID: 31677224 PMCID: PMC7152608 DOI: 10.1111/pbi.13286] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/24/2019] [Accepted: 10/26/2019] [Indexed: 05/04/2023]
Abstract
Oat ranks sixth in world cereal production and has a higher content of health-promoting compounds compared with other cereals. However, there is neither a robust oat reference genome nor transcriptome. Using deeply sequenced full-length mRNA libraries of oat cultivar Ogle-C, a de novo high-quality and comprehensive oat seed transcriptome was assembled. With this reference transcriptome and QuantSeq 3' mRNA sequencing, gene expression was quantified during seed development from 22 diverse lines across six time points. Transcript expression showed higher correlations between adjacent time points. Based on differentially expressed genes, we identified 22 major temporal co-expression (TCoE) patterns of gene expression and revealed enriched gene ontology biological processes. Within each TCoE set, highly correlated transcripts, putatively commonly affected by genetic background, were clustered and termed genetic co-expression (GCoE) sets. Seventeen of the 22 TCoE sets had GCoE sets with median heritabilities higher than 0.50, and these heritability estimates were much higher than that estimated from permutation analysis, with no divergence observed in cluster sizes between permutation and non-permutation analyses. Linear regression between 634 metabolites from mature seeds and the PC1 score of each of the GCoE sets showed significantly lower p-values than permutation analysis. Temporal expression patterns of oat avenanthramides and lipid biosynthetic genes were concordant with previous studies of avenanthramide biosynthetic enzyme activity and lipid accumulation. This study expands our understanding of physiological processes that occur during oat seed maturation and provides plant breeders the means to change oat seed composition through targeted manipulation of key pathways.
Collapse
Affiliation(s)
- Haixiao Hu
- Plant Breeding and Genetics SectionSchool of Integrative Plant ScienceCornell UniversityIthacaNYUSA
| | | | - Xinfang Liu
- Corn Research InstituteLiaoning Academy of Agricultural SciencesShenyangChina
| | - Trevor H. Yeats
- Plant Breeding and Genetics SectionSchool of Integrative Plant ScienceCornell UniversityIthacaNYUSA
| | | | | | - Mark E. Sorrells
- Plant Breeding and Genetics SectionSchool of Integrative Plant ScienceCornell UniversityIthacaNYUSA
| | - Michael A. Gore
- Plant Breeding and Genetics SectionSchool of Integrative Plant ScienceCornell UniversityIthacaNYUSA
| | - Jean‐Luc Jannink
- Plant Breeding and Genetics SectionSchool of Integrative Plant ScienceCornell UniversityIthacaNYUSA
- USDA‐ARSRobert W. Holley Center for Agriculture and HealthIthacaNYUSA
| |
Collapse
|
27
|
Kino RI, Pellny TK, Mitchell RAC, Gonzalez-Uriarte A, Tosi P. High post-anthesis temperature effects on bread wheat (Triticum aestivum L.) grain transcriptome during early grain-filling. BMC PLANT BIOLOGY 2020; 20:170. [PMID: 32299364 PMCID: PMC7164299 DOI: 10.1186/s12870-020-02375-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 03/31/2020] [Indexed: 05/27/2023]
Abstract
BACKGROUND High post-anthesis (p.a) temperatures reduce mature grain weights in wheat and other cereals. However, the causes of this reduction are not entirely known. Control of grain expansion by the maternally derived pericarp of the grain has previously been suggested, although this interaction has not been investigated under high p.a. temperatures. Down-regulation of pericarp localised genes that regulate cell wall expansion under high p.a. temperatures may limit expansion of the encapsulated endosperm due to a loss of plasticity in the pericarp, reducing mature grain weight. Here the effect of high p.a. temperatures on the transcriptome of the pericarp and endosperm of the wheat grain during early grain-filling was investigated via RNA-Seq and is discussed alongside grain moisture dynamics during early grain development and mature grain weight. RESULTS High p.a. temperatures applied from 6-days after anthesis (daa) and until 18daa reduced the grain's ability to accumulate water, with total grain moisture and percentage grain moisture content being significantly reduced from 14daa onwards. Mature grain weight was also significantly reduced by the same high p.a. temperatures applied from 6daa for 4-days or more, in a separate experiment. Comparison of our RNA-Seq data from whole grains, with existing data sets from isolated pericarp and endosperm tissues enabled the identification of subsets of genes whose expression was significantly affected by high p.a. temperature and predominantly expressed in either tissue. Hierarchical clustering and gene ontology analysis resulted in the identification of a number of genes implicated in the regulation of cell wall expansion, predominantly expressed in the pericarp and significantly down-regulated under high p.a. temperatures, including endoglucanase, xyloglucan endotransglycosylases and a β-expansin. An over-representation of genes involved in the 'cuticle development' functional pathway that were expressed in the pericarp and affected by high p.a. temperatures was also observed. CONCLUSIONS High p.a. temperature induced down-regulation of genes involved in regulating pericarp cell wall expansion. This concomitant down-regulation with a reduction in total grain moisture content and grain weight following the same treatment period, adds support to the theory that high p.a. temperatures may cause a reduction in mature grain weight as result of decreased pericarp cell wall expansion.
Collapse
Affiliation(s)
- Richard I. Kino
- School of Agriculture Policy and Development, University of Reading, Whiteknights, PO Box 237, Reading, RG6 6AR UK
| | - Till K. Pellny
- Rothamsted Research, West Common, Harpenden, Hertfordshire, AL5 2JQ UK
| | | | - Asier Gonzalez-Uriarte
- Rothamsted Research, West Common, Harpenden, Hertfordshire, AL5 2JQ UK
- Current affiliation: European Bioinformatics Institute, Wellcome Genome Campus, Cambridgeshire, CB10 1SD UK
| | - Paola Tosi
- School of Agriculture Policy and Development, University of Reading, Whiteknights, PO Box 237, Reading, RG6 6AR UK
| |
Collapse
|
28
|
Rossmann A, Buchner P, Savill GP, Powers SJ, Hawkesford MJ, Mühling KH. Foliar N Application at Anthesis Stimulates Gene Expression of Grain Protein Fractions and Alters Protein Body Distribution in Winter Wheat ( Triticum aestivum L.). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:12709-12719. [PMID: 31697495 DOI: 10.1021/acs.jafc.9b04634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The major components of wheat storage proteins are gliadins and glutenins, and as they contribute differently to baking quality, a balanced mixture of these components is essential. The application of foliar nitrogen (N) at anthesis is a common practice to improve protein concentration and composition. The aim of this study was to investigate the effects of a foliar N application at anthesis on storage protein gene expression during grain development and on the distribution of protein concentration and protein body size within the grain. In this experiment, an additional N application at anthesis stimulated the expression of genes of the majority of storage proteins when the N supply was low. Furthermore, it led to higher protein concentrations in the subaleurone layers, while in the center of the lobes, the protein concentrations were decreased. These changes will affect the protein recovery in white flours, as proportionally more protein might be lost during milling processes.
Collapse
Affiliation(s)
- Anne Rossmann
- Institute for Plant Nutrition and Soil Science , Kiel University , Hermann-Rodewald-Str. 2 , 24118 Kiel , Germany
| | - Peter Buchner
- Plant Sciences Department , Rothamsted Research , West Common , Harpenden , AL5 2JQ , U.K
| | - George P Savill
- Plant Sciences Department , Rothamsted Research , West Common , Harpenden , AL5 2JQ , U.K
| | - Stephen J Powers
- Plant Sciences Department , Rothamsted Research , West Common , Harpenden , AL5 2JQ , U.K
| | - Malcolm J Hawkesford
- Plant Sciences Department , Rothamsted Research , West Common , Harpenden , AL5 2JQ , U.K
| | - Karl H Mühling
- Institute for Plant Nutrition and Soil Science , Kiel University , Hermann-Rodewald-Str. 2 , 24118 Kiel , Germany
| |
Collapse
|
29
|
Shi Z, Wang Y, Wan Y, Hassall K, Jiang D, Shewry PR, Hawkesford MJ. Gradients of Gluten Proteins and Free Amino Acids along the Longitudinal Axis of the Developing Caryopsis of Bread Wheat. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:8706-8714. [PMID: 31310118 DOI: 10.1021/acs.jafc.9b02728] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Gradients in the contents and compositions of gluten proteins and free amino acids and the expression levels of gluten protein genes in developing wheat caryopses were determined by dividing the caryopsis into three longitudinal sections, namely, proximal (En1), middle (En2), and distal (En3) to embryo. The total gluten protein content was lower in En1 than in En2 and En3, with decreasing proportions of HMW-GS, LMW GS, and α/β- and γ-gliadins and increasing proportions of ω-gliadins. These differences were associated with the abundances of gluten protein transcripts. Gradients in the proportions of the gluten protein polymers which affect dough processing quality also occurred, but not in total free amino acids. Microscopy showed that the lower gluten protein content in En1 may have resulted, at least in part, from the presence of modified cells in the dorsal part of En1, but the reasons for the differences in composition are not known.
Collapse
Affiliation(s)
- Zhiqiang Shi
- National Technology Innovation Center for Regional Wheat Production, Key Laboratory of Crop Physiology, and Ecology and Production in Southern China, Ministry of Agriculture, National Engineering and Technology Center for Information Agriculture , Nanjing Agricultural University , Nanjing 210095 , P.R. China
- Plant Sciences Department , Rothamsted Research , Harpenden , Hertfordshire AL5 2JQ , U.K
| | - Yan Wang
- Plant Sciences Department , Rothamsted Research , Harpenden , Hertfordshire AL5 2JQ , U.K
| | - Yongfang Wan
- Plant Sciences Department , Rothamsted Research , Harpenden , Hertfordshire AL5 2JQ , U.K
| | - Kirsty Hassall
- Computational and Analytical Sciences Department , Rothamsted Research , Harpenden , Hertfordshire AL5 2JQ , U.K
| | - Dong Jiang
- National Technology Innovation Center for Regional Wheat Production, Key Laboratory of Crop Physiology, and Ecology and Production in Southern China, Ministry of Agriculture, National Engineering and Technology Center for Information Agriculture , Nanjing Agricultural University , Nanjing 210095 , P.R. China
| | - Peter R Shewry
- Plant Sciences Department , Rothamsted Research , Harpenden , Hertfordshire AL5 2JQ , U.K
| | - Malcolm J Hawkesford
- Plant Sciences Department , Rothamsted Research , Harpenden , Hertfordshire AL5 2JQ , U.K
| |
Collapse
|
30
|
Probing early wheat grain development via transcriptomic and proteomic approaches. Funct Integr Genomics 2019; 20:63-74. [DOI: 10.1007/s10142-019-00698-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 06/20/2019] [Accepted: 06/24/2019] [Indexed: 12/20/2022]
|
31
|
Global transcriptome analysis uncovers the gene co-expression regulation network and key genes involved in grain development of wheat (Triticum aestivum L.). Funct Integr Genomics 2019; 19:853-866. [PMID: 31115762 PMCID: PMC6797667 DOI: 10.1007/s10142-019-00678-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 03/24/2019] [Accepted: 04/12/2019] [Indexed: 02/07/2023]
Abstract
Wheat grain development is a robust biological process that largely determines grain quality and yield. In this study, we investigated the grain transcriptome of winter wheat cv. Xiaoyan-6 at four developmental stages (5, 10, 15, and 20 days post-anthesis), using high-throughput RNA sequencing (RNA-Seq). We identified 427 grain-specific transcription factors (TFs) and 1653 differentially expressed TFs during grain development as well as a grain co-expression regulation network (GrainNet) of the TFs and their predicted co-expressed genes. Our study identified ten putative key TFs and the predicted regulatory genes of these TFs in wheat grain development of Xiaoyan-6. The analysis was given a firm basis through the study of additional wheat tissues, including root, stem, leaf, flag leaf, grain, spikes (from wheat plants at booting or heading stages) to provide a dataset of 92,478 high-confidence protein-coding genes that were mostly evenly distributed among subgenomes, but unevenly distributed across each of the chromosomes or each of the seven homeologous groups. Within this larger framework of the transcriptomes, we identified 4659 grain-specific genes (SEGs) and 26,500 differentially expressed genes (DEGs) throughout grain development stages tested. The SEGs identified mainly associate with regulation and signaling-related biological processes, while the DEGs mainly involve in cellular component organization or biogenesis and nutrient reservoir activity during grain development of Xiaoyan-6. This study establishes new targets for modifying genes related to grain development and yield, to fine-tune expression in different varieties and environments.
Collapse
|
32
|
Guan Y, Li G, Chu Z, Ru Z, Jiang X, Wen Z, Zhang G, Wang Y, Zhang Y, Wei W. Transcriptome analysis reveals important candidate genes involved in grain-size formation at the stage of grain enlargement in common wheat cultivar "Bainong 4199". PLoS One 2019; 14:e0214149. [PMID: 30908531 PMCID: PMC6433227 DOI: 10.1371/journal.pone.0214149] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 03/07/2019] [Indexed: 12/19/2022] Open
Abstract
Grain-size is one of the yield components, and the first 14 days after pollination (DAP) is a crucial stage for wheat grain-size formation. To understand the mechanism of grain-size formation at the whole gene expression level and to identify the candidate genes related to grain pattern formation, cDNA libraries from immature grains of 5 DAP and 14 DAP were constructed. According to transcriptome analysis, a total of 12,555 new genes and 9,358 differentially expressed genes (DEGs) were obtained. In DEGs, 2,876, 3,357 and 3,125 genes were located on A, B and D subgenome respectively. 9,937 (79.15%) new genes and 9,059 (96.80%) DEGs were successfully annotated. For DEGs, 4,453 were up-regulated and 4,905 were down-regulated at 14 DAP. The Gene Ontology (GO) database indicated that most of the grain-size-related genes were in the same cluster. The Kyoto Encyclopedia of Genes and Genomes (KEGG) database analysis showed that 130, 129 and 20 DEGs were respectively involved in starch and sucrose metabolism, plant hormone signal transduction and ubiquitin-mediated proteolysis. Expression levels of 8 randomly selected genes were confirmed by qRT-PCR, which was consistent with the transcriptome data. The present database will help us understand the molecular mechanisms underlying early grain development and provide the foundation for increasing grain-size and yield in wheat breeding programs.
Collapse
Affiliation(s)
- Yuanyuan Guan
- College of Life Science and Technology, Henan Institute of Science and Technology / Collaborative Innovation Center of Modern Biological Breeding, Henan Province, Xinxiang, China
| | - Gan Li
- College of Life Science and Technology, Henan Institute of Science and Technology / Collaborative Innovation Center of Modern Biological Breeding, Henan Province, Xinxiang, China
| | - Zongli Chu
- Xinyang Agriculture and Forestry University, Xinyang, China
| | - Zhengang Ru
- College of Life Science and Technology, Henan Institute of Science and Technology / Collaborative Innovation Center of Modern Biological Breeding, Henan Province, Xinxiang, China
| | - Xiaoling Jiang
- College of Life Science and Technology, Henan Institute of Science and Technology / Collaborative Innovation Center of Modern Biological Breeding, Henan Province, Xinxiang, China
| | - Zhaopu Wen
- College of Life Science and Technology, Henan Institute of Science and Technology / Collaborative Innovation Center of Modern Biological Breeding, Henan Province, Xinxiang, China
| | - Guang Zhang
- College of Life Science and Technology, Henan Institute of Science and Technology / Collaborative Innovation Center of Modern Biological Breeding, Henan Province, Xinxiang, China
| | - Yuquan Wang
- College of Life Science and Technology, Henan Institute of Science and Technology / Collaborative Innovation Center of Modern Biological Breeding, Henan Province, Xinxiang, China
| | - Yang Zhang
- College of Life Science and Technology, Henan Institute of Science and Technology / Collaborative Innovation Center of Modern Biological Breeding, Henan Province, Xinxiang, China
| | - Wenhui Wei
- College of Life Science and Technology, Henan Institute of Science and Technology / Collaborative Innovation Center of Modern Biological Breeding, Henan Province, Xinxiang, China
| |
Collapse
|
33
|
Brinton J, Uauy C. A reductionist approach to dissecting grain weight and yield in wheat. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2019; 61:337-358. [PMID: 30421518 PMCID: PMC6492019 DOI: 10.1111/jipb.12741] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 11/07/2018] [Indexed: 05/20/2023]
Abstract
Grain yield is a highly polygenic trait that is influenced by the environment and integrates events throughout the life cycle of a plant. In wheat, the major grain yield components often present compensatory effects among them, which alongside the polyploid nature of wheat, makes their genetic and physiological study challenging. We propose a reductionist and systematic approach as an initial step to understand the gene networks regulating each individual yield component. Here, we focus on grain weight and discuss the importance of examining individual sub-components, not only to help in their genetic dissection, but also to inform our mechanistic understanding of how they interrelate. This knowledge should allow the development of novel combinations, across homoeologs and between complementary modes of action, thereby advancing towards a more integrated strategy for yield improvement. We argue that this will break barriers in terms of phenotypic variation, enhance our understanding of the physiology of yield, and potentially deliver improved on-farm yield.
Collapse
Affiliation(s)
- Jemima Brinton
- John Innes CentreNorwich Research ParkNorwich NR4 7UHUnited Kingdom
| | - Cristobal Uauy
- John Innes CentreNorwich Research ParkNorwich NR4 7UHUnited Kingdom
| |
Collapse
|
34
|
Mao X, Zhang J, Liu W, Yan S, Liu Q, Fu H, Zhao J, Huang W, Dong J, Zhang S, Yang T, Yang W, Liu B, Wang F. The MKKK62-MKK3-MAPK7/14 module negatively regulates seed dormancy in rice. RICE (NEW YORK, N.Y.) 2019; 12:2. [PMID: 30671680 PMCID: PMC6342742 DOI: 10.1186/s12284-018-0260-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 12/11/2018] [Indexed: 05/04/2023]
Abstract
BACKGROUND Seed dormancy directly affects the phenotype of pre-harvest sprouting, and ultimately affects the quality and yield of rice seeds. Although many genes controlling seed dormancy have been cloned from cereals, the regulatory mechanisms controlling this process are complex, and much remains unknown. The MAPK cascade is involved in many signal transduction pathways. Recently, MKK3 has been reported to be involved in the regulation of seed dormancy, but its mechanism of action is unclear. RESULTS We found that MKKK62-overexpressing rice lines (OE) lost seed dormancy. Further analyses showed that the abscisic acid (ABA) sensitivity of OE lines was decreased. In yeast two-hybrid experiments, MKKK62 interacted with MKK3, and MKK3 interacted with MAPK7 and MAPK14. Knock-out experiments confirmed that MKK3, MAPK7, and MAPK14 were involved in the regulation of seed dormancy. The OE lines showed decreased transcript levels of OsMFT, a homolog of a gene that controls seed dormancy in wheat. The up-regulation of OsMFT in MKK3-knockout lines (OE/mkk3) and MAPK7/14-knockout lines (OE/mapk7/mapk14) indicated that the MKKK62-MKK3-MAPK7/MAPK14 system controlled seed dormancy by regulating the transcription of OsMFT. CONCLUSION Our results showed that MKKK62 negatively controls seed dormancy in rice, and that during the germination stage and the late stage of seed maturation, ABA sensitivity and OsMFT transcription are negatively controlled by MKKK62. Our results have clarified the entire MAPK cascade controlling seed dormancy in rice. Together, these results indicate that protein modification by phosphorylation plays a key role in controlling seed dormancy.
Collapse
Affiliation(s)
- Xingxue Mao
- Guangdong Academy of Agricultural Sciences, Rice Research Institute, Guangzhou, 510640 China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640 China
| | - Jianjun Zhang
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, SCAU, Guangzhou, 510642 China
| | - Wuge Liu
- Guangdong Academy of Agricultural Sciences, Rice Research Institute, Guangzhou, 510640 China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640 China
| | - Shijuan Yan
- Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
| | - Qing Liu
- Guangdong Academy of Agricultural Sciences, Rice Research Institute, Guangzhou, 510640 China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640 China
| | - Hua Fu
- Guangdong Academy of Agricultural Sciences, Rice Research Institute, Guangzhou, 510640 China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640 China
| | - Junliang Zhao
- Guangdong Academy of Agricultural Sciences, Rice Research Institute, Guangzhou, 510640 China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640 China
| | - Wenjie Huang
- Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
| | - Jingfang Dong
- Guangdong Academy of Agricultural Sciences, Rice Research Institute, Guangzhou, 510640 China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640 China
| | - Shaohong Zhang
- Guangdong Academy of Agricultural Sciences, Rice Research Institute, Guangzhou, 510640 China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640 China
| | - Tifeng Yang
- Guangdong Academy of Agricultural Sciences, Rice Research Institute, Guangzhou, 510640 China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640 China
| | - Wu Yang
- Guangdong Academy of Agricultural Sciences, Rice Research Institute, Guangzhou, 510640 China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640 China
| | - Bin Liu
- Guangdong Academy of Agricultural Sciences, Rice Research Institute, Guangzhou, 510640 China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640 China
| | - Feng Wang
- Guangdong Academy of Agricultural Sciences, Rice Research Institute, Guangzhou, 510640 China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640 China
| |
Collapse
|
35
|
Genome wide characterization of barley NAC transcription factors enables the identification of grain-specific transcription factors exclusive for the Poaceae family of monocotyledonous plants. PLoS One 2018; 13:e0209769. [PMID: 30592743 PMCID: PMC6310276 DOI: 10.1371/journal.pone.0209769] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 12/11/2018] [Indexed: 12/30/2022] Open
Abstract
The plant NAC transcription factors depict one of the largest plant transcription factor families. They regulate a wide range of different developmental processes and most probably played an important role in the evolutionary diversification of plants. This makes comparative studies of the NAC transcription factor family between individual species and genera highly relevant and such studies have in recent years been greatly facilitated by the increasing number of fully sequenced complex plant genomes. This study combines the characterization of the NAC transcription factors in the recently sequenced genome of the cereal crop barley with expression analysis and a comprehensive phylogenetic characterization of the NAC transcription factors in other monocotyledonous plant species. Our results provide evidence for the emergence of a NAC transcription factor subclade that is exclusively expressed in the grains of the Poaceae family of grasses. These notably comprise a number of cereal crops other than barley, such as wheat, rice, maize or millet, which are all cultivated for their starchy edible grains. Apparently, the grain specific subclade emerged from a well described subgroup of NAC transcription factors associated with the senescence process. A promoter exchange subsequently resulted in grain specific expression. We propose to designate this transcription factor subclade Grain-NACs and we discuss their involvement in programmed cell death as well as their potential role in the evolution of the Poaceae grain, which doubtlessly is of central importance for human nutrition.
Collapse
|
36
|
Balakireva AV, Deviatkin AA, Zgoda VG, Kartashov MI, Zhemchuzhina NS, Dzhavakhiya VG, Golovin AV, Zamyatnin AA. Proteomics Analysis Reveals That Caspase-Like and Metacaspase-Like Activities Are Dispensable for Activation of Proteases Involved in Early Response to Biotic Stress in Triticum aestivum L. Int J Mol Sci 2018; 19:ijms19123991. [PMID: 30544979 PMCID: PMC6320887 DOI: 10.3390/ijms19123991] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/04/2018] [Accepted: 12/08/2018] [Indexed: 12/15/2022] Open
Abstract
Plants, including Triticum aestivum L., are constantly attacked by various pathogens which induce immune responses. Immune processes in plants are tightly regulated by proteases from different families within their degradome. In this study, a wheat degradome was characterized. Using profile hidden Markov model (HMMer) algorithm and Pfam database, comprehensive analysis of the T. aestivum genome revealed a large number of proteases (1544 in total) belonging to the five major protease families: serine, cysteine, threonine, aspartic, and metallo-proteases. Mass-spectrometry analysis revealed a 30% difference between degradomes of distinct wheat cultivars (Khakasskaya and Darya), and infection by biotrophic (Puccinia recondita Rob. ex Desm f. sp. tritici) or necrotrophic (Stagonospora nodorum) pathogens induced drastic changes in the presence of proteolytic enzymes. This study shows that an early immune response to biotic stress is associated with the same core of proteases from the C1, C48, C65, M24, M41, S10, S9, S8, and A1 families. Further liquid chromatography-mass spectrometry (LC-MS) analysis of the detected protease-derived peptides revealed that infection by both pathogens enhances overall proteolytic activity in wheat cells and leads to activation of proteolytic cascades. Moreover, sites of proteolysis were identified within the proteases, which probably represent targets of autocatalytic activation, or hydrolysis by another protease within the proteolytic cascades. Although predicted substrates of metacaspase-like and caspase-like proteases were similar in biotrophic and necrotrophic infections, proteolytic activation of proteases was not found to be associated with metacaspase-like and caspase-like activities. These findings indicate that the response of T. aestivum to biotic stress is regulated by unique mechanisms.
Collapse
Affiliation(s)
- Anastasia V Balakireva
- Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Trubetskaya str., 8, bld. 2, Moscow 119991, Russia.
| | - Andrei A Deviatkin
- Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Trubetskaya str., 8, bld. 2, Moscow 119991, Russia.
| | - Victor G Zgoda
- Institute of Biomedical Chemistry, Pogodinskaya str., 10, bld. 8, Moscow 119121, Russia.
| | - Maxim I Kartashov
- All Russian Research Institute of Phytopathology, VNIIF, Bolshie Vyazemi, Odintsovsky distr., Moscow region 143050, Russia.
| | - Natalia S Zhemchuzhina
- All Russian Research Institute of Phytopathology, VNIIF, Bolshie Vyazemi, Odintsovsky distr., Moscow region 143050, Russia.
| | - Vitaly G Dzhavakhiya
- All Russian Research Institute of Phytopathology, VNIIF, Bolshie Vyazemi, Odintsovsky distr., Moscow region 143050, Russia.
| | - Andrey V Golovin
- Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Trubetskaya str., 8, bld. 2, Moscow 119991, Russia.
- Faculty of Bioengineering and Bioinformatics, Moscow State University, Moscow 119992, Russia.
| | - Andrey A Zamyatnin
- Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Trubetskaya str., 8, bld. 2, Moscow 119991, Russia.
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia.
| |
Collapse
|
37
|
Zörb C, Ludewig U, Hawkesford MJ. Perspective on Wheat Yield and Quality with Reduced Nitrogen Supply. TRENDS IN PLANT SCIENCE 2018; 23:1029-1037. [PMID: 30249481 PMCID: PMC6202697 DOI: 10.1016/j.tplants.2018.08.012] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 08/30/2018] [Accepted: 08/31/2018] [Indexed: 05/19/2023]
Abstract
Wheat is an important cereal crop with a high demand for nitrogen (N) fertilizer to enable the grain protein accumulation that is necessary for baking and processing quality. Here, perspectives for the development of improved wheat genotypes with higher yield stability, better grain quality, and improved N use efficiency to lower environmental impacts are discussed. The development of improved wheat genotypes, for example, genotypes that lack storage proteins that do not contribute to baking quality (e.g., by genome editing), in combination with appropriate N fertilizer management to prevent N losses into the environment underpins a novel approach to improving N use efficiency. This approach may be particularly applicable to wheats grown for animal feed, which have lower quality and functionality requirements.
Collapse
Affiliation(s)
- Christian Zörb
- Institute of Crop Science, Quality of Plant Products (340e), University of Hohenheim, 70593 Stuttgart, Schloss Westflügel, Germany.
| | - Uwe Ludewig
- Institute of Crop Science, Nutritional Crop Physiology (340h), University of Hohenheim, 70593 Stuttgart, Germany
| | | |
Collapse
|
38
|
A Genome-wide View of Transcriptome Dynamics During Early Spike Development in Bread Wheat. Sci Rep 2018; 8:15338. [PMID: 30337587 PMCID: PMC6194122 DOI: 10.1038/s41598-018-33718-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 10/03/2018] [Indexed: 11/08/2022] Open
Abstract
Wheat spike development is a coordinated process of cell proliferation and differentiation with distinctive phases and architecture changes. However, the dynamic alteration of gene expression in this process remains enigmatic. Here, we characterized and dissected bread wheat spike into six developmental stages, and used genome-wide gene expression profiling, to investigate the underlying regulatory mechanisms. High gene expression correlations between any two given stages indicated that wheat early spike development is controlled by a small subset of genes. Throughout, auxin signaling increased, while cytokinin signaling decreased. Besides, many genes associated with stress responses highly expressed during the double ridge stage. Among the differentially expressed genes (DEGs), were identified 375 transcription factor (TF) genes, of which some homologs in rice or Arabidopsis are proposed to function in meristem maintenance, flowering time, meristem initiation or transition, floral organ development or response to stress. Gene expression profiling demonstrated that these genes had either similar or distinct expression pattern in wheat. Several genes regulating spike development were expressed in the early spike, of which Earliness per se 3 (Eps-3) was found might function in the initiation of spikelet meristem. Our study helps uncover important genes associated with apical meristem morphology and development in wheat.
Collapse
|
39
|
Wang Y, Shi C, Yang T, Zhao L, Chen J, Zhang N, Ren Y, Tang G, Cui D, Chen F. High-throughput sequencing revealed that microRNAs were involved in the development of superior and inferior grains in bread wheat. Sci Rep 2018; 8:13854. [PMID: 30218081 PMCID: PMC6138641 DOI: 10.1038/s41598-018-31870-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 08/28/2018] [Indexed: 01/09/2023] Open
Abstract
High-throughput sequencing was employed to investigate the expression of miRNAs and their target genes in superior and inferior seeds of Aikang 58. Small RNA sequencing revealed 620 conserved and 64 novel miRNAs in superior grains, and 623 conserved and 66 novel miRNAs in inferior grains. Among these, 97 known miRNAs, and eight novel miRNAs showed differential expression between the superior and inferior seeds. Degradome sequencing revealed at least 140 candidate target genes associated with 35 miRNA families during the development of superior and inferior seeds. GO and KEGG pathway analysis showed that the differentially expressed miRNAs, both conserved and novel, were likely involved in hormone production, carbohydrate metabolic pathways, and cell division. We validated eight known and four novel grain development-related miRNAs and their target genes by quantitative real-time polymerase chain reaction to ensure the reliability of small RNA and degradome-seq results. Of these, miR160 and miR165/166 were knocked down in Arabidopsis using short-tandem target mimic (STTM160 and STTM165/166) technology, which confirmed their roles in seed development. Specifically, STTM160 showed significantly smaller grain size, lower grain weight, shorter siliques length, shorter plant height, and more serrated leaves, whereas STTM165/166 showed decreased seed number, disabled siliques, and curled upward leaves.
Collapse
Affiliation(s)
- Yongyan Wang
- Agronomy College/National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046, China
- Department of Biological Sciences, Life Science and Technology Instituted, Michigan Technological University, Houghton, MI, 49931, USA
| | - Chaonan Shi
- Agronomy College/National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046, China
| | - Tianxiao Yang
- Agronomy College/National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046, China
| | - Lei Zhao
- Agronomy College/National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046, China
| | - Jianhui Chen
- Agronomy College/National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046, China
| | - Ning Zhang
- Agronomy College/National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046, China
| | - Yan Ren
- Agronomy College/National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046, China
| | - Guiliang Tang
- Agronomy College/National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046, China
- Department of Biological Sciences, Life Science and Technology Instituted, Michigan Technological University, Houghton, MI, 49931, USA
| | - Dangqun Cui
- Agronomy College/National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046, China
| | - Feng Chen
- Agronomy College/National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046, China.
| |
Collapse
|
40
|
Kumar J, Gunapati S, Kianian SF, Singh SP. Comparative analysis of transcriptome in two wheat genotypes with contrasting levels of drought tolerance. PROTOPLASMA 2018; 255:1487-1504. [PMID: 29651660 DOI: 10.1007/s00709-018-1237-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 03/05/2018] [Indexed: 05/19/2023]
Abstract
Drought tolerance is a complex trait that is governed by multiple genes. The study presents differential transcriptome analysis between drought-tolerant (Triticum aestivum Cv. C306) and drought-sensitive (Triticum aestivum Cv. WL711) genotypes, using Affymetrix GeneChip® Wheat Genome Array. Both genotypes exhibited diverse global transcriptional responses under control and drought conditions. Pathway analysis suggested significant induction or repression of genes involved in secondary metabolism, nucleic acid synthesis, protein synthesis, and transport in C306, as compared to WL711. Significant up- and downregulation of transcripts for enzymes, hormone metabolism, and stress response pathways were observed in C306 under drought. The elevated expression of plasma membrane intrinsic protein 1 and downregulation of late embryogenesis abundant in the leaf tissues could play an important role in delayed wilting in C306. The other regulatory genes such as MT, FT, AP2, SKP1, ABA2, ARF6, WRKY6, AOS, and LOX2 are involved in defense response in C306 genotype. Additionally, transcripts with unknown functions were identified as differentially expressed, which could participate in drought responses.
Collapse
Affiliation(s)
- Jitendra Kumar
- National Agri-Food Biotechnology Institute, Mohali, India
- USDA-ARS Cereal Disease Laboratory, St. Paul, MN, USA
| | - Samatha Gunapati
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, USA
| | | | - Sudhir P Singh
- National Agri-Food Biotechnology Institute, Mohali, India.
- Center of Innovative and Applied Bioprocessing, Mohali, India.
| |
Collapse
|
41
|
Xiu Y, Wu G, Tang W, Peng Z, Bu X, Chao L, Yin X, Xiong J, Zhang H, Zhao X, Ding J, Ma L, Wang H, van Staden J. Oil biosynthesis and transcriptome profiles in developing endosperm and oil characteristic analyses in Paeonia ostii var. lishizhenii. JOURNAL OF PLANT PHYSIOLOGY 2018; 228:121-133. [PMID: 29902680 DOI: 10.1016/j.jplph.2018.05.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 05/31/2018] [Accepted: 05/31/2018] [Indexed: 05/21/2023]
Abstract
Paeonia ostii var. lishizhenii, a well-known medicinal and horticultural plant, is indigenous to China. Recent studies have shown that its seed has a high oil content, and it was approved as a novel resource of edible oil with a high level of α-linolenic acid by the Chinese Government. This study measured the seed oil contents and fatty acid components of P. ostii var. lishizhenii and six other peonies, P. suffruticosa, P. ludlowii, P. decomposita, P. rockii, and P. lactiflora Pall. 'Heze' and 'Gansu'. The results show that P. ostii var. lishizhenii exhibits the average oil characteristics of tested peonies, with an oil content of 21.3%, α-linolenic acid 43.8%, and unsaturated fatty acids around 92.1%. Hygiene indicators for the seven peony seed oils met the Chinese national food standards. P. ostii var. lishizhenii seeds were used to analyze transcriptome gene regulation networks on endosperm development and oil biosynthesis. In total, 124,117 transcripts were obtained from six endosperm developing stages (S0-S5). The significant changes in differential expression genes (DEGs) clarify three peony endosperm developmental phases: the endosperm cell mitotic phase (S0-S1), the TAG biosynthesis phase (S1-S4), and the mature phase (S5). The DEGs in plant hormone signal transduction, DNA replication, cell division, differentiation, transcription factors, and seed dormancy pathways regulate the endosperm development process. Another 199 functional DEGs participate in glycolysis, pentose phosphate pathway, citrate cycle, FA biosynthesis, TAG assembly, and other pathways. A key transcription factor (WRI1) and some important target genes (ACCase, FATA, LPCAT, FADs, and DGAT etc.) were found in the comprehensive genetic networks of oil biosynthesis.
Collapse
Affiliation(s)
- Yu Xiu
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; College of Forestry, Beijing Forestry University, Beijing 100083, China.
| | - Guodong Wu
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China.
| | - Wensi Tang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China.
| | | | - Xiangpan Bu
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China.
| | - Longjun Chao
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; Beijing Peonature Biotechnology Co., Ltd., Beijing, 101301, China.
| | - Xue Yin
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China.
| | - Jiannan Xiong
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China.
| | - Haiwu Zhang
- Forestry Institute of Tibet Autonomous Region, Lhasa 850000, China.
| | | | - Jing Ding
- Jiangsu Guosetianxiang Oil Peony Science and Technology Development Co., Ltd., Changzhou 213000, China.
| | - Lvyi Ma
- College of Forestry, Beijing Forestry University, Beijing 100083, China.
| | - Huafang Wang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China.
| | - Johannes van Staden
- Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, Private Bag X01, Scottsville, 3209, South Africa.
| |
Collapse
|
42
|
Girousse C, Roche J, Guerin C, Le Gouis J, Balzegue S, Mouzeyar S, Bouzidi MF. Coexpression network and phenotypic analysis identify metabolic pathways associated with the effect of warming on grain yield components in wheat. PLoS One 2018; 13:e0199434. [PMID: 29940014 PMCID: PMC6016909 DOI: 10.1371/journal.pone.0199434] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 06/07/2018] [Indexed: 11/18/2022] Open
Abstract
Wheat grains are an important source of human food but current production amounts cannot meet world needs. Environmental conditions such as high temperature (above 30°C) could affect wheat production negatively. Plants from two wheat genotypes have been subjected to two growth temperature regimes. One set has been grown at an optimum daily mean temperature of 19°C while the second set of plants has been subjected to warming at 27°C from two to 13 days after anthesis (daa). While warming did not affect mean grain number per spike, it significantly reduced other yield-related indicators such as grain width, length, volume and maximal cell numbers in the endosperm. Whole genome expression analysis identified 6,258 and 5,220 genes, respectively, whose expression was affected by temperature in the two genotypes. Co-expression analysis using WGCNA (Weighted Gene Coexpression Network Analysis) uncovered modules (groups of co-expressed genes) associated with agronomic traits. In particular, modules enriched in genes related to nutrient reservoir and endopeptidase inhibitor activities were found to be positively associated with cell numbers in the endosperm. A hypothetical model pertaining to the effects of warming on gene expression and growth in wheat grain is proposed. Under moderately high temperature conditions, network analyses suggest a negative effect of the expression of genes related to seed storage proteins and starch biosynthesis on the grain size in wheat.
Collapse
Affiliation(s)
| | - Jane Roche
- GDEC, Université Clermont Auvergne, INRA, Clermont–Ferrand, France
| | - Claire Guerin
- GDEC, Université Clermont Auvergne, INRA, Clermont–Ferrand, France
| | - Jacques Le Gouis
- GDEC, Université Clermont Auvergne, INRA, Clermont–Ferrand, France
| | | | - Said Mouzeyar
- GDEC, Université Clermont Auvergne, INRA, Clermont–Ferrand, France
| | | |
Collapse
|
43
|
Jia M, Guan J, Zhai Z, Geng S, Zhang X, Mao L, Li A. Wheat functional genomics in the era of next generation sequencing: An update. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.cj.2017.09.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
44
|
Understanding the molecular basis of differential grain protein accumulation in wheat (Triticum aestivum L.) through expression profiling of transcription factors related to seed nutrients storage. 3 Biotech 2018; 8:112. [PMID: 29430373 DOI: 10.1007/s13205-018-1114-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 01/11/2018] [Indexed: 10/18/2022] Open
Abstract
Increasing nutritional value of cereals is one of the important research and breeding objectives to overcome malnutrition in developing countries. The synthesis of grain seed proteins during grain filling is controlled by several mechanisms including transcriptional and posttranscriptional modifications. In the current investigation, transcript abundance analysis of three allelic variants of seed storage protein activator (Spa A, Spa B and Spa D) and NAM-B1 affecting seed nutrient concentration was carried out in two genotypes (UP 2672 and HS 540) of bread wheat differing in grain protein content. Expression profiling of transcription factor genes was performed using quantitative real time PCR (qRT-PCR). Positive correlation and significant p value > 0.05 was observed among the fold expression in developing stages of both the genotypes. Maximum expression of Spa genes was observed at S3 stage and maximum fold expression was observed for Spa B gene in case of UP 2672, the genotype with high protein content. The transcript profiling of NAM-B1 gene revealed threefold higher expression in UP 2672 than that of HS 490 at S4 stage. The findings revealed the role of transcriptional regulation in differential grain protein accumulation through varied expression and existence of their allelic variants in wheat genotypes.
Collapse
|
45
|
Brinton J, Simmonds J, Uauy C. Ubiquitin-related genes are differentially expressed in isogenic lines contrasting for pericarp cell size and grain weight in hexaploid wheat. BMC PLANT BIOLOGY 2018; 18:22. [PMID: 29370763 PMCID: PMC5784548 DOI: 10.1186/s12870-018-1241-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 01/17/2018] [Indexed: 05/25/2023]
Abstract
BACKGROUND There is an urgent need to increase global crop production. Identifying and combining specific genes controlling distinct biological processes holds the potential to enhance crop yields. Transcriptomics is a powerful tool to gain insights into the complex gene regulatory networks that underlie such traits, but relies on the availability of a high-quality reference sequence and accurate gene models. Previously, we identified a grain weight QTL on wheat chromosome 5A (5A QTL) which acts during early grain development to increase grain length through cell expansion in the pericarp. In this study, we performed RNA-sequencing on near isogenic lines (NILs) segregating for the 5A QTL and used the latest gene models to identify differentially regulated genes and pathways that potentially influence pericarp cell size and grain weight in wheat. RESULTS We sampled grains at 4 and 8 days post anthesis and found that genes associated with metabolism, biosynthesis, proteolysis and the defence response are upregulated during this stage of grain development in both NILs. We identified a specific set of 112 transcripts differentially expressed (DE) between 5A NILs at either time point, including eight potential candidates for the causal 5A gene and its downstream targets. The 112 DE transcripts had functional annotations including non-coding RNA, transposon-associated, cell-cycle control, ubiquitin-related, heat-shock, transcription and histone-related. Many of the genes identified belong to families that have been previously associated with seed/grain development in other species. Notably, we identified DE transcripts at almost all steps of the pathway associated with ubiquitin-mediated protein degradation. In the promoters of a subset of DE transcripts we identified enrichment of binding sites associated with C2H2, MYB/SANT, YABBY, AT-HOOK and Trihelix transcription factor families. CONCLUSIONS In this study, we identified DE transcripts with a diverse range of predicted biological functions, reflecting the complex nature of the pathways that control early grain development. Few of these are the direct orthologues of grain size genes in other species and none have been previously characterised in wheat. Further functional characterisation of these candidates and how they interact will provide novel insights into the control of grain size in cereals.
Collapse
|
46
|
Hu XJ, Chen D, Lynne Mclntyre C, Fernanda Dreccer M, Zhang ZB, Drenth J, Kalaipandian S, Chang H, Xue GP. Heat shock factor C2a serves as a proactive mechanism for heat protection in developing grains in wheat via an ABA-mediated regulatory pathway. PLANT, CELL & ENVIRONMENT 2018; 41:79-98. [PMID: 28370204 DOI: 10.1111/pce.12957] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/21/2017] [Accepted: 03/22/2017] [Indexed: 05/20/2023]
Abstract
High temperature at grain filling can severely reduce wheat yield. Heat shock factors (Hsfs) are central regulators in heat acclimation. This study investigated the role of TaHsfC2a, a member of the monocot-specific HsfC2 subclass, in the regulation of heat protection genes in Triticum aestivum. Three TaHsfC2a homoeologous genes were highly expressed in wheat grains during grain filling and showed only transient up-regulation in the leaves by heat stress but were markedly up-regulated by drought and abscisic acid (ABA) treatment. Overexpression of TaHsfC2a-B in transgenic wheat resulted in up-regulation of a suite of heat protection genes (e.g. TaHSP70d and TaGalSyn). Most TaHsfC2a-B target genes were heat, drought and ABA inducible. Transactivation analysis of two representative targets (TaHSP70d and TaGalSyn) showed that TaHsfC2a-B activated expression of reporters driven by these target promoters. Promoter mutagenesis analyses revealed that heat shock element is responsible for transactivation by TaHsfC2a-B and heat/drought induction. TaHsfC2a-B-overexpressing wheat showed improved thermotolerance but not dehydration tolerance. Most TaHsfC2a-B target genes were co-up-regulated in developing grains with TaHsfC2a genes. These data suggest that TaHsfC2a-B is a transcriptional activator of heat protection genes and serves as a proactive mechanism for heat protection in developing wheat grains via the ABA-mediated regulatory pathway.
Collapse
Affiliation(s)
- Xiao-Jun Hu
- Linyi University, Middle of Shuangling Road, Linyi, Shandong, 276000, China
- CSIRO Agriculture and Food Flagship, 306 Carmody Road, St Lucia, Queensland, 4067, Australia
| | - Dandan Chen
- CSIRO Agriculture and Food Flagship, 306 Carmody Road, St Lucia, Queensland, 4067, Australia
| | - C Lynne Mclntyre
- CSIRO Agriculture and Food Flagship, 306 Carmody Road, St Lucia, Queensland, 4067, Australia
| | - M Fernanda Dreccer
- CSIRO Agriculture and Food Flagship, 306 Carmody Road, St Lucia, Queensland, 4067, Australia
| | - Zheng-Bin Zhang
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Science, Shijiazhuang, 050021, China
| | - Janneke Drenth
- CSIRO Agriculture and Food Flagship, 306 Carmody Road, St Lucia, Queensland, 4067, Australia
| | | | - Hongping Chang
- CSIRO Agriculture and Food Flagship, 306 Carmody Road, St Lucia, Queensland, 4067, Australia
| | - Gang-Ping Xue
- CSIRO Agriculture and Food Flagship, 306 Carmody Road, St Lucia, Queensland, 4067, Australia
| |
Collapse
|
47
|
Geng J, Li L, Lv Q, Zhao Y, Liu Y, Zhang L, Li X. TaGW2-6A allelic variation contributes to grain size possibly by regulating the expression of cytokinins and starch-related genes in wheat. PLANTA 2017; 246:1153-1163. [PMID: 28825220 DOI: 10.1007/s00425-017-2759-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 08/11/2017] [Indexed: 05/21/2023]
Abstract
Functional allelic variants of TaGW2 - 6A produce large grains, possibly via changes in endosperm cells and dry matter by regulating the expression of cytokinins and starch-related genes via the ubiquitin-proteasome system. In wheat, TaGW2-6A coding region allelic variants are closely related to the grain width and weight, but how this region affects grain development has not been fully elucidated; thus, we explored its influence on grain development based mainly on histological and grain filling analyses. We found that the insertion type (NIL31) TaGW2-6A allelic variants exhibited increases in cell numbers and cell size, thereby resulting in a larger (wider) grain size with an accelerated grain milk filling rate, and increases in grain width and weight. We also found that cytokinin (CK) synthesis genes and key starch biosynthesis enzyme AGPase genes were significantly upregulated in the TaGW2-6A allelic variants, while CK degradation genes and starch biosynthesis-negative regulators were downregulated in the TaGW2-6A allelic variants, which was consistent with the changes in cells and grain filling. Thus, we speculate that TaGW2-6A allelic variants are linked with CK signaling, but they also influence the accumulation of starch by regulating the expression of related genes via the ubiquitin-proteasome system to control the grain size and grain weight.
Collapse
Affiliation(s)
- Juan Geng
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, 3 Taicheng Rd, Yangling, 712100, Shaanxi, People's Republic of China
| | - Liqun Li
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, 3 Taicheng Rd, Yangling, 712100, Shaanxi, People's Republic of China
| | - Qian Lv
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, 3 Taicheng Rd, Yangling, 712100, Shaanxi, People's Republic of China
| | - Yi Zhao
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, 3 Taicheng Rd, Yangling, 712100, Shaanxi, People's Republic of China
| | - Yan Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, 3 Taicheng Rd, Yangling, 712100, Shaanxi, People's Republic of China
| | - Li Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, 3 Taicheng Rd, Yangling, 712100, Shaanxi, People's Republic of China
| | - Xuejun Li
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, 3 Taicheng Rd, Yangling, 712100, Shaanxi, People's Republic of China.
| |
Collapse
|
48
|
Rangan P, Furtado A, Henry RJ. The transcriptome of the developing grain: a resource for understanding seed development and the molecular control of the functional and nutritional properties of wheat. BMC Genomics 2017; 18:766. [PMID: 29020946 PMCID: PMC5637334 DOI: 10.1186/s12864-017-4154-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 10/02/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Wheat is one of the three major cereals that have been domesticated to feed human populations. The composition of the wheat grain determines the functional properties of wheat including milling efficiency, bread making, and nutritional value. Transcriptome analysis of the developing wheat grain provides key insights into the molecular basis for grain development and quality. RESULTS The transcriptome of 35 genotypes was analysed by RNA-Seq at two development stages (14 and 30 days-post-anthesis, dpa) corresponding to the mid stage of development (stage Z75) and the almost mature seed (stage Z85). At 14dpa, most of the transcripts were associated with the synthesis of the major seed components including storage proteins and starch. At 30dpa, a diverse range of genes were expressed at low levels with a predominance of genes associated with seed defence and stress tolerance. RNA-Seq analysis of changes in expression between 14dpa and 30dpa stages revealed 26,477 transcripts that were significantly differentially expressed at a FDR corrected p-value cut-off at ≤0.01. Functional annotation and gene ontology mapping was performed and KEGG pathway mapping allowed grouping based upon biochemical linkages. This analysis demonstrated that photosynthesis associated with the pericarp was very active at 14dpa but had ceased by 30dpa. Recently reported genes for flour yield in milling and bread quality were found to influence wheat quality largely due to expression patterns at the earlier seed development stage. CONCLUSIONS This study serves as a resource providing an overview of gene expression during wheat grain development at the early (14dpa) and late (30dpa) grain filling stages for use in studies of grain quality and nutritional value and in understanding seed biology.
Collapse
Affiliation(s)
- Parimalan Rangan
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, St Lucia, QLD, 4072, Australia.,Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, New Delhi, 110012, India
| | - Agnelo Furtado
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, St Lucia, QLD, 4072, Australia
| | - Robert J Henry
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, St Lucia, QLD, 4072, Australia.
| |
Collapse
|
49
|
Yamasaki Y, Gao F, Jordan MC, Ayele BT. Seed maturation associated transcriptional programs and regulatory networks underlying genotypic difference in seed dormancy and size/weight in wheat (Triticum aestivum L.). BMC PLANT BIOLOGY 2017; 17:154. [PMID: 28915785 PMCID: PMC5603048 DOI: 10.1186/s12870-017-1104-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 09/08/2017] [Indexed: 05/18/2023]
Abstract
BACKGROUND Maturation forms one of the critical seed developmental phases and it is characterized mainly by programmed cell death, dormancy and desiccation, however, the transcriptional programs and regulatory networks underlying acquisition of dormancy and deposition of storage reserves during the maturation phase of seed development are poorly understood in wheat. The present study performed comparative spatiotemporal transcriptomic analysis of seed maturation in two wheat genotypes with contrasting seed weight/size and dormancy phenotype. RESULTS The embryo and endosperm tissues of maturing seeds appeared to exhibit genotype-specific temporal shifts in gene expression profile that might contribute to the seed phenotypic variations. Functional annotations of gene clusters suggest that the two tissues exhibit distinct but genotypically overlapping molecular functions. Motif enrichment predicts genotypically distinct abscisic acid (ABA) and gibberellin (GA) regulated transcriptional networks contribute to the contrasting seed weight/size and dormancy phenotypes between the two genotypes. While other ABA responsive element (ABRE) motifs are enriched in both genotypes, the prevalence of G-box-like motif specifically in tissues of the dormant genotype suggests distinct ABA mediated transcriptional mechanisms control the establishment of dormancy during seed maturation. In agreement with this, the bZIP transcription factors that co-express with ABRE enriched embryonic genes differ with genotype. The enrichment of SITEIIATCYTC motif specifically in embryo clusters of maturing seeds irrespective of genotype predicts a tissue specific role for the respective TCP transcription factors with no or minimal contribution to the variations in seed dormancy. CONCLUSION The results of this study advance our understanding of the seed maturation associated molecular mechanisms underlying variation in dormancy and weight/size in wheat seeds, which is a critical step towards the designing of molecular strategies for enhancing seed yield and quality.
Collapse
Affiliation(s)
- Yuji Yamasaki
- Department of Plant Science, University of Manitoba, 222 Agriculture Building, Winnipeg, MB R3T 2N2 Canada
| | - Feng Gao
- Department of Plant Science, University of Manitoba, 222 Agriculture Building, Winnipeg, MB R3T 2N2 Canada
| | - Mark C. Jordan
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB R6M 1Y5 Canada
| | - Belay T. Ayele
- Department of Plant Science, University of Manitoba, 222 Agriculture Building, Winnipeg, MB R3T 2N2 Canada
| |
Collapse
|
50
|
Rakszegi M, Molnár I, Lovegrove A, Darkó É, Farkas A, Láng L, Bedő Z, Doležel J, Molnár-Láng M, Shewry P. Addition of Aegilops U and M Chromosomes Affects Protein and Dietary Fiber Content of Wholemeal Wheat Flour. FRONTIERS IN PLANT SCIENCE 2017; 8:1529. [PMID: 28932231 PMCID: PMC5592229 DOI: 10.3389/fpls.2017.01529] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 08/21/2017] [Indexed: 05/22/2023]
Abstract
Cereal grain fiber is an important health-promoting component in the human diet. One option to improve dietary fiber content and composition in wheat is to introduce genes from its wild relatives Aegilops biuncialis and Aegilops geniculata. This study showed that the addition of chromosomes 2Ug, 4Ug, 5Ug, 7Ug, 2Mg, 5Mg, and 7Mg of Ae. geniculata and 3Ub, 2Mb, 3Mb, and 7Mb of Ae. biuncialis into bread wheat increased the seed protein content. Chromosomes 1Ug and 1Mg increased the proportion of polymeric glutenin proteins, while the addition of chromosomes 1Ub and 6Ub led to its decrease. Both Aegilops species had higher proportions of β-glucan compared to arabinoxylan (AX) than wheat lines, and elevated β-glucan content was also observed in wheat chromosome addition lines 5U, 7U, and 7M. The AX content in wheat was increased by the addition of chromosomes 5Ug, 7Ug, and 1Ub while water-soluble AX was increased by the addition of chromosomes 5U, 5M, and 7M, and to a lesser extent by chromosomes 3, 4, 6Ug, and 2Mb. Chromosomes 5Ug and 7Mb also affected the structure of wheat AX, as shown by the pattern of oligosaccharides released by digestion with endoxylanase. These results will help to map genomic regions responsible for edible fiber content in Aegilops and will contribute to the efficient transfer of wild alleles in introgression breeding programs to obtain wheat varieties with improved health benefits. Key Message: Addition of Aegilops U- and M-genome chromosomes 5 and 7 improves seed protein and fiber content and composition in wheat.
Collapse
Affiliation(s)
- Marianna Rakszegi
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of SciencesMartonvásár, Hungary
| | - István Molnár
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of SciencesMartonvásár, Hungary
| | - Alison Lovegrove
- Department of Plant Science, Rothamsted ResearchHarpenden, United Kingdom
| | - Éva Darkó
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of SciencesMartonvásár, Hungary
| | - András Farkas
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of SciencesMartonvásár, Hungary
| | - László Láng
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of SciencesMartonvásár, Hungary
| | - Zoltán Bedő
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of SciencesMartonvásár, Hungary
| | - Jaroslav Doležel
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural ResearchOlomouc, Czechia
| | - Márta Molnár-Láng
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of SciencesMartonvásár, Hungary
| | - Peter Shewry
- Department of Plant Science, Rothamsted ResearchHarpenden, United Kingdom
| |
Collapse
|