1
|
Patel A, Fréville A, Rey JA, Flynn HR, Koussis K, Skehel MJ, Blackman MJ, Baker DA. Plasmodium falciparum protein phosphatase PP7 is required for early ring-stage development. mBio 2024; 15:e0253924. [PMID: 39387582 PMCID: PMC11559042 DOI: 10.1128/mbio.02539-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 09/13/2024] [Indexed: 10/15/2024] Open
Abstract
We previously reported that the Plasmodium falciparum putative serine/threonine protein phosphatase 7 (PP7) is a high-confidence substrate of the cAMP-dependent protein kinase (PKA). Here we explore the function of PP7 in asexual P. falciparum blood stage parasites. We show that conditional disruption of PP7 leads to a severe growth arrest. We show that PP7 is a calcium-dependent phosphatase that interacts with calmodulin and calcium-dependent protein kinase 1 (CDPK1), consistent with a role in calcium signaling. Notably, PP7 was found to be dispensable for erythrocyte invasion, but was crucial for ring-stage development, with PP7-null parasites arresting shortly following invasion and showing no transition to ameboid forms. Phosphoproteomic analysis revealed that PP7 may regulate certain PKAc substrates. Its interaction with calmodulin and CDPK1 further emphasizes a role in calcium signaling, while its impact on early ring development and PKAc substrate phosphorylation underscores its importance in parasite development. IMPORTANCE Plasmodium falciparum causes malaria and is responsible for more than 600,000 deaths each year. Although effective drugs are available to treat disease, the spread of drug-resistant parasites endangers their future efficacy. It is hoped that a better understanding of the biology of malaria parasites will help us to discover new drugs to tackle the resistance problem. Our work is focused on the cell signaling mechanisms that control the development of the parasite throughout its complex life cycle. All signal transduction pathways are ultimately regulated by reversible protein phosphorylation by protein kinase and protein phosphatase enzymes. In this study, we investigate the function of calcium-dependent protein phosphatase PP7 and show that it is essential for the development of ring-stage parasites following the invasion of human erythrocytes. Our results contribute to the understanding of the erythrocytic stages of the parasite life cycle that cause malaria pathology.
Collapse
Affiliation(s)
- Avnish Patel
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Aline Fréville
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Joshua A. Rey
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Helen R. Flynn
- Proteomics Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Konstantinos Koussis
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Mark J. Skehel
- Proteomics Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Michael J. Blackman
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, United Kingdom
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London, United Kingdom
| | - David A. Baker
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, United Kingdom
| |
Collapse
|
2
|
Schwarzer E, Skorokhod O. Post-Translational Modifications of Proteins of Malaria Parasites during the Life Cycle. Int J Mol Sci 2024; 25:6145. [PMID: 38892332 PMCID: PMC11173270 DOI: 10.3390/ijms25116145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
Post-translational modifications (PTMs) are essential for regulating protein functions, influencing various fundamental processes in eukaryotes. These include, but are not limited to, cell signaling, protein trafficking, the epigenetic control of gene expression, and control of the cell cycle, as well as cell proliferation, differentiation, and interactions between cells. In this review, we discuss protein PTMs that play a key role in the malaria parasite biology and its pathogenesis. Phosphorylation, acetylation, methylation, lipidation and lipoxidation, glycosylation, ubiquitination and sumoylation, nitrosylation and glutathionylation, all of which occur in malarial parasites, are reviewed. We provide information regarding the biological significance of these modifications along all phases of the complex life cycle of Plasmodium spp. Importantly, not only the parasite, but also the host and vector protein PTMs are often crucial for parasite growth and development. In addition to metabolic regulations, protein PTMs can result in epitopes that are able to elicit both innate and adaptive immune responses of the host or vector. We discuss some existing and prospective results from antimalarial drug discovery trials that target various PTM-related processes in the parasite or host.
Collapse
Affiliation(s)
- Evelin Schwarzer
- Department of Oncology, University of Turin, Via Santena 5 bis, 10126 Turin, Italy;
| | - Oleksii Skorokhod
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina, 13, 10123 Turin, Italy
| |
Collapse
|
3
|
Morano AA, Rudlaff RM, Dvorin JD. A PPP-type pseudophosphatase is required for the maintenance of basal complex integrity in Plasmodium falciparum. Nat Commun 2023; 14:3916. [PMID: 37400439 DOI: 10.1038/s41467-023-39435-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 06/13/2023] [Indexed: 07/05/2023] Open
Abstract
During its asexual blood stage, P. falciparum replicates via schizogony, wherein dozens of daughter cells are formed within a single parent. The basal complex, a contractile ring that separates daughter cells, is critical for schizogony. In this study, we identify a Plasmodium basal complex protein essential for basal complex maintenance. Using multiple microscopy techniques, we demonstrate that PfPPP8 is required for uniform basal complex expansion and maintenance of its integrity. We characterize PfPPP8 as the founding member of a novel family of pseudophosphatases with homologs in other Apicomplexan parasites. By co-immunoprecipitation, we identify two additional new basal complex proteins. We characterize the unique temporal localizations of these new basal complex proteins (late-arriving) and of PfPPP8 (early-departing). In this work, we identify a novel basal complex protein, determine its specific role in segmentation, identify a new pseudophosphatase family, and establish that the P. falciparum basal complex is a dynamic structure.
Collapse
Affiliation(s)
- Alexander A Morano
- Biological and Biomedical Sciences, Harvard Medical School, Boston, MA, 02115, USA
- Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Rachel M Rudlaff
- Biological and Biomedical Sciences, Harvard Medical School, Boston, MA, 02115, USA
- Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Jeffrey D Dvorin
- Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, 02115, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
4
|
The Plasmodium falciparum Nuclear Protein Phosphatase NIF4 Is Required for Efficient Merozoite Invasion and Regulates Artemisinin Sensitivity. mBio 2022; 13:e0189722. [PMID: 35938722 PMCID: PMC9426563 DOI: 10.1128/mbio.01897-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Artemisinin resistance in Plasmodium falciparum has been associated with a mutation in the NLI-interacting factor-like phosphatase PfNIF4, in addition to the mutations in the Kelch13 protein as the major determinant. We found that PfNIF4 was predominantly expressed at the schizont stage and localized in the nuclei of the parasite. To elucidate the functions of PfNIF4 in P. falciparum, we performed PfNIF4 knockdown (KD) using the inducible ribozyme system. PfNIF4 KD attenuated merozoite invasion and affected gametocytogenesis. PfNIF4 KD parasites also showed significantly increased in vitro susceptibility to artemisinins. Transcriptomic and proteomic analysis revealed that PfNIF4 KD led to the downregulation of gene categories involved in invasion and artemisinin resistance (e.g., mitochondrial function, membrane, and Kelch13 interactome) at the trophozoite and/or schizont stage. Consistent with PfNIF4 being a protein phosphatase, PfNIF4 KD resulted in an overall upregulation of the phosphoproteome of infected erythrocytes. Quantitative phosphoproteomic profiling identified a set of PfNIF4-regulated phosphoproteins with functional similarity to FCP1 substrates, particularly proteins involved in chromatin organization and transcriptional regulation. Specifically, we observed increased phosphorylation of Ser2/5 of the tandem repeats in the C-terminal domain (CTD) of RNA polymerase II (RNAPII) upon PfNIF4 KD. Furthermore, using the TurboID-based proteomic approach, we identified that PfNIF4 interacted with the RNAPII components, AP2-domain transcription factors, and chromatin-modifiers and binders. These findings suggest that PfNIF4 may act as the RNAPII CTD phosphatase, regulating the expression of general and parasite-specific cellular pathways during the blood-stage development.
Collapse
|
5
|
Jia X, Liu F, Bai J, Zhang Y, Cui L, Cao Y, Luo E. Phosphatase inhibitors BVT-948 and alexidine dihydrochloride inhibit sexual development of the malaria parasite Plasmodium berghei. Int J Parasitol Drugs Drug Resist 2022; 19:81-88. [PMID: 35792443 PMCID: PMC9260261 DOI: 10.1016/j.ijpddr.2022.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/18/2022] [Accepted: 06/22/2022] [Indexed: 11/20/2022]
Abstract
BACKGROUND With the emergence of resistance to front-line antimalarials, there is an urgent need to develop new medicines, including those targeting sexual development. This study aimed to assess the activity of a panel of phosphatase inhibitors against the sexual development of Plasmodium berghei and evaluate their potential as transmission-blocking agents. METHODS Twenty-five compounds were screened for transmission-blocking activity in vitro using the P. berghei ookinete culture assay. The inhibitory effects on male gametogenesis, gamete-ookinete, and zygote-ookinete formation were evaluated. The transmission-blocking activity of two compounds was evaluated using an in vivo mosquito feeding assay. Their cytotoxic effects were assessed on the human cell line HepG2. RESULTS Twelve compounds inhibited P. berghei ookinete formation with an IC50 < 10 μM. Two compounds, BVT-948 and alexidine dihydrochloride, significantly inhibited different developmental stages from gametogenesis through ookinete maturation. They also showed a substantial in vivo transmission-blocking activity by the mosquito feeding assay. CONCLUSIONS Some phosphatase inhibitors effectively inhibited Plasmodium sexual development and exhibited evident transmission-blocking activity, suggesting that phosphatases are valid targets for antimalarial development.
Collapse
Affiliation(s)
- Xitong Jia
- Department of Pathogen Biology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, 110122, China
| | - Fei Liu
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, 110122, China
| | - Jie Bai
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, 110122, China
| | - Yongzhe Zhang
- Department of Pathogen Biology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, 110122, China; Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, China
| | - Liwang Cui
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, 3720 Spectrum Boulevard, Suite 304, Tampa, FL, 33612-9415, USA
| | - Yaming Cao
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, 110122, China.
| | - Enjie Luo
- Department of Pathogen Biology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, 110122, China.
| |
Collapse
|
6
|
Fréville A, Gnangnon B, Khelifa AS, Gissot M, Khalife J, Pierrot C. Deciphering the Role of Protein Phosphatases in Apicomplexa: The Future of Innovative Therapeutics? Microorganisms 2022; 10:microorganisms10030585. [PMID: 35336160 PMCID: PMC8949495 DOI: 10.3390/microorganisms10030585] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/04/2022] [Accepted: 03/05/2022] [Indexed: 12/10/2022] Open
Abstract
Parasites belonging to the Apicomplexa phylum still represent a major public health and world-wide socioeconomic burden that is greatly amplified by the spread of resistances against known therapeutic drugs. Therefore, it is essential to provide the scientific and medical communities with innovative strategies specifically targeting these organisms. In this review, we present an overview of the diversity of the phosphatome as well as the variety of functions that phosphatases display throughout the Apicomplexan parasites’ life cycles. We also discuss how this diversity could be used for the design of innovative and specific new drugs/therapeutic strategies.
Collapse
Affiliation(s)
- Aline Fréville
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Centre d’Infection et d’Immunité de Lille, 59000 Lille, France; (B.G.); (A.S.K.); (M.G.); (J.K.)
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Tropical Medicine and Hygiene, Keppel Street, London WC1E 7HT, UK
- Correspondence: (A.F.); (C.P.)
| | - Bénédicte Gnangnon
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Centre d’Infection et d’Immunité de Lille, 59000 Lille, France; (B.G.); (A.S.K.); (M.G.); (J.K.)
- Department of Epidemiology, Center for Communicable Diseases Dynamics, Harvard TH Chan School of Public Health, Boston, MA 02115, USA
| | - Asma S. Khelifa
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Centre d’Infection et d’Immunité de Lille, 59000 Lille, France; (B.G.); (A.S.K.); (M.G.); (J.K.)
| | - Mathieu Gissot
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Centre d’Infection et d’Immunité de Lille, 59000 Lille, France; (B.G.); (A.S.K.); (M.G.); (J.K.)
| | - Jamal Khalife
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Centre d’Infection et d’Immunité de Lille, 59000 Lille, France; (B.G.); (A.S.K.); (M.G.); (J.K.)
| | - Christine Pierrot
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Centre d’Infection et d’Immunité de Lille, 59000 Lille, France; (B.G.); (A.S.K.); (M.G.); (J.K.)
- Correspondence: (A.F.); (C.P.)
| |
Collapse
|
7
|
Baindara P, Agrawal S, Franco OL. Host-directed therapies for malaria and tuberculosis: common infection strategies and repurposed drugs. Expert Rev Anti Infect Ther 2022; 20:849-869. [DOI: 10.1080/14787210.2022.2044794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Piyush Baindara
- Department of Molecular Microbiology & Immunology, School of Medicine, University of Missouri, Missouri, Columbia, MO, USA
| | - Sonali Agrawal
- Immunology Division, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Agra, Uttar Pradesh, India
| | - O. L. Franco
- Proteomics Analysis and Biochemical Center, Catholic University of Brasilia, Brasilia, Brazil; S-Inova Biotech, Catholic University Dom Bosco, Campo Grande, MS, Brazil
| |
Collapse
|
8
|
Dana D, Das T, Choi A, Bhuiyan AI, Das TK, Talele TT, Pathak SK. Nek2 Kinase Signaling in Malaria, Bone, Immune and Kidney Disorders to Metastatic Cancers and Drug Resistance: Progress on Nek2 Inhibitor Development. Molecules 2022; 27:347. [PMID: 35056661 PMCID: PMC8779408 DOI: 10.3390/molecules27020347] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/27/2021] [Accepted: 12/30/2021] [Indexed: 11/25/2022] Open
Abstract
Cell cycle kinases represent an important component of the cell machinery that controls signal transduction involved in cell proliferation, growth, and differentiation. Nek2 is a mitotic Ser/Thr kinase that localizes predominantly to centrosomes and kinetochores and orchestrates centrosome disjunction and faithful chromosomal segregation. Its activity is tightly regulated during the cell cycle with the help of other kinases and phosphatases and via proteasomal degradation. Increased levels of Nek2 kinase can promote centrosome amplification (CA), mitotic defects, chromosome instability (CIN), tumor growth, and cancer metastasis. While it remains a highly attractive target for the development of anti-cancer therapeutics, several new roles of the Nek2 enzyme have recently emerged: these include drug resistance, bone, ciliopathies, immune and kidney diseases, and parasitic diseases such as malaria. Therefore, Nek2 is at the interface of multiple cellular processes and can influence numerous cellular signaling networks. Herein, we provide a critical overview of Nek2 kinase biology and discuss the signaling roles it plays in both normal and diseased human physiology. While the majority of research efforts over the last two decades have focused on the roles of Nek2 kinase in tumor development and cancer metastasis, the signaling mechanisms involving the key players associated with several other notable human diseases are highlighted here. We summarize the efforts made so far to develop Nek2 inhibitory small molecules, illustrate their action modalities, and provide our opinion on the future of Nek2-targeted therapeutics. It is anticipated that the functional inhibition of Nek2 kinase will be a key strategy going forward in drug development, with applications across multiple human diseases.
Collapse
Affiliation(s)
- Dibyendu Dana
- Chemistry and Biochemistry Department, Queens College of the City University of New York, 65-30 Kissena Blvd., Flushing, NY 11367, USA; (D.D.); (T.D.); (A.C.); (A.I.B.)
- KemPharm Inc., 2200 Kraft Drive, Blacksburg, VA 24060, USA
| | - Tuhin Das
- Chemistry and Biochemistry Department, Queens College of the City University of New York, 65-30 Kissena Blvd., Flushing, NY 11367, USA; (D.D.); (T.D.); (A.C.); (A.I.B.)
| | - Athena Choi
- Chemistry and Biochemistry Department, Queens College of the City University of New York, 65-30 Kissena Blvd., Flushing, NY 11367, USA; (D.D.); (T.D.); (A.C.); (A.I.B.)
- Brooklyn Technical High School, 29 Fort Greene Pl, Brooklyn, NY 11217, USA
| | - Ashif I. Bhuiyan
- Chemistry and Biochemistry Department, Queens College of the City University of New York, 65-30 Kissena Blvd., Flushing, NY 11367, USA; (D.D.); (T.D.); (A.C.); (A.I.B.)
- Chemistry Doctoral Program, The Graduate Center of the City University of New York, 365 5th Ave, New York, NY 10016, USA
| | - Tirtha K. Das
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
- Mindich Child Health and Development Institute, Department of Pediatrics, Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Tanaji T. Talele
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, 8000 Utopia Parkway, Queens, NY 11439, USA;
| | - Sanjai K. Pathak
- Chemistry and Biochemistry Department, Queens College of the City University of New York, 65-30 Kissena Blvd., Flushing, NY 11367, USA; (D.D.); (T.D.); (A.C.); (A.I.B.)
- Chemistry Doctoral Program, The Graduate Center of the City University of New York, 365 5th Ave, New York, NY 10016, USA
- Biochemistry Doctoral Program, The Graduate Center of the City University of New York, 365 5th Ave, New York, NY 10016, USA
| |
Collapse
|
9
|
Navarrete-Mena A, Pacheco-Yépez J, Hernández-Ramírez VI, Escalona-Montaño AR, Gómez-Sandoval JN, Néquiz-Avendaño M, Chávez-Munguía B, Tesoro-Cruz E, Talamás-Rohana P, Aguirre-García MM. Protein Phosphatase PP2C Identification in Entamoeba spp. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5746629. [PMID: 34697588 PMCID: PMC8541852 DOI: 10.1155/2021/5746629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/28/2021] [Indexed: 11/17/2022]
Abstract
Entamoeba histolytica is the causative agent of amoebiasis, and Entamoeba dispar is its noninvasive morphological twin. Entamoeba invadens is a reptilian parasite. In the present study, Western blot, phosphatase activity, immunofluorescence, and bioinformatic analyses were used to identify PP2C phosphatases of E. histolytica, E. dispar, and E. invadens. PP2C was identified in trophozoites of all Entamoeba species and cysts of E. invadens. Immunoblotting using a Leishmania mexicana anti-PP2C antibody recognized a 45.2 kDa PP2C in all species. In E. histolytica and E. invadens, a high molecular weight element PP2C at 75 kDa was recognized, mainly in cysts of E. invadens. Immunofluorescence demonstrated the presence of PP2C in membrane and vesicular structures in the cytosol of all species analyzed. The ~75 kDa PP2C of Entamoeba spp. shows the conserved domain characteristic of phosphatase enzymes (according to in silico analysis). Possible PP2C participation in the encystation process was discussed.
Collapse
Affiliation(s)
- Abril Navarrete-Mena
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de Mexico 11340, Mexico
- Unidad de Investigación UNAM-INC, División de Investigación, Facultad de Medicina, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de Mexico 14080, Mexico
| | - Judith Pacheco-Yépez
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de Mexico 11340, Mexico
| | - Verónica Ivonne Hernández-Ramírez
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y Estudios Avazados, CINVESTAV-IPN, Ciudad de México, CP 07360, Mexico
| | - Alma Reyna Escalona-Montaño
- Unidad de Investigación UNAM-INC, División de Investigación, Facultad de Medicina, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de Mexico 14080, Mexico
| | | | - Mario Néquiz-Avendaño
- Unidad de Medicina Experimental, Facultad de Medicina, UNAM, Ciudad de Mexico 06726, Mexico
| | - Bibiana Chávez-Munguía
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y Estudios Avazados, CINVESTAV-IPN, Ciudad de México, CP 07360, Mexico
| | - Emiliano Tesoro-Cruz
- Unidad de Investigación Biomédica en Inmunología e Infectología, Hospital de Infectología, Centro Médico Nacional “La Raza”, IMSS, Ciudad de Mexico 02990, Mexico
| | - Patricia Talamás-Rohana
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y Estudios Avazados, CINVESTAV-IPN, Ciudad de México, CP 07360, Mexico
| | - María Magdalena Aguirre-García
- Unidad de Investigación UNAM-INC, División de Investigación, Facultad de Medicina, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de Mexico 14080, Mexico
| |
Collapse
|
10
|
de Oliveira LS, Alborghetti MR, Carneiro RG, Bastos IMD, Amino R, Grellier P, Charneau S. Calcium in the Backstage of Malaria Parasite Biology. Front Cell Infect Microbiol 2021; 11:708834. [PMID: 34395314 PMCID: PMC8355824 DOI: 10.3389/fcimb.2021.708834] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/14/2021] [Indexed: 12/26/2022] Open
Abstract
The calcium ion (Ca2+) is a ubiquitous second messenger involved in key biological processes in prokaryotes and eukaryotes. In Plasmodium species, Ca2+ signaling plays a central role in the parasite life cycle. It has been associated with parasite development, fertilization, locomotion, and host cell infection. Despite the lack of a canonical inositol-1,4,5-triphosphate receptor gene in the Plasmodium genome, pharmacological evidence indicates that inositol-1,4,5-triphosphate triggers Ca2+ mobilization from the endoplasmic reticulum. Other structures such as acidocalcisomes, food vacuole and mitochondria are proposed to act as supplementary intracellular Ca2+ reservoirs. Several Ca2+-binding proteins (CaBPs) trigger downstream signaling. Other proteins with no EF-hand motifs, but apparently involved with CaBPs, are depicted as playing an important role in the erythrocyte invasion and egress. It is also proposed that a cross-talk among kinases, which are not members of the family of Ca2+-dependent protein kinases, such as protein kinases G, A and B, play additional roles mediated indirectly by Ca2+ regulation. This statement may be extended for proteins directly related to invasion or egress, such as SUB1, ERC, IMC1I, IMC1g, GAP45 and EBA175. In this review, we update our understanding of aspects of Ca2+-mediated signaling correlated to the developmental stages of the malaria parasite life cycle.
Collapse
Affiliation(s)
- Lucas Silva de Oliveira
- Laboratory of Biochemistry and Protein Chemistry, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasilia, Brazil
- UMR 7245 MCAM, Molécules de Communication et Adaptation des Micro-organismes, Muséum National d’Histoire Naturelle, CNRS, Équipe Parasites et Protistes Libres, Paris, France
| | - Marcos Rodrigo Alborghetti
- Laboratory of Biochemistry and Protein Chemistry, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasilia, Brazil
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | - Renata Garcia Carneiro
- Laboratory of Biochemistry and Protein Chemistry, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasilia, Brazil
| | - Izabela Marques Dourado Bastos
- Laboratory of Host-Pathogen Interaction, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasilia, Brazil
| | - Rogerio Amino
- Unité Infection et Immunité Paludéennes, Institut Pasteur, Paris, France
| | - Philippe Grellier
- UMR 7245 MCAM, Molécules de Communication et Adaptation des Micro-organismes, Muséum National d’Histoire Naturelle, CNRS, Équipe Parasites et Protistes Libres, Paris, France
| | - Sébastien Charneau
- Laboratory of Biochemistry and Protein Chemistry, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasilia, Brazil
| |
Collapse
|
11
|
Pandey R, Gupta P, Mohmmed A, Malhotra P, Gupta D. A Plasmodium falciparum protein tyrosine phosphatase inhibitor identified from the ChEMBL-NTD database blocks parasite growth. FEBS Open Bio 2021; 11:1921-1929. [PMID: 33934569 PMCID: PMC8255846 DOI: 10.1002/2211-5463.13171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/31/2021] [Indexed: 02/03/2023] Open
Abstract
Post‐translational modifications, especially reversible phosphorylation, are among the most common mechanisms that regulate protein function and biological processes in Plasmodium species. Of the Plasmodium phosphatases, phosphatase of regenerating liver (PfPRL) is secreted and is an essential phosphatase. Here, we expressed PfPRL in a heterologous expression system, and then purified and characterized its phosphatase activity. We found that Novartis_003209, a previously identified inhibitor, inhibited the PfPRL phosphatase activity of recombinant PfPRL and blocked in vitro parasite growth in a dose‐dependent manner. Further, in silico docking analysis of Novartis_003209 with all four P. falciparum tyrosine phosphatases (PTP) demonstrated that Novartis_003209 is a Plasmodium PTP inhibitor. Overall, our results identify a scaffold as a potential starting point to design a PTP‐specific inhibitor.
Collapse
Affiliation(s)
- Rajan Pandey
- Translational Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Priya Gupta
- Malaria Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Asif Mohmmed
- Parasite Cell Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Pawan Malhotra
- Malaria Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Dinesh Gupta
- Translational Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
12
|
Elsworth B, Duraisingh MT. A framework for signaling throughout the life cycle of Babesia species. Mol Microbiol 2020; 115:882-890. [PMID: 33274587 DOI: 10.1111/mmi.14650] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 01/28/2023]
Abstract
Babesia species are tick-borne intracellular parasites that infect the red blood cells of their mammalian host, leading to severe or fatal disease. Babesia spp. infect a wide range of mammalian species and cause a significant economic burden globally, predominantly through disease in cattle. Several Babesia spp. are increasingly being recognized as zoonotic pathogens of humans. Babesia spp. have complex life cycles involving multiple stages in the tick and the mammalian host. The parasite utilizes complex signaling pathways during replication, egress, and invasion in each of these stages. They must also rapidly respond to their environment when switching between the mammalian and tick stages. This review will focus on the signaling pathways and environmental stimuli that Babesia spp. utilize in the bloodstream and for transmission to the tick, with an emphasis on the role of phosphorylation- and calcium-based signaling during egress and invasion. The expanding availability of in vitro and in vivo culture systems, genomes, transcriptomes, and transgenic systems available for a range of Babesia spp. should encourage further biological and translational studies of these ubiquitous parasites.
Collapse
Affiliation(s)
- Brendan Elsworth
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Manoj T Duraisingh
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
13
|
Guttery DS, Pandey R, Ferguson DJ, Wall RJ, Brady D, Gupta D, Holder AA, Tewari R. Plasmodium DEH is ER-localized and crucial for oocyst mitotic division during malaria transmission. Life Sci Alliance 2020; 3:e202000879. [PMID: 33106323 PMCID: PMC7652392 DOI: 10.26508/lsa.202000879] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/15/2020] [Accepted: 10/15/2020] [Indexed: 11/24/2022] Open
Abstract
Cells use fatty acids (FAs) for membrane biosynthesis, energy storage, and the generation of signaling molecules. 3-hydroxyacyl-CoA dehydratase-DEH-is a key component of very long chain fatty acid synthesis. Here, we further characterized in-depth the location and function of DEH, applying in silico analysis, live cell imaging, reverse genetics, and ultrastructure analysis using the mouse malaria model Plasmodium berghei DEH is evolutionarily conserved across eukaryotes, with a single DEH in Plasmodium spp. and up to three orthologs in the other eukaryotes studied. DEH-GFP live-cell imaging showed strong GFP fluorescence throughout the life-cycle, with areas of localized expression in the cytoplasm and a circular ring pattern around the nucleus that colocalized with ER markers. Δdeh mutants showed a small but significant reduction in oocyst size compared with WT controls from day 10 postinfection onwards, and endomitotic cell division and sporogony were completely ablated, blocking parasite transmission from mosquito to vertebrate host. Ultrastructure analysis confirmed degeneration of Δdeh oocysts, and a complete lack of sporozoite budding. Overall, DEH is evolutionarily conserved, localizes to the ER, and plays a crucial role in sporogony.
Collapse
Affiliation(s)
- David S Guttery
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham, UK
- The Leicester Cancer Research Centre, College of Life Sciences, University of Leicester, Leicester, UK
| | - Rajan Pandey
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham, UK
- Translational Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - David Jp Ferguson
- Department of Biological and Medical Sciences, Faculty of Health and Life Science, Oxford Brookes University, Oxford, UK
- Nuffield Department of Clinical Laboratory Science, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Richard J Wall
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham, UK
- Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, UK
| | - Declan Brady
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham, UK
| | - Dinesh Gupta
- Translational Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | | | - Rita Tewari
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham, UK
| |
Collapse
|
14
|
Pandey R, Abel S, Boucher M, Wall RJ, Zeeshan M, Rea E, Freville A, Lu XM, Brady D, Daniel E, Stanway RR, Wheatley S, Batugedara G, Hollin T, Bottrill AR, Gupta D, Holder AA, Le Roch KG, Tewari R. Plasmodium Condensin Core Subunits SMC2/SMC4 Mediate Atypical Mitosis and Are Essential for Parasite Proliferation and Transmission. Cell Rep 2020; 30:1883-1897.e6. [PMID: 32049018 PMCID: PMC7016506 DOI: 10.1016/j.celrep.2020.01.033] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 11/12/2019] [Accepted: 01/08/2020] [Indexed: 02/06/2023] Open
Abstract
Condensin is a multi-subunit protein complex regulating chromosome condensation and segregation during cell division. In Plasmodium spp., the causative agent of malaria, cell division is atypical and the role of condensin is unclear. Here we examine the role of SMC2 and SMC4, the core subunits of condensin, during endomitosis in schizogony and endoreduplication in male gametogenesis. During early schizogony, SMC2/SMC4 localize to a distinct focus, identified as the centromeres by NDC80 fluorescence and chromatin immunoprecipitation sequencing (ChIP-seq) analyses, but do not form condensin I or II complexes. In mature schizonts and during male gametogenesis, there is a diffuse SMC2/SMC4 distribution on chromosomes and in the nucleus, and both condensin I and condensin II complexes form at these stages. Knockdown of smc2 and smc4 gene expression reveals essential roles in parasite proliferation and transmission. The condensin core subunits (SMC2/SMC4) form different complexes and may have distinct functions at various stages of the parasite life cycle.
Collapse
Affiliation(s)
- Rajan Pandey
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK
| | - Steven Abel
- Department of Molecular, Cell and Systems Biology, University of California Riverside, 900 University Ave., Riverside, CA 92521, USA
| | - Matthew Boucher
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK
| | - Richard J Wall
- Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Mohammad Zeeshan
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK
| | - Edward Rea
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK
| | - Aline Freville
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK
| | - Xueqing Maggie Lu
- Department of Molecular, Cell and Systems Biology, University of California Riverside, 900 University Ave., Riverside, CA 92521, USA
| | - Declan Brady
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK
| | - Emilie Daniel
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK
| | - Rebecca R Stanway
- Institute of Cell Biology, University of Bern, Bern 3012, Switzerland
| | - Sally Wheatley
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK
| | - Gayani Batugedara
- Department of Molecular, Cell and Systems Biology, University of California Riverside, 900 University Ave., Riverside, CA 92521, USA
| | - Thomas Hollin
- Department of Molecular, Cell and Systems Biology, University of California Riverside, 900 University Ave., Riverside, CA 92521, USA
| | - Andrew R Bottrill
- School of Life Sciences, Gibbet Hill Campus, University of Warwick, Coventry CV4 7AL, UK
| | - Dinesh Gupta
- Translational Bioinformatics Group, International Center for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Anthony A Holder
- Malaria Parasitology Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Karine G Le Roch
- Department of Molecular, Cell and Systems Biology, University of California Riverside, 900 University Ave., Riverside, CA 92521, USA.
| | - Rita Tewari
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK.
| |
Collapse
|
15
|
Singh S, Yadav R. Homology Modeling and Docking Study of Shewanella-like Protein Phosphatase Involved in the Development of Ookinetes in Plasmodium. J Pharm Bioallied Sci 2019; 11:223-231. [PMID: 31555028 PMCID: PMC6662043 DOI: 10.4103/jpbs.jpbs_205_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Objective: Parasites of the genus Plasmodium cause a great deal of morbidity and mortality worldwide, largely in regions with limited access and indication to the tools necessary to control mosquito populations and to treat human infections of malaria. Five species of this class of eukaryotic pathogens cause different human diseases, with Plasmodium falciparum alone infecting approximately 500 million people per year and resulting in approximately one million deaths. Materials and Methods: The two genes encoding the Shewanella-like protein phosphatases of P. falciparum, SHLP1 and SHLP2, are conserved among members of Plasmodiidae family. SHLP is frequently found in asexual blood stages and expressed at all stages of the life cycle of parasite. SHLP deletion results in a reduction in microneme formation, ookinetes (zygote) development, and complete ablation of oocyst formation, thereby blocking transmission of parasite. Structure modeling of SHLP protein can be helpful in understanding the active site and binding site information and hence can be used for drug designing and for therapeutics against malaria. Study of SHLP and its variants was carried out using UniProtKB database. Homology modeling was performed using Schrödinger software, and the modeled structure was verified using Ramachandran plot. Ten antioxidants were searched in PubChem database for docking and comparative analysis. Docking was carried out against SHLP-modeled protein, and the ligand–protein interaction map was analyzed. Effective role of resveratrol was studied against SHLP protein using docking method to identify protein–ligand interaction scheme and bond formation. Results: SHLP protein was modeled and docking was carried out to identify the binding sites and interaction with the SHLP protein. Docking study suggested that resveratrol has a strong interaction with SHLP protein and can be used as a potential ligand for drug designing. Conclusion: SHLP plays a crucial role in ookinetes and microneme development in Plasmodium; hence ligand, which can interact and inhibit SHLP protein, can be a potential drug against malarial parasite development. We studied the binding of antioxidant, such as resveratrol, with this protein-using docking method and it was found that resveratrol as an antioxidant can bind with the target SHLP protein.
Collapse
Affiliation(s)
- Sandhini Singh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, India
| | - Ruchi Yadav
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, India
| |
Collapse
|
16
|
Zhu X, Sun L, He Y, Wei H, Hong M, Liu F, Liu Q, Cao Y, Cui L. Plasmodium berghei serine/threonine protein phosphatase PP5 plays a critical role in male gamete fertility. Int J Parasitol 2019; 49:685-695. [DOI: 10.1016/j.ijpara.2019.03.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 03/18/2019] [Indexed: 02/06/2023]
|
17
|
Raturi V, Abhishek K, Jana S, Bag SS, Trivedi V. Virtual Screening, Molecular Modelling and Biochemical Studies to Exploit PF14_0660 as a Target to Identify Novel Anti-malarials. LETT DRUG DES DISCOV 2019. [DOI: 10.2174/1570180815666180727121200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Malaria Parasite relies heavily on signal transduction pathways to control
growth, the progression of the life cycle and sustaining stress for its survival. Unlike kinases,
Plasmodium's phosphatome is one of the smallest and least explored for identifying drug target
for clinical intervention. PF14_0660 is a putative protein present on the chromosome 14 of
Plasmodium falciparum genome.
Methods:
Multiple sequence alignment of PF14_0660 with other known protein phosphatase indicate
the presence of phosphatase motif with specific residues essential for metal binding, catalysis
and providing structural stability. PF14_0660 is a mixed α/β type of protein with several β -sheet
and α-helix arranged to form βαβαβα sub-structure. The surface properties of PF14_0660 is conserved
with another phosphate of this family, but it profoundly diverges from the host protein tyrosine
phosphatase. PF14_0660 was cloned, over-expressed and protein is exhibiting phosphatase
activity in a dose-dependent manner. Docking of Heterocyclic compounds from chemical libraries
into the PF14_0660 active site found nice fitting of several candidate molecules.
Results:
Compound PPinh6, PPinh 7 and PPinh 5 are exhibiting antimalarial activity with an IC50
of 1.4 ± 0.2µM, 3.8 ± 0.3 µM and 9.4 ± 0.6µM respectively. Compound PPinh 6 and PPinh 7 are
inhibiting intracellular PF14_0660 phosphatase activity and killing parasite through the generation
of reactive oxygen species.
Conclusion:
Hence, a combination of molecular modelling, virtual screening and biochemical study
allowed us to explore the potentials of PF14_0660 as a drug target to design anti-malarials.
Collapse
Affiliation(s)
- Vimee Raturi
- Malaria Research Group, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati-781039, Assam, India
| | - Kumar Abhishek
- Malaria Research Group, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati-781039, Assam, India
| | - Subhashis Jana
- Department of Chemistry, Indian Institute of Technology-Guwahati, Guwahati- 781039, Assam, India
| | - Subhendu Sekhar Bag
- Department of Chemistry, Indian Institute of Technology-Guwahati, Guwahati- 781039, Assam, India
| | - Vishal Trivedi
- Malaria Research Group, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati-781039, Assam, India
| |
Collapse
|
18
|
Banu K, Mitra P, Subbarao N, Dhar SK. Role of tyrosine residue (Y213) in nuclear retention of PCNA1 in human malaria parasite Plasmodium falciparum. FEMS Microbiol Lett 2018; 365:5056156. [PMID: 30052905 DOI: 10.1093/femsle/fny182] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Accepted: 07/17/2018] [Indexed: 01/03/2023] Open
Abstract
Proliferating Cell Nuclear Antigen (PCNA) undergoes several post-translational modifications including phosphorylation leading to its regulation in mammalian and yeast systems. Plasmodium falciparum possesses two PCNAs (PCNA1 & PCNA2) with an edge of PfPCNA1 over PfPCNA2 for DNA replication. Recent phospho-proteome data report phosphorylation of S191 residue without its functional implication. In mammalian cells, phosphorylation of HsPCNA at Y211 stabilizes chromatin bound PCNA. We find tyrosine (but not S191) to be conserved in PfPCNAs and it is important for its nuclear localization and foci formation of PfPCNA1. Further, a Y213F mutation in PfPCNA1 leads to its functional loss both in yeast and parasite. We highlight the importance of evolutionarily conserved tyrosine in PCNA from parasite to mammal linked with DNA replication and cell proliferation.
Collapse
Affiliation(s)
- Khadija Banu
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Pallabi Mitra
- School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Naidu Subbarao
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Suman Kumar Dhar
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| |
Collapse
|
19
|
Plasmodium APC3 mediates chromosome condensation and cytokinesis during atypical mitosis in male gametogenesis. Sci Rep 2018; 8:5610. [PMID: 29618731 PMCID: PMC5884774 DOI: 10.1038/s41598-018-23871-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 03/21/2018] [Indexed: 12/12/2022] Open
Abstract
The anaphase promoting complex/cyclosome (APC/C) is a highly conserved multi-subunit E3 ubiquitin ligase that controls mitotic division in eukaryotic cells by tagging cell cycle regulators for proteolysis. APC3 is a key component that contributes to APC/C function. Plasmodium, the causative agent of malaria, undergoes atypical mitotic division during its life cycle. Only a small subset of APC/C components has been identified in Plasmodium and their involvement in atypical cell division is not well understood. Here, using reverse genetics we examined the localisation and function of APC3 in Plasmodium berghei. APC3 was observed as a single focus that co-localised with the centriolar plaque during asexual cell division in schizonts, whereas it appeared as multiple foci in male gametocytes. Functional studies using gene disruption and conditional knockdown revealed essential roles of APC3 during these mitotic stages with loss resulting in a lack of chromosome condensation, abnormal cytokinesis and absence of microgamete formation. Overall, our data suggest that Plasmodium utilises unique cell cycle machinery to coordinate various processes during endomitosis, and this warrants further investigation in future studies.
Collapse
|
20
|
Miliu A, Lebrun M, Braun-Breton C, Lamarque MH. Shelph2, a bacterial-like phosphatase of the malaria parasite Plasmodium falciparum, is dispensable during asexual blood stage. PLoS One 2017; 12:e0187073. [PMID: 29073264 PMCID: PMC5658161 DOI: 10.1371/journal.pone.0187073] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/12/2017] [Indexed: 12/03/2022] Open
Abstract
During the erythrocytic cycle of the malaria parasite Plasmodium falciparum, egress and invasion are essential steps finely controlled by reversible phosphorylation. In contrast to the growing number of kinases identified as key regulators, phosphatases have been poorly studied, and calcineurin is the only one identified so far to play a role in invasion. PfShelph2, a bacterial-like phosphatase, is a promising candidate to participate in the invasion process, as it was reported to be expressed late during the asexual blood stage and to reside within an apical compartment, yet distinct from rhoptry bulb, micronemes, or dense granules. It was also proposed to play a role in the control of the red blood cell membrane deformability at the end of the invasion process. However, genetic studies are still lacking to support this hypothesis. Here, we take advantage of the CRISPR-Cas9 technology to tag shelph2 genomic locus while retaining its endogenous regulatory regions. This new strain allows us to follow the endogenous PfShelph2 protein expression and location during asexual blood stages. We show that PfShelph2 apical location is also distinct from the rhoptry neck or exonemes. We further demonstrate PfShelph2 dispensability during the asexual blood stage by generating PfShelph2-KO parasites using CRISPR-Cas9 machinery. Analyses of the mutant during the course of the erythrocytic development indicate that there are no detectable phenotypic consequences of Pfshelph2 genomic deletion. As this lack of phenotype might be due to functional redundancy, we also explore the likelihood of PfShelph1 (PfShelph2 paralog) being a compensatory phosphatase. We conclude that despite its cyclic expression profile, PfShelph2 is a dispensable phosphatase during the Plasmodium falciparum asexual blood stage, whose function is unlikely substituted by PfShelph1.
Collapse
Affiliation(s)
| | - Maryse Lebrun
- DIMNP, CNRS, Université de Montpellier, Montpellier, France
| | | | - Mauld H. Lamarque
- DIMNP, CNRS, Université de Montpellier, Montpellier, France
- * E-mail:
| |
Collapse
|
21
|
Yang C, Arrizabalaga G. The serine/threonine phosphatases of apicomplexan parasites. Mol Microbiol 2017; 106:1-21. [PMID: 28556455 DOI: 10.1111/mmi.13715] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2017] [Indexed: 12/21/2022]
Abstract
The balance between phosphorylation and de-phosphorylation, which is delicately regulated by protein kinases and phosphatases, is critical for nearly all biological processes. The Apicomplexa are a large phylum which contains various parasitic protists, including human pathogens, such as Plasmodium, Toxoplasma, Cryptosporidium and Babesia species. The diverse life cycles of these parasites are highly complex and, not surprisingly, many of their key steps are exquisitely regulated by phosphorylation. Interestingly, many of the kinases and phosphatases, as well as the substrates involved in these events are unique to the parasites and therefore phosphorylation constitutes a viable target for antiparasitic intervention. Most progress on this realm has come from studies in Toxoplasma and Plasmodium of their respective kinomes and phosphoproteomes. Nonetheless, given their likely importance, phosphatases have recently become the focus of research within the apicomplexan parasites. In this review, we concentrate on serine/threonine phosphatases in apicomplexan parasites, with the focus on comprehensively identifying and naming protein phosphatases in available apicomplexan genomes, and summarizing the progress of their functional analyses in recent years.
Collapse
Affiliation(s)
- Chunlin Yang
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Gustavo Arrizabalaga
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
22
|
Mukherjee A, Bopp S, Magistrado P, Wong W, Daniels R, Demas A, Schaffner S, Amaratunga C, Lim P, Dhorda M, Miotto O, Woodrow C, Ashley EA, Dondorp AM, White NJ, Wirth D, Fairhurst R, Volkman SK. Artemisinin resistance without pfkelch13 mutations in Plasmodium falciparum isolates from Cambodia. Malar J 2017; 16:195. [PMID: 28494763 PMCID: PMC5427620 DOI: 10.1186/s12936-017-1845-5] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 04/29/2017] [Indexed: 12/31/2022] Open
Abstract
Background Artemisinin resistance is associated with delayed parasite clearance half-life in vivo and correlates with ring-stage survival under dihydroartemisinin in vitro. Both phenotypes are associated with mutations in the PF3D7_1343700 pfkelch13 gene. Recent spread of artemisinin resistance and emerging piperaquine resistance in Southeast Asia show that artemisinin combination therapy, such as dihydroartemisinin–piperaquine, are losing clinical effectiveness, prompting investigation of drug resistance mechanisms and development of strategies to surmount emerging anti-malarial resistance. Methods Sixty-eight parasites isolates with in vivo clearance data were obtained from two Tracking Resistance to Artemisinin Collaboration study sites in Cambodia, culture-adapted, and genotyped for pfkelch13 and other mutations including pfmdr1 copy number; and the RSA0–3h survival rates and response to antimalarial drugs in vitro were measured for 36 of these isolates. Results Among these 36 parasites one isolate demonstrated increased ring-stage survival for a PfKelch13 mutation (D584V, RSA0–3h = 8%), previously associated with slow clearance but not yet tested in vitro. Several parasites exhibited increased ring-stage survival, yet lack pfkelch13 mutations, and one isolate showed evidence for piperaquine resistance. Conclusions This study of 68 culture-adapted Plasmodium falciparum clinical isolates from Cambodia with known clearance values, associated the D584V PfKelch13 mutation with increased ring-stage survival and identified parasites that lack pfkelch13 mutations yet exhibit increased ring-stage survival. These data suggest mutations other than those found in pfkelch13 may be involved in conferring artemisinin resistance in P. falciparum. Piperaquine resistance was also detected among the same Cambodian samples, consistent with reports of emerging piperaquine resistance in the field. These culture-adapted parasites permit further investigation of mechanisms of both artemisinin and piperaquine resistance and development of strategies to prevent or overcome anti-malarial resistance. Electronic supplementary material The online version of this article (doi:10.1186/s12936-017-1845-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Angana Mukherjee
- Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, I-704, Boston, MA, 02115, USA
| | - Selina Bopp
- Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, I-704, Boston, MA, 02115, USA
| | - Pamela Magistrado
- Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, I-704, Boston, MA, 02115, USA
| | - Wesley Wong
- Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, I-704, Boston, MA, 02115, USA
| | - Rachel Daniels
- Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, I-704, Boston, MA, 02115, USA.,Infectious Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Allison Demas
- Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, I-704, Boston, MA, 02115, USA
| | - Stephen Schaffner
- Infectious Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Chanaki Amaratunga
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Pharath Lim
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Mehul Dhorda
- Asia Regional Centre, Worldwide Antimalarial Resistance Network, Bangkok, Thailand.,Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | - Olivo Miotto
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand.,Centre for Genomics and Global Health, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK.,Wellcome Trust Sanger Institute, Hinxton, UK
| | - Charles Woodrow
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK.,Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Elizabeth A Ashley
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK.,Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Arjen M Dondorp
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK.,Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand.,Department of Intensive Care, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Nicholas J White
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK.,Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Dyann Wirth
- Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, I-704, Boston, MA, 02115, USA.,Infectious Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Rick Fairhurst
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Sarah K Volkman
- Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, I-704, Boston, MA, 02115, USA. .,Infectious Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA, USA. .,School of Nursing and Health Sciences, Simmons College, Boston, MA, USA.
| |
Collapse
|
23
|
Deep Insight into the Phosphatomes of Parasitic Protozoa and a Web Resource ProtozPhosDB. PLoS One 2016; 11:e0167594. [PMID: 27930683 PMCID: PMC5145157 DOI: 10.1371/journal.pone.0167594] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 11/16/2016] [Indexed: 11/19/2022] Open
Abstract
Phosphorylation dynamically regulates the function of proteins by maintaining a balance between protein kinase and phosphatase activity. A comprehensive understanding of the role phosphatases in cellular signaling is lacking in case of protozoans of medical and veterinary importance worldwide. The drugs used to treat protozoal diseases have many undesired effects and the development of resistance, highlights the need for new effective and safer antiprotozoal agents. In the present study we have analyzed phosphatomes of 15 protozoans of medical significance. We identified ~2000 phosphatases, out of which 21% are uncharacterized proteins. A significant positive correlation between phosphatome and proteome size was observed except for E. histolytica, having highest density of phosphatases irrespective of its proteome size. A difference in the number of phosphatases among different genera shows the variation in the signaling pathways they are involved in. The phosphatome of parasites is dominated by ser/thr phosphatases contrary to the vertebrate host dominated by tyrosine phosphatases. Phosphatases were widely distributed throughout the cell suggesting physiological adaptation of the parasite to regulate its host. 20% to 45% phosphatome of different protozoa consists of ectophosphatases, i.e. crucial for the survival of parasites. A database and a webserver "ProtozPhosDB" can be used to explore the phosphatomes of protozoans of medical significance.
Collapse
|
24
|
Carvalho TG, Morahan B, John von Freyend S, Boeuf P, Grau G, Garcia-Bustos J, Doerig C. The ins and outs of phosphosignalling in Plasmodium: Parasite regulation and host cell manipulation. Mol Biochem Parasitol 2016; 208:2-15. [PMID: 27211241 DOI: 10.1016/j.molbiopara.2016.05.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 05/16/2016] [Indexed: 12/15/2022]
Abstract
Signal transduction and kinomics have been rapidly expanding areas of investigation within the malaria research field. Here, we provide an overview of phosphosignalling pathways that operate in all stages of the Plasmodium life cycle. We review signalling pathways in the parasite itself, in the cells it invades, and in other cells of the vertebrate host with which it interacts. We also discuss the potential of these pathways as novel targets for antimalarial intervention.
Collapse
Affiliation(s)
- Teresa Gil Carvalho
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Victoria 3800, Australia
| | - Belinda Morahan
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Victoria 3800, Australia
| | - Simona John von Freyend
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Victoria 3800, Australia
| | - Philippe Boeuf
- Burnet Institute, Melbourne, Victoria 3004, Australia; The University of Melbourne, Department of Medicine, Melbourne, Victoria 3010, Australia; Victorian Infectious Diseases Service, Royal Melbourne Hospital, Melbourne, Victoria 3010, Australia
| | - Georges Grau
- Vascular Immunology Unit, Department of Pathology, Sydney Medical School, University of Sydney, Camperdown, New South Wales 2050, Australia
| | - Jose Garcia-Bustos
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Victoria 3800, Australia
| | - Christian Doerig
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Victoria 3800, Australia.
| |
Collapse
|
25
|
Zhang M, Mishra S, Sakthivel R, Fontoura BMA, Nussenzweig V. UIS2: A Unique Phosphatase Required for the Development of Plasmodium Liver Stages. PLoS Pathog 2016; 12:e1005370. [PMID: 26735921 PMCID: PMC4712141 DOI: 10.1371/journal.ppat.1005370] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 12/07/2015] [Indexed: 12/28/2022] Open
Abstract
Plasmodium salivary sporozoites are the infectious form of the malaria parasite and are dormant inside salivary glands of Anopheles mosquitoes. During dormancy, protein translation is inhibited by the kinase UIS1 that phosphorylates serine 59 in the eukaryotic initiation factor 2α (eIF2α). De-phosphorylation of eIF2α-P is required for the transformation of sporozoites into the liver stage. In mammalian cells, the de-phosphorylation of eIF2α-P is mediated by the protein phosphatase 1 (PP1). Using a series of genetically knockout parasites we showed that in malaria sporozoites, contrary to mammalian cells, the eIF2α-P phosphatase is a member of the PP2C/PPM phosphatase family termed UIS2. We found that eIF2α was highly phosphorylated in uis2 conditional knockout sporozoites. These mutant sporozoites maintained the crescent shape after delivery into mammalian host and lost their infectivity. Both uis1 and uis2 were highly transcribed in the salivary gland sporozoites but uis2 expression was inhibited by the Pumilio protein Puf2. The repression of uis2 expression was alleviated when sporozoites developed into liver stage. While most eukaryotic phosphatases interact transiently with their substrates, UIS2 stably bound to phosphorylated eIF2α, raising the possibility that high-throughput searches may identify chemicals that disrupt this interaction and prevent malaria infection. Malaria is transmitted to humans by female mosquitoes as they take a blood meal. Plasmodium sporozoites are the infectious and quiescent forms of malaria parasites, which reside in the salivary glands of mosquitoes. Global protein synthesis is inhibited in sporozoites through phosphorylation of the translational factor eIF2α. However, the development of the parasites in the host liver requires de-phosphorylation of eIF2α-P. We find that a unique Plasmodium phosphatase termed UIS2 de-phosphorylates eIF2α-P in malaria. The eIF2α is highly phosphorylated in the uis2 mutant sporozoites. The uis2 mutant parasites did not change their morphology after delivery into the host and could not properly infect the host. We also showed that UIS2 expression was inhibited by the Pumilio protein Puf2. However, this repression was relieved when sporozoites developed into liver stage. In sum, our findings revealed a new mechanism that evolved to control eIF2α dephosphorylation and suggest that identification of UIS2 inhibitors may be useful in anti-malaria therapy.
Collapse
Affiliation(s)
- Min Zhang
- Department of Pathology, New York University School of Medicine, New York, New York, United States of America
- HIV and Malaria Vaccine Program, Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, New York, New York, United States of America
- * E-mail:
| | - Satish Mishra
- Division of Parasitology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Ramanavelan Sakthivel
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Beatriz M. A. Fontoura
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Victor Nussenzweig
- Department of Pathology, New York University School of Medicine, New York, New York, United States of America
| |
Collapse
|
26
|
Dorin-Semblat D, Demarta-Gatsi C, Hamelin R, Armand F, Carvalho TG, Moniatte M, Doerig C. Malaria Parasite-Infected Erythrocytes Secrete PfCK1, the Plasmodium Homologue of the Pleiotropic Protein Kinase Casein Kinase 1. PLoS One 2015; 10:e0139591. [PMID: 26629826 PMCID: PMC4668060 DOI: 10.1371/journal.pone.0139591] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 09/14/2015] [Indexed: 11/18/2022] Open
Abstract
Casein kinase 1 (CK1) is a pleiotropic protein kinase implicated in several fundamental processes of eukaryotic cell biology. Plasmodium falciparum encodes a single CK1 isoform, PfCK1, that is expressed at all stages of the parasite’s life cycle. We have previously shown that the pfck1 gene cannot be disrupted, but that the locus can be modified if no loss-of-function is incurred, suggesting an important role for this kinase in intra-erythrocytic asexual proliferation. Here, we report on the use of parasite lines expressing GFP- or His-tagged PfCK1 from the endogenous locus to investigate (i) the dynamics of PfCK1 localisation during the asexual cycle in red blood cells, and (ii) potential interactors of PfCK1, so as to gain insight into the involvement of the enzyme in specific cellular processes. Immunofluorescence analysis reveals a dynamic localisation of PfCK1, with evidence for a pool of the enzyme being directed to the membrane of the host erythrocyte in the early stages of infection, followed by a predominantly intra-parasite localisation in trophozoites and schizonts and association with micronemes in merozoites. Furthermore, we present strong evidence that a pool of enzymatically active PfCK1 is secreted into the culture supernatant, demonstrating that PfCK1 is an ectokinase. Our interactome experiments and ensuing kinase assays using recombinant PfCK1 to phosphorylate putative interactors in vitro suggest an involvement of PfCK1 in many cellular processes such as mRNA splicing, protein trafficking, ribosomal, and host cell invasion.
Collapse
Affiliation(s)
- Dominique Dorin-Semblat
- UMR S1134, Institut National de Transfusion Sanguine, 6 Rue Alexandre Cabanel, 75015 Paris, France
| | - Claudia Demarta-Gatsi
- Institut Pasteur, Unité de Biologie des Interactions Hôte-Parasites, 25–28 rue du Dr Roux, Paris F-75015, France
| | - Romain Hamelin
- Proteomics Core Facility, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Florence Armand
- Proteomics Core Facility, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Teresa Gil Carvalho
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Victoria, Australia, 3800
| | - Marc Moniatte
- Proteomics Core Facility, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Christian Doerig
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Victoria, Australia, 3800
- * E-mail:
| |
Collapse
|
27
|
Patel S, Joshi D, Soni R, Sharma D, Bhatt TK. Molecular modeling, in silico screening and molecular dynamics of PfPRL-PTP of P. falciparum for identification of potential anti-malarials. J Biomol Struct Dyn 2015; 34:1330-44. [PMID: 26313238 DOI: 10.1080/07391102.2015.1078746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Millions of deaths occur every year due to malaria. Growing resistance against existing drugs for treatment of malaria has exaggerated the problem further. There is an intense demand of identifying drug targets in malaria parasite. PfPRL-PTP protein is PRL group of phosphatase, and one of the interesting drug targets being involved in three important pathways of malaria parasite (secretion, phosphorylation, and prenylation). Therefore, in this study, we have modeled three-dimensional structure of PfPRL-PTP followed by validation of 3D structure using RAMPAGE, verify3D, and other structure validation tools. We could identify 12 potential inhibitory compounds using in silico screening of NCI library against PfPRL-PTP with Glide. The molecular dynamics simulation was also performed using GROMACS on PfPRL-PTP model alone and PfPRL-PTP-inhibitor complex. This study of identifying potential drug-like molecules would add up to the process of drug discovery against malaria parasite.
Collapse
Affiliation(s)
- Sachin Patel
- a Department of Biotechnology , Central University of Rajasthan , NH-8, Bandarsindri 305801 , Rajasthan , India
| | - Deepti Joshi
- a Department of Biotechnology , Central University of Rajasthan , NH-8, Bandarsindri 305801 , Rajasthan , India
| | - Rani Soni
- a Department of Biotechnology , Central University of Rajasthan , NH-8, Bandarsindri 305801 , Rajasthan , India
| | - Drista Sharma
- a Department of Biotechnology , Central University of Rajasthan , NH-8, Bandarsindri 305801 , Rajasthan , India
| | - Tarun Kumar Bhatt
- a Department of Biotechnology , Central University of Rajasthan , NH-8, Bandarsindri 305801 , Rajasthan , India
| |
Collapse
|
28
|
Guttery DS, Poulin B, Ramaprasad A, Wall RJ, Ferguson DJP, Brady D, Patzewitz EM, Whipple S, Straschil U, Wright MH, Mohamed AMAH, Radhakrishnan A, Arold ST, Tate EW, Holder AA, Wickstead B, Pain A, Tewari R. Genome-wide functional analysis of Plasmodium protein phosphatases reveals key regulators of parasite development and differentiation. Cell Host Microbe 2015; 16:128-40. [PMID: 25011111 PMCID: PMC4094981 DOI: 10.1016/j.chom.2014.05.020] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 04/17/2014] [Accepted: 05/27/2014] [Indexed: 12/24/2022]
Abstract
Reversible protein phosphorylation regulated by kinases and phosphatases controls many cellular processes. Although essential functions for the malaria parasite kinome have been reported, the roles of most protein phosphatases (PPs) during Plasmodium development are unknown. We report a functional analysis of the Plasmodium berghei protein phosphatome, which exhibits high conservation with the P. falciparum phosphatome and comprises 30 predicted PPs with differential and distinct expression patterns during various stages of the life cycle. Gene disruption analysis of P. berghei PPs reveals that half of the genes are likely essential for asexual blood stage development, whereas six are required for sexual development/sporogony in mosquitoes. Phenotypic screening coupled with transcriptome sequencing unveiled morphological changes and altered gene expression in deletion mutants of two N-myristoylated PPs. These findings provide systematic functional analyses of PPs in Plasmodium, identify how phosphatases regulate parasite development and differentiation, and can inform the identification of drug targets for malaria. Phylogenetic analysis identifies 30 Plasmodium berghei protein phosphatases (PPs) Functional analysis reveals role for six PPs in sexual development/sporogony Two N-myristoylated PPs play key roles in sex allocation and parasite transmission RNA-Seq highlights significantly altered gene clusters in the N-myristoylated PP mutants
Collapse
Affiliation(s)
- David S Guttery
- Centre for Genetics and Genomics, School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham NG2 7UH, UK
| | - Benoit Poulin
- Centre for Genetics and Genomics, School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham NG2 7UH, UK
| | - Abhinay Ramaprasad
- Computational Bioscience Research Center (CBRC), Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Richard J Wall
- Centre for Genetics and Genomics, School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham NG2 7UH, UK
| | - David J P Ferguson
- Nuffield Department of Clinical Laboratory Science, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Declan Brady
- Centre for Genetics and Genomics, School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham NG2 7UH, UK
| | - Eva-Maria Patzewitz
- Centre for Genetics and Genomics, School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham NG2 7UH, UK
| | - Sarah Whipple
- Centre for Genetics and Genomics, School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham NG2 7UH, UK
| | - Ursula Straschil
- Division of Cell and Molecular Biology, Imperial College London, Exhibition Road, London SW7 2AZ, UK
| | - Megan H Wright
- Department of Chemistry, Imperial College London, Exhibition Road, London SW7 2AZ, UK
| | - Alyaa M A H Mohamed
- Computational Bioscience Research Center (CBRC), Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Anand Radhakrishnan
- Computational Bioscience Research Center (CBRC), Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Stefan T Arold
- Computational Bioscience Research Center (CBRC), Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Edward W Tate
- Department of Chemistry, Imperial College London, Exhibition Road, London SW7 2AZ, UK
| | - Anthony A Holder
- Division of Parasitology, MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, UK.
| | - Bill Wickstead
- Centre for Genetics and Genomics, School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham NG2 7UH, UK
| | - Arnab Pain
- Computational Bioscience Research Center (CBRC), Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Rita Tewari
- Centre for Genetics and Genomics, School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham NG2 7UH, UK.
| |
Collapse
|
29
|
Philip N, Waters AP. Conditional Degradation of Plasmodium Calcineurin Reveals Functions in Parasite Colonization of both Host and Vector. Cell Host Microbe 2015; 18:122-31. [PMID: 26118994 PMCID: PMC4509507 DOI: 10.1016/j.chom.2015.05.018] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 04/29/2015] [Accepted: 05/27/2015] [Indexed: 12/01/2022]
Abstract
Functional analysis of essential genes in the malarial parasite, Plasmodium, is hindered by lack of efficient strategies for conditional protein regulation. We report the development of a rapid, specific, and inducible chemical-genetic tool in the rodent malaria parasite, P. berghei, in which endogenous proteins engineered to contain the auxin-inducible degron (AID) are selectively degraded upon adding auxin. Application of AID to the calcium-regulated protein phosphatase, calcineurin, revealed functions in host and vector stages of parasite development. Whereas depletion of calcineurin in late-stage schizonts demonstrated its critical role in erythrocyte attachment and invasion in vivo, stage-specific depletion uncovered roles in gamete development, fertilization, and ookinete-to-oocyst and sporozoite-to-liver stage transitions. Furthermore, AID technology facilitated concurrent generation and phenotyping of transgenic lines, allowing multiple lines to be assessed simultaneously with significant reductions in animal use. This study highlights the broad applicability of AID for functional analysis of proteins across the Plasmodium life cycle. Calcineurin regulates colonization of host cells across the Plasmodium life cycle Calcineurin regulates male gametogenesis AID technology is broadly applicable to study protein function in Plasmodium Multiplexing of AID technology results in substantially reduced animal use
Collapse
Affiliation(s)
- Nisha Philip
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical Veterinary & Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK.
| | - Andrew P Waters
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical Veterinary & Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK.
| |
Collapse
|
30
|
Abstract
Post-translational modifications play crucial parts in regulating protein function and thereby control several fundamental aspects of eukaryotic biology, including cell signalling, protein trafficking, epigenetic control of gene expression, cell-cell interactions, and cell proliferation and differentiation. In this Review, we discuss protein modifications that have been shown to have a key role in malaria parasite biology and pathogenesis. We focus on phosphorylation, acetylation, methylation and lipidation. We provide an overview of the biological significance of these modifications and discuss prospects and progress in antimalarial drug discovery based on the inhibition of the enzymes that mediate these modifications.
Collapse
|
31
|
Pandey R, Mohmmed A, Pierrot C, Khalife J, Malhotra P, Gupta D. Genome wide in silico analysis of Plasmodium falciparum phosphatome. BMC Genomics 2014; 15:1024. [PMID: 25425018 PMCID: PMC4256932 DOI: 10.1186/1471-2164-15-1024] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 11/12/2014] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Eukaryotic cellular machineries are intricately regulated by several molecular mechanisms involving transcriptional control, post-translational control and post-translational modifications of proteins (PTMs). Reversible protein phosphorylation/dephosphorylation process, which involves kinases as well as phosphatases, represents an important regulatory mechanism for diverse pathways and systems in all organisms including human malaria parasite, Plasmodium falciparum. Earlier analysis on P. falciparum protein-phosphatome revealed presence of 34 phosphatases in Plasmodium genome. Recently, we re-analysed P. falciparum phosphatome aimed at identifying parasite specific phosphatases. RESULTS Plasmodium database (PlasmoDB 9.2) search, combined with PFAM and CDD searches, revealed 67 candidate phosphatases in P. falciparum. While this number is far less than the number of phosphatases present in Homo sapiens, it is almost the same as in other Plasmodium species. These Plasmodium phosphatase proteins were classified into 13 super families based on NCBI CDD search. Analysis of proteins expression profiles of the 67 phosphatases revealed that 44 phosphatases are expressed in both schizont as well as gametocytes stages. Fourteen phosphatases are common in schizont, ring and trophozoite stages, four phosphatases are restricted to gametocytes, whereas another three restricted to schizont stage. The phylogenetic trees for each of the known phosphatase super families reveal a considerable phylogenetic closeness amongst apicomplexan organisms and a considerable phylogenetic distance with other eukaryotic model organisms included in the study. The GO assignments and predicted interaction partners of the parasite phosphatases indicate its important role in diverse cellular processes. CONCLUSION In the study presented here, we reviewed the P. falciparum phosphatome to show presence of 67 candidate phosphatases in P. falciparum genomes/proteomes. Intriguingly, amongst these phosphatases, we could identify six Plasmodium specific phosphatases and 33 putative phosphatases that do not have human orthologs, thereby suggesting that these phosphatases have the potential to be explored as novel antimalarial drug targets.
Collapse
Affiliation(s)
| | | | | | - Jamal Khalife
- Structural and Computational Biology group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India.
| | | | | |
Collapse
|
32
|
Fréville A, Tellier G, Vandomme A, Pierrot C, Vicogne J, Cantrelle FX, Martoriati A, Cailliau-Maggio K, Khalife J, Landrieu I. Identification of a Plasmodium falciparum inhibitor-2 motif involved in the binding and regulation activity of protein phosphatase type 1. FEBS J 2014; 281:4519-34. [PMID: 25132288 DOI: 10.1111/febs.12960] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 07/25/2014] [Accepted: 08/05/2014] [Indexed: 11/28/2022]
Abstract
The regulation of Plasmodium falciparum protein phosphatase type 1 (PfPP1) activity remains to be deciphered. Data from homologous eukaryotic type 1 protein phosphatases (PP1) suggest that several protein regulators should be involved in this essential process. One such regulator, named PfI2 based on its primary sequence homology with eukaryotic inhibitor 2 (I2), was recently shown to be able to interact with PfPP1 and to inhibit its phosphatase activity, mainly through the canonical 'RVxF' binding motif. The details of the structural and functional characteristics of this interaction are investigated here. Using NMR spectroscopy, a second site of interaction is suggested to reside between residues D94 and T117 and contains the 'FxxR/KxR/K' binding motif present in other I2 proteins. This site seems to play in concert/synergy with the 'RVxF' motif to bind PP1, because only mutations in both motifs were able to abolish this interaction completely. However, regarding the structure/function relationship, mutation of either the 'RVxF' or 'FxxR/KxR/K' motif is more drastic, because each mutation prevents the capacity of PfI2 to trigger germinal vesicle breakdown in microinjected Xenopus oocytes. This indicates that the tight association of the PfI2 regulator to PP1, mediated by a two-site interaction, is necessary to exert its function. Based on these results, the use of a peptide derived from the 'FxxR/KxR/K' PfI2 motif was investigated for its potential effect on Plasmodium growth. This peptide, fused at its N-terminus to a penetrating sequence, was shown to accumulate specifically in infected erythrocytes and to have an antiplasmodial effect.
Collapse
Affiliation(s)
- Aline Fréville
- Center for Infection and Immunity of Lille, Inserm U1019-CNRS UMR 8204, Université Lille Nord de France, Institut Pasteur de Lille, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Marchini FK, de Godoy LMF, Batista M, Kugeratski FG, Krieger MA. Towards the phosphoproteome of trypanosomatids. Subcell Biochem 2014; 74:351-378. [PMID: 24264253 DOI: 10.1007/978-94-007-7305-9_15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The identification and localization of protein phosphorylation sites provide clues to what proteins or pathways might be activated in a given condition, helping to improve our understanding about signaling networks. Advances in strategies for enrichment of phosphorylated peptides/proteins, mass spectrometry (MS) instrumentation, and specific MS techniques for identification and quantification of post-translational modifications have allowed for large-scale mapping of phosphorylation sites, promoting the field of phosphoproteomics. The great promise of phosphoproteomics is to unravel the dynamics of signaling networks, a layer of the emerging field of systems biology. Until a few years ago only a small number of phosphorylation sites had been described. Following large-scale trends, recent phosphoproteomic studies have reported the mapping of thousands of phosphorylation sites in trypanosomatids. However, quantitative information about the regulation of such sites in different conditions is still lacking. In this chapter, we provide a historical overview of phosphoproteomic studies for trypanosomatids and discuss some challenges and perspectives in the field.
Collapse
|
34
|
Anwar T, Gourinath S. Analysis of the Protein phosphotome of Entamoeba histolytica reveals an intricate phosphorylation network. PLoS One 2013; 8:e78714. [PMID: 24236039 PMCID: PMC3827238 DOI: 10.1371/journal.pone.0078714] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 09/22/2013] [Indexed: 01/06/2023] Open
Abstract
Phosphorylation is the most common mechanism for the propagation of intracellular signals. Protein phosphatases and protein kinases play a dynamic antagonistic role in protein phosphorylation. Protein phosphatases make up a significant fraction of eukaryotic proteome. In this article, we report the identification and analysis of protein phosphatases in the intracellular parasite Entamoeba histolytica. Based on an in silico analysis, we classified 250 non-redundant protein phosphatases in E. histolytica. The phosphotome of E. histolytica is 3.1% of its proteome and 1.3 times of the human phosphotome. In this extensive study, we identified 42 new putative phosphatases (39 hypothetical proteins and 3 pseudophosphatases). The presence of pseudophosphatases may have an important role in virulence of E. histolytica. A comprehensive phosphotome analysis of E. histolytica shows spectacular low similarity to human phosphatases, making them potent candidates for drug target.
Collapse
Affiliation(s)
- Tamanna Anwar
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | | |
Collapse
|
35
|
Pease BN, Huttlin EL, Jedrychowski MP, Talevich E, Harmon J, Dillman T, Kannan N, Doerig C, Chakrabarti R, Gygi SP, Chakrabarti D. Global analysis of protein expression and phosphorylation of three stages of Plasmodium falciparum intraerythrocytic development. J Proteome Res 2013; 12:4028-45. [PMID: 23914800 DOI: 10.1021/pr400394g] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
During asexual intraerythrocytic development, Plasmodium falciparum diverges from the paradigm of the eukaryotic cell cycles by undergoing multiple rounds of DNA replication and nuclear division without cytokinesis. A better understanding of the molecular switches that coordinate a myriad of events for the progression of the parasite through the intraerythrocytic developmental stages will be of fundamental importance for rational design of intervention strategies. To achieve this goal, we performed isobaric tag-based quantitative proteomics and phosphoproteomics analyses of three developmental stages in the Plasmodium asexual cycle and identified 2767 proteins, 1337 phosphoproteins, and 6293 phosphorylation sites. Approximately 34% of identified proteins and 75% of phosphorylation sites exhibit changes in abundance as the intraerythrocytic cycle progresses. Our study identified 43 distinct phosphorylation motifs and a range of potential MAPK/CDK substrates. Further analysis of phosphorylated kinases identified 30 protein kinases with 126 phosphorylation sites within the kinase domain or in N- or C-terminal tails. Many of these phosphorylations are likely CK2-mediated. We define the constitutive and regulated expression of the Plasmodium proteome during the intraerythrocytic developmental cycle, offering an insight into the dynamics of phosphorylation during asexual cycle progression. Our system-wide comprehensive analysis is a major step toward defining kinase-substrate pairs operative in various signaling networks in the parasite.
Collapse
Affiliation(s)
- Brittany N Pease
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida 32826, United States
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Fréville A, Cailliau-Maggio K, Pierrot C, Tellier G, Kalamou H, Lafitte S, Martoriati A, Pierce RJ, Bodart JF, Khalife J. Plasmodium falciparum encodes a conserved active inhibitor-2 for Protein Phosphatase type 1: perspectives for novel anti-plasmodial therapy. BMC Biol 2013; 11:80. [PMID: 23837822 PMCID: PMC3735429 DOI: 10.1186/1741-7007-11-80] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 06/18/2013] [Indexed: 01/21/2023] Open
Abstract
Background It is clear that the coordinated and reciprocal actions of kinases and phosphatases are fundamental in the regulation of development and growth of the malaria parasite. Protein Phosphatase type 1 is a key enzyme playing diverse and essential roles in cell survival. Its dephosphorylation activity/specificity is governed by the interaction of its catalytic subunit (PP1c) with regulatory proteins. Among these, inhibitor-2 (I2) is one of the most evolutionarily ancient PP1 regulators. In vivo studies in various organisms revealed a defect in chromosome segregation and cell cycle progression when the function of I2 is blocked. Results In this report, we present evidence that Plasmodium falciparum, the causative agent of the most deadly form of malaria, expresses a structural homolog of mammalian I2, named PfI2. Biochemical, in vitro and in vivo studies revealed that PfI2 binds PP1 and inhibits its activity. We further showed that the motifs 12KTISW16 and 102HYNE105 are critical for PfI2 inhibitory activity. Functional studies using the Xenopus oocyte model revealed that PfI2 is able to overcome the G2/M cell cycle checkpoint by inducing germinal vesicle breakdown. Genetic manipulations in P. falciparum suggest an essential role of PfI2 as no viable mutants with a disrupted PfI2 gene were detectable. Additionally, peptides derived from PfI2 and competing with RVxF binding sites in PP1 exhibit anti-plasmodial activity against blood stage parasites in vitro. Conclusions Taken together, our data suggest that the PfI2 protein could play a role in the regulation of the P. falciparum cell cycle through its PfPP1 phosphatase regulatory activity. Structure-activity studies of this regulator led to the identification of peptides with anti-plasmodial activity against blood stage parasites in vitro suggesting that PP1c-regulator interactions could be a novel means to control malaria.
Collapse
Affiliation(s)
- Aline Fréville
- Center for Infection and Immunity of Lille, Inserm U1019-CNRS UMR 8204, University of Lille Nord de France, Institut Pasteur de Lille, 1 Rue du Professeur Calmette, 59019 Lille, Cedex, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
A bacterial phosphatase-like enzyme of the malaria parasite Plasmodium falciparum possesses tyrosine phosphatase activity and is implicated in the regulation of band 3 dynamics during parasite invasion. EUKARYOTIC CELL 2013; 12:1179-91. [PMID: 23825180 DOI: 10.1128/ec.00027-13] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Eukaryotic parasites of the genus Plasmodium cause malaria by invading and developing within host erythrocytes. Here, we demonstrate that PfShelph2, a gene product of Plasmodium falciparum that belongs to the Shewanella-like phosphatase (Shelph) subfamily, selectively hydrolyzes phosphotyrosine, as shown for other previously studied Shelph family members. In the extracellular merozoite stage, PfShelph2 localizes to vesicles that appear to be distinct from those of rhoptry, dense granule, or microneme organelles. During invasion, PfShelph2 is released from these vesicles and exported to the host erythrocyte. In vitro, PfShelph2 shows tyrosine phosphatase activity against the host erythrocyte protein Band 3, which is the most abundant tyrosine-phosphorylated species of the erythrocyte. During P. falciparum invasion, Band 3 undergoes dynamic and rapid clearance from the invasion junction within 1 to 2 s of parasite attachment to the erythrocyte. Release of Pfshelph2 occurs after clearance of Band 3 from the parasite-host cell interface and when the parasite is nearly or completely enclosed in the nascent vacuole. We propose a model in which the phosphatase modifies Band 3 in time to restore its interaction with the cytoskeleton and thus reestablishes the erythrocyte cytoskeletal network at the end of the invasion process.
Collapse
|
38
|
Atypical mitogen-activated protein kinase phosphatase implicated in regulating transition from pre-S-Phase asexual intraerythrocytic development of Plasmodium falciparum. EUKARYOTIC CELL 2013; 12:1171-8. [PMID: 23813392 DOI: 10.1128/ec.00028-13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Intraerythrocytic development of the human malaria parasite Plasmodium falciparum appears as a continuous flow through growth and proliferation. To develop a greater understanding of the critical regulatory events, we utilized piggyBac insertional mutagenesis to randomly disrupt genes. Screening a collection of piggyBac mutants for slow growth, we isolated the attenuated parasite C9, which carried a single insertion disrupting the open reading frame (ORF) of PF3D7_1305500. This gene encodes a protein structurally similar to a mitogen-activated protein kinase (MAPK) phosphatase, except for two notable characteristics that alter the signature motif of the dual-specificity phosphatase domain, suggesting that it may be a low-activity phosphatase or pseudophosphatase. C9 parasites demonstrated a significantly lower growth rate with delayed entry into the S/M phase of the cell cycle, which follows the stage of maximum PF3D7_1305500 expression in intact parasites. Genetic complementation with the full-length PF3D7_1305500 rescued the wild-type phenotype of C9, validating the importance of the putative protein phosphatase PF3D7_1305500 as a regulator of pre-S-phase cell cycle progression in P. falciparum.
Collapse
|
39
|
|
40
|
Kremer K, Kamin D, Rittweger E, Wilkes J, Flammer H, Mahler S, Heng J, Tonkin CJ, Langsley G, Hell SW, Carruthers VB, Ferguson DJP, Meissner M. An overexpression screen of Toxoplasma gondii Rab-GTPases reveals distinct transport routes to the micronemes. PLoS Pathog 2013; 9:e1003213. [PMID: 23505371 PMCID: PMC3591302 DOI: 10.1371/journal.ppat.1003213] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 01/10/2013] [Indexed: 12/20/2022] Open
Abstract
The basic organisation of the endomembrane system is conserved in all eukaryotes and comparative genome analyses provides compelling evidence that the endomembrane system of the last common eukaryotic ancestor (LCEA) is complex with many genes required for regulated traffic being present. Although apicomplexan parasites, causative agents of severe human and animal diseases, appear to have only a basic set of trafficking factors such as Rab-GTPases, they evolved unique secretory organelles (micronemes, rhoptries and dense granules) that are sequentially secreted during invasion of the host cell. In order to define the secretory pathway of apicomplexans, we performed an overexpression screen of Rabs in Toxoplasma gondii and identified Rab5A and Rab5C as important regulators of traffic to micronemes and rhoptries. Intriguingly, we found that not all microneme proteins traffic depends on functional Rab5A and Rab5C, indicating the existence of redundant microneme targeting pathways. Using two-colour super-resolution stimulated emission depletion (STED) we verified distinct localisations of independent microneme proteins and demonstrate that micronemal organelles are organised in distinct subsets or subcompartments. Our results suggest that apicomplexan parasites modify classical regulators of the endocytic system to carryout essential parasite-specific roles in the biogenesis of their unique secretory organelles. Eukaryotic cells evolved a highly complex endomembrane system, consisting of secretory and endocytic organelles. In the case of apicomplexan parasites unique secretory organelles have evolved that are essential for the invasion of the host cell. Surprisingly these protozoans show a paucity of trafficking factors, such as Rabs and it appears that they lost several factors involved in endocytosis. Here, we demonstrate that Rab5A and Rab5C, normally involved in endocytic uptake, actually regulate secretion in Toxoplasma gondii, since functional ablation of Rab5A or Rab5C results in aberrant transport of proteins to specialised secretory organelles called micronemes and rhoptries. Furthermore, we demonstrate that independent transport routes to micronemes exist indicating that apicomplexans have remodelled Rab5-mediated vesicular traffic into a secretory system that is essential for host cell invasion.
Collapse
Affiliation(s)
- Katrin Kremer
- Institute of Infection, Immunity and Inflammation, Wellcome Centre for Molecular Parasitology, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Dirk Kamin
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Eva Rittweger
- German Cancer Research Center/BioQuant, Heidelberg, Germany
| | - Jonathan Wilkes
- Institute of Infection, Immunity and Inflammation, Wellcome Centre for Molecular Parasitology, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Halley Flammer
- Department of Microbiology and Immunology, University of Michigan School of Medicine, Ann Arbor, Michigan, United States of America
| | - Sabine Mahler
- Parasitology, Department of Infectious Diseases, University of Heidelberg Medical School, Heidelberg, Germany
| | - Joanne Heng
- Institute of Infection, Immunity and Inflammation, Wellcome Centre for Molecular Parasitology, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, United Kingdom
| | | | - Gordon Langsley
- Laboratoire de Biologie Cellulaire Comparative des Apicomplexes, Institut Cochin, Inserm, U567, CNRS, UMR 8104, Faculté de Médecine Paris V – Hôpital Cochin, Paris, France
| | - Stefan W. Hell
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Vernon B. Carruthers
- Department of Microbiology and Immunology, University of Michigan School of Medicine, Ann Arbor, Michigan, United States of America
| | - David J. P. Ferguson
- Nuffield Department of Pathology, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Markus Meissner
- Institute of Infection, Immunity and Inflammation, Wellcome Centre for Molecular Parasitology, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, United Kingdom
- * E-mail:
| |
Collapse
|
41
|
Patzewitz EM, Guttery DS, Poulin B, Ramakrishnan C, Ferguson DJP, Wall RJ, Brady D, Holder AA, Szöőr B, Tewari R. An ancient protein phosphatase, SHLP1, is critical to microneme development in Plasmodium ookinetes and parasite transmission. Cell Rep 2013; 3:622-9. [PMID: 23434509 PMCID: PMC3617505 DOI: 10.1016/j.celrep.2013.01.032] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 11/30/2012] [Accepted: 01/28/2013] [Indexed: 12/24/2022] Open
Abstract
Signaling pathways controlled by reversible protein phosphorylation (catalyzed by kinases and phosphatases) in the malaria parasite Plasmodium are of great interest, for both increased understanding of parasite biology and identification of novel drug targets. Here, we report a functional analysis in Plasmodium of an ancient bacterial Shewanella-like protein phosphatase (SHLP1) found only in bacteria, fungi, protists, and plants. SHLP1 is abundant in asexual blood stages and expressed at all stages of the parasite life cycle. shlp1 deletion results in a reduction in ookinete (zygote) development, microneme formation, and complete ablation of oocyst formation, thereby blocking parasite transmission. This defect is carried by the female gamete and can be rescued by direct injection of mutant ookinetes into the mosquito hemocoel, where oocysts develop. This study emphasizes the varied functions of SHLP1 in Plasmodium ookinete biology and suggests that it could be a novel drug target for blocking parasite transmission.
Collapse
Affiliation(s)
- Eva-Maria Patzewitz
- Centre for Genetics and Genomics, School of Biology, Queens Medical Centre, University of Nottingham, Nottingham NG2 7UH, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Böhmer F, Szedlacsek S, Tabernero L, Ostman A, den Hertog J. Protein tyrosine phosphatase structure-function relationships in regulation and pathogenesis. FEBS J 2013; 280:413-31. [PMID: 22682070 DOI: 10.1111/j.1742-4658.2012.08655.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Protein phosphorylation on tyrosine residues is tightly controlled by protein tyrosine phosphatases (PTPs) at multiple levels: spatio-temporal expression, subcellular localization and post-translational modification. Structural and functional analysis of the PTP domains has provided insight into catalysis and regulatory mechanisms that control the enzymatic activity. Understanding the molecular basis of PTP regulation is of fundamental importance to dissect the pleiotropic effect of these enzymes in both health and disease. Here, we review recent insights into the regulation of receptor-like PTPs by extracellular ligands and into regulation by reversible oxidation that impairs catalysis directly. The physiological roles of PTPs are essential in homeostasis in eukaryotic cells and pertubation of their functional attributes causes different disease states. As an example, we discuss recent findings indicating how inappropriate oxidation of PTPs in cancer cells may contribute to cell transformation. On the other hand, PTPs from many pathogens are key virulence factors and manipulate signalling pathways in the host cells to promote invasion and survival of the microorganisms. This research area has received relatively little attention but has advanced remarkably. We review the structural features of pathogenic PTPs, their similarities and differences with eukaryotic PTPs, and the possible exploitation of this knowledge for therapeutic intervention.
Collapse
Affiliation(s)
- Frank Böhmer
- Center for Molecular Biomedicine, Jena University Hospital, Jena, Germany
| | | | | | | | | |
Collapse
|
43
|
Guttery DS, Poulin B, Ferguson DJP, Szöőr B, Wickstead B, Carroll PL, Ramakrishnan C, Brady D, Patzewitz EM, Straschil U, Solyakov L, Green JL, Sinden RE, Tobin AB, Holder AA, Tewari R. A unique protein phosphatase with kelch-like domains (PPKL) in Plasmodium modulates ookinete differentiation, motility and invasion. PLoS Pathog 2012; 8:e1002948. [PMID: 23028336 PMCID: PMC3447748 DOI: 10.1371/journal.ppat.1002948] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2012] [Accepted: 08/22/2012] [Indexed: 12/27/2022] Open
Abstract
Protein phosphorylation and dephosphorylation (catalysed by kinases and phosphatases, respectively) are post-translational modifications that play key roles in many eukaryotic signalling pathways, and are often deregulated in a number of pathological conditions in humans. In the malaria parasite Plasmodium, functional insights into its kinome have only recently been achieved, with over half being essential for blood stage development and another 14 kinases being essential for sexual development and mosquito transmission. However, functions for any of the plasmodial protein phosphatases are unknown. Here, we use reverse genetics in the rodent malaria model, Plasmodium berghei, to examine the role of a unique protein phosphatase containing kelch-like domains (termed PPKL) from a family related to Arabidopsis BSU1. Phylogenetic analysis confirmed that the family of BSU1-like proteins including PPKL is encoded in the genomes of land plants, green algae and alveolates, but not in other eukaryotic lineages. Furthermore, PPKL was observed in a distinct family, separate to the most closely-related phosphatase family, PP1. In our genetic approach, C-terminal GFP fusion with PPKL showed an active protein phosphatase preferentially expressed in female gametocytes and ookinetes. Deletion of the endogenous ppkl gene caused abnormal ookinete development and differentiation, and dissociated apical microtubules from the inner-membrane complex, generating an immotile phenotype and failure to invade the mosquito mid-gut epithelium. These observations were substantiated by changes in localisation of cytoskeletal tubulin and actin, and the micronemal protein CTRP in the knockout mutant as assessed by indirect immunofluorescence. Finally, increased mRNA expression of dozi, a RNA helicase vital to zygote development was observed in ppkl− mutants, with global phosphorylation studies of ookinete differentiation from 1.5–24 h post-fertilisation indicating major changes in the first hours of zygote development. Our work demonstrates a stage-specific essentiality of the unique PPKL enzyme, which modulates parasite differentiation, motility and transmission. Malaria parasites are single-celled organisms, which alternate their life-cycle between vertebrate and mosquito hosts. In the mosquito, the malaria parasite undergoes sexual development, whereby a male and female gamete fuse to form a zygote. This zygote then elongates into an invasive stage, termed an ookinete, which can glide to and penetrate the mosquito's gut wall in order to form a cyst (called an oocyst). Protein phosphorylation is known to play a vital role during this process; however, the role of Plasmodium kinases (which phosphorylate proteins) during zygote/ookinete maturation is better understood than the completely uncharacterised plasmodial phosphatases (which dephosphorylate proteins). Using a malaria parasite which infects mice, Plasmodium berghei, we show that a unique protein phosphatase containing kelch-like domains (called PPKL) plays a vital role in ookinete maturation and motility. Deleting this gene produces ookinetes whose shape is grossly abnormal, resulting in non-motile parasites that cannot penetrate the lining of the mosquito gut wall. Overall, PPKL is an essential phosphatase that is critical to ookinete development, motility and invasion.
Collapse
Affiliation(s)
- David S. Guttery
- Centre for Genetics and Genomics, School of Biology, Queens Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Benoit Poulin
- Centre for Genetics and Genomics, School of Biology, Queens Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - David J. P. Ferguson
- Nuffield Department of Clinical Laboratory Science, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Balázs Szöőr
- Centre for Immunity, Infection and Evolution, Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Bill Wickstead
- Centre for Genetics and Genomics, School of Biology, Queens Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Paula L. Carroll
- Centre for Genetics and Genomics, School of Biology, Queens Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Chandra Ramakrishnan
- Division of Cell and Molecular Biology, Imperial College London, London, United Kingdom
| | - Declan Brady
- Centre for Genetics and Genomics, School of Biology, Queens Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Eva-Maria Patzewitz
- Centre for Genetics and Genomics, School of Biology, Queens Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Ursula Straschil
- Division of Cell and Molecular Biology, Imperial College London, London, United Kingdom
| | - Lev Solyakov
- Medical Research Council Toxicology Unit, Leicester, United Kingdom
| | - Judith L. Green
- Division of Parasitology, MRC National Institute for Medical Research, Mill Hill, London, United Kingdom
| | - Robert E. Sinden
- Division of Cell and Molecular Biology, Imperial College London, London, United Kingdom
| | - Andrew B. Tobin
- Medical Research Council Toxicology Unit, Leicester, United Kingdom
| | - Anthony A. Holder
- Division of Parasitology, MRC National Institute for Medical Research, Mill Hill, London, United Kingdom
| | - Rita Tewari
- Centre for Genetics and Genomics, School of Biology, Queens Medical Centre, University of Nottingham, Nottingham, United Kingdom
- * E-mail:
| |
Collapse
|
44
|
Philip N, Vaikkinen HJ, Tetley L, Waters AP. A unique Kelch domain phosphatase in Plasmodium regulates ookinete morphology, motility and invasion. PLoS One 2012; 7:e44617. [PMID: 22957089 PMCID: PMC3434153 DOI: 10.1371/journal.pone.0044617] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 08/06/2012] [Indexed: 12/22/2022] Open
Abstract
Signalling through post-translational modification (PTM) of proteins is a process central to cell homeostasis, development and responses to external stimuli. The best characterised PTM is protein phosphorylation which is reversibly catalysed at specific residues through the action of protein kinases (addition) and phosphatases (removal). Here, we report characterisation of an orphan protein phosphatase that possesses a domain architecture previously only described in Plantae. Through gene disruption and the production of active site mutants, the enzymatically active Protein Phosphatase containing Kelch-Like domains (PPKL, PBANKA_132950) is shown to play an essential role in the development of an infectious ookinete. PPKL is produced in schizonts and female gametocytes, is maternally inherited where its absence leads to the development of a malformed, immotile, non-infectious ookinete with an extended apical protrusion. The distribution of PPKL includes focussed localization at the ookinete apical tip implying a link between its activity and the correct deployment of the apical complex and microtubule cytoskeleton. Unlike wild type parasites, ppkl– ookinetes do not have a pronounced apical distribution of their micronemes yet secretion of microneme cargo is unaffected in the mutant implying that release of microneme cargo is either highly efficient at the malformed apical prominence or secretion may also occur from other points of the parasite, possibly the pellicular pores.
Collapse
Affiliation(s)
- Nisha Philip
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, Sir Graeme Davies Building, University of Glasgow, Glasgow, United Kingdom
- * E-mail: (NP); (APW)
| | - Heli J. Vaikkinen
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, Sir Graeme Davies Building, University of Glasgow, Glasgow, United Kingdom
| | - Laurence Tetley
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, Sir Graeme Davies Building, University of Glasgow, Glasgow, United Kingdom
| | - Andrew P. Waters
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, Sir Graeme Davies Building, University of Glasgow, Glasgow, United Kingdom
- * E-mail: (NP); (APW)
| |
Collapse
|
45
|
Treeck M, Sanders JL, Elias JE, Boothroyd JC. The phosphoproteomes of Plasmodium falciparum and Toxoplasma gondii reveal unusual adaptations within and beyond the parasites' boundaries. Cell Host Microbe 2012; 10:410-9. [PMID: 22018241 DOI: 10.1016/j.chom.2011.09.004] [Citation(s) in RCA: 292] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2011] [Revised: 08/18/2011] [Accepted: 09/12/2011] [Indexed: 12/18/2022]
Abstract
Plasmodium falciparum and Toxoplasma gondii are obligate intracellular apicomplexan parasites that rapidly invade and extensively modify host cells. Protein phosphorylation is one mechanism by which these parasites can control such processes. Here we present a phosphoproteome analysis of peptides enriched from schizont stage P. falciparum and T. gondii tachyzoites that are either "intracellular" or purified away from host material. Using liquid chromatography-tandem mass spectrometry, we identified over 5,000 and 10,000 previously unknown phosphorylation sites in P. falciparum and T. gondii, respectively, revealing that protein phosphorylation is an extensively used regulation mechanism both within and beyond parasite boundaries. Unexpectedly, both parasites have phosphorylated tyrosines, and P. falciparum has unusual phosphorylation motifs that are apparently shaped by its A:T-rich genome. This data set provides important information on the role of phosphorylation in the host-pathogen interaction and clues to the evolutionary forces operating on protein phosphorylation motifs in both parasites.
Collapse
Affiliation(s)
- Moritz Treeck
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | |
Collapse
|
46
|
Frech C, Chen N. Genome comparison of human and non-human malaria parasites reveals species subset-specific genes potentially linked to human disease. PLoS Comput Biol 2011; 7:e1002320. [PMID: 22215999 PMCID: PMC3245289 DOI: 10.1371/journal.pcbi.1002320] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 11/07/2011] [Indexed: 11/24/2022] Open
Abstract
Genes underlying important phenotypic differences between Plasmodium species, the causative agents of malaria, are frequently found in only a subset of species and cluster at dynamically evolving subtelomeric regions of chromosomes. We hypothesized that chromosome-internal regions of Plasmodium genomes harbour additional species subset-specific genes that underlie differences in human pathogenicity, human-to-human transmissibility, and human virulence. We combined sequence similarity searches with synteny block analyses to identify species subset-specific genes in chromosome-internal regions of six published Plasmodium genomes, including Plasmodium falciparum, Plasmodium vivax, Plasmodium knowlesi, Plasmodium yoelii, Plasmodium berghei, and Plasmodium chabaudi. To improve comparative analysis, we first revised incorrectly annotated gene models using homology-based gene finders and examined putative subset-specific genes within syntenic contexts. Confirmed subset-specific genes were then analyzed for their role in biological pathways and examined for molecular functions using publicly available databases. We identified 16 genes that are well conserved in the three primate parasites but not found in rodent parasites, including three key enzymes of the thiamine (vitamin B1) biosynthesis pathway. Thirteen genes were found to be present in both human parasites but absent in the monkey parasite P. knowlesi, including genes specifically upregulated in sporozoites or gametocytes that could be linked to parasite transmission success between humans. Furthermore, we propose 15 chromosome-internal P. falciparum-specific genes as new candidate genes underlying increased human virulence and detected a currently uncharacterized cluster of P. vivax-specific genes on chromosome 6 likely involved in erythrocyte invasion. In conclusion, Plasmodium species harbour many chromosome-internal differences in the form of protein-coding genes, some of which are potentially linked to human disease and thus promising leads for future laboratory research. With more than 250 million infections and over a million deaths each year, malaria remains one of the most devastating infectious diseases worldwide. With the availability of complete genome sequences of both human and non-human Plasmodium parasites, the causative agents of malaria, it is now possible to use comparative genomics as a tool to look for genes that are present in some but not all Plasmodium species. Such species subset-specific genes possibly underlie important phenotypic differences between malaria parasites and could provide important clues for the development of new strategies to prevent and treat malaria in humans. In this study, we performed a comprehensive computational comparison of the published genomes of six Plasmodium species, including two human (P. falciparum and P. vivax), one monkey (P. knowlesi), and three rodent malaria parasites (P. berghei, P. yoelii, and P. chabaudi). This comparison revealed many species subset-specific genes that are potentially linked to human pathogenicity, human-to-human transmissibility, and human virulence. These genes can now be examined further by targeted experimental analyses to test predicted phenotypic associations and to elucidate gene function.
Collapse
Affiliation(s)
- Christian Frech
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Nansheng Chen
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
- * E-mail:
| |
Collapse
|
47
|
Romá-Mateo C, Sacristán-Reviriego A, Beresford NJ, Caparrós-Martín JA, Culiáñez-Macià FA, Martín H, Molina M, Tabernero L, Pulido R. Phylogenetic and genetic linkage between novel atypical dual-specificity phosphatases from non-metazoan organisms. Mol Genet Genomics 2011; 285:341-54. [DOI: 10.1007/s00438-011-0611-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Accepted: 02/27/2011] [Indexed: 11/29/2022]
|
48
|
Reininger L, Wilkes JM, Bourgade H, Miranda-Saavedra D, Doerig C. An essential Aurora-related kinase transiently associates with spindle pole bodies during Plasmodium falciparum erythrocytic schizogony. Mol Microbiol 2010; 79:205-21. [PMID: 21166904 PMCID: PMC3025120 DOI: 10.1111/j.1365-2958.2010.07442.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Aurora kinases compose a family of conserved Ser/Thr protein kinases playing essential roles in eukaryotic cell division. To date, Aurora homologues remain uncharacterized in the protozoan phylum Apicomplexa. In malaria parasites, the characterization of Aurora kinases may help understand the cell cycle control during erythrocytic schizogony where asynchronous nuclear divisions occur. In this study, we revisited the kinome of Plasmodium falciparum and identified three Aurora-related kinases, Pfark-1, -2, -3. Among these, Pfark-1 is highly conserved in malaria parasites and also appears to be conserved across Apicomplexa. By tagging the endogenous Pfark-1 gene with the green fluorescent protein (GFP) in live parasites, we show that the Pfark-1–GFP protein forms paired dots associated with only a subset of nuclei within individual schizonts. Immunofluorescence analysis using an anti-α-tubulin antibody strongly suggests a recruitment of Pfark-1 at duplicated spindle pole bodies at the entry of the M phase of the cell cycle. Unsuccessful attempts at disrupting the Pfark-1 gene with a knockout construct further indicate that Pfark-1 is required for parasite growth in red blood cells. Our study provides new insights into the cell cycle control of malaria parasites and reports the importance of Aurora kinases as potential targets for new antimalarials.
Collapse
Affiliation(s)
- Luc Reininger
- INSERM-EPFL Joint Laboratory, Global Health Institute, EPFL-SV-GHI, Station 19, CH-1015 Lausanne, Switzerland.
| | | | | | | | | |
Collapse
|
49
|
Beresford NJ, Saville C, Bennett HJ, Roberts IS, Tabernero L. A new family of phosphoinositide phosphatases in microorganisms: identification and biochemical analysis. BMC Genomics 2010; 11:457. [PMID: 20678187 PMCID: PMC3091653 DOI: 10.1186/1471-2164-11-457] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Accepted: 08/02/2010] [Indexed: 11/18/2022] Open
Abstract
Background Phosphoinositide metabolism is essential to membrane dynamics and impinges on many cellular processes, including phagocytosis. Modulation of phosphoinositide metabolism is important for pathogenicity and virulence of many human pathogens, allowing them to survive and replicate in the host cells. Phosphoinositide phosphatases from bacterial pathogens are therefore key players in this modulation and constitute attractive targets for chemotherapy. MptpB, a virulence factor from Mycobacterium tuberculosis, has phosphoinositide phosphatase activity and a distinct active site P-loop signature HCXXGKDR that shares characteristics with eukaryotic lipid phosphatases and protein tyrosine phosphatases. We used this P-loop signature as a "diagnostic motif" to identify related putative phosphatases with phosphoinositide activity in other organisms. Results We found more than 200 uncharacterised putative phosphatase sequences with the conserved signature in bacteria, with some related examples in fungi and protozoa. Many of the sequences identified belong to recognised human pathogens. Interestingly, no homologues were found in any other organisms including Archaea, plants, or animals. Phylogenetic analysis revealed that these proteins are unrelated to classic eukaryotic lipid phosphatases. However, biochemical characterisation of those from Listeria monocytogenes and Leishmania major, demonstrated that, like MptpB, they have phosphatase activity towards phosphoinositides. Mutagenesis studies established that the conserved Asp and Lys in the P-loop signature (HCXXGKDR) are important in catalysis and substrate binding respectively. Furthermore, we provide experimental evidence that the number of basic residues in the P-loop is critical in determining activity towards poly-phosphoinositides. Conclusion This new family of enzymes in microorganisms shows distinct sequence and biochemical characteristics to classic eukaryotic lipid phosphatases and they have no homologues in humans. This study provides a foundation for examining the biological role of this new family of phosphatases and their potential as pharmaceutical targets against infectious diseases.
Collapse
Affiliation(s)
- Nicola J Beresford
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Manchester M13 9PT, UK
| | | | | | | | | |
Collapse
|
50
|
Treuner-Lange A. The phosphatomes of the multicellular myxobacteria Myxococcus xanthus and Sorangium cellulosum in comparison with other prokaryotic genomes. PLoS One 2010; 5:e11164. [PMID: 20567509 PMCID: PMC2887360 DOI: 10.1371/journal.pone.0011164] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Accepted: 05/04/2010] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Analysis of the complete genomes from the multicellular myxobacteria Myxococcus xanthus and Sorangium cellulosum identified the highest number of eukaryotic-like protein kinases (ELKs) compared to all other genomes analyzed. High numbers of protein phosphatases (PPs) could therefore be anticipated, as reversible protein phosphorylation is a major regulation mechanism of fundamental biological processes. METHODOLOGY Here we report an intensive analysis of the phosphatomes of M. xanthus and S. cellulosum in which we constructed phylogenetic trees to position these sequences relative to PPs from other prokaryotic organisms. PRINCIPAL FINDINGS PREDOMINANT OBSERVATIONS WERE: (i) M. xanthus and S. cellulosum possess predominantly Ser/Thr PPs; (ii) S. cellulosum encodes the highest number of PP2c-type phosphatases so far reported for a prokaryotic organism; (iii) in contrast to M. xanthus only S. cellulosum encodes high numbers of SpoIIE-like PPs; (iv) there is a significant lack of synteny among M. xanthus and S. cellulosum, and (v) the degree of co-organization between kinase and phosphatase genes is extremely low in these myxobacterial genomes. CONCLUSIONS We conclude that there has been a greater expansion of ELKs than PPs in multicellular myxobacteria.
Collapse
Affiliation(s)
- Anke Treuner-Lange
- Institut für Mikrobiologie und Molekularbiologie, Justus-Liebig-Universität, Giessen, Germany.
| |
Collapse
|