1
|
Herb M, Schatz V, Hadrian K, Hos D, Holoborodko B, Jantsch J, Brigo N. Macrophage variants in laboratory research: most are well done, but some are RAW. Front Cell Infect Microbiol 2024; 14:1457323. [PMID: 39445217 PMCID: PMC11496307 DOI: 10.3389/fcimb.2024.1457323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 09/06/2024] [Indexed: 10/25/2024] Open
Abstract
Macrophages play a pivotal role in the innate immune response. While their most characteristic function is phagocytosis, it is important not to solely characterize macrophages by this activity. Their crucial roles in body development, homeostasis, repair, and immune responses against pathogens necessitate a broader understanding. Macrophages exhibit remarkable plasticity, allowing them to modify their functional characteristics in response to the tissue microenvironment (tissue type, presence of pathogens or inflammation, and specific signals from neighboring cells) swiftly. While there is no single defined "macrophage" entity, there is a diverse array of macrophage types because macrophage ontogeny involves the differentiation of progenitor cells into tissue-resident macrophages, as well as the recruitment and differentiation of circulating monocytes in response to tissue-specific cues. In addition, macrophages continuously sense and respond to environmental cues and tissue conditions, adjusting their functional and metabolic states accordingly. Consequently, it is of paramount importance to comprehend the heterogeneous origins and functions of macrophages employed in in vitro studies, as each available in vitro macrophage model is associated with specific sets of strengths and limitations. This review centers its attention on a comprehensive comparison between immortalized mouse macrophage cell lines and primary mouse macrophages. It provides a detailed analysis of the strengths and weaknesses inherent in these in vitro models. Finally, it explores the subtle distinctions between diverse macrophage cell lines, offering insights into numerous factors beyond the model type that can profoundly influence macrophage function.
Collapse
Affiliation(s)
- Marc Herb
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Valentin Schatz
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Karina Hadrian
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Deniz Hos
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Bohdan Holoborodko
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg and University of Regensburg, Regensburg, Germany
| | - Jonathan Jantsch
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Natascha Brigo
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
2
|
Jiang Y, Chen Y, Fu J, Zhao R, Xu J, Liu Y. Bone morphogenetic protein 4 alleviates pulmonary fibrosis by regulating macrophages. Int Immunopharmacol 2024; 139:112530. [PMID: 39053231 DOI: 10.1016/j.intimp.2024.112530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 05/27/2024] [Accepted: 06/17/2024] [Indexed: 07/27/2024]
Abstract
Fibrosis is a pathological change mainly characterized by an increase of fibrous connective tissue and decrease of parenchymal cells. Its continuous progress may lead to the destruction of organ structure and function decline. An excess of alternatively activated M2 macrophages have been considered crucial candidates in the progression of fibrosis. Bone morphogenetic proteins (BMPs), a group of multifunctional growth factors, are essential for organ development and pathophysiological process, however, the roles that BMPs play in innate immune homeostasis in the development of fibrosis and the downstream signals have not been fully explored. In the current study, we firstly found that the expression of BMP4 was significantly down-regulated in human and mouse fibrosis samples. Then we investigated the effects of BMP4 on macrophage polarization in IL-4 environment and related molecular mechanisms, and found that BMP4 caused a decrease in polarized response towards M2, reflected in the expression of the markers Fizz1, Ym1 and Arg1, together with an inhibition in Stat6 phosphorylation. This relied on the Smad1/5/8 signaling, which had a crosstalk with Stat6. Moreover, the in vivo study showed that BMP4 treatment can reduce collagen deposition and delay the development of experimental pulmonary fibrosis in mice by inhibiting M2 macrophages through adoptive transfer experiment. These findings revealed a novel role of BMP4 in regulating macrophages, offering potential strategies for treating pulmonary fibrosis.
Collapse
Affiliation(s)
- Yiyang Jiang
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, PR China
| | - Yingyi Chen
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, PR China
| | - Jingfei Fu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, PR China
| | - Rui Zhao
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, PR China
| | - Junji Xu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, PR China.
| | - Yi Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, PR China.
| |
Collapse
|
3
|
Lupo F, Pezzini F, Pasini D, Fiorini E, Adamo A, Veghini L, Bevere M, Frusteri C, Delfino P, D'agosto S, Andreani S, Piro G, Malinova A, Wang T, De Sanctis F, Lawlor RT, Hwang CI, Carbone C, Amelio I, Bailey P, Bronte V, Tuveson D, Scarpa A, Ugel S, Corbo V. Axon guidance cue SEMA3A promotes the aggressive phenotype of basal-like PDAC. Gut 2024; 73:1321-1335. [PMID: 38670629 PMCID: PMC11287654 DOI: 10.1136/gutjnl-2023-329807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/05/2024] [Indexed: 04/28/2024]
Abstract
OBJECTIVE The dysregulation of the axon guidance pathway is common in pancreatic ductal adenocarcinoma (PDAC), yet our understanding of its biological relevance is limited. Here, we investigated the functional role of the axon guidance cue SEMA3A in supporting PDAC progression. DESIGN We integrated bulk and single-cell transcriptomic datasets of human PDAC with in situ hybridisation analyses of patients' tissues to evaluate SEMA3A expression in molecular subtypes of PDAC. Gain and loss of function experiments in PDAC cell lines and organoids were performed to dissect how SEMA3A contributes to define a biologically aggressive phenotype. RESULTS In PDAC tissues, SEMA3A is expressed by stromal elements and selectively enriched in basal-like/squamous epithelial cells. Accordingly, expression of SEMA3A in PDAC cells is induced by both cell-intrinsic and cell-extrinsic determinants of the basal-like phenotype. In vitro, SEMA3A promotes cell migration as well as anoikis resistance. At the molecular level, these phenotypes are associated with increased focal adhesion kinase signalling through canonical SEMA3A-NRP1 axis. SEMA3A provides mouse PDAC cells with greater metastatic competence and favours intratumoural infiltration of tumour-associated macrophages and reduced density of T cells. Mechanistically, SEMA3A functions as chemoattractant for macrophages and skews their polarisation towards an M2-like phenotype. In SEMA3Ahigh tumours, depletion of macrophages results in greater intratumour infiltration by CD8+T cells and better control of the disease from antitumour treatment. CONCLUSIONS Here, we show that SEMA3A is a stress-sensitive locus that promotes the malignant phenotype of basal-like PDAC through both cell-intrinsic and cell-extrinsic mechanisms.
Collapse
Affiliation(s)
- Francesca Lupo
- Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy
| | - Francesco Pezzini
- Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy
| | - Davide Pasini
- Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy
- Department of Medicine, University of Verona, Verona, Italy
| | - Elena Fiorini
- Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy
| | - Annalisa Adamo
- Department of Medicine, University of Verona, Verona, Italy
| | - Lisa Veghini
- Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy
| | - Michele Bevere
- ARC-Net Research Centre, University of Verona, Verona, Italy
| | | | - Pietro Delfino
- Department of Diagnostic and Public Health, University of Verona, Verona, Italy
- Division of Immunology, Transplantation and Infectious Diseases, IRCSS San Raffaele, Milan, Italy
| | - Sabrina D'agosto
- Department of Diagnostic and Public Health, University of Verona, Verona, Italy
- Human Technopole, Milan, Italy
| | - Silvia Andreani
- ARC-Net Research Centre, University of Verona, Verona, Italy
- Department of Biochemistry and Molecular Biology, University of Würzburg, Wurzburg, Germany
| | - Geny Piro
- Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy
| | - Antonia Malinova
- Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy
| | - Tian Wang
- Department of Medicine, University of Verona, Verona, Italy
| | | | | | - Chang-Il Hwang
- Microbiology and Molecular Genetics, UC Davis Department of Microbiology, Davis, California, USA
| | - Carmine Carbone
- Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy
| | - Ivano Amelio
- Division of Systems Toxicology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Peter Bailey
- Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, UK
| | | | - David Tuveson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - Aldo Scarpa
- ARC-Net Research Centre, University of Verona, Verona, Italy
- Department of Diagnostic and Public Health, University of Verona, Verona, Italy
| | - Stefano Ugel
- Department of Medicine, University of Verona, Verona, Italy
| | - Vincenzo Corbo
- Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy
| |
Collapse
|
4
|
Xiao J, Wang S, Chen L, Ding X, Dang Y, Han M, Zheng Y, Shen H, Wu S, Wang M, Yang D, Li N, Dong C, Hu M, Su C, Li W, Hui L, Ye Y, Tang H, Wei B, Wang H. 25-Hydroxycholesterol regulates lysosome AMP kinase activation and metabolic reprogramming to educate immunosuppressive macrophages. Immunity 2024; 57:1087-1104.e7. [PMID: 38640930 DOI: 10.1016/j.immuni.2024.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/22/2023] [Accepted: 03/27/2024] [Indexed: 04/21/2024]
Abstract
Macrophages are critical to turn noninflamed "cold tumors" into inflamed "hot tumors". Emerging evidence indicates abnormal cholesterol metabolites in the tumor microenvironment (TME) with unclear function. Here, we uncovered the inducible expression of cholesterol-25-hydroxylase (Ch25h) by interleukin-4 (IL-4) and interleukin-13 (IL-13) via the transcription factor STAT6, causing 25-hydroxycholesterol (25HC) accumulation. scRNA-seq analysis confirmed that CH25Hhi subsets were enriched in immunosuppressive macrophage subsets and correlated to lower survival rates in pan-cancers. Targeting CH25H abrogated macrophage immunosuppressive function to enhance infiltrating T cell numbers and activation, which synergized with anti-PD-1 to improve anti-tumor efficacy. Mechanically, lysosome-accumulated 25HC competed with cholesterol for GPR155 binding to inhibit the kinase mTORC1, leading to AMPKα activation and metabolic reprogramming. AMPKα also phosphorylated STAT6 Ser564 to enhance STAT6 activation and ARG1 production. Together, we propose CH25H as an immunometabolic checkpoint, which manipulates macrophage fate to reshape CD8+ T cell surveillance and anti-tumor response.
Collapse
Affiliation(s)
- Jun Xiao
- Key Laboratory of RNA Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; Department of Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Shuang Wang
- Key Laboratory of RNA Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Longlong Chen
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xinyu Ding
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuanhao Dang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Mingshun Han
- Key Laboratory of RNA Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yuxiao Zheng
- Key Laboratory of RNA Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Huan Shen
- Key Laboratory of RNA Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Sifan Wu
- Key Laboratory of RNA Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Mingchang Wang
- Key Laboratory of RNA Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Dan Yang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Na Li
- Key Laboratory of RNA Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Chen Dong
- Key Laboratory of RNA Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Miao Hu
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, No. 150 Jimo Road, Shanghai, China
| | - Chen Su
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai 201210, China
| | - Weiyun Li
- Cancer Center, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai 200072, China
| | - Lijian Hui
- Key Laboratory of RNA Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Youqiong Ye
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Huiru Tang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Bin Wei
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; Cancer Center, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai 200072, China; Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China.
| | - Hongyan Wang
- Key Laboratory of RNA Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| |
Collapse
|
5
|
Conrad NL, Zorzi VSG, Pinheiro NB, Borchard JL, de Moura MQ, Leite FPL. Dynamics of ex vivo cytokine transcription during experimental Toxocara canis infection in Balb/c mice. REVISTA BRASILEIRA DE PARASITOLOGIA VETERINARIA = BRAZILIAN JOURNAL OF VETERINARY PARASITOLOGY : ORGAO OFICIAL DO COLEGIO BRASILEIRO DE PARASITOLOGIA VETERINARIA 2024; 33:e014223. [PMID: 38511816 PMCID: PMC10954251 DOI: 10.1590/s1984-29612024017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 02/09/2024] [Indexed: 03/22/2024]
Abstract
The cytokine microenvironment is crucial in generating and polarizing the immune response. A means of monitoring this environment would be of great value for better understanding Toxocara canis immune modulation. The aim of this study was to analyze the dynamics of cytokine transcription ex vivo, during early (24-48 hours) and late (15-30 days) times post-infection, in the mesenteric lymph nodes, spleen and intestinal mucosa of Balb/c mice experimentally infected with T. canis larvae. Mice in the treated group were infected with 100 third-stage larvae (L3), whereas mice in the control group were not infected. Analyses were performed at different times: 24-48 hours post-infection (HPI), 15-30 days post-infection (DPI). IL4, IL10, IL12 and Ym1 mRNA transcriptions were analyzed through qPCR. This study showed cytokine transcription mediated by migrating larvae in the mesenteric lymph nodes and spleen at 24-48 HPI, whereas cytokine transcription in the intestinal mucosa was observed only at late times (15-30 DPI). These results suggest that the T. canis larvae migration during infection might play a role in cytokine dynamics. Since the cytokine microenvironment is crucial in modulating immune response, knowledge of cytokine dynamics during T. canis infections pave the way to better understand its interaction with the host.
Collapse
Affiliation(s)
- Neida Lucia Conrad
- Programa de Pós-graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas - UFPel, Pelotas, RS, Brasil
| | - Vitória Sequeira Gonçalves Zorzi
- Programa de Pós-graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas - UFPel, Pelotas, RS, Brasil
| | - Natália Berne Pinheiro
- Programa de Pós-graduação em Microbiologia e Parasitologia, Instituto de Biologia, Universidade Federal de Pelotas - UFPel, Pelotas, RS, Brasil
| | - Jéssica Lopes Borchard
- Programa de Pós-graduação em Microbiologia e Parasitologia, Instituto de Biologia, Universidade Federal de Pelotas - UFPel, Pelotas, RS, Brasil
| | - Micaele Quintana de Moura
- Programa de Pós-graduação em Microbiologia e Parasitologia, Instituto de Biologia, Universidade Federal de Pelotas - UFPel, Pelotas, RS, Brasil
| | - Fábio Pereira Leivas Leite
- Programa de Pós-graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas - UFPel, Pelotas, RS, Brasil
- Programa de Pós-graduação em Microbiologia e Parasitologia, Instituto de Biologia, Universidade Federal de Pelotas - UFPel, Pelotas, RS, Brasil
| |
Collapse
|
6
|
Guth C, Schumacher PP, Vijayakumar A, Borgmann H, Balles H, Koschel M, Risch F, Lenz B, Hoerauf A, Hübner MP, Ajendra J. Eosinophils Are an Endogenous Source of Interleukin-4 during Filarial Infections and Contribute to the Development of an Optimal T Helper 2 Response. J Innate Immun 2024; 16:159-172. [PMID: 38354709 PMCID: PMC10932553 DOI: 10.1159/000536357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/16/2024] [Indexed: 02/16/2024] Open
Abstract
INTRODUCTION Interleukin-4 (IL-4) is a central regulator of type 2 immunity, crucial for the defense against multicellular parasites like helminths. This study focuses on its roles and cellular sources during Litomosoides sigmodontis infection, a model for human filarial infections. METHODS Utilizing an IL-4 secretion assay, investigation into the sources of IL-4 during the progression of L. sigmodontis infection was conducted. The impact of eosinophils on the Th2 response was investigated through experiments involving dblGATA mice, which lack eosinophils and, consequently, eosinophil-derived IL-4. RESULTS The absence of eosinophils notably influenced Th2 polarization, leading to impaired production of type 2 cytokines. Interestingly, despite this eosinophil deficiency, macrophage polarization, proliferation, and antibody production remained unaffected. CONCLUSION Our research uncovers eosinophils as a major source of IL-4, especially during the early phase of filarial infection. Consequently, these findings shed new light on IL-4 dynamics and eosinophil effector functions in filarial infections.
Collapse
Affiliation(s)
- Cécile Guth
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital of Bonn, Bonn, Germany
| | - Pia Philippa Schumacher
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital of Bonn, Bonn, Germany
| | - Archena Vijayakumar
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital of Bonn, Bonn, Germany
| | - Hannah Borgmann
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital of Bonn, Bonn, Germany
| | - Helene Balles
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital of Bonn, Bonn, Germany
| | - Marianne Koschel
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital of Bonn, Bonn, Germany
| | - Frederic Risch
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital of Bonn, Bonn, Germany
| | - Benjamin Lenz
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital of Bonn, Bonn, Germany
| | - Achim Hoerauf
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital of Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
| | - Marc P. Hübner
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital of Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
| | - Jesuthas Ajendra
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital of Bonn, Bonn, Germany
| |
Collapse
|
7
|
Grezzi L, Martínez YE, Barrios AA, Díaz Á, Casaravilla C. Characterization of the immunosuppressive environment induced by larval Echinococcus granulosus during chronic experimental infection. Infect Immun 2024; 92:e0027623. [PMID: 38174942 PMCID: PMC10863420 DOI: 10.1128/iai.00276-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/27/2023] [Indexed: 01/05/2024] Open
Abstract
The larval stage of Echinococcus granulosus causes the chronic infection known as cystic echinococcosis, deploying strong inhibitory mechanisms on host immune responses. Using experimental intraperitoneal infection in C57BL/6 mice, we carried out an in-depth analysis of the local changes in macrophage populations associated with chronic infection. In addition, we analyzed T cells and relevant soluble mediators. Infected animals showed an increase in local cell numbers, mostly accounted for by eosinophils, T cells, and macrophages. Within macrophage populations, the largest increases in cell numbers corresponded to resident large peritoneal macrophages (LPM). Monocyte recruitment appeared to be active, as judged by the increased number of monocytes and cells in the process of differentiation towards LPM, including small (SPM) and converting peritoneal macrophages (CPM). In contrast, we found no evidence of macrophage proliferation. Infection induced the expression of M2 markers in SPM, CPM, and LPM. It also enhanced the expression of the co-inhibitor PD-L1 in LPM, SPM, and CPM and induced the co-inhibitor PD-L2 in SPM and CPM. Therefore, local macrophages acquire M2-like phenotypes with probable suppressive capacities. Regarding T cells, infection induced an increase in the percentage of CD4+ cells that are PD-1+, which represent a potential target of suppression by PD-L1+/PD-L2+ macrophages. In possible agreement, CD4+ T cells from infected animals showed blunted proliferative responses to in vitro stimulation with anti-CD3. Further evidence of immune suppression in the parasite vicinity arose from the observation of an expansion in FoxP3+ CD4+ regulatory T cells and increases in the local concentrations of the anti-inflammatory cytokines TGF-β and IL-1Ra.
Collapse
Affiliation(s)
- Leticia Grezzi
- Laboratorio de Inmunología, Instituto de Química Biológica, Facultad de Ciencias/Instituto de Higiene, Universidad de la República, Montevideo, Uruguay
- Área Inmunología, Departamento de Biociencias, Facultad de Química/Instituto de Higiene, Universidad de la República, Montevideo, Uruguay
| | - Yamila E. Martínez
- Laboratorio de Inmunología, Instituto de Química Biológica, Facultad de Ciencias/Instituto de Higiene, Universidad de la República, Montevideo, Uruguay
- Área Inmunología, Departamento de Biociencias, Facultad de Química/Instituto de Higiene, Universidad de la República, Montevideo, Uruguay
| | - Anabella A. Barrios
- Área Inmunología, Departamento de Biociencias, Facultad de Química/Instituto de Higiene, Universidad de la República, Montevideo, Uruguay
| | - Álvaro Díaz
- Área Inmunología, Departamento de Biociencias, Facultad de Química/Instituto de Higiene, Universidad de la República, Montevideo, Uruguay
| | - Cecilia Casaravilla
- Laboratorio de Inmunología, Instituto de Química Biológica, Facultad de Ciencias/Instituto de Higiene, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
8
|
Wang J, Tian F, Cao L, Du R, Tong J, Ding X, Yuan Y, Wang C. Macrophage polarization in spinal cord injury repair and the possible role of microRNAs: A review. Heliyon 2023; 9:e22914. [PMID: 38125535 PMCID: PMC10731087 DOI: 10.1016/j.heliyon.2023.e22914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
The prevention, treatment, and rehabilitation of spinal cord injury (SCI) have always posed significant medical challenges. After mechanical injury, disturbances in microcirculation, edema formation, and the generation of free radicals lead to additional damage, impeding effective repair processes and potentially exacerbating further dysfunction. In this context, inflammatory responses, especially the activation of macrophages, play a pivotal role. Different phenotypes of macrophages have distinct effects on inflammation. Activation of classical macrophage cells (M1) promotes inflammation, while activation of alternative macrophage cells (M2) inhibits inflammation. The polarization of macrophages is crucial for disease healing. A non-coding RNA, known as microRNA (miRNA), governs the polarization of macrophages, thereby reducing inflammation following SCI and facilitating functional recovery. This study elucidates the inflammatory response to SCI, focusing on the infiltration of immune cells, specifically macrophages. It examines their phenotype and provides an explanation of their polarization mechanisms. Finally, this paper introduces several well-known miRNAs that contribute to macrophage polarization following SCI, including miR-155, miR-130a, and miR-27 for M1 polarization, as well as miR-22, miR-146a, miR-21, miR-124, miR-223, miR-93, miR-132, and miR-34a for M2 polarization. The emphasis is placed on their potential therapeutic role in SCI by modulating macrophage polarization, as well as the present developments and obstacles of miRNA clinical therapy.
Collapse
Affiliation(s)
- Jiawei Wang
- School and Hospital of Stomatology, Shanxi Medical University, Shanxi Taiyuan, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Taiyuan, China
| | - Feng Tian
- School and Hospital of Stomatology, Shanxi Medical University, Shanxi Taiyuan, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Taiyuan, China
| | - Lili Cao
- School and Hospital of Stomatology, Shanxi Medical University, Shanxi Taiyuan, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Taiyuan, China
| | - Ruochen Du
- Experimental Animal Center, Shanxi Medical University, Shanxi Taiyuan, China
| | - Jiahui Tong
- School and Hospital of Stomatology, Shanxi Medical University, Shanxi Taiyuan, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Taiyuan, China
| | - Xueting Ding
- Experimental Animal Center, Shanxi Medical University, Shanxi Taiyuan, China
| | - Yitong Yuan
- Experimental Animal Center, Shanxi Medical University, Shanxi Taiyuan, China
| | - Chunfang Wang
- School and Hospital of Stomatology, Shanxi Medical University, Shanxi Taiyuan, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Taiyuan, China
| |
Collapse
|
9
|
Singh SP, Smyth DJ, Cunningham K, Mukundan A, Byeon CH, Hinck CS, White MPJ, Ciancia C, Wosowska N, Sanders A, Jin R, Lilla S, Zanivan S, Schoenherr C, Inman G, van Dinther M, ten Dijke P, Hinck AP, Maizels RM. The helminth TGF-β mimic TGM4 is a modular ligand that binds CD44, CD49d and TGF-β receptors to preferentially target myeloid cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.13.566701. [PMID: 38014296 PMCID: PMC10680678 DOI: 10.1101/2023.11.13.566701] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
The murine helminth parasite Heligmosomoides polygyrus expresses a family of modular proteins which, replicating the functional activity of the immunomodulatory cytokine TGF-β, have been named TGM (TGF-β Μimic). Multiple domains bind to different receptors, including TGF-β receptors TβRI (ALK5) and TβRII through domains 1-3, and prototypic family member TGM1 binds the cell surface co-receptor CD44 through domains 4-5. This allows TGM1 to induce T lymphocyte Foxp3 expression, characteristic of regulatory (Treg) cells, and to activate a range of TGF-β-responsive cell types. In contrast, a related protein, TGM4, targets a much more restricted cell repertoire, primarily acting on myeloid cells, with less potent effects on T cells and lacking activity on other TGF-β-responsive cell types. TGM4 binds avidly to myeloid cells by flow cytometry, and can outcompete TGM1 for cell binding. Analysis of receptor binding in comparison to TGM1 reveals a 10-fold higher affinity than TGM1 for TGFβR-I (TβRI), but a 100-fold lower affinity for TβRII through Domain 3. Consequently, TGM4 is more dependent on co-receptor binding; in addition to CD44, TGM4 also engages CD49d (Itga4) through Domains 1-3, as well as CD206 and Neuropilin-1 through Domains 4 and 5. TGM4 was found to effectively modulate macrophage populations, inhibiting lipopolysaccharide-driven inflammatory cytokine production and boosting interleukin (IL)-4-stimulated responses such as Arginase-1 in vitro and in vivo. These results reveal that the modular nature of TGMs has allowed the fine tuning of the binding affinities of the TβR- and co-receptor binding domains to establish cell specificity for TGF-β signalling in a manner that cannot be attained by the mammalian cytokine.
Collapse
Affiliation(s)
- Shashi P. Singh
- Wellcome Centre of Integrative Parasitology, School of Infection and Immunity, University of Glasgow, G12 8TA, UK
| | - Danielle J. Smyth
- Wellcome Centre of Integrative Parasitology, School of Infection and Immunity, University of Glasgow, G12 8TA, UK
| | - Kyle Cunningham
- Wellcome Centre of Integrative Parasitology, School of Infection and Immunity, University of Glasgow, G12 8TA, UK
| | - Ananya Mukundan
- Department of Structural Biology, University of Pittsburgh, USA
| | | | | | - Madeleine P. J. White
- Wellcome Centre of Integrative Parasitology, School of Infection and Immunity, University of Glasgow, G12 8TA, UK
| | - Claire Ciancia
- Wellcome Centre of Integrative Parasitology, School of Infection and Immunity, University of Glasgow, G12 8TA, UK
| | - Nątalia Wosowska
- Wellcome Centre of Integrative Parasitology, School of Infection and Immunity, University of Glasgow, G12 8TA, UK
| | - Anna Sanders
- Wellcome Centre of Integrative Parasitology, School of Infection and Immunity, University of Glasgow, G12 8TA, UK
| | - Regina Jin
- Wellcome Centre of Integrative Parasitology, School of Infection and Immunity, University of Glasgow, G12 8TA, UK
| | - Sergio Lilla
- Cancer Research UK Scotland Institute, Glasgow, G61 1BD, UK
| | - Sara Zanivan
- Cancer Research UK Scotland Institute, Glasgow, G61 1BD, UK
| | | | - Gareth Inman
- Cancer Research UK Scotland Institute, Glasgow, G61 1BD, UK
| | - Maarten van Dinther
- Oncode Institute and Department of Cell and Chemical Biology, University of Leiden, The Netherlands
| | - Peter ten Dijke
- Oncode Institute and Department of Cell and Chemical Biology, University of Leiden, The Netherlands
| | - Andrew P. Hinck
- Department of Structural Biology, University of Pittsburgh, USA
| | - Rick M. Maizels
- Wellcome Centre of Integrative Parasitology, School of Infection and Immunity, University of Glasgow, G12 8TA, UK
| |
Collapse
|
10
|
Oyesola OO, Hilligan KL, Namasivayam S, Howard N, Clancy CS, Zhao M, Oland SD, Kiwanuka KN, Garza NL, Lafont BAP, Johnson RF, Mayer-Barber KD, Sher A, Loke P. Exposure to lung-migrating helminth protects against murine SARS-CoV-2 infection through macrophage-dependent T cell activation. Sci Immunol 2023; 8:eadf8161. [PMID: 37566678 DOI: 10.1126/sciimmunol.adf8161] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 07/19/2023] [Indexed: 08/13/2023]
Abstract
Helminth endemic regions report lower COVID-19 morbidity and mortality. Here, we show that lung remodeling from a prior infection with a lung-migrating helminth, Nippostrongylus brasiliensis, enhances viral clearance and survival of human-ACE2 transgenic mice challenged with SARS-CoV-2 (SCV2). This protection is associated with a lymphocytic infiltrate, including increased accumulation of pulmonary SCV2-specific CD8+ T cells, and anti-CD8 antibody depletion abrogated the N. brasiliensis-mediated reduction in viral loads. Pulmonary macrophages with a type 2 transcriptional and epigenetic signature persist in the lungs of N. brasiliensis-exposed mice after clearance of the parasite and establish a primed environment for increased CD8+ T cell recruitment and activation. Accordingly, depletion of macrophages ablated the augmented viral clearance and accumulation of CD8+ T cells driven by prior N. brasiliensis infection. Together, these findings support the concept that lung-migrating helminths can limit disease severity during SCV2 infection through macrophage-dependent enhancement of antiviral CD8+ T cell responses.
Collapse
Affiliation(s)
- Oyebola O Oyesola
- Type 2 Immunity Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kerry L Hilligan
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- Malaghan Institute of Medical Research, Wellington 6012, New Zealand
| | - Sivaranjani Namasivayam
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nina Howard
- Type 2 Immunity Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chad S Clancy
- Rocky Mountain Veterinary Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Mingming Zhao
- Type 2 Immunity Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sandra D Oland
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kasalina N Kiwanuka
- Type 2 Immunity Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicole L Garza
- SARS-CoV-2 Virology Core, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bernard A P Lafont
- SARS-CoV-2 Virology Core, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Reed F Johnson
- SARS-CoV-2 Virology Core, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Katrin D Mayer-Barber
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alan Sher
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - P'ng Loke
- Type 2 Immunity Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
11
|
Strizova Z, Benesova I, Bartolini R, Novysedlak R, Cecrdlova E, Foley L, Striz I. M1/M2 macrophages and their overlaps - myth or reality? Clin Sci (Lond) 2023; 137:1067-1093. [PMID: 37530555 PMCID: PMC10407193 DOI: 10.1042/cs20220531] [Citation(s) in RCA: 62] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/03/2023] [Accepted: 07/11/2023] [Indexed: 08/03/2023]
Abstract
Macrophages represent heterogeneous cell population with important roles in defence mechanisms and in homoeostasis. Tissue macrophages from diverse anatomical locations adopt distinct activation states. M1 and M2 macrophages are two polarized forms of mononuclear phagocyte in vitro differentiation with distinct phenotypic patterns and functional properties, but in vivo, there is a wide range of different macrophage phenotypes in between depending on the microenvironment and natural signals they receive. In human infections, pathogens use different strategies to combat macrophages and these strategies include shaping the macrophage polarization towards one or another phenotype. Macrophages infiltrating the tumours can affect the patient's prognosis. M2 macrophages have been shown to promote tumour growth, while M1 macrophages provide both tumour-promoting and anti-tumour properties. In autoimmune diseases, both prolonged M1 activation, as well as altered M2 function can contribute to their onset and activity. In human atherosclerotic lesions, macrophages expressing both M1 and M2 profiles have been detected as one of the potential factors affecting occurrence of cardiovascular diseases. In allergic inflammation, T2 cytokines drive macrophage polarization towards M2 profiles, which promote airway inflammation and remodelling. M1 macrophages in transplantations seem to contribute to acute rejection, while M2 macrophages promote the fibrosis of the graft. The view of pro-inflammatory M1 macrophages and M2 macrophages suppressing inflammation seems to be an oversimplification because these cells exploit very high level of plasticity and represent a large scale of different immunophenotypes with overlapping properties. In this respect, it would be more precise to describe macrophages as M1-like and M2-like.
Collapse
Affiliation(s)
- Zuzana Strizova
- Department of Immunology, Second Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, 15006, Prague, Czech Republic
| | - Iva Benesova
- Department of Immunology, Second Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, 15006, Prague, Czech Republic
| | - Robin Bartolini
- Chemokine Research Group, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TT, U.K
| | - Rene Novysedlak
- Third Department of Surgery, First Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, 15006, Prague, Czech Republic
| | - Eva Cecrdlova
- Department of Clinical and Transplant Immunology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Lily Koumbas Foley
- Chemokine Research Group, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TT, U.K
| | - Ilja Striz
- Department of Clinical and Transplant Immunology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
12
|
Domokos A, Varga Z, Jambrovics K, Caballero-Sánchez N, Szabo E, Nagy G, Scholtz B, Halasz L, Varadi E, Bene KP, Mazlo A, Bacsi A, Jeney V, Szebeni GJ, Nagy L, Czimmerer Z. The transcriptional control of the VEGFA-VEGFR1 (FLT1) axis in alternatively polarized murine and human macrophages. Front Immunol 2023; 14:1168635. [PMID: 37215144 PMCID: PMC10192733 DOI: 10.3389/fimmu.2023.1168635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/11/2023] [Indexed: 05/24/2023] Open
Abstract
Introduction Macrophages significantly contribute to the regulation of vessel formation under physiological and pathological conditions. Although the angiogenesis-regulating role of alternatively polarized macrophages is quite controversial, a growing number of evidence shows that they can participate in the later phases of angiogenesis, including vessel sprouting and remodeling or regression. However, the epigenetic and transcriptional regulatory mechanisms controlling this angiogenesis-modulating program are not fully understood. Results Here we show that IL-4 can coordinately regulate the VEGFA-VEGFR1 (FLT1) axis via simultaneously inhibiting the proangiogenic Vegfa and inducing the antiangiogenic Flt1 expression in murine bone marrow-derived macrophages, which leads to the attenuated proangiogenic activity of alternatively polarized macrophages. The IL-4-activated STAT6 and IL-4-STAT6 signaling pathway-induced EGR2 transcription factors play a direct role in the transcriptional regulation of the Vegfa-Flt1 axis. We demonstrated that this phenomenon is not restricted to the murine bone marrow-derived macrophages, but can also be observed in different murine tissue-resident macrophages ex vivo and parasites-elicited macrophages in vivo with minor cell type-specific differences. Furthermore, IL-4 exposure can modulate the hypoxic response of genes in both murine and human macrophages leading to a blunted Vegfa/VEGFA and synergistically induced Flt1/FLT1 expression. Discussion Our findings establish that the IL-4-activated epigenetic and transcriptional program can determine angiogenesis-regulating properties in alternatively polarized macrophages under normoxic and hypoxic conditions.
Collapse
Affiliation(s)
- Apolka Domokos
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, Debrecen, Hungary
| | - Zsofia Varga
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Institute of Genetics, Biological Research Centre, Eotvos Lorand Research Network, Szeged, Hungary
| | - Karoly Jambrovics
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Noemí Caballero-Sánchez
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, Debrecen, Hungary
| | - Eniko Szabo
- Laboratory of Functional Genomics, Biological Research Centre Eotvos Lorand Research Network, Szeged, Hungary
| | - Gergely Nagy
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Beata Scholtz
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Laszlo Halasz
- Departments of Medicine and Biological Chemistry, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children’s Hospital, St. Petersburg, FL, United States
| | - Eszter Varadi
- Institute of Genetics, Biological Research Centre, Eotvos Lorand Research Network, Szeged, Hungary
- Doctoral School in Biology, University of Szeged, Szeged, Hungary
| | - Krisztian P. Bene
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Anett Mazlo
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Attila Bacsi
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- ELKH-DE Allergology Research Group, Debrecen, Hungary
| | - Viktoria Jeney
- MTA-DE Lendület Vascular Pathophysiology Research Group, Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gabor J. Szebeni
- Laboratory of Functional Genomics, Biological Research Centre Eotvos Lorand Research Network, Szeged, Hungary
| | - Laszlo Nagy
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Departments of Medicine and Biological Chemistry, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children’s Hospital, St. Petersburg, FL, United States
| | - Zsolt Czimmerer
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Institute of Genetics, Biological Research Centre, Eotvos Lorand Research Network, Szeged, Hungary
- Department of Immunology, Albert Szent-Györgyi Medical School, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| |
Collapse
|
13
|
Abstract
Type 2 immunity mediates protective responses to helminths and pathological responses to allergens, but it also has broad roles in the maintenance of tissue integrity, including wound repair. Type 2 cytokines are known to promote fibrosis, an overzealous repair response, but their contribution to healthy wound repair is less well understood. This review discusses the evidence that the canonical type 2 cytokines, IL-4 and IL-13, are integral to the tissue repair process through two main pathways. First, essential for the progression of effective tissue repair, IL-4 and IL-13 suppress the initial inflammatory response to injury. Second, these cytokines regulate how the extracellular matrix is modified, broken down, and rebuilt for effective repair. IL-4 and/or IL-13 amplifies multiple aspects of the tissue repair response, but many of these pathways are highly redundant and can be induced by other signals. Therefore, the exact contribution of IL-4Rα signaling remains difficult to unravel.
Collapse
Affiliation(s)
- Judith E Allen
- Lydia Becker Institute for Immunology and Inflammation and Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom;
| |
Collapse
|
14
|
Szegvari G, Dora D, Lohinai Z. Effective Reversal of Macrophage Polarization by Inhibitory Combinations Predicted by a Boolean Protein–Protein Interaction Model. BIOLOGY 2023; 12:biology12030376. [PMID: 36979068 PMCID: PMC10045914 DOI: 10.3390/biology12030376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/17/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023]
Abstract
Background: The function and polarization of macrophages has a significant impact on the outcome of many diseases. Targeting tumor-associated macrophages (TAMs) is among the greatest challenges to solve because of the low in vitro reproducibility of the heterogeneous tumor microenvironment (TME). To create a more comprehensive model and to understand the inner workings of the macrophage and its dependence on extracellular signals driving polarization, we propose an in silico approach. Methods: A Boolean control network was built based on systematic manual curation of the scientific literature to model the early response events of macrophages by connecting extracellular signals (input) with gene transcription (output). The network consists of 106 nodes, classified as 9 input, 75 inner and 22 output nodes, that are connected by 217 edges. The direction and polarity of edges were manually verified and only included in the model if the literature plainly supported these parameters. Single or combinatory inhibitions were simulated mimicking therapeutic interventions, and output patterns were analyzed to interpret changes in polarization and cell function. Results: We show that inhibiting a single target is inadequate to modify an established polarization, and that in combination therapy, inhibiting numerous targets with individually small effects is frequently required. Our findings show the importance of JAK1, JAK3 and STAT6, and to a lesser extent STK4, Sp1 and Tyk2, in establishing an M1-like pro-inflammatory polarization, and NFAT5 in creating an anti-inflammatory M2-like phenotype. Conclusions: Here, we demonstrate a protein–protein interaction (PPI) network modeling the intracellular signalization driving macrophage polarization, offering the possibility of therapeutic repolarization and demonstrating evidence for multi-target methods.
Collapse
Affiliation(s)
- Gabor Szegvari
- Translational Medicine Institute, Semmelweis University, 1094 Budapest, Hungary
| | - David Dora
- Department of Anatomy, Histology and Embryology, Semmelweis University, 1094 Budapest, Hungary
- Correspondence: (D.D.); (Z.L.); Tel.: +36-1-2156920 (D.D.)
| | - Zoltan Lohinai
- Translational Medicine Institute, Semmelweis University, 1094 Budapest, Hungary
- Pulmonary Hospital Torokbalint, 2045 Torokbalint, Hungary
- Correspondence: (D.D.); (Z.L.); Tel.: +36-1-2156920 (D.D.)
| |
Collapse
|
15
|
Lenert ME, Szabo-Pardi TA, Burton MD. Regulatory T-cells and IL-5 mediate pain outcomes in a preclinical model of chronic muscle pain. Mol Pain 2023; 19:17448069221110691. [PMID: 35712872 PMCID: PMC9926397 DOI: 10.1177/17448069221110691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Fibromyalgia (FM) is a chronic musculoskeletal pain disorder primarily diagnosed in women. Historically, clinical literature focusing on cytokines and immune cells has been inconsistent. However, recent key studies show several layers of immune system dysfunction in FM. Preclinically, studies of the immune system have focused on monocytes with little focus on other immune cells. Importantly, T-cells are implicated in the development and resolution of chronic pain states, particularly in females. Our previous work showed that monocytes from women with FM produced more interleukin 5 (IL-5) and systemic treatment of IL-5 reversed mechanical hypersensitivity in a preclinical model of FM. Typically, IL-5 is produced by TH2-cells, so in this study we assessed T-cell populations and cytokine production in female mice using the acid-induced chronic muscle pain model of FM before and after treatment with IL-5. Two unilateral injections of pH4.0 saline, five days apart, into the gastrocnemius muscle induce long-lasting widespread pain. We found that peripheral (blood) regulatory Thelper-cells (CD4+ FOXP3+) are downregulated in pH4.0-injected mice, with no differences in tissue (lymph nodes) or CD8+ T-cell populations. We tested the analgesic properties of IL-5 using a battery of spontaneous and evoked pain measures. Interestingly, IL-5 treatment induced place preference in mice previously injected with pH4.0 saline. Mice treated with IL-5 show limited changes in T-cell populations compared to controls, with a rescue in regulatory T-cells which positively correlates with improved mechanical hypersensitivity. The experiments in this study provide novel evidence that downregulation of regulatory T-cells play a role in chronic muscle pain pathology in the acidic saline model of FM and that IL-5 signaling is a promising target for future development of therapeutics.
Collapse
Affiliation(s)
| | | | - Michael D Burton
- Michael D Burton, Neuroimmunology and Behavior Lab, Department of Neuroscience, School of Brain and Behavioral Science, Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Rd., BSB 10.546, Richardson, TX 75080, USA.
| |
Collapse
|
16
|
Hilligan KL, Oyesola OO, Namasivayam S, Howard N, Clancy CS, Oland SD, Garza NL, Lafont BAP, Johnson RF, Mayer-Barber KD, Sher A, Loke P. Helminth exposure protects against murine SARS-CoV-2 infection through macrophage dependent T cell activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.11.09.515832. [PMID: 36380767 PMCID: PMC9665339 DOI: 10.1101/2022.11.09.515832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Helminth endemic regions report lower COVID-19 morbidity and mortality. Here, we show that lung remodeling from a prior infection with a lung migrating helminth, Nippostrongylus brasiliensis , enhances viral clearance and survival of human-ACE2 transgenic mice challenged with SARS-CoV-2 (SCV2). This protection is associated with a lymphocytic infiltrate including an increased accumulation of pulmonary SCV2-specific CD8+ T cells and anti-CD8 antibody depletion abrogated the N. brasiliensis -mediated reduction in viral loads. Pulmonary macrophages with a type-2 transcriptional signature persist in the lungs of N. brasiliensis exposed mice after clearance of the parasite and establish a primed environment for increased antigen presentation. Accordingly, depletion of macrophages ablated the augmented viral clearance and accumulation of CD8+ T cells driven by prior N. brasiliensis infection. Together, these findings support the concept that lung migrating helminths can limit disease severity during SCV2 infection through macrophage-dependent enhancement of anti-viral CD8+ T cell responses. Abstract Figure
Collapse
Affiliation(s)
- Kerry L. Hilligan
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- Malaghan Institute of Medical Research, Wellington 6012, New Zealand
| | - Oyebola O. Oyesola
- Type 2 Immunity Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sivaranjani Namasivayam
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nina Howard
- Type 2 Immunity Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Chad S. Clancy
- Rocky Mountain Veterinary Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Sandra D. Oland
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicole L. Garza
- SARS-CoV-2 Virology Core, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bernard A. P. Lafont
- SARS-CoV-2 Virology Core, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Reed F. Johnson
- SARS-CoV-2 Virology Core, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Katrin D. Mayer-Barber
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alan Sher
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - P’ng Loke
- Type 2 Immunity Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
17
|
Kang Q, Li L, Pang Y, Zhu W, Meng L. An update on Ym1 and its immunoregulatory role in diseases. Front Immunol 2022; 13:891220. [PMID: 35967383 PMCID: PMC9366555 DOI: 10.3389/fimmu.2022.891220] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 07/06/2022] [Indexed: 11/23/2022] Open
Abstract
Ym1 is a rodent-specific chitinase-like protein (CLP) lacking catalytic activity, whose cellular origins are mainly macrophages, neutrophils and other cells. Although the detailed function of Ym1 remains poorly understood, Ym1 has been generally recognized as a fundamental feature of alternative activation of macrophages in mice and hence one of the prevalent detecting targets in macrophage phenotype distinguishment. Studies have pointed out that Ym1 may have regulatory effects, which are multifaceted and even contradictory, far more than just a mere marker. Allergic lung inflammation, parasite infection, autoimmune diseases, and central nervous system diseases have been found associations with Ym1 to varying degrees. Thus, insights into Ym1’s role in diseases would help us understand the pathogenesis of different diseases and clarify the genuine roles of CLPs in mammals. This review summarizes the information on Ym1 from the gene to its expression and regulation and focuses on the association between Ym1 and diseases.
Collapse
Affiliation(s)
- Qi Kang
- Institute of Molecular and Translational Medicine, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education, Xi’an, China
- Department of Clinical Medicine, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Luyao Li
- Institute of Molecular and Translational Medicine, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education, Xi’an, China
- Department of Clinical Medicine, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Yucheng Pang
- Institute of Molecular and Translational Medicine, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education, Xi’an, China
- Department of Clinical Medicine, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Wenhua Zhu
- Institute of Molecular and Translational Medicine, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education, Xi’an, China
- *Correspondence: Wenhua Zhu, ; Liesu Meng,
| | - Liesu Meng
- Institute of Molecular and Translational Medicine, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education, Xi’an, China
- National Joint Engineering Research Center of Biodiagnostics and Biotherapy, Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Wenhua Zhu, ; Liesu Meng,
| |
Collapse
|
18
|
Furlong-Silva J, Cook PC. Fungal-mediated lung allergic airway disease: The critical role of macrophages and dendritic cells. PLoS Pathog 2022; 18:e1010608. [PMID: 35834490 PMCID: PMC9282651 DOI: 10.1371/journal.ppat.1010608] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Fungi are abundant in the environment, causing our lungs to be constantly exposed to a diverse range of species. While the majority of these are cleared effectively in healthy individuals, constant exposure to spores (especially Aspergillus spp.) can lead to the development of allergic inflammation that underpins and worsen diseases such as asthma. Despite this, the precise mechanisms that underpin the development of fungal allergic disease are poorly understood. Innate immune cells, such as macrophages (MΦs) and dendritic cells (DCs), have been shown to be critical for mediating allergic inflammation to a range of different allergens. This review will focus on the crucial role of MΦ and DCs in mediating antifungal immunity, evaluating how these immune cells mediate allergic inflammation within the context of the lung environment. Ultimately, we aim to highlight important future research questions that will lead to novel therapeutic strategies for fungal allergic diseases.
Collapse
Affiliation(s)
- Julio Furlong-Silva
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Peter Charles Cook
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
- * E-mail:
| |
Collapse
|
19
|
Loke P, Lin JD. Redefining inflammatory macrophage phenotypes across stages and tissues by single-cell transcriptomics. Sci Immunol 2022; 7:eabo4652. [PMID: 35427177 DOI: 10.1126/sciimmunol.abo4652] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Single-cell transcriptomic data identifies major activation paths of monocyte-derived macrophages as a framework for inflammatory tissue macrophages.
Collapse
Affiliation(s)
- P'ng Loke
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jian-Da Lin
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei City 10617, Taiwan.,Center for Computational and Systems Biology, National Taiwan University, Taipei City 10617, Taiwan
| |
Collapse
|
20
|
Huang C, Du W, Ni Y, Lan G, Shi G. The effect of short-chain fatty acids on M2 macrophages polarization in vitro and in vivo. Clin Exp Immunol 2022; 207:53-64. [PMID: 35020860 PMCID: PMC8802183 DOI: 10.1093/cei/uxab028] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/16/2021] [Accepted: 12/01/2021] [Indexed: 12/19/2022] Open
Abstract
Alternatively activated macrophages (M2 polarization) play an important role in asthma. Short-chain fatty acids (SCFAs) possessed immune-regulatory functions, but their effects on M2 polarization of alveolar macrophages and its underlying mechanisms are still unclear. In our study, murine alveolar macrophage MH-S cell line and human monocyte-derived macrophages were used to polarize to M2 subset with interleukin-4 (IL-4) treatment. The underlying mechanisms involved were investigated using molecule inhibitors/agonists. In vivo, female C57BL/6 mice were divided into five groups: CON group, ovalbumin (OVA) asthma group, OVA+Acetate group, OVA+Butyrate group, and OVA+Propionate group. Mice were fed with or without SCFAs (Acetate, Butyrate, Propionate) in drinking water for 20 days before developing OVA-induced asthma model. In MH-S, SCFAs inhibited IL-4-incuced protein or mRNA expressions of M2-associated genes in a dose-dependent manner. G-protein-coupled receptor 43 (GPR43) agonist 4-CMTB and histone deacetylase (HDAC) inhibitor (trichostatin A, TSA), but not GPR41 agonist AR420626 could inhibit the protein or mRNA expressions M2-associated genes. 4-CMTB, but not TSA, had no synergistic role in the inhibitory effect of SCFAs on M2 polarization. In vivo study indicated Butyrate and Propionate, but not Acetate, attenuated OVA-induced M2 polarization in the lung and airway inflammation. We also found the inhibitory effect of SCFAs on M2 polarization in human-derived macrophages. Therefore, SCFAs inhibited M2 polarization in MH-S likely through GPR43 activation and/or HDAC inhibition. Butyrate and Propionate but not Acetate could inhibit M2 polarization and airway inflammation in asthma model. SCFAs also abrogated M2 polarization in human-derived macrophages.
Collapse
Affiliation(s)
- Chunrong Huang
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Shanghai, People's Republic of China
| | - Wei Du
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Shanghai, People's Republic of China
| | - Yingmeng Ni
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Shanghai, People's Republic of China
| | - Gelei Lan
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Shanghai, People's Republic of China
| | - Guochao Shi
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Shanghai, People's Republic of China
| |
Collapse
|
21
|
Borchard JL, Conrad NL, Pinto NB, Moura MQD, Berne MEA, Leite FPL. Acute and chronic immunomodulatory response mechanisms against Toxocara canis larvae infection in mice. REVISTA BRASILEIRA DE PARASITOLOGIA VETERINÁRIA 2022. [DOI: 10.1590/s1984-29612022056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Abstract The objective of this work was to evaluate the early and late immunological modulation of an experimental infection of T. canis larvae in mice. Mice were infected with 100 infective larvae and euthanized at different period: 24, 48 hours post infection (HPI), 15- and 30 days post infection (DPI). The humoral response was evaluated by indirect ELISA. Quantitative RT–PCR (qPCR) was used to quantify the mRNA transcription of cytokines IL4, IL10, IL12 and Ym1 in the early and late infection periods. Infection with T. canis was able to generate specific total IgG at 15- and 30- DPI. Analyzing the IgG isotype revealed a significant differentiation for IgG1 compared with IgG2a, IgG2b and IgG3, characterizing a Th-2 response. Evaluating the gene transcription at the early phase of infection, higher transcription levels of IL10, IL4 and Ym1 and a downregulation of IL12 were observed. By the late phase, increased transcription levels of IL4, Ym1 and IL12 were observed, and downregulation of IL-10 transcription was observed. The data obtained suggest that during experimental infection with T. canis, the participation of the IL4, IL10, IL12 cytokines and Ym1 can play an important role in T. canis immunomodulation.
Collapse
|
22
|
Elhag S, Stremmel C, Zehrer A, Plocke J, Hennel R, Keuper M, Knabe C, Winterhalter J, Gölling V, Tomas L, Weinberger T, Fischer M, Liu L, Wagner F, Lorenz M, Stark K, Häcker H, Schmidt-Supprian M, Völker U, Jastroch M, Lauber K, Straub T, Walzog B, Hammer E, Schulz C. Differences in Cell-Intrinsic Inflammatory Programs of Yolk Sac and Bone Marrow Macrophages. Cells 2021; 10:3564. [PMID: 34944072 PMCID: PMC8699930 DOI: 10.3390/cells10123564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/11/2021] [Accepted: 12/15/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Tissue-resident macrophages have mixed developmental origins. They derive in variable extent from yolk sac (YS) hematopoiesis during embryonic development. Bone marrow (BM) hematopoietic progenitors give rise to tissue macrophages in postnatal life, and their contribution increases upon organ injury. Since the phenotype and functions of macrophages are modulated by the tissue of residence, the impact of their origin and developmental paths has remained incompletely understood. METHODS In order to decipher cell-intrinsic macrophage programs, we immortalized hematopoietic progenitors from YS and BM using conditional HoxB8, and carried out an in-depth functional and molecular analysis of differentiated macrophages. RESULTS While YS and BM macrophages demonstrate close similarities in terms of cellular growth, differentiation, cell death susceptibility and phagocytic properties, they display differences in cell metabolism, expression of inflammatory markers and inflammasome activation. Reduced abundance of PYCARD (ASC) and CASPASE-1 proteins in YS macrophages abrogated interleukin-1β production in response to canonical and non-canonical inflammasome activation. CONCLUSIONS Macrophage ontogeny is associated with distinct cellular programs and immune response. Our findings contribute to the understanding of the regulation and programming of macrophage functions.
Collapse
Affiliation(s)
- Sara Elhag
- Medizinische Klinik und Poliklinik I, LMU Klinikum, Ludwig-Maximilians-Universität, 81377 Munich, Germany; (S.E.); (C.K.); (J.W.); (L.T.); (T.W.); (M.F.); (L.L.); (F.W.); (M.L.); (K.S.)
| | - Christopher Stremmel
- Medizinische Klinik und Poliklinik I, LMU Klinikum, Ludwig-Maximilians-Universität, 81377 Munich, Germany; (S.E.); (C.K.); (J.W.); (L.T.); (T.W.); (M.F.); (L.L.); (F.W.); (M.L.); (K.S.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80336 Munich, Germany
| | - Annette Zehrer
- Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-University Munich, Planegg-Martinsried, 82152 Munich, Germany; (A.Z.); (B.W.)
- Walter Brendel Center of Experimental Medicine, LMU Klinikum, Ludwig-Maximilians-Universität, 81377 Munich, Germany
| | - Josefine Plocke
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, 17475 Greifswald, Germany; (J.P.); (U.V.); (E.H.)
| | - Roman Hennel
- Department of Radiation Oncology, LMU Klinikum, Ludwig-Maximilians-Universität, 81377 Munich, Germany; (R.H.); (K.L.)
| | - Michaela Keuper
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden; (M.K.); (M.J.)
| | - Clarissa Knabe
- Medizinische Klinik und Poliklinik I, LMU Klinikum, Ludwig-Maximilians-Universität, 81377 Munich, Germany; (S.E.); (C.K.); (J.W.); (L.T.); (T.W.); (M.F.); (L.L.); (F.W.); (M.L.); (K.S.)
| | - Julia Winterhalter
- Medizinische Klinik und Poliklinik I, LMU Klinikum, Ludwig-Maximilians-Universität, 81377 Munich, Germany; (S.E.); (C.K.); (J.W.); (L.T.); (T.W.); (M.F.); (L.L.); (F.W.); (M.L.); (K.S.)
| | - Vanessa Gölling
- Institute of Experimental Hematology, School of Medicine, Technical University of Munich, 81675 Munich, Germany; (V.G.); (M.S.-S.)
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Lukas Tomas
- Medizinische Klinik und Poliklinik I, LMU Klinikum, Ludwig-Maximilians-Universität, 81377 Munich, Germany; (S.E.); (C.K.); (J.W.); (L.T.); (T.W.); (M.F.); (L.L.); (F.W.); (M.L.); (K.S.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80336 Munich, Germany
| | - Tobias Weinberger
- Medizinische Klinik und Poliklinik I, LMU Klinikum, Ludwig-Maximilians-Universität, 81377 Munich, Germany; (S.E.); (C.K.); (J.W.); (L.T.); (T.W.); (M.F.); (L.L.); (F.W.); (M.L.); (K.S.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80336 Munich, Germany
| | - Maximilian Fischer
- Medizinische Klinik und Poliklinik I, LMU Klinikum, Ludwig-Maximilians-Universität, 81377 Munich, Germany; (S.E.); (C.K.); (J.W.); (L.T.); (T.W.); (M.F.); (L.L.); (F.W.); (M.L.); (K.S.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80336 Munich, Germany
| | - Lulu Liu
- Medizinische Klinik und Poliklinik I, LMU Klinikum, Ludwig-Maximilians-Universität, 81377 Munich, Germany; (S.E.); (C.K.); (J.W.); (L.T.); (T.W.); (M.F.); (L.L.); (F.W.); (M.L.); (K.S.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80336 Munich, Germany
| | - Franziska Wagner
- Medizinische Klinik und Poliklinik I, LMU Klinikum, Ludwig-Maximilians-Universität, 81377 Munich, Germany; (S.E.); (C.K.); (J.W.); (L.T.); (T.W.); (M.F.); (L.L.); (F.W.); (M.L.); (K.S.)
| | - Michael Lorenz
- Medizinische Klinik und Poliklinik I, LMU Klinikum, Ludwig-Maximilians-Universität, 81377 Munich, Germany; (S.E.); (C.K.); (J.W.); (L.T.); (T.W.); (M.F.); (L.L.); (F.W.); (M.L.); (K.S.)
| | - Konstantin Stark
- Medizinische Klinik und Poliklinik I, LMU Klinikum, Ludwig-Maximilians-Universität, 81377 Munich, Germany; (S.E.); (C.K.); (J.W.); (L.T.); (T.W.); (M.F.); (L.L.); (F.W.); (M.L.); (K.S.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80336 Munich, Germany
| | - Hans Häcker
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA;
| | - Marc Schmidt-Supprian
- Institute of Experimental Hematology, School of Medicine, Technical University of Munich, 81675 Munich, Germany; (V.G.); (M.S.-S.)
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Uwe Völker
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, 17475 Greifswald, Germany; (J.P.); (U.V.); (E.H.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, 17475 Greifswald, Germany
| | - Martin Jastroch
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden; (M.K.); (M.J.)
| | - Kirsten Lauber
- Department of Radiation Oncology, LMU Klinikum, Ludwig-Maximilians-Universität, 81377 Munich, Germany; (R.H.); (K.L.)
- German Cancer Consortium (DKTK), Partner Site Munich, 80336 Munich, Germany
| | - Tobias Straub
- Core Facility Bioinformatics, Biomedical Center, Ludwig-Maximilians-University Munich, Planegg-Martinsried, 82152 Munich, Germany;
| | - Barbara Walzog
- Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-University Munich, Planegg-Martinsried, 82152 Munich, Germany; (A.Z.); (B.W.)
- Walter Brendel Center of Experimental Medicine, LMU Klinikum, Ludwig-Maximilians-Universität, 81377 Munich, Germany
| | - Elke Hammer
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, 17475 Greifswald, Germany; (J.P.); (U.V.); (E.H.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, 17475 Greifswald, Germany
| | - Christian Schulz
- Medizinische Klinik und Poliklinik I, LMU Klinikum, Ludwig-Maximilians-Universität, 81377 Munich, Germany; (S.E.); (C.K.); (J.W.); (L.T.); (T.W.); (M.F.); (L.L.); (F.W.); (M.L.); (K.S.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80336 Munich, Germany
| |
Collapse
|
23
|
Somebang K, Rudolph J, Imhof I, Li L, Niemi EC, Shigenaga J, Tran H, Gill TM, Lo I, Zabel BA, Schmajuk G, Wipke BT, Gyoneva S, Jandreski L, Craft M, Benedetto G, Plowey ED, Charo I, Campbell J, Ye CJ, Panter SS, Nakamura MC, Eckalbar W, Hsieh CL. CCR2 deficiency alters activation of microglia subsets in traumatic brain injury. Cell Rep 2021; 36:109727. [PMID: 34551293 PMCID: PMC8594931 DOI: 10.1016/j.celrep.2021.109727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 05/25/2021] [Accepted: 08/27/2021] [Indexed: 12/24/2022] Open
Abstract
In traumatic brain injury (TBI), a diversity of brain resident and peripherally derived myeloid cells have the potential to worsen damage and/or to assist in healing. We define the heterogeneity of microglia and macrophage phenotypes during TBI in wild-type (WT) mice and Ccr2−/− mice, which lack macrophage influx following TBI and are resistant to brain damage. We use unbiased single-cell RNA sequencing methods to uncover 25 microglia, monocyte/macrophage, and dendritic cell subsets in acute TBI and normal brains. We find alterations in transcriptional profiles of microglia subsets in Ccr2−/− TBI mice compared to WT TBI mice indicating that infiltrating monocytes/macrophages influence microglia activation to promote a type I IFN response. Preclinical pharmacological blockade of hCCR2 after injury reduces expression of IFN-responsive gene, Irf7, and improves outcomes. These data extend our understanding of myeloid cell diversity and crosstalk in brain trauma and identify therapeutic targets in myeloid subsets. By single-cell RNA sequencing of traumatically injured and normal brains from wild-type and Ccr2−/− mice, Somebang et al. define microglia, macrophage, and dendritic cell phenotypes in TBI. Targeting mouse and/or human CCR2 reduces specific TBI brain CNS myeloid compartments, dampens type I interferon responses, and improves cognition after TBI.
Collapse
Affiliation(s)
- Kerri Somebang
- Department of Medicine, Division of Rheumatology, University of California, San Francisco (UCSF), San Francisco, CA, USA; San Francisco VA Health Care System, San Francisco, CA, USA
| | - Joshua Rudolph
- School of Medicine, Lung Biology Center, Division of Pulmonology, UCSF, San Francisco, CA, USA
| | - Isabella Imhof
- Department of Medicine, Division of Rheumatology, University of California, San Francisco (UCSF), San Francisco, CA, USA; San Francisco VA Health Care System, San Francisco, CA, USA
| | - Luyi Li
- Department of Medicine, Division of Rheumatology, University of California, San Francisco (UCSF), San Francisco, CA, USA; San Francisco VA Health Care System, San Francisco, CA, USA
| | - Erene C Niemi
- Department of Medicine, Division of Rheumatology, University of California, San Francisco (UCSF), San Francisco, CA, USA; San Francisco VA Health Care System, San Francisco, CA, USA
| | - Judy Shigenaga
- San Francisco VA Health Care System, San Francisco, CA, USA; Department of Medicine, Division of Endocrinology and Metabolism, UCSF, San Francisco, CA, USA
| | - Huy Tran
- San Francisco VA Health Care System, San Francisco, CA, USA
| | | | - Iris Lo
- Gladstone Institutes, San Francisco, CA, USA
| | - Brian A Zabel
- Palo Alto Veterans Institute for Research, Palo Alto, CA, USA; Palo Alto VA Health Care System, Palo Alto, CA, USA
| | - Gabriela Schmajuk
- Department of Medicine, Division of Rheumatology, University of California, San Francisco (UCSF), San Francisco, CA, USA; San Francisco VA Health Care System, San Francisco, CA, USA
| | | | | | | | | | | | | | | | | | - Chun Jimmie Ye
- Department of Medicine, Division of Rheumatology, University of California, San Francisco (UCSF), San Francisco, CA, USA; Institute for Human Genetics, Department of Epidemiology and Biostatistics, Institute of Computational Health Sciences, University of California, San Francisco, San Francisco, CA, USA; Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - S Scott Panter
- San Francisco VA Health Care System, San Francisco, CA, USA; Department of Neurological Surgery, UCSF, San Francisco, CA, USA
| | - Mary C Nakamura
- Department of Medicine, Division of Rheumatology, University of California, San Francisco (UCSF), San Francisco, CA, USA; San Francisco VA Health Care System, San Francisco, CA, USA
| | - Walter Eckalbar
- School of Medicine, Lung Biology Center, Division of Pulmonology, UCSF, San Francisco, CA, USA
| | - Christine L Hsieh
- Department of Medicine, Division of Rheumatology, University of California, San Francisco (UCSF), San Francisco, CA, USA; San Francisco VA Health Care System, San Francisco, CA, USA.
| |
Collapse
|
24
|
Forman R, Logunova L, Smith H, Wemyss K, Mair I, Boon L, Allen JE, Muller W, Pennock JL, Else KJ. Trichuris muris infection drives cell-intrinsic IL4R alpha independent colonic RELMα+ macrophages. PLoS Pathog 2021; 17:e1009768. [PMID: 34329367 PMCID: PMC8357096 DOI: 10.1371/journal.ppat.1009768] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 08/11/2021] [Accepted: 06/29/2021] [Indexed: 01/24/2023] Open
Abstract
The intestinal nematode parasite Trichuris muris dwells in the caecum and proximal colon driving an acute resolving intestinal inflammation dominated by the presence of macrophages. Notably, these macrophages are characterised by their expression of RELMα during the resolution phase of the infection. The RELMα+ macrophage phenotype associates with the presence of alternatively activated macrophages and work in other model systems has demonstrated that the balance of classically and alternatively activated macrophages is critically important in enabling the resolution of inflammation. Moreover, in the context of type 2 immunity, RELMα+ alternatively activated macrophages are associated with the activation of macrophages via the IL4Rα. Despite a breadth of inflammatory pathologies associated with the large intestine, including those that accompany parasitic infection, it is not known how colonic macrophages are activated towards an alternatively activated phenotype. Here, we address this important knowledge gap by using Trichuris muris infection, in combination with transgenic mice (IL4Rαfl/fl.CX3CR1Cre) and IL4Rα-deficient/wild-type mixed bone marrow chimaeras. We make the unexpected finding that education of colonic macrophages towards a RELMα+, alternatively activated macrophage phenotype during T. muris infection does not require IL4Rα expression on macrophages. Further, this independence is maintained even when the mice are treated with an anti-IFNγ antibody during infection to create a strongly polarised Th2 environment. In contrast to RELMα, PD-L2 expression on macrophages post infection was dependent on IL4Rα signalling in the macrophages. These novel data sets are important, revealing a surprising cell-intrinsic IL4R alpha independence of the colonic RELMα+ alternatively activated macrophage during Trichuris muris infection. Infection of mice with Trichuris muris, a whipworm parasite results in inflammation of the large intestine. Inflammation is temporary; once the parasite has been cleared, damage to the intestinal tissue heals. During inflammation white blood cells move in to the gut tissue. These cells are dominated by a cell type called the macrophage. Macrophages which accumulate in the intestine post-infection express a protein called RELMα. These RELMα-expressing macrophages are thought to help resolve inflammation and have traditionally been associated with IL-4 and IL-13-driven activation. We set out to determine whether the macrophages which emerge during T. muris infection need to respond to IL-4 and/or IL-13 in order to express RELMα. We did this by creating a transgenic mouse where the common IL4Rα chain of the IL-4 and IL-13 receptor was absent from macrophages. To our surprise, macrophages were able to express RELMα regardless of whether the macrophage could or could not respond to IL-14/IL-13. This new knowledge is important as in some inflammatory conditions, treatments seeking to encourage alternatively activated macrophages have been proposed. Such treatments require an understanding of both the important and the redundant signals as well as recognition that activating signals may be disparate in different tissue environments.
Collapse
Affiliation(s)
- Ruth Forman
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
- * E-mail: (RF); (KJE)
| | - Larisa Logunova
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Hannah Smith
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Kelly Wemyss
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Iris Mair
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Louis Boon
- Polpharma Biologics, Utrecht, The Netherlands
| | - Judith E. Allen
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Werner Muller
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Joanne L. Pennock
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Kathryn J. Else
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
- * E-mail: (RF); (KJE)
| |
Collapse
|
25
|
Chulanetra M, Chaicumpa W. Revisiting the Mechanisms of Immune Evasion Employed by Human Parasites. Front Cell Infect Microbiol 2021; 11:702125. [PMID: 34395313 PMCID: PMC8358743 DOI: 10.3389/fcimb.2021.702125] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/25/2021] [Indexed: 12/14/2022] Open
Abstract
For the establishment of a successful infection, i.e., long-term parasitism and a complete life cycle, parasites use various diverse mechanisms and factors, which they may be inherently bestowed with, or may acquire from the natural vector biting the host at the infection prelude, or may take over from the infecting host, to outmaneuver, evade, overcome, and/or suppress the host immunity, both innately and adaptively. This narrative review summarizes the up-to-date strategies exploited by a number of representative human parasites (protozoa and helminths) to counteract the target host immune defense. The revisited information should be useful for designing diagnostics and therapeutics as well as vaccines against the respective parasitic infections.
Collapse
Affiliation(s)
- Monrat Chulanetra
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Wanpen Chaicumpa
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
26
|
Deng N, Guo X, Chen Q, Liu L, Chen S, Wang A, Li R, Huang Y, Ding X, Yu H, Hu S, Zhao Y, Chen X, Nie H. Anti-F4/80 treatment attenuates Th2 cell responses: Implications for the role of lung interstitial macrophages in the asthmatic mice. Int Immunopharmacol 2021; 99:108009. [PMID: 34315114 DOI: 10.1016/j.intimp.2021.108009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 03/15/2021] [Accepted: 07/19/2021] [Indexed: 11/19/2022]
Abstract
Lung interstitial macrophages (IMs) can be polarized towards an alternative activation phenotype in ovalbumin (OVA)-induced asthmatic mice. However, the role of alternative activation of lung IMs in Th2 cell responses in the asthmatic murine is still unclear. Here, we leverage an anti-F4/80 treatment which has been shown to selectively deplete IMs in mice and investigate how this treatment modulates Th2 cell responses in lung and whether the modulation is dependent on lung IMs in murine models of asthma. We show that anti-F4/80 treatment alleviates Th2 cell responses in mice immunized and challenged with OVA or house dust mite (HDM). The anti-F4/80 treatment does not target lung alveolar macrophages (AMs) in OVA-induced asthmatic mice or impact the abundance of other immune cell types, including B cells, T cells, and NK cells in wild-type mice. However, this treatment does inhibit the expression of polarized markers of alternatively activated macrophages, including arginase-1, Ym-1, and Fizz-1 in the lung tissues from OVA-induced asthmatic mice. Furthermore, we find that the inhibitory effects of anti-F4/80 treatment on Th2 cell responses can be reversed upon adoptive transfer of lung IMs. Taken together, our data show that anti-F4/80 treatment attenuates Th2 cell responses, which is at least partially related to depletion of lung IMs in murine models of asthma. This suggests that targeted lung IMs may provide a potential therapeutic protocol for the treatment of asthmatics.
Collapse
Affiliation(s)
- Nishan Deng
- Department of Respiratory & Critical Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Xuxue Guo
- Department of Respiratory & Critical Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Qianhui Chen
- Department of Respiratory & Critical Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Linlin Liu
- Department of Respiratory & Critical Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Shuo Chen
- Department of Respiratory & Critical Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Ailing Wang
- Nursing Department, Wuhan University School of Health Sciences, Wuhan 430060, Hubei, China
| | - Ruiyun Li
- Department of Respiratory & Critical Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Yi Huang
- Department of Respiratory & Critical Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Xuhong Ding
- Department of Respiratory & Critical Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Hongying Yu
- Department of Respiratory & Critical Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Suping Hu
- Department of Respiratory & Critical Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Yang Zhao
- Department of Respiratory & Critical Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Xueqin Chen
- Department of Respiratory & Critical Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Hanxiang Nie
- Department of Respiratory & Critical Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China.
| |
Collapse
|
27
|
Deb A, Deshmukh B, Ramteke P, Bhati FK, Bhat MK. Resistin: A journey from metabolism to cancer. Transl Oncol 2021; 14:101178. [PMID: 34293684 PMCID: PMC8319804 DOI: 10.1016/j.tranon.2021.101178] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 06/23/2021] [Accepted: 07/09/2021] [Indexed: 12/11/2022] Open
Abstract
Resistin levels have been associated with several pathological disorders such as metabolic disorders, cancers etc. Resistin exists in three isoforms namely RELM-α, β and γ. High resistin level activates inflammatory pathways, promotes metabolic disorders and is associated with carcinogenesis. Increase in the resistin level impairs the therapeutic response by inducing stemness or resistance, in cancer cells. Conventional drugs which alter resistin level could have therapeutic implications in several pathological disorders.
Resistin, a small secretory molecule, has been implicated to play an important role in the development of insulin resistance under obese condition. For the past few decades, it has been linked to various cellular and metabolic functions. It has been associated with diseases like metabolic disorders, cardiovascular diseases and cancers. Numerous clinical studies have indicated an increased serum resistin level in pathological disorders which have been reported to increase mortality rate in comparison to low resistin expressing subjects. Various molecular studies suggest resistin plays a pivotal role in proliferation, metastasis, angiogenesis, inflammation as well as in regulating metabolism in cancer cells. Therefore, understanding the role of resistin and elucidating its’ associated molecular mechanism will give a better insight into the management of these disorders. In this article, we summarize the diverse roles of resistin in pathological disorders based on the available literature, clinicopathological data, and a compiled study from various databases. The article mainly provides comprehensive information of its role as a target in different treatment modalities in pre as well as post-clinical studies.
Collapse
Affiliation(s)
- Ankita Deb
- National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind, Pune 411007, India
| | - Bhavana Deshmukh
- National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind, Pune 411007, India
| | - Pranay Ramteke
- National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind, Pune 411007, India
| | - Firoz Khan Bhati
- National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind, Pune 411007, India
| | - Manoj Kumar Bhat
- National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind, Pune 411007, India.
| |
Collapse
|
28
|
Gonzalez Acera M, Patankar JV, Diemand L, Siegmund B, Neurath MF, Wirtz S, Becker C. Comparative Transcriptomics of IBD Patients Indicates Induction of Type 2 Immunity Irrespective of the Disease Ideotype. Front Med (Lausanne) 2021; 8:664045. [PMID: 34136502 PMCID: PMC8200538 DOI: 10.3389/fmed.2021.664045] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 05/04/2021] [Indexed: 12/12/2022] Open
Abstract
Inflammatory cytokines initiate and sustain the perpetuation of processes leading to chronic inflammatory conditions such as inflammatory bowel diseases (IBD). The nature of the trigger causing an inflammatory reaction decides whether type 1, type 17, or type 2 immune responses, typically characterized by the respective T- helper cell subsets, come into effect. In the intestine, Type 2 responses have been linked with mucosal healing and resolution upon an immune challenge involving parasitic infections. However, type 2 cytokines are frequently elevated in certain types of IBD in particular ulcerative colitis (UC) leading to the assumption that Th2 cells might critically support the pathogenesis of UC raising the question of whether such elevated type 2 responses in IBD are beneficial or detrimental. In line with this, previous studies showed that suppression of IL-13 and other type 2 related molecules in murine models could improve the outcomes of intestinal inflammation. However, therapeutic attempts of neutralizing IL-13 in ulcerative colitis patients have yielded no benefits. Thus, a better understanding of the role of type 2 cytokines in regulating intestinal inflammation is required. Here, we took a comparative transcriptomic approach to address how Th2 responses evolve in different mouse models of colitis and human IBD datasets. Our data show that type 2 immune-related transcripts are induced in the inflamed gut of IBD patients in both Crohn's disease and UC and across widely used mouse models of IBD. Collectively our data implicate that the presence of a type 2 signature rather defines a distinct state of intestinal inflammation than a disease-specific pathomechanism.
Collapse
Affiliation(s)
- Miguel Gonzalez Acera
- Department of Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany.,Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Jay V Patankar
- Department of Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany.,Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Leonard Diemand
- Department of Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany.,Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Britta Siegmund
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Medizinische Klinik für Gastroenterologie, Infektiologie und Rheumatologie, Berlin, Germany
| | - Markus F Neurath
- Department of Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany.,Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Stefan Wirtz
- Department of Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany.,Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Christoph Becker
- Department of Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany.,Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| |
Collapse
|
29
|
Dermal bacterial LPS-stimulation reduces susceptibility to intradermal Trypanosoma brucei infection. Sci Rep 2021; 11:9856. [PMID: 33972588 PMCID: PMC8110744 DOI: 10.1038/s41598-021-89053-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 04/19/2021] [Indexed: 11/08/2022] Open
Abstract
Infections with Trypanosoma brucei sp. are established after the injection of metacyclic trypomastigotes into the skin dermis by the tsetse fly vector. The parasites then gain access to the local lymphatic vessels to infect the local draining lymph nodes and disseminate systemically via the bloodstream. Macrophages are considered to play an important role in host protection during the early stage of systemic trypanosome infections. Macrophages are abundant in the skin dermis, but relatively little is known of their impact on susceptibility to intradermal (ID) trypanosome infections. We show that although dermal injection of colony stimulating factor 1 (CSF1) increased the local abundance of macrophages in the skin, this did not affect susceptibility to ID T. brucei infection. However, bacterial LPS-stimulation in the dermis prior to ID trypanosome infection significantly reduced disease susceptibility. In vitro assays showed that LPS-stimulated macrophage-like RAW264.7 cells had enhanced cytotoxicity towards T. brucei, implying that dermal LPS-treatment may similarly enhance the ability of dermal macrophages to eliminate ID injected T. brucei parasites in the skin. A thorough understanding of the factors that reduce susceptibility to ID injected T. brucei infections may lead to the development of novel strategies to help reduce the transmission of African trypanosomes.
Collapse
|
30
|
Azithromycin alleviates systemic lupus erythematosus via the promotion of M2 polarisation in lupus mice. Cell Death Discov 2021; 7:82. [PMID: 33863874 PMCID: PMC8050155 DOI: 10.1038/s41420-021-00466-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/15/2021] [Accepted: 03/25/2021] [Indexed: 11/23/2022] Open
Abstract
Our previous study demonstrated that azithromycin could promote alternatively activated (M2) macrophages under lupus conditions in vitro, which might be beneficial for lupus treatment. Thus, the aim of this study was to further confirm whether azithromycin can drive M2 polarisation in lupus and ultimately alleviate systemic lupus erythematosus (SLE) in vivo. Lymphocyte-derived DNA (ALD-DNA)-induced mice (induced lupus model) and MRL-Faslpr mice (spontaneous lupus model) were both used in the experiment. First, we observed symptoms of lupus by assessing the levels of serum anti-dsDNA antibodies and serum creatinine and renal pathology. We found that both murine models showed increased levels of serum anti-dsDNA antibodies and creatinine, enhanced glomerular fibrosis and cell infiltration, basement membrane thickening and elevated IgG deposition. After azithromycin treatment, all these medical indexes were alleviated, and kidney damage was effectively reversed. Next, macrophage polarisation was assessed in the spleen and kidneys. Macrophage infiltration in the spleen was notably decreased after azithromycin treatment in both murine models, with a remarkably elevated proportion of M2 macrophages. In addition, the expression of interleukin (IL)-1, IL-6, tumour necrosis factor (TNF)-α, inducible nitric oxide synthase (iNOS), CD86, toll-like receptor (TLR)2 and TLR4 was extremely downregulated, while the expression of transforming growth factor (TGF)-β, arginase-1 (Arg-1), chitinase-like 3 (Ym-1), found in inflammatory zone (Fizz-1) and mannose receptor (CD206) was significantly upregulated in the kidneys after azithromycin treatment. Taken together, our results indicated for the first time that azithromycin could alleviate lupus by promoting M2 polarisation in vivo. These findings exploited the newly discovered potential of azithromycin, a conventional drug with verified safety, affordability and global availability, which could be a novel treat-to-target strategy for SLE via macrophage modulation.
Collapse
|
31
|
Li Z, Xiao J, Xu X, Li W, Zhong R, Qi L, Chen J, Cui G, Wang S, Zheng Y, Qiu Y, Li S, Zhou X, Lu Y, Lyu J, Zhou B, Zhou J, Jing N, Wei B, Hu J, Wang H. M-CSF, IL-6, and TGF-β promote generation of a new subset of tissue repair macrophage for traumatic brain injury recovery. SCIENCE ADVANCES 2021; 7:7/11/eabb6260. [PMID: 33712456 PMCID: PMC7954455 DOI: 10.1126/sciadv.abb6260] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 12/18/2020] [Indexed: 05/13/2023]
Abstract
Traumatic brain injury (TBI) leads to high mortality rate. We aimed to identify the key cytokines favoring TBI repair and found that patients with TBI with a better outcome robustly increased concentrations of macrophage colony-stimulating factor, interleukin-6, and transforming growth factor-β (termed M6T) in cerebrospinal fluid or plasma. Using TBI mice, we identified that M2-like macrophage, microglia, and endothelial cell were major sources to produce M6T. Together with the in vivo tracking of mCherry+ macrophages in zebrafish models, we confirmed that M6T treatment accelerated blood-borne macrophage infiltration and polarization toward a subset of tissue repair macrophages that expressed similar genes as microglia for neuroprotection, angiogenesis and cell migration. M6T therapy in TBI mice and zebrafish improved neurological function while blocking M6T-exacerbated brain injury. Considering low concentrations of M6T in some patients with poor prognostic, M6T treatment might repair TBI via generating a previously unidentified subset of tissue repair macrophages.
Collapse
Affiliation(s)
- Zhiqi Li
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
- Neurosurgical Institute, Fudan University, Shanghai 200040 China
| | - Jun Xiao
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiaoyan Xu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
- Experimental Immunology Branch, National Cancer Institute, U.S. National Institutes of Health, Bethesda, MD, USA
| | - Weiyun Li
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
- School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Ruiyue Zhong
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Linlin Qi
- School of Life Sciences, Shanghai University, Shanghai 200444, China
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Jiehui Chen
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Guizhong Cui
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Shuang Wang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Yuxiao Zheng
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Ying Qiu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Sheng Li
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Xin Zhou
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
- Cancer Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Yao Lu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Jiaying Lyu
- Department of Biostatistics, School of Public Health, Fudan University, Shanghai, China
| | - Bin Zhou
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Jiawei Zhou
- Institute of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China
| | - Naihe Jing
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Bin Wei
- School of Life Sciences, Shanghai University, Shanghai 200444, China.
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- Cancer Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Jin Hu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China.
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China
| | - Hongyan Wang
- Neurosurgical Institute, Fudan University, Shanghai 200040 China.
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
32
|
Zhou JY, Alvarez CA, Cobb BA. Integration of IL-2 and IL-4 signals coordinates divergent regulatory T cell responses and drives therapeutic efficacy. eLife 2021; 10:e57417. [PMID: 33617447 PMCID: PMC7899647 DOI: 10.7554/elife.57417] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 01/20/2021] [Indexed: 12/14/2022] Open
Abstract
Cells exist within complex milieus of communicating factors, such as cytokines, that combine to generate context-specific responses, yet nearly all knowledge about the function of each cytokine and the signaling propagated downstream of their recognition is based on the response to individual cytokines. Here, we found that regulatory T cells (Tregs) integrate concurrent signaling initiated by IL-2 and IL-4 to generate a response divergent from the sum of the two pathways in isolation. IL-4 stimulation of STAT6 phosphorylation was blocked by IL-2, while IL-2 and IL-4 synergized to enhance STAT5 phosphorylation, IL-10 production, and the selective proliferation of IL-10-producing Tregs, leading to increased inhibition of conventional T cell activation and the reversal of asthma and multiple sclerosis in mice. These data define a mechanism of combinatorial cytokine signaling and lay the foundation upon which to better understand the origins of cytokine pleiotropy while informing improved the clinical use of cytokines.
Collapse
Affiliation(s)
- Julie Y Zhou
- Department of Pathology, Case Western Reserve University School of MedicineClevelandUnited States
| | - Carlos A Alvarez
- Department of Pathology, Case Western Reserve University School of MedicineClevelandUnited States
| | - Brian A Cobb
- Department of Pathology, Case Western Reserve University School of MedicineClevelandUnited States
| |
Collapse
|
33
|
Joseph P, Umbright CM, Roberts JR, Cumpston JL, Orandle MS, McKinney WG, Sager TM. Lung toxicity and gene expression changes in response to whole-body inhalation exposure to cellulose nanocrystal in rats. Inhal Toxicol 2021; 33:66-80. [PMID: 33602020 PMCID: PMC10442725 DOI: 10.1080/08958378.2021.1884320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/27/2021] [Indexed: 10/22/2022]
Abstract
OBJECTIVE Human exposure to cellulose nanocrystal (CNC) is possible during the production and/or use of products containing CNC. The objectives of the current study were to determine the lung toxicity of CNC and the underlying molecular mechanisms of the toxicity. METHODS Rats were exposed to air or CNC (20 mg/m3, six hours/day, 14 d) by whole-body inhalation and lung toxicity and global gene expression profile were determined. RESULTS Significant increases in lactate dehydrogenase activity, pro-inflammatory cytokine levels, phagocyte oxidant production, and macrophage and neutrophil counts were detected in the bronchoalveolar lavage cells or fluid from the CNC exposed rats. Mild lung histological changes, such as the accumulation of macrophages and neutrophils, were detected in the CNC exposed rats. Gene expression profiling by next generation sequencing identified 531 genes whose expressions were significantly different in the lungs of the CNC exposed rats, compared with the controls. Bioinformatic analysis of the lung gene expression data identified significant enrichment in several biological functions and canonical pathways including those related to inflammation (cellular movement, immune cell trafficking, inflammatory diseases and response, respiratory disease, complement system, acute phase response, leukocyte extravasation signaling, granulocyte and agranulocyte adhesion and diapedesis, IL-10 signaling, and phagosome formation and maturation) and oxidative stress (NRF2-mediated oxidative stress response, production of nitric oxide and reactive oxygen species in macrophages, and free radical scavenging). CONCLUSION Our data demonstrated that inhalation exposure of rats to CNC resulted in lung toxicity mediated mainly through the induction of inflammation and oxidative stress.
Collapse
Affiliation(s)
- Pius Joseph
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Christina M Umbright
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Jenny R Roberts
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Jared L Cumpston
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Marlene S Orandle
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Walter G McKinney
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Tina M Sager
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| |
Collapse
|
34
|
Dutta B, Goswami R, Rahaman SO. TRPV4 Plays a Role in Matrix Stiffness-Induced Macrophage Polarization. Front Immunol 2020; 11:570195. [PMID: 33381111 PMCID: PMC7767862 DOI: 10.3389/fimmu.2020.570195] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 11/04/2020] [Indexed: 12/16/2022] Open
Abstract
Phenotypic polarization of macrophages is deemed essential in innate immunity and various pathophysiological conditions. We have now determined key aspects of the molecular mechanism by which mechanical cues regulate macrophage polarization. We show that Transient Receptor Potential Vanilloid 4 (TRPV4), a mechanosensitive ion channel, mediates substrate stiffness-induced macrophage polarization. Using atomic force microscopy, we showed that genetic ablation of TRPV4 function abrogated fibrosis-induced matrix stiffness generation in skin tissues. We have determined that stiffer skin tissue promotes the M1 macrophage subtype in a TRPV4-dependent manner; soft tissue does not. These findings were further validated by our in vitro results which showed that stiff matrix (50 kPa) alone increased expression of macrophage M1 markers in a TRPV4-dependent manner, and this response was further augmented by the addition of soluble factors; neither of which occurred with soft matrix (1 kPa). A direct requirement for TRPV4 in M1 macrophage polarization spectrum in response to increased stiffness was evident from results of gain-of-function assays, where reintroduction of TRPV4 significantly upregulated the expression of M1 markers in TRPV4 KO macrophages. Together, these data provide new insights regarding the role of TRPV4 in matrix stiffness-induced macrophage polarization spectrum that may be explored in tissue engineering and regenerative medicine and targeted therapeutics.
Collapse
Affiliation(s)
- Bidisha Dutta
- Department of Nutrition and Food Science, University of Maryland, College Park, MD, United States
| | - Rishov Goswami
- Department of Nutrition and Food Science, University of Maryland, College Park, MD, United States
| | - Shaik O Rahaman
- Department of Nutrition and Food Science, University of Maryland, College Park, MD, United States
| |
Collapse
|
35
|
Pedragosa J, Miró-Mur F, Otxoa-de-Amezaga A, Justicia C, Ruíz-Jaén F, Ponsaerts P, Pasparakis M, Planas AM. CCR2 deficiency in monocytes impairs angiogenesis and functional recovery after ischemic stroke in mice. J Cereb Blood Flow Metab 2020; 40:S98-S116. [PMID: 32151226 PMCID: PMC7687030 DOI: 10.1177/0271678x20909055] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Inflammatory Ly6ChiCCR2+ monocytes infiltrate the brain after stroke but their functions are not entirely clear. We report that CCR2+ monocytes and CCR2+ lymphocytes infiltrate the brain after permanent ischemia. To underscore the role of CCR2+ monocytes, we generated mice with selective CCR2 deletion in monocytes. One day post-ischemia, these mice showed less infiltrating monocytes and reduced expression of pro-inflammatory cytokines, markers of alternatively macrophage activation, and angiogenesis. Accordingly, Ly6Chi monocytes sorted from the brain of wild type mice 24 h post-ischemia expressed pro-inflammatory genes, M2 genes, and pro-angiogenic genes. Flow cytometry showed heterogeneous phenotypes within the infiltrating Ly6ChiCCR2+ monocytes, including a subgroup of Arginase-1+ cells. Mice with CCR2-deficient monocytes displayed a delayed inflammatory rebound 15 days post-ischemia that was not found in wild type mice. Furthermore, they showed reduced angiogenesis and worse behavioral performance. Administration of CCR2+/+ bone-marrow monocytes to mice with CCR2-deficient monocytes did not improve the behavioral performance suggesting that immature bone-marrow monocytes lack pro-reparative functions. The results show that CCR2+ monocytes contribute to acute post-ischemic inflammation and participate in functional recovery. The study unravels heterogeneity in the population of CCR2+ monocytes infiltrating the ischemic brain and suggests that pro-reparative monocyte subsets promote functional recovery after ischemic stroke.
Collapse
Affiliation(s)
- Jordi Pedragosa
- Department of Brain Ischemia and Neurodegeneration, Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain.,Area of Neurociences, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Francesc Miró-Mur
- Area of Neurociences, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Fundació Clínic, Barcelona, Spain
| | - Amaia Otxoa-de-Amezaga
- Department of Brain Ischemia and Neurodegeneration, Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain.,Area of Neurociences, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Carles Justicia
- Department of Brain Ischemia and Neurodegeneration, Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain.,Area of Neurociences, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Francisca Ruíz-Jaén
- Department of Brain Ischemia and Neurodegeneration, Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain.,Area of Neurociences, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Peter Ponsaerts
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
| | - Manolis Pasparakis
- CECAD Research Center, Institute for Genetics, University of Cologne, Cologne, Germany
| | - Anna M Planas
- Department of Brain Ischemia and Neurodegeneration, Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain.,Area of Neurociences, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| |
Collapse
|
36
|
Hachim D, LoPresti ST, Rege RD, Umeda Y, Iftikhar A, Nolfi AL, Skillen CD, Brown BN. Distinct macrophage populations and phenotypes associated with IL-4 mediated immunomodulation at the host implant interface. Biomater Sci 2020; 8:5751-5762. [PMID: 32945303 PMCID: PMC7641101 DOI: 10.1039/d0bm00568a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The host macrophage response to implants has shown to be affected by tissue location and physio-pathological conditions of the patient. Success in immunomodulatory strategies is thus predicated on the proper understanding of the macrophage populations participating on each one of these contexts. The present study uses an in vivo implantation model to analyze how immunomodulation via an IL-4 eluting implant affects distinct macrophage populations at the tissue-implant interface and how this may affect downstream regenerative processes. Populations identified as F4/80+, CD68+ and CD11b+ macrophages at the peri-implant space showed distinct susceptibility to polarize towards an M2-like phenotype under the effects of delivered IL-4. Also, the presence of the coating resulted in a significant reduction in F4/80+ macrophages, while other populations remained unchanged. These results suggests that the F4/80+ macrophage population may be predominant in the early stages of the host response at the surface of these implants, in contrast to CD11b+ macrophage populations which were either fewer in number or located more distant from the implant surface. Gene expression assays showed increased proteolytic activity and diminished matrix deposition as possible mechanisms explaining the decreased fibrotic capsule deposition and improved peri-implant tissue quality shown in previous studies using IL-4 eluting coatings. The pattern of M2-like gene expression promoted by IL-4 was correlated with glycosaminoglycan production within the site of implantation at early stages of the host response, suggesting a significant role in this response. These findings demonstrate that immunomodulatory strategies can be utilized to design and implement targeted delivery for improving biomaterial performance.
Collapse
Affiliation(s)
- Daniel Hachim
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Suite 300, Pittsburgh, PA 15219, USA.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Jin QW, Zhang NZ, Li WH, Qin HT, Liu YJ, Ohiolei JA, Niu DY, Yan HB, Li L, Jia WZ, Song MX, Fu BQ. Trichinella spiralis Thioredoxin Peroxidase 2 Regulates Protective Th2 Immune Response in Mice by Directly Inducing Alternatively Activated Macrophages. Front Immunol 2020; 11:2015. [PMID: 33072069 PMCID: PMC7544948 DOI: 10.3389/fimmu.2020.02015] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/24/2020] [Indexed: 12/25/2022] Open
Abstract
Trichinella infection can induce macrophages into the alternatively activated phenotype, which is primarily associated with the development of a polarized Th2 immune response. In the present study, we examined the immunomodulatory effect of T. spiralis thioredoxin peroxidase-2 (TsTPX2), a protein derived from T. spiralis ES products, in the regulation of Th2 response through direct activation of macrophages. The location of TsTPX2 was detected by immunohistochemistry and immunofluorescence analyses. The immune response in vivo induced by rTsTPX2 was characterized by analyzing the Th2 cytokines and Th1 cytokines in the peripheral blood. The rTsTPX2-activated macrophages (MrTsTPX2) were tested for polarization, their ability to evoke naïve CD4+ T cells, and resistance to the larval infection after adoptive transfer in BALB/c mice. The immunolocalization analysis showed TsTPX2 in cuticles and stichosome of T. spiralis ML. The immunostaining was detected in cuticles and stichosome of T. spiralis Ad3 and ML, as well as in tissue-dwellings around ML after the intestines and muscle tissues of infected mice were incubated with anti-rTsTPX2 antibody. Immunization of BALB/c mice with rTsTPX2 could induce a Th1-suppressing mixed immune response given the increased levels of Th2 cytokines (IL-4 and IL-10) production along with the decreased levels of Th1 cytokines (IFN-γ, IL-12, and TNF-α). In vitro studies showed that rTsTPX2 could directly drive RAW264.7 and peritoneal macrophages to the M2 phenotype. Moreover, MrTsTPX2 could promote CD4+ T cells polarized into Th2 type in vitro. Adoptive transfer of MrTsTPX2 into mice suppressed Th1 responses by enhancing Th2 responses and exhibited a 44.7% reduction in adult worm burden following challenge with T. spiralis infective larval, suggesting that the TsTPX2 is a potential vaccine candidate against trichinosis. Our study showed that TsTPX2 would be at least one of the molecules to switch macrophages into the M2 phenotype during T. spiralis infection, which provides a new therapeutic approach to various inflammatory disorders like allergies or autoimmune diseases.
Collapse
Affiliation(s)
- Qi-Wang Jin
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Nian-Zhang Zhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Wen-Hui Li
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Hong-Tao Qin
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yin-Ju Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - John Asekhaen Ohiolei
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Dong-Yu Niu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Hong-Bin Yan
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Li Li
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Wan-Zhong Jia
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Ming-Xin Song
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Bao-Quan Fu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| |
Collapse
|
38
|
Weinberger T, Esfandyari D, Messerer D, Percin G, Schleifer C, Thaler R, Liu L, Stremmel C, Schneider V, Vagnozzi RJ, Schwanenkamp J, Fischer M, Busch K, Klapproth K, Ishikawa-Ankerhold H, Klösges L, Titova A, Molkentin JD, Kobayashi Y, Engelhardt S, Massberg S, Waskow C, Perdiguero EG, Schulz C. Ontogeny of arterial macrophages defines their functions in homeostasis and inflammation. Nat Commun 2020; 11:4549. [PMID: 32917889 PMCID: PMC7486394 DOI: 10.1038/s41467-020-18287-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 08/12/2020] [Indexed: 12/22/2022] Open
Abstract
Arterial macrophages have different developmental origins, but the association of macrophage ontogeny with their phenotypes and functions in adulthood is still unclear. Here, we combine macrophage fate-mapping analysis with single-cell RNA sequencing to establish their cellular identity during homeostasis, and in response to angiotensin-II (AngII)-induced arterial inflammation. Yolk sac erythro-myeloid progenitors (EMP) contribute substantially to adventitial macrophages and give rise to a defined cluster of resident immune cells with homeostatic functions that is stable in adult mice, but declines in numbers during ageing and is not replenished by bone marrow (BM)-derived macrophages. In response to AngII inflammation, increase in adventitial macrophages is driven by recruitment of BM monocytes, while EMP-derived macrophages proliferate locally and provide a distinct transcriptional response that is linked to tissue regeneration. Our findings thus contribute to the understanding of macrophage heterogeneity, and associate macrophage ontogeny with distinct functions in health and disease. Arterial macrophages develop from either yolk sac or bone marrow progenitors. Here, the author show that ageing-induced reduction of arterial macrophages is not replenished by bone marrow-derived cells, but under inflammatory conditions circulating monocytes are recruited to maintain homeostasis, while arterial macrophages of yolk sac origin carry out tissue repair.
Collapse
Affiliation(s)
- Tobias Weinberger
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Ludwig-Maximilians-Universität, Marchioninistrasse 15, 81377, Munich, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, 80802, Munich, Germany
| | - Dena Esfandyari
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, 80802, Munich, Germany.,Institute of Pharmacology and Toxicology, Technische Universität München, Biedersteiner Strasse 29, 80802, Munich, Germany
| | - Denise Messerer
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Ludwig-Maximilians-Universität, Marchioninistrasse 15, 81377, Munich, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, 80802, Munich, Germany
| | - Gulce Percin
- Regeneration in Hematopoiesis, Leibniz-Institute on Aging - Fritz-Lipmann-Institute (FLI), Beutenbergstrasse 11, 07745, Jena, Germany
| | - Christian Schleifer
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Ludwig-Maximilians-Universität, Marchioninistrasse 15, 81377, Munich, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, 80802, Munich, Germany
| | - Raffael Thaler
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Ludwig-Maximilians-Universität, Marchioninistrasse 15, 81377, Munich, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, 80802, Munich, Germany
| | - Lulu Liu
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Ludwig-Maximilians-Universität, Marchioninistrasse 15, 81377, Munich, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, 80802, Munich, Germany
| | - Christopher Stremmel
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Ludwig-Maximilians-Universität, Marchioninistrasse 15, 81377, Munich, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, 80802, Munich, Germany
| | - Vanessa Schneider
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Ludwig-Maximilians-Universität, Marchioninistrasse 15, 81377, Munich, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, 80802, Munich, Germany
| | - Ronald J Vagnozzi
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Jennifer Schwanenkamp
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Maximilian Fischer
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Ludwig-Maximilians-Universität, Marchioninistrasse 15, 81377, Munich, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, 80802, Munich, Germany
| | - Katrin Busch
- Division of Cellular Immunology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Kay Klapproth
- Division of Cellular Immunology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Hellen Ishikawa-Ankerhold
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Ludwig-Maximilians-Universität, Marchioninistrasse 15, 81377, Munich, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, 80802, Munich, Germany
| | - Lukas Klösges
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Ludwig-Maximilians-Universität, Marchioninistrasse 15, 81377, Munich, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, 80802, Munich, Germany
| | - Anna Titova
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Ludwig-Maximilians-Universität, Marchioninistrasse 15, 81377, Munich, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, 80802, Munich, Germany
| | - Jeffery D Molkentin
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.,Howard Hughes Medical Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Yasuhiro Kobayashi
- Institute for Oral Science, Matsumoto Dental University, 1780 Hiro-Oka Gobara Shiojiri, Nagano, 390-0781, Japan
| | - Stefan Engelhardt
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, 80802, Munich, Germany.,Institute of Pharmacology and Toxicology, Technische Universität München, Biedersteiner Strasse 29, 80802, Munich, Germany
| | - Steffen Massberg
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Ludwig-Maximilians-Universität, Marchioninistrasse 15, 81377, Munich, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, 80802, Munich, Germany
| | - Claudia Waskow
- Regeneration in Hematopoiesis, Leibniz-Institute on Aging - Fritz-Lipmann-Institute (FLI), Beutenbergstrasse 11, 07745, Jena, Germany.,Faculty of Biological Sciences, Friedrich-Schiller-University Jena, 07737 Jena, 07745, Jena, Germany
| | - Elisa Gomez Perdiguero
- Institut Pasteur, Macrophages and Endothelial cells, Département de Biologie du Développement et Cellules Souches, UMR3738 CNRS, Paris, 75015, France
| | - Christian Schulz
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Ludwig-Maximilians-Universität, Marchioninistrasse 15, 81377, Munich, Germany. .,DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, 80802, Munich, Germany. .,Walter-Brendel-Center for Experimental Medicine, Ludwig Maximilian University, Marchioninistrasse 27, 81377, Munich, Germany.
| |
Collapse
|
39
|
Finlay CM, Allen JE. The immune response of inbred laboratory mice to Litomosoides sigmodontis: A route to discovery in myeloid cell biology. Parasite Immunol 2020; 42:e12708. [PMID: 32145033 PMCID: PMC7317388 DOI: 10.1111/pim.12708] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/12/2020] [Accepted: 02/24/2020] [Indexed: 12/11/2022]
Abstract
Litomosoides sigmodontis is the only filarial nematode where the full life cycle, from larval delivery to the skin through to circulating microfilaria, can be completed in immunocompetent laboratory mice. It is thus an invaluable tool for the study of filariasis. It has been used for the study of novel anti-helminthic therapeutics, the development of vaccines against filariasis, the development of immunomodulatory drugs for the treatment of inflammatory disease and the study of basic immune responses to filarial nematodes. This review will focus on the latter and aims to summarize how the L sigmodontis model has advanced our basic understanding of immune responses to helminths, led to major discoveries in macrophage biology and provided new insights into the immunological functions of the pleural cavity. Finally, and most importantly L sigmodontis represents a suitable platform to study how host genotype affects immune responses, with the potential for further discovery in myeloid cell biology and beyond.
Collapse
Affiliation(s)
- Conor M Finlay
- Lydia Becker Institute for Immunology & Infection, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Judith E Allen
- Lydia Becker Institute for Immunology & Infection, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| |
Collapse
|
40
|
Wang G, Shen G, Jiang X, Chen Z, Yin T. Assessment of para-inflammation in a wound healing model. Exp Ther Med 2020; 20:655-661. [PMID: 32509025 DOI: 10.3892/etm.2020.8666] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 01/31/2020] [Indexed: 02/05/2023] Open
Abstract
A thorough understanding of the inflammatory process has substantial biological and clinical relevance. Para-inflammation has been described as an adaptive response of the immune system to low levels of tissue stress. However, the role of para-inflammation in wound repair requires further investigation. In the present study, the expression levels of several para-inflammation genes were assessed in a murine cutaneous wound healing model. The results revealed that the expression levels of the para-inflammation genes were significantly altered. Among the genes that were examined, the expression levels of solute carrier family 7 member 11 (Slc7a11) paralleled those of the M2 macrophage-associated genes. Further investigation indicated that the Slc7a11 gene and its encoded protein cystine/glutamate transporter exhibited increased expression levels in IL-4-induced M2 macrophages. Notably, the inhibition of para-inflammation by sulindac prolonged wound healing process. The present study indicated that para-inflammation exhibited a protective effect in wound healing and provided new insight for host tissue repair.
Collapse
Affiliation(s)
- Guoping Wang
- Department of Cancer Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Guobo Shen
- Department of Cancer Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xiaoshuang Jiang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Zhixing Chen
- Department of Plastic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Tao Yin
- Department of Cancer Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
41
|
Blyth GAD, Connors L, Fodor C, Cobo ER. The Network of Colonic Host Defense Peptides as an Innate Immune Defense Against Enteropathogenic Bacteria. Front Immunol 2020; 11:965. [PMID: 32508838 PMCID: PMC7251035 DOI: 10.3389/fimmu.2020.00965] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/24/2020] [Indexed: 12/11/2022] Open
Abstract
Host defense peptides, abundantly secreted by colonic epithelial cells and leukocytes, are proposed to be critical components of an innate immune response in the colon against enteropathogenic bacteria, including Shigella spp., Salmonella spp., Clostridium difficile, and attaching and effacing Escherichia coli and Citrobacter rodentium. These short cationic peptides are bactericidal against both Gram-positive and -negative enteric pathogens, but may also exert killing effects on intestinal luminal microbiota. Simultaneously, these peptides modulate numerous cellular responses crucial for gut defenses, including leukocyte chemotaxis and migration, wound healing, cytokine production, cell proliferation, and pathogen sensing. This review discusses recent advances in our understanding of expression, mechanisms of action and microbicidal and immunomodulatory functions of major colonic host defense peptides, namely cathelicidins, β-defensins, and members of the Regenerating islet-derived protein III (RegIII) and Resistin-like molecule (RELM) families. In a theoretical framework where these peptides work synergistically, aspects of pathogenesis of infectious colitis reviewed herein uncover roles of host defense peptides aimed to promote epithelial defenses and prevent pathogen colonization, mediated through a combination of direct antimicrobial function and fine-tuning of host immune response and inflammation. This interactive host defense peptide network may decode how the intestinal immune system functions to quickly clear infections, restore homeostasis and avoid damaging inflammation associated with pathogen persistence during infectious colitis. This information is of interest in development of host defense peptides (either alone or in combination with reduced doses of antibiotics) as antimicrobial and immunomodulatory therapeutics for controlling infectious colitis.
Collapse
Affiliation(s)
- Graham A D Blyth
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Liam Connors
- Bachelor of Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Cristina Fodor
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Eduardo R Cobo
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
42
|
Krljanac B, Schubart C, Naumann R, Wirtz S, Culemann S, Krönke G, Voehringer D. RELMα-expressing macrophages protect against fatal lung damage and reduce parasite burden during helminth infection. Sci Immunol 2020; 4:4/35/eaau3814. [PMID: 31126996 DOI: 10.1126/sciimmunol.aau3814] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 01/08/2019] [Accepted: 04/26/2019] [Indexed: 12/15/2022]
Abstract
Alternatively activated macrophages (AAMs) can contribute to wound healing, regulation of glucose and fat metabolism, resolution of inflammation, and protective immunity against helminths. Their differentiation, tissue distribution, and effector functions are incompletely understood. Murine AAMs express high levels of resistin-like molecule (RELM) α, an effector protein with potent immunomodulatory functions. To visualize RELMα+ macrophages (MΦs) in vivo and evaluate their role in defense against helminths, we generated RELMα reporter/deleter mice. Infection with the helminth Nippostrongylus brasiliensis induced expansion of RELMα+ lung interstitial but not alveolar MΦs in a STAT6-dependent manner. RELMα+ MΦs were required for prevention of fatal lung damage during primary infection. Furthermore, protective immunity was lost upon specific deletion of RELMα+ MΦs during secondary infection. Thus, RELMα reporter/deleter mice reveal compartmentalization of AAMs in different tissues and demonstrate their critical role in resolution of severe lung inflammation and protection against migrating helminths.
Collapse
Affiliation(s)
- Branislav Krljanac
- Department of Infection Biology, University Hospital Erlangen and Friedrich-Alexander University Erlangen-Nuremberg (FAU), 91054 Erlangen, Germany
| | - Christoph Schubart
- Department of Infection Biology, University Hospital Erlangen and Friedrich-Alexander University Erlangen-Nuremberg (FAU), 91054 Erlangen, Germany
| | - Ronald Naumann
- Transgenic Core Facility, MPI of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Stefan Wirtz
- Department of Medicine 1-Gastroenterology, University Hospital Erlangen and Friedrich-Alexander University Erlangen-Nuremberg (FAU), 91054 Erlangen, Germany
| | - Stephan Culemann
- Department of Internal Medicine 3-Rheumatology and Immunology, University Hospital Erlangen and Friedrich-Alexander University Erlangen-Nuremberg (FAU), 91054 Erlangen, Germany.,Nikolaus Fiebiger Center of Molecular Medicine, University Hospital Erlangen and Friedrich-Alexander University Erlangen-Nuremberg (FAU), 91054 Erlangen, Germany
| | - Gerhard Krönke
- Department of Internal Medicine 3-Rheumatology and Immunology, University Hospital Erlangen and Friedrich-Alexander University Erlangen-Nuremberg (FAU), 91054 Erlangen, Germany.,Nikolaus Fiebiger Center of Molecular Medicine, University Hospital Erlangen and Friedrich-Alexander University Erlangen-Nuremberg (FAU), 91054 Erlangen, Germany
| | - David Voehringer
- Department of Infection Biology, University Hospital Erlangen and Friedrich-Alexander University Erlangen-Nuremberg (FAU), 91054 Erlangen, Germany.
| |
Collapse
|
43
|
Coakley G, Harris NL. Interactions between macrophages and helminths. Parasite Immunol 2020; 42:e12717. [PMID: 32249432 DOI: 10.1111/pim.12717] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 02/27/2020] [Accepted: 03/03/2020] [Indexed: 02/06/2023]
Abstract
Macrophages, the major population of tissue-resident mononuclear phagocytes, contribute significantly to the immune response during helminth infection. Alternatively activated macrophages (AAM) are induced early in the anti-helminth response following tissue insult and parasite recognition, amplifying the early type 2 immune cascade initiated by epithelial cells and ILC2s, and subsequently driving parasite expulsion. AAM also contribute to functional alterations in tissues infiltrated with helminth larvae, mediating both tissue repair and inflammation. Their activation is amplified and occurs more rapidly following reinfection, where they can play a dual role in trapping tissue migratory larvae and preventing or resolving the associated inflammation and damage. In this review, we will address both the known and emerging roles of tissue macrophages during helminth infection, in addition to considering both outstanding research questions and new therapeutic strategies.
Collapse
Affiliation(s)
- Gillian Coakley
- Department of Immunology and Pathology, Central Clinical School, The Alfred Centre The Alfred Centre, Monash University, Melbourne, Victoria, Australia
| | - Nicola Laraine Harris
- Department of Immunology and Pathology, Central Clinical School, The Alfred Centre The Alfred Centre, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
44
|
Scott NA, Andrusaite A, Andersen P, Lawson M, Alcon-Giner C, Leclaire C, Caim S, Le Gall G, Shaw T, Connolly JPR, Roe AJ, Wessel H, Bravo-Blas A, Thomson CA, Kästele V, Wang P, Peterson DA, Bancroft A, Li X, Grencis R, Mowat AM, Hall LJ, Travis MA, Milling SWF, Mann ER. Antibiotics induce sustained dysregulation of intestinal T cell immunity by perturbing macrophage homeostasis. Sci Transl Med 2019; 10:10/464/eaao4755. [PMID: 30355800 DOI: 10.1126/scitranslmed.aao4755] [Citation(s) in RCA: 202] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 06/19/2018] [Accepted: 09/28/2018] [Indexed: 12/11/2022]
Abstract
Macrophages in the healthy intestine are highly specialized and usually respond to the gut microbiota without provoking an inflammatory response. A breakdown in this tolerance leads to inflammatory bowel disease (IBD), but the mechanisms by which intestinal macrophages normally become conditioned to promote microbial tolerance are unclear. Strong epidemiological evidence linking disruption of the gut microbiota by antibiotic use early in life to IBD indicates an important role for the gut microbiota in modulating intestinal immunity. Here, we show that antibiotic use causes intestinal macrophages to become hyperresponsive to bacterial stimulation, producing excess inflammatory cytokines. Re-exposure of antibiotic-treated mice to conventional microbiota induced a long-term, macrophage-dependent increase in inflammatory T helper 1 (TH1) responses in the colon and sustained dysbiosis. The consequences of this dysregulated macrophage activity for T cell function were demonstrated by increased susceptibility to infections requiring TH17 and TH2 responses for clearance (bacterial Citrobacter rodentium and helminth Trichuris muris infections), corresponding with increased inflammation. Short-chain fatty acids (SCFAs) were depleted during antibiotic administration; supplementation of antibiotics with the SCFA butyrate restored the characteristic hyporesponsiveness of intestinal macrophages and prevented T cell dysfunction. Butyrate altered the metabolic behavior of macrophages to increase oxidative phosphorylation and also promoted alternative macrophage activation. In summary, the gut microbiota is essential to maintain macrophage-dependent intestinal immune homeostasis, mediated by SCFA-dependent pathways. Oral antibiotics disrupt this process to promote sustained T cell-mediated dysfunction and increased susceptibility to infections, highlighting important implications of repeated broad-spectrum antibiotic use.
Collapse
Affiliation(s)
- Nicholas A Scott
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester M13 9PT, UK.,Manchester Collaborative Centre for Inflammation Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, UK
| | - Anna Andrusaite
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - Peter Andersen
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Melissa Lawson
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UA, UK
| | | | - Charlotte Leclaire
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UA, UK
| | - Shabhonam Caim
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UA, UK
| | - Gwenaelle Le Gall
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UA, UK
| | - Tovah Shaw
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester M13 9PT, UK.,Manchester Collaborative Centre for Inflammation Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, UK
| | - James P R Connolly
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - Andrew J Roe
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - Hannah Wessel
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - Alberto Bravo-Blas
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - Carolyn A Thomson
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - Verena Kästele
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - Ping Wang
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester M13 9PT, UK
| | - Daniel A Peterson
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Eli Lilly and Company, Indianapolis, 46285 IN, USA
| | - Allison Bancroft
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester M13 9PT, UK.,Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester M13 9PT, UK
| | - Xuhang Li
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Richard Grencis
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester M13 9PT, UK.,Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester M13 9PT, UK
| | - Allan McI Mowat
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - Lindsay J Hall
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UA, UK
| | - Mark A Travis
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester M13 9PT, UK.,Manchester Collaborative Centre for Inflammation Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, UK.,Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester M13 9PT, UK
| | - Simon W F Milling
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - Elizabeth R Mann
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester M13 9PT, UK. .,Manchester Collaborative Centre for Inflammation Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, UK.,Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| |
Collapse
|
45
|
Wilson JL, Mayr HK, Weichhart T. Metabolic Programming of Macrophages: Implications in the Pathogenesis of Granulomatous Disease. Front Immunol 2019; 10:2265. [PMID: 31681260 PMCID: PMC6797840 DOI: 10.3389/fimmu.2019.02265] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 09/09/2019] [Indexed: 12/16/2022] Open
Abstract
Metabolic reprogramming is rapidly gaining appreciation in the etiology of immune cell dysfunction in a variety of diseases. Tuberculosis, schistosomiasis, and sarcoidosis represent an important class of diseases characterized by the formation of granulomas, where macrophages are causatively implicated in disease pathogenesis. Recent studies support the incidence of macrophage metabolic reprogramming in granulomas of both infectious and non-infectious origin. These publications identify the mechanistic target of rapamycin (mTOR), as well as the major regulators of lipid metabolism and cellular energy balance, peroxisome proliferator receptor gamma (PPAR-γ) and adenosine monophosphate-activated protein kinase (AMPK), respectively, as key players in the pathological progression of granulomas. In this review, we present a comprehensive breakdown of emerging research on the link between macrophage cell metabolism and granulomas of different etiology, and how parallels can be drawn between different forms of granulomatous disease. In particular, we discuss the role of PPAR-γ signaling and lipid metabolism, which are currently the best-represented metabolic pathways in this context, and we highlight dysregulated lipid metabolism as a common denominator in granulomatous disease progression. This review therefore aims to highlight metabolic mechanisms of granuloma immune cell fate and open up research questions for the identification of potential therapeutic targets in the future.
Collapse
Affiliation(s)
- Jayne Louise Wilson
- Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | - Hannah Katharina Mayr
- Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | - Thomas Weichhart
- Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
46
|
Dong D, Chen C, Hou J, Yang K, Fang H, Jiang H, Guo F, Wu X, Chen X. KLF4 upregulation is involved in alternative macrophage activation during secondary
Echinococcus granulosus
infection. Parasite Immunol 2019; 41:e12666. [DOI: 10.1111/pim.12666] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 08/08/2019] [Accepted: 08/09/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Dan Dong
- Department of Immunology School of Medicine Shihezi University Shihezi, Xinjiang China
| | - Congzhe Chen
- Department of Immunology School of Medicine Shihezi University Shihezi, Xinjiang China
- People's Liberation Army General Hospital Beijing China
| | - Jun Hou
- Department of Immunology School of Medicine Shihezi University Shihezi, Xinjiang China
| | - Kun Yang
- Department of Immunology School of Medicine Shihezi University Shihezi, Xinjiang China
| | - Hairui Fang
- Department of Immunology School of Medicine Shihezi University Shihezi, Xinjiang China
| | - Hongqun Jiang
- Department of Immunology School of Medicine Shihezi University Shihezi, Xinjiang China
| | - Feng Guo
- Department of Immunology School of Medicine Shihezi University Shihezi, Xinjiang China
| | - Xiangwei Wu
- Department of General Surgery First Affiliated Hospital School of Medicine Shihezi University Shihezi, Xinjiang China
- Laboratory of Transitional Medicine School of Medicine Shihezi University Shihezi, Xinjiang China
| | - Xueling Chen
- Department of Immunology School of Medicine Shihezi University Shihezi, Xinjiang China
| |
Collapse
|
47
|
Ucero AC, Bakiri L, Roediger B, Suzuki M, Jimenez M, Mandal P, Braghetta P, Bonaldo P, Paz-Ares L, Fustero-Torre C, Ximenez-Embun P, Hernandez AI, Megias D, Wagner EF. Fra-2-expressing macrophages promote lung fibrosis in mice. J Clin Invest 2019; 129:3293-3309. [PMID: 31135379 DOI: 10.1172/jci125366] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Idiopathic Pulmonary Fibrosis (IPF) is a deadly disease with limited therapies. Tissue fibrosis is associated with Type 2 immune response, although the causal contribution of immune cells is not defined. The AP-1 transcription factor Fra-2 is upregulated in IPF lung sections and Fra-2 transgenic mice (Fra-2tg) exhibit spontaneous lung fibrosis. Here we show that Bleomycin-induced lung fibrosis is attenuated upon myeloid-inactivation of Fra-2 and aggravated in Fra-2tg bone marrow chimeras. Type VI collagen (ColVI), a Fra-2 transcriptional target, is up-regulated in three lung fibrosis models, and macrophages promote myofibroblast activation in vitro in a ColVI- and Fra-2-dependent manner. Fra-2 or ColVI inactivation does not affect macrophage recruitment and alternative activation, suggesting that Fra-2/ColVI specifically controls the paracrine pro-fibrotic activity of macrophages. Importantly, ColVI knock-out mice (KO) and ColVI-KO bone marrow chimeras are protected from Bleomycin-induced lung fibrosis. Therapeutic administration of a Fra-2/AP-1 inhibitor reduces ColVI expression and ameliorates fibrosis in Fra-2tg mice and in the Bleomycin model. Finally, Fra-2 and ColVI positively correlate in IPF patient samples and co-localize in lung macrophages. Therefore, the Fra-2/ColVI pro-fibrotic axis is a promising biomarker and therapeutic target for lung fibrosis, and possibly other fibrotic diseases.
Collapse
Affiliation(s)
- Alvaro C Ucero
- Genes, Development and Disease Group, Cancer Cell Biology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Latifa Bakiri
- Genes, Development and Disease Group, Cancer Cell Biology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Ben Roediger
- Genes, Development and Disease Group, Cancer Cell Biology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.,Skin Imaging and Inflammation Laboratory, The Centenary Institute, Newtown, Australia.,Sydney Medical School, University of Sydney, Camperdown, New South Wales, Australia
| | - Masakatsu Suzuki
- End-Organ Disease Laboratories, R&D Division, Daiichi Sankyo Company, Tokyo, Japan
| | - Maria Jimenez
- Genes, Development and Disease Group, Cancer Cell Biology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Pratyusha Mandal
- Department of Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Paola Braghetta
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Paolo Bonaldo
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | | | | | | | | | - Diego Megias
- Confocal Microscopy Core Unit, CNIO, Madrid, Spain
| | - Erwin F Wagner
- Laboratory Genes and Disease, Department of Dermatology and Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
48
|
Curtale G, Rubino M, Locati M. MicroRNAs as Molecular Switches in Macrophage Activation. Front Immunol 2019; 10:799. [PMID: 31057539 PMCID: PMC6478758 DOI: 10.3389/fimmu.2019.00799] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 03/26/2019] [Indexed: 12/25/2022] Open
Abstract
The efficacy of macrophage- mediated inflammatory response relies on the coordinated expression of key factors, which expression is finely regulated at both transcriptional and post-transcriptional level. Several studies have provided compelling evidence that microRNAs play pivotal roles in modulating macrophage activation, polarization, tissue infiltration, and resolution of inflammation. In this review, we highlight the essential molecular mechanisms underlying the different phases of inflammation that are targeted by microRNAs to inhibit or accelerate restoration to tissue integrity and homeostasis. We further review the impact of microRNA-dependent regulation of tumor-associated macrophages and the relative implication for tumor biology.
Collapse
Affiliation(s)
- Graziella Curtale
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy.,Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy
| | - Marcello Rubino
- Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy
| | - Massimo Locati
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy.,Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy
| |
Collapse
|
49
|
Role of NADPH oxidase-2 in the progression of the inflammatory response secondary to striatum excitotoxic damage. J Neuroinflammation 2019; 16:91. [PMID: 30995916 PMCID: PMC6471795 DOI: 10.1186/s12974-019-1478-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 04/03/2019] [Indexed: 01/11/2023] Open
Abstract
Background During excitotoxic damage, neuronal death results from the increase in intracellular calcium, the induction of oxidative stress, and a subsequent inflammatory response. NADPH oxidases (NOX) are relevant sources of reactive oxygen species (ROS) during excitotoxic damage. NADPH oxidase-2 (NOX-2) has been particularly related to neuronal damage and death, as well as to the resolution of the subsequent inflammatory response. As ROS are crucial components of the regulation of inflammatory response, in this work, we evaluated the role of NOX-2 in the progression of inflammation resulting from glutamate-induced excitotoxic damage of the striatum in an in vivo model. Methods The striata of wild-type C57BL/6 J and NOX-2 KO mice (gp91Cybbtm1Din/J) were stereotactically injected with monosodium glutamate either alone or in combination with IL-4 or IL-10. The damage was evaluated in histological sections stained with cresyl violet and Fluoro-Jade B. The enzymatic activity of caspase-3 and NOX were also measured. Additionally, the cytokine profile was identified by ELISA and motor activity was verified by the tests of the cylinder, the adhesive tape removal, and the inverted grid. Results Our results show a neuroprotective effect in mice with a genetic inhibition of NOX-2, which is partially due to a differential response to excitotoxic damage, characterized by the production of anti-inflammatory cytokines. In NOX-2 KO animals, the excitotoxic condition increased the production of interleukin-4, which could contribute to the production of interleukin-10 that decreased neuronal apoptotic death and the magnitude of striatal injury. Treatment with interleukin-4 and interleukin-10 protected from excitotoxic damage in wild-type animals. Conclusions The release of proinflammatory cytokines during the excitotoxic event promotes an additional apoptotic death of neurons that survived the initial damage. During the subsequent inflammatory response to excitotoxic damage, ROS generated by NOX-2 play a decisive role in the extension of the lesion and consequently in the severity of the functional compromise, probably by regulating the anti-inflammatory cytokines production. Electronic supplementary material The online version of this article (10.1186/s12974-019-1478-4) contains supplementary material, which is available to authorized users.
Collapse
|
50
|
Heung LJ, Hohl TM. Inflammatory monocytes are detrimental to the host immune response during acute infection with Cryptococcus neoformans. PLoS Pathog 2019; 15:e1007627. [PMID: 30897162 PMCID: PMC6428256 DOI: 10.1371/journal.ppat.1007627] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 02/07/2019] [Indexed: 12/30/2022] Open
Abstract
Cryptococcus neoformans is a leading cause of invasive fungal infections among immunocompromised patients. However, the cellular constituents of the innate immune response that promote clearance versus progression of infection upon respiratory acquisition of C. neoformans remain poorly defined. In this study, we found that during acute C. neoformans infection, CCR2+ Ly6Chi inflammatory monocytes (IM) rapidly infiltrate the lungs and mediate fungal trafficking to lung-draining lymph nodes. Interestingly, this influx of IM is detrimental to the host, since ablating IM or impairing their recruitment to the lungs improves murine survival and reduces fungal proliferation and dissemination. Using a novel conditional gene deletion strategy, we determined that MHC class II expression by IM did not mediate their deleterious impact on the host. Furthermore, although ablation of IM reduced the number of lymphocytes, innate lymphoid cells, and eosinophils in the lungs, the effects of IM were not dependent on these cells. We ascertained that IM in the lungs upregulated transcripts associated with alternatively activated (M2) macrophages in response to C. neoformans, consistent with the model that IM assume a cellular phenotype that is permissive for fungal growth. We also determined that conditional knockout of the prototypical M2 marker arginase 1 in IM and deletion of the M2-associated transcription factor STAT6 were not sufficient to reverse the harmful effects of IM. Overall, our findings indicate that C. neoformans can subvert the fungicidal potential of IM to enable the progression of infection through a mechanism that is not dependent on lymphocyte priming, eosinophil recruitment, or downstream M2 macrophage polarization pathways. These results give us new insight into the plasticity of IM function during fungal infections and the level of control that C. neoformans can exert on host immune responses. Cryptococcus neoformans is a fungus that is prevalent throughout the environment and can cause a fatal infection of the central nervous system when inhaled into the lungs by patients with impaired immune systems. Our understanding of the immune responses that either help clear C. neoformans from the lungs or permit development of disease remains limited. In this study, we used a mouse model of lethal C. neoformans infection to determine that inflammatory monocytes, immune cells that are often among the first responders to infections, actually facilitate the progression of infection rather than clearance. These findings establish a foundation for future work to target the immune response of inflammatory monocytes as a strategy to improve the outcomes of patients that develop C. neoformans infections.
Collapse
Affiliation(s)
- Lena J. Heung
- Infectious Diseases Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
- * E-mail: (LJH); (TMH)
| | - Tobias M. Hohl
- Infectious Diseases Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
- * E-mail: (LJH); (TMH)
| |
Collapse
|