1
|
López L, Calderón D, Salinas L, Graham JP, Blount ZD, Trueba G. A plasmid with the bla CTX-M gene enhances the fitness of Escherichia coli strains under laboratory conditions. MICROBIOLOGY (READING, ENGLAND) 2025; 171:001525. [PMID: 39883084 PMCID: PMC11781320 DOI: 10.1099/mic.0.001525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 01/16/2025] [Indexed: 01/31/2025]
Abstract
Antimicrobial resistance (AMR) is a major threat to global public health that continues to grow owing to selective pressure caused by the use and overuse of antimicrobial drugs. Resistance spread by plasmids is of special concern, as they can mediate a wide distribution of AMR genes, including those encoding extended-spectrum β-lactamases (ESBLs). The CTX-M family of ESBLs has rapidly spread worldwide, playing a large role in the declining effectiveness of third-generation cephalosporins. This rapid spread across the planet is puzzling given that plasmids carrying AMR genes have been hypothesized to incur a fitness cost to their hosts in the absence of antibiotics. Here, we focus on a WT plasmid that carries the bla CTX-M 55 ESBL gene. We examine its conjugation rates and use head-to-head competitions to assay its associated fitness costs in both laboratory and wild Escherichia coli strains. We found that the wild strains exhibit intermediate conjugation levels, falling between two high-conjugation and two low-conjugation laboratory strains, the latter being older and more ancestral. We also show that the plasmid increases the fitness of both WT and lab strains when grown in lysogeny broth and Davis-Mingioli media without antibiotics, which might stem from metabolic benefits conferred on the host, or from interactions between the host and the rifampicin-resistant mutation we used as a selective marker. Laboratory strains displayed higher conjugation frequencies compared to WT strains. The exception was a low-passage K-12 strain, suggesting that prolonged laboratory cultivation may have compromised bacterial defences against plasmids. Despite low transfer rates among WT E. coli, the plasmid carried low fitness cost in minimal medium but conferred improved fitness in enriched medium, indicating a complex interplay between plasmids, host genetics and environmental conditions. Our findings reveal an intricate relationship between plasmid carriage and bacterial fitness. Moreover, they show that resistance plasmids can confer adaptive advantages to their hosts beyond AMR. Altogether, these results highlight that a closer study of plasmid dynamics is critical for developing a secure understanding of how they evolve and affect bacterial adaptability that is necessary for combating resistance spread.
Collapse
Affiliation(s)
- Lázaro López
- Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador
| | - Diana Calderón
- Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador
- Laboratorio de Biotecnología de Plantas, Universidad San Francisco de Quito, Quito, Ecuador
| | - Liseth Salinas
- Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador
| | - Jay P. Graham
- Environmental Health Sciences Division, University of California, Berkeley, California, USA
| | - Zachary D. Blount
- Department of Microbiology, Genetics, and Immunology, Michigan State University, East Lansing, Michigan, USA
| | - Gabriel Trueba
- Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador
| |
Collapse
|
2
|
Fukuda A, Kozaki Y, Kürekci C, Suzuki Y, Nakajima C, Usui M. Spreading Ability of Tet(X)-Harboring Plasmid and Effect of Tetracyclines as a Selective Pressure. Microb Drug Resist 2024; 30:489-501. [PMID: 39575688 DOI: 10.1089/mdr.2024.0115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024] Open
Abstract
Tigecycline is a last-resort antimicrobial in humans. Tetracyclines are the most widely used antimicrobials in livestock. Mobile tigecycline resistance genes [tet(X)] are disseminated worldwide, and tetracycline use may have promoted the selection of tet(X) genes. Thus, the selective pressure on tet(X) genes and their plasmids in livestock must be elucidated. We performed a retrospective study to clarify the prevalence of tigecycline-resistant Escherichia coli from pigs in Thailand. Screening for tigecycline resistance was performed on 107 E. coli strains from 25 samples, and tet(X)-carrying plasmids were characterized. tet(X) genes were cloned and expressed in E. coli. Bacterial growth rate in the presence of tetracycline as a result of the presence of tet(X) genes was also evaluated. Thirty-two tet(X4)-harboring tigecycline-resistant E. coli strains were detected in 10/25 samples (40%). The tet(X4) genes were carried on various Inc-type plasmids and flanked by ISCR2. The tet(X)-carrying plasmids were transferred to E. coli and Klebsiella pneumoniae. Acquisition of tet(X) genes and their plasmids improved bacterial growth in the presence of tetracycline. In summary, tetracycline use exerts selective pressure on tet(X) genes and their various backbone plasmids; therefore, a reduced amount of tetracycline use is important to limit the spreading of tet(X) genes.
Collapse
Affiliation(s)
- Akira Fukuda
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan
| | - Yuta Kozaki
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan
| | - Cemil Kürekci
- Faculty of Veterinary Medicine, Department of Food Hygiene and Technology, Hatay Mustafa Kemal University, Antakya, Türkiye
| | - Yasuhiko Suzuki
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Sapporo, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Division of Research Support, Hokkaido University Institute for Vaccine Research and Development, Sapporo, Japan
| | - Chie Nakajima
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Sapporo, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Division of Division of Vaccinology for Clinical Development, Hokkaido University Institute for Vaccine Research and Development, Sapporo, Japan
| | - Masaru Usui
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan
| |
Collapse
|
3
|
Abdelhamed H, Mannan SB, Riman MM, Tekedar HC, Lawrence ML. Comparative analysis of three plasmids from Plesiomonas shigelloides strain MS-17-188 and their role in antimicrobial resistance. JAC Antimicrob Resist 2024; 6:dlae109. [PMID: 39035015 PMCID: PMC11258559 DOI: 10.1093/jacamr/dlae109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/25/2024] [Indexed: 07/23/2024] Open
Abstract
Background Plesiomonas shigelloides strain MS-17-188 was isolated from a deceased catfish from East Mississippi and showed resistance to florfenicol, tetracyclines and a sulphonamide. WGS of strain MS-17-188 revealed three plasmids (pPSMS-171881, pPSMS-171882 and pPSMS-171883). Objectives To accurately determine the impact of three plasmids found in P. shigelloides strain MS-17-188 on the dissemination of antibiotic resistance genes and to provide insights into the molecular structure of these plasmids. Methods The genetic features of these plasmids in terms of genes associated with antimicrobial resistance (AMR), virulence, transfer, maintenance and replication were identified using bioinformatic tools. Additionally, we investigated the in vitro mobilization and stability of plasmid-mediated resistance. The Comprehensive Antibiotic Resistance Database and Virulence Factors Database were used to detect the AMR genes and virulence genes of P. shigelloides plasmids. Moreover, plasmid mobility was evaluated by a filter-mating assay using strain MS-17-188 as a donor and azide-resistant Escherichia coli J53 as a recipient strain. A stability experiment was conducted to explore the persistence of plasmid-mediated antibiotic resistance in strain MS-17-188 in the absence and presence of selection. Results pPSMS-171881 harboured multidrug efflux complex (adeF) and two genes responsible for arsenic resistance (arsB and arsC). pPSMS-171882 had a region of 7085 bp encoding type IV secretion system proteins. pPSMS-171883 carried the tetracycline resistance genes tet(A) and tet(R), and a phenicol resistance gene (floR), which were flanked by two transposable elements and mobilization proteins, suggesting that there is a conjugative mechanism by which this plasmid can be mobilized. Results from the stability experiment indicated that pPSMS-171883 is lost over time in the absence of selective pressure. Moreover, pPSMS-171883 is more stable in P. shigelloides at growth temperatures of 30°C and 37°C compared with 40°C and 43°C. After intraperitoneal injection in catfish, P. shigelloides strain MS-17-188 resulted in no mortalities. Conclusions This is the first study to report plasmid-mediated AMR in Plesiomonas isolated from cultured fish, which needs continued monitoring. This study will provide an understanding of the genetic mechanisms of AMR and virulence of P. shigelloides.
Collapse
Affiliation(s)
- Hossam Abdelhamed
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA
| | - Shahnewaj Bin Mannan
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA
| | - Munshi Mustafiz Riman
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA
| | - Hasan C Tekedar
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA
| | - Mark L Lawrence
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA
| |
Collapse
|
4
|
Cergole-Novella MC, Enne VI, Pignatari ACC, Carvalho E, Guth BEC. Acquisition of plasmids from Shiga toxin-producing Escherichia coli strains had low or neutral fitness cost on commensal E. coli. Braz J Microbiol 2024; 55:1297-1304. [PMID: 38396221 PMCID: PMC11153473 DOI: 10.1007/s42770-024-01269-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
Although it has been hypothesized that the acquisition of plasmids-especially those bearing virulence factors and antimicrobial resistance genes-increases the energetic burden and reduces the fitness of a bacterium in general, some results have challenged this view, showing little or no effect on fitness after plasmid acquisition, which may lead to change in the view that there are evolutionary barriers for a wide spread of such plasmids among bacteria. Here, to evaluate the fitness impact of plasmid-encoded antibiotic resistance and virulence genes, plasmids from O26:H11, O111:H8, and O118:H16 Shiga toxin-producing Escherichia coli (STEC) human and bovine isolates were transferred to the non-virulent E. coli HS and K-12 MG1655 strains. Sequencing and PCR were used to characterize plasmids, and to identify the presence of antimicrobial resistance and/or virulence genes. The fitness impact of plasmids encoding virulence and antimicrobial resistance upon bacterial hosts was determined by pairwise growth competition. Plasmid profile analysis showed that STEC strains carried one or more high and low molecular weight plasmids belonging to the B/O, F, I, K, P, Q, and/or X incompatibility groups encoding virulence genes (SPATE-encoding genes) and/or antimicrobial resistance genes (aadA1, strAB, tetA, and/or tetB). Competition experiments demonstrated that the biological cost of carriage of these plasmids by the commensal E. coli strain HS or the laboratory strain E. coli K-12 MG1655 was low or non-existent, ranging from - 4.7 to 5.2% per generation. This suggests that there are few biological barriers-or, alternatively, it suggests that there are biological barriers that we were not able to measure in this competition model-against the spread of plasmid encoding virulence and resistance genes from STEC to other, less pathogenic E. coli strains. Thus, our results, in opposition to a common view, suggest that the acquisition of plasmids does not significantly affect the bacteria fitness and, therefore, the theorized plasmid burden would not be a significant barrier for plasmid spread.
Collapse
Affiliation(s)
- Maria Cecilia Cergole-Novella
- Laboratorio Regional de Santo Andre, Instituto Adolfo Lutz, Santo Andre, SP, Brazil.
- Department of Microbiology, Escola Paulista de Medicina, Universidade Federal de Sao Paulo, Immunology, Parasitology, Sao Paulo, SP, Brazil.
| | - Virve Irene Enne
- Department of Clinical Microbiology, University College London, London, UK
| | | | - Eneas Carvalho
- Bacteriology Laboratory, Butantan Institute, Sao Paulo, SP, Brazil
| | - Beatriz Ernestina Cabilio Guth
- Department of Microbiology, Escola Paulista de Medicina, Universidade Federal de Sao Paulo, Immunology, Parasitology, Sao Paulo, SP, Brazil
| |
Collapse
|
5
|
Nair RR, Andersson DI, Warsi OM. Antibiotic resistance begets more resistance: chromosomal resistance mutations mitigate fitness costs conferred by multi-resistant clinical plasmids. Microbiol Spectr 2024; 12:e0420623. [PMID: 38534122 PMCID: PMC11064507 DOI: 10.1128/spectrum.04206-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/08/2024] [Indexed: 03/28/2024] Open
Abstract
Plasmids are the primary vectors of horizontal transfer of antibiotic resistance genes among bacteria. Previous studies have shown that the spread and maintenance of plasmids among bacterial populations depend on the genetic makeup of both the plasmid and the host bacterium. Antibiotic resistance can also be acquired through mutations in the bacterial chromosome, which not only confer resistance but also result in changes in bacterial physiology and typically a reduction in fitness. However, it is unclear whether chromosomal resistance mutations affect the interaction between plasmids and the host bacteria. To address this question, we introduced 13 clinical plasmids into a susceptible Escherichia coli strain and three different congenic mutants that were resistant to nitrofurantoin (ΔnfsAB), ciprofloxacin (gyrA, S83L), and streptomycin (rpsL, K42N) and determined how the plasmids affected the exponential growth rates of the host in glucose minimal media. We find that though plasmids confer costs on the susceptible strains, those costs are fully mitigated in the three resistant mutants. In several cases, this results in a competitive advantage of the resistant strains over the susceptible strain when both carry the same plasmid and are grown in the absence of antibiotics. Our results suggest that bacteria carrying chromosomal mutations for antibiotic resistance could be a better reservoir for resistance plasmids, thereby driving the evolution of multi-drug resistance.IMPORTANCEPlasmids have led to the rampant spread of antibiotic resistance genes globally. Plasmids often carry antibiotic resistance genes and other genes needed for its maintenance and spread, which typically confer a fitness cost on the host cell observed as a reduced growth rate. Resistance is also acquired via chromosomal mutations, and similar to plasmids they also reduce bacterial fitness. However, we do not know whether resistance mutations affect the bacterial ability to carry plasmids. Here, we introduced 13 multi-resistant clinical plasmids into a susceptible and three different resistant E. coli strains and found that most of these plasmids do confer fitness cost on susceptible cells, but these costs disappear in the resistant strains which often lead to fitness advantage for the resistant strains in the absence of antibiotic selection. Our results imply that already resistant bacteria are a more favorable reservoir for multi-resistant plasmids, promoting the ascendance of multi-resistant bacteria.
Collapse
Affiliation(s)
- Ramith R. Nair
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Dan I. Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Omar M. Warsi
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
6
|
Yu Z, Wang Q, Pinilla-Redondo R, Madsen JS, Clasen KAD, Ananbeh H, Olesen AK, Gong Z, Yang N, Dechesne A, Smets B, Nesme J, Sørensen SJ. Horizontal transmission of a multidrug-resistant IncN plasmid isolated from urban wastewater. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 271:115971. [PMID: 38237397 DOI: 10.1016/j.ecoenv.2024.115971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 02/05/2024]
Abstract
Wastewater treatment plants (WWTPs) are considered reservoirs of antibiotic resistance genes (ARGs). Given that plasmid-mediated horizontal gene transfer plays a critical role in disseminating ARGs in the environment, it is important to inspect the transfer potential of transmissible plasmids to have a better understanding of whether these mobile ARGs can be hosted by opportunistic pathogens and should be included in One Health's considerations. In this study, we used a fluorescent-reporter-gene based exogenous isolation approach to capture extended-spectrum beta-lactamases encoding mobile determinants from sewer microbiome samples that enter an urban water system (UWS) in Denmark. After screening and sequencing, we isolated a ∼73 Kbp IncN plasmid (pDK_DARWIN) that harboured and expressed multiple ARGs. Using a dual fluorescent reporter gene system, we showed that this plasmid can transfer into resident urban water communities. We demonstrated the transfer of pDK_DARWIN to microbiome members of both the sewer (in the upstream UWS compartment) and wastewater treatment (in the downstream UWS compartment) microbiomes. Sequence similarity search across curated plasmid repositories revealed that pDK_DARWIN derives from an IncN backbone harboured by environmental and nosocomial Enterobacterial isolates. Furthermore, we searched for pDK_DARWIN sequence matches in UWS metagenomes from three countries, revealing that this plasmid can be detected in all of them, with a higher relative abundance in hospital sewers compared to residential sewers. Overall, this study demonstrates that this IncN plasmid is prevalent across Europe and an efficient vector capable of disseminating multiple ARGs in the urban water systems.
Collapse
Affiliation(s)
- Zhuofeng Yu
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark
| | - Qinqin Wang
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark
| | - Rafael Pinilla-Redondo
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark
| | - Jonas Stenløkke Madsen
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark
| | - Kamille Anna Dam Clasen
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark
| | - Hanadi Ananbeh
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic
| | - Asmus Kalckar Olesen
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark
| | - Zhuang Gong
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark
| | - Nan Yang
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark
| | - Arnaud Dechesne
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet 115, DK-2800 Kgs, Lyngby, Denmark
| | - Barth Smets
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet 115, DK-2800 Kgs, Lyngby, Denmark
| | - Joseph Nesme
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark.
| | - Søren Johannes Sørensen
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
7
|
Li J, Zhao C, Li C, Xue B, Wang S, Zhang X, Yang X, Shen Z, Bo L, He X, Qiu Z, Wang J. Multidrug-resistant plasmid RP4 increases NO and N 2O yields via the electron transport system in Nitrosomonas europaea ammonia oxidation. WATER RESEARCH 2023; 242:120266. [PMID: 37421866 DOI: 10.1016/j.watres.2023.120266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 06/19/2023] [Accepted: 06/23/2023] [Indexed: 07/10/2023]
Abstract
Antibiotic resistance genes (ARGs) have recently become an important public health problem and therefore several studies have characterized ARG composition and distribution. However, few studies have assessed their impact on important functional microorganisms in the environment. Therefore, our study sought to investigate the mechanisms through which multidrug-resistant plasmid RP4 affected the ammonia oxidation capacity of ammonia-oxidizing bacteria, which play a key role in the nitrogen cycle. The ammonia oxidation capacity of N. europaea ATCC25978 (RP4) was significantly inhibited, and NO and N2O were produced instead of nitrite. Our findings demonstrated that the decrease in electrons from NH2OH decreased the ammonia monooxygenase (AMO) activity, leading to a decrease in ammonia consumption. In the ammonia oxidation process, N. europaea ATCC25978 (RP4) exhibited ATP and NADH accumulation. The corresponding mechanism was the overactivation of Complex Ⅰ, ATPase, and the TCA cycle by the RP4 plasmid. The genes encoding TCA cycle enzymes related to energy generation, including gltA, icd, sucD, and NE0773, were upregulated in N. europaea ATCC25978 (RP4). These results demonstrate the ecological risks of ARGs, including the inhibition of the ammonia oxidation process and an increased production of greenhouse gases such as NO and N2O.
Collapse
Affiliation(s)
- Jia Li
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Chen Zhao
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Chenyu Li
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Bin Xue
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Shang Wang
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Xi Zhang
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Xiaobo Yang
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Zhiqiang Shen
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Lin Bo
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China; Tiangong University, Tianjin, China
| | - Xinxin He
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Zhigang Qiu
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China.
| | - Jingfeng Wang
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China.
| |
Collapse
|
8
|
Mohler K, Moen JM, Rogulina S, Rinehart J. System-wide optimization of an orthogonal translation system with enhanced biological tolerance. Mol Syst Biol 2023; 19:e10591. [PMID: 37477096 PMCID: PMC10407733 DOI: 10.15252/msb.202110591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 07/05/2023] [Accepted: 07/05/2023] [Indexed: 07/22/2023] Open
Abstract
Over the past two decades, synthetic biological systems have revolutionized the study of cellular physiology. The ability to site-specifically incorporate biologically relevant non-standard amino acids using orthogonal translation systems (OTSs) has proven particularly useful, providing unparalleled access to cellular mechanisms modulated by post-translational modifications, such as protein phosphorylation. However, despite significant advances in OTS design and function, the systems-level biology of OTS development and utilization remains underexplored. In this study, we employ a phosphoserine OTS (pSerOTS) as a model to systematically investigate global interactions between OTS components and the cellular environment, aiming to improve OTS performance. Based on this analysis, we design OTS variants to enhance orthogonality by minimizing host process interactions and reducing stress response activation. Our findings advance understanding of system-wide OTS:host interactions, enabling informed design practices that circumvent deleterious interactions with host physiology while improving OTS performance and stability. Furthermore, our study emphasizes the importance of establishing a pipeline for systematically profiling OTS:host interactions to enhance orthogonality and mitigate mechanisms underlying OTS-mediated host toxicity.
Collapse
Affiliation(s)
- Kyle Mohler
- Department of Cellular & Molecular PhysiologyYale School of MedicineNew HavenCTUSA
- Systems Biology InstituteYale UniversityNew HavenCTUSA
| | - Jack M Moen
- Quantitative Biosciences Institute (QBI)University of California, San FranciscoSan FranciscoCAUSA
- 2QBI Coronavirus Research Group (QCRG)San FranciscoCAUSA
- Department of Cellular and Molecular PharmacologyUniversity of California, San FranciscoSan FranciscoCAUSA
| | - Svetlana Rogulina
- Department of Cellular & Molecular PhysiologyYale School of MedicineNew HavenCTUSA
- Systems Biology InstituteYale UniversityNew HavenCTUSA
| | - Jesse Rinehart
- Department of Cellular & Molecular PhysiologyYale School of MedicineNew HavenCTUSA
- Systems Biology InstituteYale UniversityNew HavenCTUSA
| |
Collapse
|
9
|
Piscon B, Pia Esposito E, Fichtman B, Samburski G, Efremushkin L, Amselem S, Harel A, Rahav G, Zarrilli R, Gal-Mor O. The Effect of Outer Space and Other Environmental Cues on Bacterial Conjugation. Microbiol Spectr 2023; 11:e0368822. [PMID: 36995224 PMCID: PMC10269834 DOI: 10.1128/spectrum.03688-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 03/11/2023] [Indexed: 03/31/2023] Open
Abstract
Bacterial conjugation is one of the most abundant horizontal gene transfer (HGT) mechanisms, playing a fundamental role in prokaryote evolution. A better understanding of bacterial conjugation and its cross talk with the environment is needed for a more complete understanding of HGT mechanisms and to fight the dissemination of malicious genes between bacteria. Here, we studied the effect of outer space, microgravity, and additional key environmental cues on transfer (tra) gene expression and conjugation efficiency, using the under studied broad-host range plasmid pN3, as a model. High resolution scanning electron microscopy revealed the morphology of the pN3 conjugative pili and mating pair formation during conjugation. Using a nanosatellite carrying a miniaturized lab, we studied pN3 conjugation in outer space, and used qRT-PCR, Western blotting and mating assays to determine the effect of ground physicochemical parameters on tra gene expression and conjugation. We showed for the first time that bacterial conjugation can occur in outer space and on the ground, under microgravity-simulated conditions. Furthermore, we demonstrated that microgravity, liquid media, elevated temperature, nutrient depletion, high osmolarity and low oxygen significantly reduce pN3 conjugation. Interestingly, under some of these conditions we observed an inverse correlation between tra gene transcription and conjugation frequency and found that induction of at least traK and traL can negatively affect pN3 conjugation frequency in a dose-dependent manner. Collectively, these results uncover pN3 regulation by various environmental cues and highlight the diversity of conjugation systems and the different ways in which they may be regulated in response to abiotic signals. IMPORTANCE Bacterial conjugation is a highly ubiquitous and promiscuous process, by which a donor bacterium transfers a large portion of genetic material to a recipient cell. This mechanism of horizontal gene transfer plays an important role in bacterial evolution and in the ability of bacteria to acquire resistance to antimicrobial drugs and disinfectants. Bacterial conjugation is a complex and energy-consuming process, that is tightly regulated and largely affected by various environmental signals sensed by the bacterial cell. Comprehensive knowledge about bacterial conjugation and the ways it is affected by environmental cues is required to better understand bacterial ecology and evolution and to find new effective ways to counteract the threating dissemination of antibiotic resistance genes between bacterial populations. Moreover, characterizing this process under stress or suboptimal growth conditions such as elevated temperatures, high salinity or in the outer space, may provide insights relevant to future habitat environmental conditions.
Collapse
Affiliation(s)
- Bar Piscon
- The Infectious Diseases Research Laboratory, Sheba Medical Center, Tel-Hashomer, Israel
- Department of Clinical Microbiology and Immunology, Tel Aviv University, Tel Aviv, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Eliana Pia Esposito
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Boris Fichtman
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Guy Samburski
- SpacePharma R&D Israel LTD., Herzliya Pituach, Israel & SpacePharma SA, Courgenay, Switzerland
| | - Lihi Efremushkin
- SpacePharma R&D Israel LTD., Herzliya Pituach, Israel & SpacePharma SA, Courgenay, Switzerland
| | - Shimon Amselem
- SpacePharma R&D Israel LTD., Herzliya Pituach, Israel & SpacePharma SA, Courgenay, Switzerland
| | - Amnon Harel
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Galia Rahav
- The Infectious Diseases Research Laboratory, Sheba Medical Center, Tel-Hashomer, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Raffaele Zarrilli
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Ohad Gal-Mor
- The Infectious Diseases Research Laboratory, Sheba Medical Center, Tel-Hashomer, Israel
- Department of Clinical Microbiology and Immunology, Tel Aviv University, Tel Aviv, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
10
|
DelaFuente J, Toribio-Celestino L, Santos-Lopez A, León-Sampedro R, Alonso-Del Valle A, Costas C, Hernández-García M, Cui L, Rodríguez-Beltrán J, Bikard D, Cantón R, San Millan A. Within-patient evolution of plasmid-mediated antimicrobial resistance. Nat Ecol Evol 2022; 6:1980-1991. [PMID: 36303001 PMCID: PMC7613874 DOI: 10.1038/s41559-022-01908-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 09/12/2022] [Indexed: 12/15/2022]
Abstract
Antimicrobial resistance (AMR) in bacteria is a major threat to public health; one of the key elements in the spread and evolution of AMR in clinical pathogens is the transfer of conjugative plasmids. The drivers of AMR evolution have been studied extensively in vitro but the evolution of plasmid-mediated AMR in vivo remains poorly explored. Here, we tracked the evolution of the clinically relevant plasmid pOXA-48, which confers resistance to the last-resort antibiotics carbapenems, in a large collection of enterobacterial clones isolated from the gut of hospitalized patients. Combining genomic and experimental approaches, we first characterized plasmid diversity and the genotypic and phenotypic effects of multiple plasmid mutations on a common genetic background. Second, using cutting-edge genomic editing in wild-type multidrug-resistant enterobacteria, we dissected three cases of within-patient plasmid-mediated AMR evolution. Our results revealed compensatory evolution of plasmid-associated fitness cost and the evolution of enhanced plasmid-mediated AMR in bacteria evolving in the gut of hospitalized patients. Crucially, we observed that the evolution of pOXA-48-mediated AMR in vivo involves a pivotal trade-off between resistance levels and bacterial fitness. This study highlights the need to develop new evolution-informed approaches to tackle plasmid-mediated AMR dissemination.
Collapse
Affiliation(s)
- Javier DelaFuente
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain.
| | - Laura Toribio-Celestino
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Alfonso Santos-Lopez
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal-Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
- Centro de Investigación Biológica en Red de Epidemiología y Salud Pública, Instituto de Salud Carlos III, Madrid, Spain
| | - Ricardo León-Sampedro
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal-Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
- Centro de Investigación Biológica en Red de Epidemiología y Salud Pública, Instituto de Salud Carlos III, Madrid, Spain
- Institute of Integrative Biology, Department of Environmental Systems Science, Eidgenössische Technische Hochschule, Zurich, Switzerland
| | - Aida Alonso-Del Valle
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Coloma Costas
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Marta Hernández-García
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal-Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
- Centro de Investigación Biológica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Lun Cui
- Institut Pasteur, Universite de Paris Cité, Centre National de la Recherche Scientifique Unité Mixte de Recherche 6047, Synthetic Biology, Paris, France
| | - Jerónimo Rodríguez-Beltrán
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal-Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
- Centro de Investigación Biológica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - David Bikard
- Institut Pasteur, Universite de Paris Cité, Centre National de la Recherche Scientifique Unité Mixte de Recherche 6047, Synthetic Biology, Paris, France
| | - Rafael Cantón
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal-Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
- Centro de Investigación Biológica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Alvaro San Millan
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain.
- Centro de Investigación Biológica en Red de Epidemiología y Salud Pública, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
11
|
Qiao H, Yu J, Wang X, Nie T, Hu X, Yang X, Li C, You X. Effect of Different Tolerable Levels of Constitutive mcr-1 Expression on Escherichia coli. Microbiol Spectr 2022; 10:e0174822. [PMID: 35980194 PMCID: PMC9603290 DOI: 10.1128/spectrum.01748-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 07/28/2022] [Indexed: 12/31/2022] Open
Abstract
To study the effect of different tolerable levels of constitutive mcr-1 expression on Escherichia coli, and to provide direct evidence for moderate resistance mediated by mcr-1, construction of E. coli strains carrying mcr-1 on the chromosome with promoters of different strengths was conducted using λ-red recombination. Our results demonstrated that over-high expression of mcr-1 cannot be tolerated, and seven constructs with more than 200-fold mcr-1 transcriptional expression differences were obtained. The colistin MICs of the seven strains increased with the increase of MCR-1 levels, and the highest MIC was 8 μg/mL. Lower expression of mcr-1 didn't demonstrate many effects on bacteria, while higher tolerable expression of mcr-1 tended to show fitness costs in growth rate, competitive ability, and cell structures, but no obvious change of virulence was observed in mice. Bacteria demonstrated colistin MICs of 4-8 μg/mL at mcr-1 expression levels similar to clinical isolates, which were the mcr-1 expression levels with relatively lower fitness costs. IMPORTANCE The effects of relatively lower tolerable levels of mcr-1 were not evaluated thoroughly, and direct evidence for moderate resistance mediated by mcr-1 was lacking. In the present study, we made constructs carrying mcr-1 on the E. coli K12 chromosome under the control of serial constitutive promoters of different strengths and studied the effects of different tolerable levels of mcr-1 expression in vitro and in vivo. The results demonstrated that generally, except QH0007 (the construct with the highest mcr-1 expression that showed some extent of cell death), the fitness costs of tolerable mcr-1 expression on bacteria were not apparent or low. Bacteria demonstrated colistin MICs of 4-8 μg/mL at mcr-1 expression levels similar to clinical isolates, which corresponded to the lower levels of mcr-1 expression that can lead to colistin resistance, indicating the cleverness of bacteria to balance the benefit and cost of MCR-1-mediated colistin resistance.
Collapse
Affiliation(s)
- Han Qiao
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- National Institutes for Food and Drug Control, Beijing, China
| | - Jie Yu
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiukun Wang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tongying Nie
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinxin Hu
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinyi Yang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Congran Li
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xuefu You
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
12
|
Occurrence and Biological Cost of mcr-1-Carrying Plasmids Co-harbouring Beta-Lactamase Resistance Genes in Zoonotic Pathogens from Intensive Animal Production. Antibiotics (Basel) 2022; 11:antibiotics11101356. [PMID: 36290014 PMCID: PMC9598650 DOI: 10.3390/antibiotics11101356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/26/2022] [Accepted: 09/30/2022] [Indexed: 11/17/2022] Open
Abstract
Colistin is classified as a high-priority critical antimicrobial by the World Health Organization (WHO). A better understanding of the biological cost imposed by mcr-plasmids is paramount to comprehending their spread and may facilitate the decision about the ban of colistin in livestock. This study aimed to assess the prevalence of mcr and ESBL genes from 98 Escherichia coli and 142 Salmonella enterica isolates from food-producing animals and the impact of the mcr-1 acquisition on bacterial fitness. Only mcr-1 was identified by multiplex PCR (mcr-1 to mcr-10) in 15.3% of E. coli. Colistin MICs ranged between 8−32 mg/L. In four isolates, blaTEM-1, blaCTX-M-1, and blaCTX-M-15 co-existed with mcr-1. The IncH12, IncHI1, IncP, IncN, and IncI plasmids were transferred by conjugation to E. coli J53 at frequencies of 10−7 to 10−2 cells/recipient. Growth kinetics assays showed that transconjugants had a significantly lower growth rate than the recipient (p < 0.05), and transconjugants’ average growth rate was higher in the absence than in the presence of colistin (1.66 versus 1.32 (p = 0.0003)). Serial transfer assay during 10 days demonstrated that plasmid retention ranged from complete loss to full retention. Overall, mcr-1-bearing plasmids impose a fitness cost, but the loss of plasmids is highly variable, suggesting that other factors beyond colistin pressure regulate the plasmid maintenance in a bacterial population, and colistin withdrawal will not completely lead to a decrease of mcr-1 levels.
Collapse
|
13
|
Malaka De Silva P, Stenhouse GE, Blackwell GA, Bengtsson RJ, Jenkins C, Hall JPJ, Baker KS. A tale of two plasmids: contributions of plasmid associated phenotypes to epidemiological success among Shigella. Proc Biol Sci 2022; 289:20220581. [PMID: 35919999 PMCID: PMC9346365 DOI: 10.1098/rspb.2022.0581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Dissemination of antimicrobial resistance (AMR) genes by horizontal gene transfer (HGT) mediated through plasmids is a major global concern. Genomic epidemiology studies have shown varying success of different AMR plasmids during outbreaks, but the underlying reasons for these differences are unclear. Here, we investigated two Shigella plasmids (pKSR100 and pAPR100) that circulated in the same transmission network but had starkly contrasting epidemiological outcomes to identify plasmid features that may have contributed to the differences. We used plasmid comparative genomics to reveal divergence between the two plasmids in genes encoding AMR, SOS response alleviation and conjugation. Experimental analyses revealed that these genomic differences corresponded with reduced conjugation efficiencies for the epidemiologically successful pKSR100, but more extensive AMR, reduced fitness costs, and a reduced SOS response in the presence of antimicrobials, compared with the less successful pAPR100. The discrepant phenotypes between the two plasmids are consistent with the hypothesis that plasmid-associated phenotypes contribute to determining the epidemiological outcome of AMR HGT and suggest that phenotypes relevant in responding to antimicrobial pressure and fitness impact may be more important than those around conjugation in this setting. Plasmid phenotypes could thus be valuable tools in conjunction with genomic epidemiology for predicting AMR dissemination.
Collapse
Affiliation(s)
- P. Malaka De Silva
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - George E. Stenhouse
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Grace A. Blackwell
- EMBL-EBI, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB101SA, UK,Department of Parasites and Microbes, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB101SA, UK
| | - Rebecca J. Bengtsson
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Claire Jenkins
- Gastro and Food Safety (One Health) Division, UK Health Security Agency (UKHSA), Colindale, London, UK
| | - James P. J. Hall
- Department of Evolution, Ecology and Behaviour, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Kate S. Baker
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| |
Collapse
|
14
|
Deekshit VK, Srikumar S. 'To be, or not to be' - the dilemma of 'silent' antimicrobial resistance genes in bacteria. J Appl Microbiol 2022; 133:2902-2914. [PMID: 35882476 DOI: 10.1111/jam.15738] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 11/26/2022]
Abstract
Antimicrobial resistance is a serious threat to public health that dramatically undermines our ability to treat bacterial infections. Microorganisms exhibit resistance to different drug classes by acquiring resistance determinants through multiple mechanisms including horizontal gene transfer. The presence of drug resistance genotypes is mostly associated with corresponding phenotypic resistance against the particular antibiotic. However, bacterial communities harboring silent antimicrobial resistance genes - genes whose presence is not associated with a corresponding resistant phenotype, do exist. Under suitable conditions, the expression pattern of such genes often revert and regain resistance, and could potentially lead to therapeutic failure. We often miss the presence of silent genes, since the current experimental paradigms are focused on resistant strains. Therefore, the knowledge on the prevalence, importance, and mechanism of silent antibiotic resistance genes in bacterial pathogens is very limited. Silent genes, therefore, provide an additional level of complexity in the war against drug-resistant bacteria, reminding us that not only phenotypically resistant strains but also susceptible strains should be carefully investigated. In this review, we discuss the presence of silent antimicrobial resistance genes in bacteria, their relevance, and their importance in public health.
Collapse
Affiliation(s)
- Vijaya Kumar Deekshit
- Nitte (Deemed to be University), Nitte University Center for Science Education and Research, Division of Infectious Diseases, Paneer Campus, Deralakatte, Mangaluru - 575018, Karnataka, India
| | - Shabarinath Srikumar
- Department of Food Science, College of Agriculture and Veterinary Medicine, UAE University, Al Ain, UAE
| |
Collapse
|
15
|
Hinnekens P, Mahillon J. Conjugation-mediated transfer of pXO16, a large plasmid from Bacillus thuringiensis sv. israelensis, across the Bacillus cereus group and its impact on host phenotype. Plasmid 2022; 122:102639. [PMID: 35842001 DOI: 10.1016/j.plasmid.2022.102639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/27/2022] [Accepted: 07/10/2022] [Indexed: 11/17/2022]
Abstract
pXO16, the 350 kb-conjugative plasmid from Bacillus thuringiensis sv. israelensis promotes its own transfer at high efficiency, triggers the transfer of mobilizable and non-mobilizable plasmids, as well as the transfer of host chromosomal loci. Naturally found in B. thuringiensis sv. israelensis, pXO16 transfers to various strains of Bacillus cereus sensu lato (s.l.) at a wide range of frequencies. Despite this host diversity, a paradox remains between the relatively large host spectrum and the natural occurrence of pXO16, so far restricted to B. thuringiensis sv. israelensis. Proposing first insights exploring this paradox, we investigated the behaviour of pXO16 amongst different members of the B. cereus group. We first looked at the transfer of pXO16 to two new host clusters of B. cereus s.l., Bacillus mycoides and Bacillus anthracis clusters. This examination brought to light the impairment of the characteristic rhizoidal phenotype of B. mycoides in presence of pXO16. We also explored the stability of pXO16 at different temperatures as some B. cereus group members are well-known for their psychro- or thermo-tolerance. This shed light on the thermo-sensitivity of the plasmid. The influence of pXO16 on its host cell growth and on swimming capacity also revealed no or limited impact on its natural host B. thuringiensis sv. israelensis. On the contrary, pXO16 affected more strongly both the growth and swimming capacity of other B. cereus s.l. hosts. This reinforced the running hypothesis of a co-evolution between pXO16 and B. thuringiensis sv. israelensis, enabling the plasmid maintenance without impairing the host strain development.
Collapse
Affiliation(s)
- Pauline Hinnekens
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - Jacques Mahillon
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium.
| |
Collapse
|
16
|
Zhao C, Li J, Li C, Xue B, Wang S, Zhang X, Yang X, Shen Z, Bo L, Qiu Z, Wang J. Horizontal transfer of the multidrug resistance plasmid RP4 inhibits ammonia nitrogen removal dominated by ammonia-oxidizing bacteria. WATER RESEARCH 2022; 217:118434. [PMID: 35427829 DOI: 10.1016/j.watres.2022.118434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/02/2022] [Accepted: 04/06/2022] [Indexed: 06/14/2023]
Abstract
Antibiotic resistance genes (ARGs) have become an important public health concern. Particularly, although several ARGs have been identified in wastewater treatment plants (WWTPs), very few studies have characterized their impacts on reactor performance. Therefore, our study sought to investigate the effect of a representative conjugative transfer plasmid (RP4) encoding multidrug resistance genes on ammonia oxidation. To achieve this, we established sequencing batch reactors (SBRs) and a conjugation model with E. coli donor strains carrying the RP4 plasmid and a typical ammonia-oxidating (AOB) bacterial strain (Nitrosomonas europaea ATCC 25978) as a recipient to investigate the effect of conjugative transfer of plasmid RP4 on AOB. Our findings demonstrated that the RP4 plasmid carried by the donor strains could be transferred to AOB in the SBR and to Nitrosomonas europaea ATCC 25978. In SBR treated with donor strains carrying the RP4 plasmid, ammonia removal efficiency continuously decreased to 71%. Once the RP4 plasmid entered N. europaea ATCC 25978 in the conjugation model, ammonia removal was significantly inhibited and nitrite generation was decreased. Furthermore, the expression of several functional genes related to ammonia oxidation in AOB was suppressed following the transfer of the RP4 plasmid, including amoA, amoC, hao, nirK, and norB. In contrast, the cytL gene encoding cytochrome P460 was upregulated. These results demonstrated the ecological risk of ARGs in WWTPs, and therefore measures must be taken to avoid their transfer.
Collapse
Affiliation(s)
- Chen Zhao
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China; Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, China
| | - Jia Li
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Chenyu Li
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China; Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, China
| | - Bin Xue
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China; Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, China
| | - Shang Wang
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Xi Zhang
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Xiaobo Yang
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Zhiqiang Shen
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Lin Bo
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China; Tiangong University, Tianjin, China
| | - Zhigang Qiu
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China; Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, China.
| | - Jingfeng Wang
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China; Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, China.
| |
Collapse
|
17
|
Interplay between Bacterial Clones and Plasmids in the Spread of Antibiotic Resistance Genes in the Gut: Lessons from a Temporal Study in Veal Calves. Appl Environ Microbiol 2021; 87:e0135821. [PMID: 34613750 DOI: 10.1128/aem.01358-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Intestinal carriage of extended spectrum β-lactamase (ESBL)-producing Escherichia coli is a frequent, increasing, and worrying phenomenon, but little is known about the molecular scenario and the evolutionary forces at play. We screened 45 veal calves, known to have high prevalence of carriage, for ESBL-producing E. coli on 514 rectal swabs (one randomly selected colony per sample) collected over 6 months. We characterized the bacterial clones and plasmids carrying blaESBL genes with a combination of genotyping methods, whole genome sequencing, and conjugation assays. One hundred and seventy-three ESBL-producing E. coli isolates [blaCTX-M-1 (64.7%), blaCTX-M-14 (33.5%), or blaCTX-M-15 (1.8%)] were detected, belonging to 32 bacterial clones, mostly of phylogroup A. Calves were colonized successively by different clones with a trend in decreasing carriage. The persistence of a clone in a farm was significantly associated with the number of calves colonized. Despite a high diversity of E. coli clones and blaCTX-M-carrying plasmids, few blaCTX-M gene/plasmid/chromosomal background combinations dominated, due to (i) efficient colonization of bacterial clones and/or (ii) successful plasmid spread in various bacterial clones. The scenario "clone versus plasmid spread" depended on the farm. Thus, epistatic interactions between resistance genes, plasmids, and bacterial clones contribute to optimize fitness in specific environments. IMPORTANCE The gut microbiota is the epicenter of the emergence of resistance. Considerable amount of knowledge on the molecular mechanisms of resistance has been accumulated, but the ecological and evolutionary forces at play in nature are less studied. In this context, we performed a field work on temporal intestinal carriage of extended spectrum β-lactamase (ESBL)-producing Escherichia coli in veal farms. Veal calves are animals with one of the highest levels of ESBL producing E. coli fecal carriage, due to early high antibiotic exposure. We were able to show that calves were colonized successively by different ESBL-producing E. coli clones, and that two main scenarios were at play in the spread of blaCTX-M genes among calves: efficient colonization of several calves by a few bacterial clones and successful plasmid spread in various bacterial clones. Such knowledge should help develop new strategies to fight the emergence of antibiotic-resistance.
Collapse
|
18
|
Alonso-Del Valle A, León-Sampedro R, Rodríguez-Beltrán J, DelaFuente J, Hernández-García M, Ruiz-Garbajosa P, Cantón R, Peña-Miller R, San Millán A. Variability of plasmid fitness effects contributes to plasmid persistence in bacterial communities. Nat Commun 2021; 12:2653. [PMID: 33976161 PMCID: PMC8113577 DOI: 10.1038/s41467-021-22849-y] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 03/25/2021] [Indexed: 02/03/2023] Open
Abstract
Plasmid persistence in bacterial populations is strongly influenced by the fitness effects associated with plasmid carriage. However, plasmid fitness effects in wild-type bacterial hosts remain largely unexplored. In this study, we determined the fitness effects of the major antibiotic resistance plasmid pOXA-48_K8 in wild-type, ecologically compatible enterobacterial isolates from the human gut microbiota. Our results show that although pOXA-48_K8 produced an overall reduction in bacterial fitness, it produced small effects in most bacterial hosts, and even beneficial effects in several isolates. Moreover, genomic results showed a link between pOXA-48_K8 fitness effects and bacterial phylogeny, helping to explain plasmid epidemiology. Incorporating our fitness results into a simple population dynamics model revealed a new set of conditions for plasmid stability in bacterial communities, with plasmid persistence increasing with bacterial diversity and becoming less dependent on conjugation. These results help to explain the high prevalence of plasmids in the greatly diverse natural microbial communities.
Collapse
Affiliation(s)
- Aida Alonso-Del Valle
- Servicio de Microbiología. Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| | - Ricardo León-Sampedro
- Servicio de Microbiología. Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
- Centro de Investigación Biológica en Red. Epidemiología y Salud Pública, Instituto de Salud Carlos III, Madrid, Spain
| | - Jerónimo Rodríguez-Beltrán
- Servicio de Microbiología. Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
- Centro de Investigación Biológica en Red. Epidemiología y Salud Pública, Instituto de Salud Carlos III, Madrid, Spain
| | - Javier DelaFuente
- Servicio de Microbiología. Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| | - Marta Hernández-García
- Servicio de Microbiología. Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
- Red Española de Investigación en Patología Infecciosa. Instituto de Salud Carlos III, Madrid, Spain
| | - Patricia Ruiz-Garbajosa
- Servicio de Microbiología. Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
- Red Española de Investigación en Patología Infecciosa. Instituto de Salud Carlos III, Madrid, Spain
| | - Rafael Cantón
- Servicio de Microbiología. Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
- Red Española de Investigación en Patología Infecciosa. Instituto de Salud Carlos III, Madrid, Spain
| | - Rafael Peña-Miller
- Center for Genomic Sciences, Universidad Nacional Autónoma de México, Cuernavaca, Mexico.
| | - Alvaro San Millán
- Servicio de Microbiología. Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain.
- Centro de Investigación Biológica en Red. Epidemiología y Salud Pública, Instituto de Salud Carlos III, Madrid, Spain.
- Centro Nacional de Biotecnología-CSIC, Madrid, Spain.
| |
Collapse
|
19
|
Choi Y, Lee JY, Lee H, Park M, Kang K, Lim SK, Shin D, Ko KS. Comparison of Fitness Cost and Virulence in Chromosome- and Plasmid-Mediated Colistin-Resistant Escherichia coli. Front Microbiol 2020; 11:798. [PMID: 32477288 PMCID: PMC7238749 DOI: 10.3389/fmicb.2020.00798] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 04/03/2020] [Indexed: 12/13/2022] Open
Abstract
Five types of Escherichia coli strains were obtained and sequenced: colistin-susceptible (CL-S) strains, in vitro induced colistin-resistant (CL-IR) strains, mcr-1-negative colistin-resistant strains from livestock (CL-chrR), mcr-1-positive colistin-resistant strains (CL-mcrR), and mcr-1-transferred transconjugants (TC-mcr). Amino acid alterations of PmrAB, PhoPQ, and EptA were identified, and their mRNA expression was measured. Their growth rate was evaluated, and an in vitro competition assay was performed. Virulence was compared through serum resistance and survival in macrophages and Drosophila melanogaster. CL-IR and CL-chrR strains were colistin-resistant due to amino acid alterations in PmrAB, PhoPQ, or EptA, and their overexpression. All colistin-resistant strains did not show reduced growth rates compared with CL-S strains. CL-IR and CL-chrR strains were less competitive than the susceptible strain, but CL-mcrR strains were not. In addition, TC-mcr strains were also significantly more competitive than their respective parental susceptible strain. CL-IR strains had similar or decreased survival rates in human serum, macrophages, and fruit flies, compared with their parental, susceptible strains. CL-chrR strains were also less virulent than CL-S strains. Although CL-mcrR strains showed similar survival rates in human serum and fruit fly to CL-S strains, the survival rates of TC-mcr strains decreased significantly in human serum, macrophages, and fruit flies, compared with their susceptible recipient strain (J53). Chromosome-mediated, colistin-resistant E. coli strains have a fitness cost, but plasmids bearing mcr-1 do not increase the fitness burden of E. coli. Along with high usage of polymyxins, the no fitness cost of mcr-1-positive strains may facilitate rapid spread of colistin resistance.
Collapse
Affiliation(s)
- Yujin Choi
- Department of Microbiology, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Ji-Young Lee
- Division of Antimicrobial Resistance, Korea Centers for Disease Control and Prevention, Cheongju, South Korea
| | - Haejeong Lee
- Department of Microbiology, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Myungseo Park
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, South Korea
| | - KyeongJin Kang
- Department of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Suk-Kyung Lim
- Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon, South Korea
| | - Dongwoo Shin
- Department of Microbiology, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Kwan Soo Ko
- Department of Microbiology, Sungkyunkwan University School of Medicine, Suwon, South Korea
| |
Collapse
|
20
|
Citterio B, Mangiaterra G, Meli MA, Cedraro N, Roselli C, Vignaroli C, Rocchi M, Biavasco F. Gastrointestinal survival and adaptation of antibiotic-resistant enterococci subjected to an in vitro digestion model. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.107033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
Emergence of Mobile Colistin Resistance ( mcr-8) in a Highly Successful Klebsiella pneumoniae Sequence Type 15 Clone from Clinical Infections in Bangladesh. mSphere 2020; 5:5/2/e00023-20. [PMID: 32161143 PMCID: PMC7067589 DOI: 10.1128/msphere.00023-20] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The emergence of mobilized colistin resistance genes (mcr) has become a serious concern in clinical practice, compromising treatment options for life-threatening infections. In this study, colistin-resistant Klebsiella pneumoniae harboring mcr-8.1 was recovered from infected patients in the largest public hospital of Bangladesh, with a prevalence of 0.3% (3/1,097). We found mcr-8.1 in an identical highly stable multidrug-resistant IncFIB(pQil) plasmid of ∼113 kb, which belonged to an epidemiologically successful K. pneumoniae clone, ST15. The resistance mechanism was proven to be horizontally transferable, which incurred a fitness cost to the host. The core genome phylogeny suggested the clonal spread of mcr-8.1 in a Bangladeshi hospital. Core genome single-nucleotide polymorphisms among the mcr-8.1-positive K. pneumoniae isolates ranged from 23 to 110. It has been hypothesized that mcr-8.1 was inserted into IncFIB(pQil) with preexisting resistance loci, bla TEM-1b and bla CTX-M-15, by IS903B Coincidentally, all resistance determinants in the plasmid [mcr-8.1, ampC, sul2, 1d-APH(6), APH(3'')-Ib, bla TEM-1b, bla CTX-M-15] were bracketed by IS903B, demonstrating the possibility of intra- and interspecies and intra- and intergenus transposition of entire resistance loci. This is the first report of an mcr-like mechanism from human infections in Bangladesh. However, given the acquisition of mcr-8.1 by a sable conjugative plasmid in a successful high-risk clone of K. pneumoniae ST15, there is a serious risk of dissemination of mcr-8.1 in Bangladesh from 2017 onwards.IMPORTANCE There is a marked paucity in our understanding of the epidemiology of colistin-resistant bacterial pathogens in South Asia. A report by Davies and Walsh (Lancet Infect Dis 18:256-257, https://doi.org/10.1016/S1473-3099(18)30072-0, 2018) suggests the export of colistin from China to India, Vietnam, and South Korea in 2016 was approximately 1,000 tons and mainly used as a poultry feed additive. A few reports forecast that the prevalence of mcr in humans and livestock will increase in South Asia. Given the high prevalence of bla CTX-M-15 and bla NDM in India, Bangladesh, and Pakistan, colistin has become the invariable option for the management of serious infections, leading to the emergence of mcr-like mechanisms in South Asia. Systematic scrutiny of the prevalence and transmission of mcr variants in South Asia is vital to understanding the drivers of mcr genes and to initiate interventions to overcome colistin resistance.
Collapse
|
22
|
Ma T, Fu J, Xie N, Ma S, Lei L, Zhai W, Shen Y, Sun C, Wang S, Shen Z, Wang Y, Walsh TR, Shen J. Fitness Cost of blaNDM-5-Carrying p3R-IncX3 Plasmids in Wild-Type NDM-Free Enterobacteriaceae. Microorganisms 2020; 8:microorganisms8030377. [PMID: 32156014 PMCID: PMC7143814 DOI: 10.3390/microorganisms8030377] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/28/2020] [Accepted: 03/03/2020] [Indexed: 12/31/2022] Open
Abstract
The wide dissemination of New Delhi metallo-β-lactamase genes (blaNDM) has resulted in the treatment failure of most available β-lactam antibiotics, with IncX3-type blaNDM-5-carrying plasmids recognised as having spread worldwide. In China, bacteria carrying these plasmids are increasingly being detected from diverse samples, including hospitals, communities, livestock and poultry, and the environment, suggesting that IncX3 plasmids are becoming a vital vehicle for blaNDM dissemination. To elucidate the fitness cost of these plasmids on the bacterial host, we collected blaNDM-negative strains from different sources and tested their ability to acquire the blaNDM-5-harboring p3R-IncX3 plasmid. We then measured changes in antimicrobial susceptibility, growth kinetics, and biofilm formation following plasmid acquisition. Overall, 70.7% (29/41) of our Enterobacteriaceae recipients successfully acquired the blaNDM-5-harboring p3R-IncX3 plasmid. Contrary to previous plasmid burden theory, 75.9% (22/29) of the transconjugates showed little fitness cost as a result of plasmid acquisition, with 6.9% (2/29) of strains exhibiting enhanced growth compared with their respective wild-type strains. Following plasmid acquisition, all transconjugates demonstrated resistance to most β-lactams, while several strains showed enhanced biofilm formation, further complicating treatment and prevention measures. Moreover, the highly virulent Escherichia coli sequence type 131 strain that already harbored mcr-1 also demonstrated the ability to acquire the blaNDM-5-carrying p3R-IncX3 plasmid, resulting in further limited therapeutic options. This low fitness cost may partly explain the rapid global dissemination of blaNDM-5-harboring IncX3 plasmids. Our study highlights the growing threat of IncX3 plasmids in spreading blaNDM-5.
Collapse
Affiliation(s)
- Tengfei Ma
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (T.M.); (J.F.); (S.M.); (L.L.); (W.Z.); (Y.S.); (C.S.); (S.W.); (Z.S.); (T.R.W.)
| | - Jiani Fu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (T.M.); (J.F.); (S.M.); (L.L.); (W.Z.); (Y.S.); (C.S.); (S.W.); (Z.S.); (T.R.W.)
| | - Ning Xie
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (T.M.); (J.F.); (S.M.); (L.L.); (W.Z.); (Y.S.); (C.S.); (S.W.); (Z.S.); (T.R.W.)
| | - Shizhen Ma
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (T.M.); (J.F.); (S.M.); (L.L.); (W.Z.); (Y.S.); (C.S.); (S.W.); (Z.S.); (T.R.W.)
| | - Lei Lei
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (T.M.); (J.F.); (S.M.); (L.L.); (W.Z.); (Y.S.); (C.S.); (S.W.); (Z.S.); (T.R.W.)
| | - Weishuai Zhai
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (T.M.); (J.F.); (S.M.); (L.L.); (W.Z.); (Y.S.); (C.S.); (S.W.); (Z.S.); (T.R.W.)
| | - Yingbo Shen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (T.M.); (J.F.); (S.M.); (L.L.); (W.Z.); (Y.S.); (C.S.); (S.W.); (Z.S.); (T.R.W.)
| | - Chengtao Sun
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (T.M.); (J.F.); (S.M.); (L.L.); (W.Z.); (Y.S.); (C.S.); (S.W.); (Z.S.); (T.R.W.)
| | - Shaolin Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (T.M.); (J.F.); (S.M.); (L.L.); (W.Z.); (Y.S.); (C.S.); (S.W.); (Z.S.); (T.R.W.)
| | - Zhangqi Shen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (T.M.); (J.F.); (S.M.); (L.L.); (W.Z.); (Y.S.); (C.S.); (S.W.); (Z.S.); (T.R.W.)
| | - Yang Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (T.M.); (J.F.); (S.M.); (L.L.); (W.Z.); (Y.S.); (C.S.); (S.W.); (Z.S.); (T.R.W.)
| | - Timothy R. Walsh
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (T.M.); (J.F.); (S.M.); (L.L.); (W.Z.); (Y.S.); (C.S.); (S.W.); (Z.S.); (T.R.W.)
- Department of Medical Microbiology and Infectious Disease, Institute of Infection & Immunity, Heath Park Hospital, Cardiff CF14 4XN, UK
| | - Jianzhong Shen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (T.M.); (J.F.); (S.M.); (L.L.); (W.Z.); (Y.S.); (C.S.); (S.W.); (Z.S.); (T.R.W.)
- Correspondence:
| |
Collapse
|
23
|
Ghazisaeedi F, Ciesinski L, Bednorz C, Johanns V, Pieper L, Tedin K, Wieler LH, Günther S. Phenotypic zinc resistance does not correlate with antimicrobial multi-resistance in fecal E. coli isolates of piglets. Gut Pathog 2020; 12:4. [PMID: 31988666 PMCID: PMC6972033 DOI: 10.1186/s13099-019-0342-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 12/23/2019] [Indexed: 02/07/2023] Open
Abstract
Background Following the ban on antimicrobial usage for growth promotion in animal husbandry in the EU, non-antimicrobial agents including heavy metal ions (e.g. zinc and copper), prebiotics or probiotics have been suggested as alternatives. Zinc has extensively been used in pig farming, particularly during weaning of piglets to improve animal health and growth rates. Recent studies, however, have suggested that high dietary zinc feeding during weaning of piglets increases the proportion of multi-drug resistant E. coli in the gut, contraindicating the appropriateness of zinc as an alternative. The underlying mechanisms of zinc effects on resistant bacteria remains unclear, but co-selection processes could be involved. In this study, we determined whether E. coli isolates from intestinal contents of piglets that had been supplemented with high concentrations of zinc acquired a higher tolerance towards zinc, and whether multi-drug resistant isolates tolerated higher zinc concentrations. In addition, we compared phenotypic zinc and copper resistance of E. coli isolates for possible correlation between phenotypic resistance/tolerance to different bivalent ionic metals. Results We screened phenotypic zinc/copper tolerance of 210 isolates (including antimicrobial resistant, multi-drug resistant, and non-resistant E. coli) selected from two, independent zinc-feeding animal trials by determining a zinc/copper minimal inhibitory concentration (Merlin, Bornheim-Hersel, Germany). In both trials, groups of piglets were supplemented either with high dietary zinc (> 2000 ppm) or control (50–70 ppm, background) concentrations. Our observations showed that high concentration zinc exposure did not have an effect on either zinc or copper phenotypic tolerance of E. coli isolates from the animals. No significant association was found between antimicrobial resistance and phenotypic zinc/copper tolerance of the same isolates. Conclusion Our findings argue against a co-selection mechanism of antimicrobial drug-resistance and zinc tolerance after dietary zinc supplementation in weaning piglets. An explanation for an increase in multi-drug resistant isolates from piglets with high zinc dietary feeding could be that resistant bacteria to antimicrobial agents are more persistent to stresses such as zinc or copper exposure.
Collapse
Affiliation(s)
- Fereshteh Ghazisaeedi
- 1Institute of Microbiology and Epizootics, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163 Berlin, Germany
| | - L Ciesinski
- 1Institute of Microbiology and Epizootics, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163 Berlin, Germany
| | - C Bednorz
- 2Institute of Chemical Physiology, Ludwig-Maximilians-Universität, Veterinärstr. 13, 80539 Munich, Germany
| | - V Johanns
- 3Robert Koch Institute, Nordufer 20, 13353 Berlin, Germany
| | - L Pieper
- 4Institute of Veterinary Epidemiology and Biostatistics, Freie Universität Berlin, Königsweg 67, 14163 Berlin, Germany
| | - K Tedin
- 1Institute of Microbiology and Epizootics, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163 Berlin, Germany
| | - L H Wieler
- 1Institute of Microbiology and Epizootics, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163 Berlin, Germany.,3Robert Koch Institute, Nordufer 20, 13353 Berlin, Germany
| | - Sebastian Günther
- 1Institute of Microbiology and Epizootics, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163 Berlin, Germany.,5Institute of Pharmacy, University of Greifswald, Friedrich-Ludwig-Jahn-Straße 17, 17489 Greifswald, Germany
| |
Collapse
|
24
|
Lee H, Shin J, Chung YJ, Park M, Kang KJ, Baek JY, Shin D, Chung DR, Peck KR, Song JH, Ko KS. Co-introduction of plasmids harbouring the carbapenemase genes, bla NDM-1 and bla OXA-232, increases fitness and virulence of bacterial host. J Biomed Sci 2020; 27:8. [PMID: 31900177 PMCID: PMC6941263 DOI: 10.1186/s12929-019-0603-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 12/19/2019] [Indexed: 01/05/2023] Open
Abstract
Background Bacterial isolates with multiple plasmids harbouring different carbapenemase genes have emerged and been identified repeatedly, despite a general notion that plasmids confer fitness cost in bacterial host. In this study, we investigated the effects of plasmids with carbapenemase genes on the fitness and virulence of bacteria. Methods Different plasmids harbouring the carbapenemase genes, blaNDM-1 and blaOXA-232, were isolated from a carbapenem-resistant K. pneumoniae strain. Each plasmid was conjugated into the Escherichia coli strain DH5α, and a transconjugant with both plasmids was also obtained by transformation. Their in vitro competitive ability, biofilm formation, serum resistance, survival ability within macrophage and fruit fly, and fly killing ability were evaluated. Results The transconjugants with a single plasmid showed identical phenotypes to the plasmid-free strain, except that they decreased fly survival after infection. However, significantly increased fitness, virulence and biofilm production were observed consistently for the transconjugant with both plasmids, harbouring blaNDM-1 and blaOXA-232. Conclusions Our data indicate that bacteria carrying multiple plasmids encoding different carbapenemases may have increased fitness and virulence, emphasizing the need for diverse strategies to combat antimicrobial resistance.
Collapse
Affiliation(s)
- Haejeong Lee
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Juyoun Shin
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Yeun-Jun Chung
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea.,Precision Medicine Research Center, Integrated Research Center for Genome Polymorphism, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Myungseo Park
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Kyeong Jin Kang
- Department of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Jin Yang Baek
- Asia Pacific Foundation for Infectious Diseases (APFID), Seoul, 06351, Republic of Korea
| | - Dongwoo Shin
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Doo Ryeon Chung
- Asia Pacific Foundation for Infectious Diseases (APFID), Seoul, 06351, Republic of Korea.,Division of Infectious Diseases, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
| | - Kyong Ran Peck
- Division of Infectious Diseases, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
| | - Jae-Hoon Song
- Asia Pacific Foundation for Infectious Diseases (APFID), Seoul, 06351, Republic of Korea
| | - Kwan Soo Ko
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea. .,Asia Pacific Foundation for Infectious Diseases (APFID), Seoul, 06351, Republic of Korea.
| |
Collapse
|
25
|
Advantage of the F2:A1:B- IncF Pandemic Plasmid over IncC Plasmids in In Vitro Acquisition and Evolution of bla CTX-M Gene-Bearing Plasmids in Escherichia coli. Antimicrob Agents Chemother 2019; 63:AAC.01130-19. [PMID: 31332067 PMCID: PMC6761558 DOI: 10.1128/aac.01130-19] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 07/09/2019] [Indexed: 12/22/2022] Open
Abstract
Despite a fitness cost imposed on bacterial hosts, large conjugative plasmids play a key role in the diffusion of resistance determinants, such as CTX-M extended-spectrum β-lactamases. Among the large conjugative plasmids, IncF plasmids are the most predominant group, and an F2:A1:B- IncF-type plasmid encoding a CTX-M-15 variant was recently described as being strongly associated with the emerging worldwide Escherichia coli sequence type 131 (ST131)-O25b:H4 H30Rx/C2 sublineage. Despite a fitness cost imposed on bacterial hosts, large conjugative plasmids play a key role in the diffusion of resistance determinants, such as CTX-M extended-spectrum β-lactamases. Among the large conjugative plasmids, IncF plasmids are the most predominant group, and an F2:A1:B- IncF-type plasmid encoding a CTX-M-15 variant was recently described as being strongly associated with the emerging worldwide Escherichia coli sequence type 131 (ST131)-O25b:H4 H30Rx/C2 sublineage. In this context, we investigated the fitness cost of narrow-range F-type plasmids, including the F2:A1:B- IncF-type CTX-M-15 plasmid, and of broad-range C-type plasmids in the K-12-like J53-2 E. coli strain. Although all plasmids imposed a significant fitness cost to the bacterial host immediately after conjugation, we show, using an experimental-evolution approach, that a negative impact on the fitness of the host strain was maintained throughout 1,120 generations with the IncC-IncR plasmid, regardless of the presence or absence of cefotaxime, in contrast to the F2:A1:B- IncF plasmid, whose cost was alleviated. Many chromosomal and plasmid rearrangements were detected after conjugation in transconjugants carrying the IncC plasmids but not in transconjugants carrying the F2:A1:B- IncF plasmid, except for insertion sequence (IS) mobilization from the fliM gene leading to the restoration of motility of the recipient strains. Only a few mutations occurred on the chromosome of each transconjugant throughout the experimental-evolution assay. Our findings indicate that the F2:A1:B- IncF CTX-M-15 plasmid is well adapted to the E. coli strain studied, contrary to the IncC-IncR CTX-M-15 plasmid, and that such plasmid-host adaptation could participate in the evolutionary success of the CTX-M-15-producing pandemic E. coli ST131-O25b:H4 lineage.
Collapse
|
26
|
Emergence of plasmid stability under non-selective conditions maintains antibiotic resistance. Nat Commun 2019; 10:2595. [PMID: 31197163 PMCID: PMC6565834 DOI: 10.1038/s41467-019-10600-7] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 05/21/2019] [Indexed: 01/21/2023] Open
Abstract
Plasmid acquisition is an important mechanism of rapid adaptation and niche expansion in prokaryotes. Positive selection for plasmid-coded functions is a major driver of plasmid evolution, while plasmids that do not confer a selective advantage are considered costly and expected to go extinct. Yet, plasmids are ubiquitous in nature, and their persistence remains an evolutionary paradox. Here, we demonstrate that non-mobile plasmids persist over evolutionary timescales without selection for the plasmid function. Evolving a minimal plasmid encoding for antibiotics resistance in Escherichia coli, we discover that plasmid stability emerges in the absence of antibiotics and that plasmid loss is determined by transcription-replication conflicts. We further find that environmental conditions modulate these conflicts and plasmid persistence. Silencing the transcription of the resistance gene results in stable plasmids that become fixed in the population. Evolution of plasmid stability under non-selective conditions provides an evolutionary explanation for the ubiquity of plasmids in nature. It is expected that plasmids are costly and therefore that selection is required to maintain them within bacterial populations. Here, Wein et al. show that plasmid stability can emerge even in the absence of positive selection and that loss may be determined by transcription-replication conflict.
Collapse
|
27
|
Kottara A, Hall JPJ, Harrison E, Brockhurst MA. Variable plasmid fitness effects and mobile genetic element dynamics across Pseudomonas species. FEMS Microbiol Ecol 2019; 94:4689093. [PMID: 29228229 PMCID: PMC5812508 DOI: 10.1093/femsec/fix172] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 11/30/2017] [Indexed: 11/28/2022] Open
Abstract
Mobile genetic elements (MGE) such as plasmids and transposons mobilise genes within and between species, playing a crucial role in bacterial evolution via horizontal gene transfer (HGT). Currently, we lack data on variation in MGE dynamics across bacterial host species. We tracked the dynamics of a large conjugative plasmid, pQBR103, and its Tn5042 mercury resistance transposon, in five diverse Pseudomonas species in environments with and without mercury selection. Plasmid fitness effects and stability varied extensively between host species and environments, as did the propensity for chromosomal capture of the Tn5042 mercury resistance transposon associated with loss of the plasmid. Whereas Pseudomonas fluorescens and Pseudomonas savastanoi stably maintained the plasmid in both environments, the plasmid was highly unstable in Pseudomonas aeruginosa and Pseudomonas putida, where plasmid-free genotypes with Tn5042 captured to the chromosome invaded to higher frequency under mercury selection. These data confirm that plasmid stability is dependent upon the specific genetic interaction of the plasmid and host chromosome rather than being a property of plasmids alone, and moreover imply that MGE dynamics in diverse natural communities are likely to be complex and driven by a subset of species capable of stably maintaining plasmids that would then act as hubs of HGT.
Collapse
Affiliation(s)
- Anastasia Kottara
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - James P J Hall
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Ellie Harrison
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Michael A Brockhurst
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
- Corresponding author: Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK. Tel: +44 (0)1142220051; E-mail:
| |
Collapse
|
28
|
Yano H, Shintani M, Tomita M, Suzuki H, Oshima T. Reconsidering plasmid maintenance factors for computational plasmid design. Comput Struct Biotechnol J 2018; 17:70-81. [PMID: 30619542 PMCID: PMC6312765 DOI: 10.1016/j.csbj.2018.12.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 12/08/2018] [Accepted: 12/09/2018] [Indexed: 12/18/2022] Open
Abstract
Plasmids are genetic parasites of microorganisms. The genomes of naturally occurring plasmids are expected to be polished via natural selection to achieve long-term persistence in the microbial cell population. However, plasmid genomes are extremely diverse, and the rules governing plasmid genomes are not fully understood. Therefore, computationally designing plasmid genomes optimized for model and nonmodel organisms remains challenging. Here, we summarize current knowledge of the plasmid genome organization and the factors that can affect plasmid persistence, with the aim of constructing synthetic plasmids for use in gram-negative bacteria. Then, we introduce publicly available resources, plasmid data, and bioinformatics tools that are useful for computational plasmid design.
Collapse
Affiliation(s)
- Hirokazu Yano
- Graduate School of Life Sciences, Tohoku University, 2-1-1, Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Masaki Shintani
- Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, 3-5-1, Hamamatsu 432-8561, Japan
- Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, 3-5-1, Hamamatsu 432-8561, Japan
| | - Masaru Tomita
- Institute for Advanced Biosciences, Keio University, 14-1, Baba-cho, Tsuruoka, Yamagata 997-0035, Japan
- Faculty of Environment and Information Studies, Keio University, 5322, Endo, Fujisawa, Kanagawa 252-0882, Japan
| | - Haruo Suzuki
- Institute for Advanced Biosciences, Keio University, 14-1, Baba-cho, Tsuruoka, Yamagata 997-0035, Japan
- Faculty of Environment and Information Studies, Keio University, 5322, Endo, Fujisawa, Kanagawa 252-0882, Japan
| | - Taku Oshima
- Department of Biotechnology, Toyama Prefectural University, 5180, Kurokawa, Imizu, Toyama 939-0398, Japan
| |
Collapse
|
29
|
Partridge SR, Kwong SM, Firth N, Jensen SO. Mobile Genetic Elements Associated with Antimicrobial Resistance. Clin Microbiol Rev 2018; 31:e00088-17. [PMID: 30068738 PMCID: PMC6148190 DOI: 10.1128/cmr.00088-17] [Citation(s) in RCA: 1279] [Impact Index Per Article: 182.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Strains of bacteria resistant to antibiotics, particularly those that are multiresistant, are an increasing major health care problem around the world. It is now abundantly clear that both Gram-negative and Gram-positive bacteria are able to meet the evolutionary challenge of combating antimicrobial chemotherapy, often by acquiring preexisting resistance determinants from the bacterial gene pool. This is achieved through the concerted activities of mobile genetic elements able to move within or between DNA molecules, which include insertion sequences, transposons, and gene cassettes/integrons, and those that are able to transfer between bacterial cells, such as plasmids and integrative conjugative elements. Together these elements play a central role in facilitating horizontal genetic exchange and therefore promote the acquisition and spread of resistance genes. This review aims to outline the characteristics of the major types of mobile genetic elements involved in acquisition and spread of antibiotic resistance in both Gram-negative and Gram-positive bacteria, focusing on the so-called ESKAPEE group of organisms (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter spp., and Escherichia coli), which have become the most problematic hospital pathogens.
Collapse
Affiliation(s)
- Sally R Partridge
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Westmead, New South Wales, Australia
| | - Stephen M Kwong
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Neville Firth
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Slade O Jensen
- Microbiology and Infectious Diseases, School of Medicine, Western Sydney University, Sydney, New South Wales, Australia
- Antibiotic Resistance & Mobile Elements Group, Ingham Institute for Applied Medical Research, Sydney, New South Wales, Australia
| |
Collapse
|
30
|
Abstract
The widespread use of antibacterial drugs over the last 70 years has brought immense benefits to human health at the price of increasing drug inefficacy. Antibacterial agents have a strong selective effect in both favouring resistant strains and allowing particular species and families of bacteria to prosper, especially in the healthcare setting. Whilst important Gram-positive bacterial pathogens such as Staphylococcus aureus and Streptococcus pneumoniae caused concern over the last 20 years because of the spread of antibiotic-resistant strains, Enterobacteriaceae have become the biggest challenge. They have very efficient mechanisms for genetic exchange, as illustrated by the emergence and rapid spread of CTX-M β-lactamases and the carbapenemases. The unique epidemiology of Enterobacteriaceae, with substantial numbers colonizing the mammalian gut and subsequent release into and spread in the environment, presents a significant threat to human health because of the high levels of exposure for the whole community. The use of antimicrobials in agriculture combined with global movements of people, animals and food, arising from worldwide industrialization, generates a diversity and level of resistance not seen previously. Control will require globally coordinated interventions similar to those needed to ameliorate climate change.
Collapse
Affiliation(s)
- Peter M Hawkey
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, UK
- Department of Microbiology, Queen Elizabeth Hospital, University Hospitals Birmingham Foundation Trust, Birmingham, UK
| |
Collapse
|
31
|
Impact of plasmid interactions with the chromosome and other plasmids on the spread of antibiotic resistance. Plasmid 2018; 99:82-88. [PMID: 30240700 DOI: 10.1016/j.plasmid.2018.09.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 09/17/2018] [Accepted: 09/17/2018] [Indexed: 01/03/2023]
Abstract
Naturally occurring plasmids have medical importance given that they frequently code for virulence or antibiotic resistance. In many cases, plasmids impose a fitness cost to their hosts, meaning that the growth rate of plasmid-bearing cells is lower than that of plasmid-free cells. However, this does not fit with the fact that plasmids are ubiquitous in nature nor that plasmids and their hosts adapt to each other very fast - as has been shown in laboratory evolutionary assays. Even when plasmids are costly, they seem to largely interact in such a way that the cost of two plasmids is lower than the cost of one of them alone. Moreover, it has been argued that transfer rates are too low to compensate for plasmid costs and segregation. Several mechanisms involving interactions between plasmids and other replicons could overcome this limitation, hence contributing to the maintenance of plasmids in bacterial populations. We examine the importance of these mechanisms from a clinical point of view, particularly the spread of antibiotic resistance genes.
Collapse
|
32
|
Durão P, Balbontín R, Gordo I. Evolutionary Mechanisms Shaping the Maintenance of Antibiotic Resistance. Trends Microbiol 2018; 26:677-691. [DOI: 10.1016/j.tim.2018.01.005] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 01/05/2018] [Accepted: 01/24/2018] [Indexed: 01/10/2023]
|
33
|
Luque-Sastre L, Arroyo C, Fox EM, McMahon BJ, Bai L, Li F, Fanning S. Antimicrobial Resistance in Listeria Species. Microbiol Spectr 2018; 6:10.1128/microbiolspec.arba-0031-2017. [PMID: 30027884 PMCID: PMC11633604 DOI: 10.1128/microbiolspec.arba-0031-2017] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Indexed: 12/14/2022] Open
Abstract
For nearly a century the use of antibiotics to treat infectious diseases has benefited human and animal health. In recent years there has been an increase in the emergence of antibiotic-resistant bacteria, in part attributed to the overuse of compounds in clinical and farming settings. The genus Listeria currently comprises 17 recognized species found throughout the environment. Listeria monocytogenes is the etiological agent of listeriosis in humans and many vertebrate species, including birds, whereas Listeria ivanovii causes infections mainly in ruminants. L. monocytogenes is the third-most-common cause of death from food poisoning in humans, and infection occurs in at-risk groups, including pregnant women, newborns, the elderly, and immunocompromised individuals.
Collapse
Affiliation(s)
- Laura Luque-Sastre
- UCD-Centre for Food Safety, UCD School of Public Health, Physiotherapy, and Sports Science, UCD Centre for Molecular Innovation and Drug Discovery, University College Dublin, Belfield, Dublin D04 N2E5, Ireland
| | - Cristina Arroyo
- UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin D04 N2E5, Ireland
| | - Edward M Fox
- CSIRO Agriculture and Food, Werribee, Victoria, Australia
| | - Barry J McMahon
- UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin D04 N2E5, Ireland
| | - Li Bai
- Key Laboratory of Food Safety Risk Assessment of Ministry of Health, China National Center for Food Safety Risk Assessment, Beijing 100021, The Peoples Republic of China
| | - Fengqin Li
- Key Laboratory of Food Safety Risk Assessment of Ministry of Health, China National Center for Food Safety Risk Assessment, Beijing 100021, The Peoples Republic of China
| | - Séamus Fanning
- UCD-Centre for Food Safety, UCD School of Public Health, Physiotherapy, and Sports Science, UCD Centre for Molecular Innovation and Drug Discovery, University College Dublin, Belfield, Dublin D04 N2E5, Ireland
| |
Collapse
|
34
|
Abstract
Plasmids are extrachromosomal DNA elements that can be found throughout bacteria, as well as in other domains of life. Nonetheless, the evolutionary processes underlying the persistence of plasmids are incompletely understood. Bacterial plasmids may encode genes for traits that are sometimes beneficial to their hosts, such as antimicrobial resistance, virulence, heavy metal tolerance, and the catabolism of unique nutrient sources. In the absence of selection for these traits, however, plasmids generally impose a fitness cost on their hosts. As such, plasmid persistence presents a conundrum: models predict that costly plasmids will be lost over time or that beneficial plasmid genes will be integrated into the host genome. However, laboratory and comparative studies have shown that plasmids can persist for long periods, even in the absence of positive selection. Several hypotheses have been proposed to explain plasmid persistence, including host-plasmid co-adaptation, plasmid hitchhiking, cross-ecotype transfer, and high plasmid transfer rates, but there is no clear evidence that any one model adequately resolves the plasmid paradox.
Collapse
Affiliation(s)
- Amanda C Carroll
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada.,Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| | - Alex Wong
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada.,Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
35
|
Basra P, Alsaadi A, Bernal-Astrain G, O’Sullivan ML, Hazlett B, Clarke LM, Schoenrock A, Pitre S, Wong A. Fitness Tradeoffs of Antibiotic Resistance in Extraintestinal Pathogenic Escherichia coli. Genome Biol Evol 2018; 10:667-679. [PMID: 29432584 PMCID: PMC5817949 DOI: 10.1093/gbe/evy030] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2018] [Indexed: 12/21/2022] Open
Abstract
Evolutionary trade-offs occur when selection on one trait has detrimental effects on other traits. In pathogenic microbes, it has been hypothesized that antibiotic resistance trades off with fitness in the absence of antibiotic. Although studies of single resistance mutations support this hypothesis, it is unclear whether trade-offs are maintained over time, due to compensatory evolution and broader effects of genetic background. Here, we leverage natural variation in 39 extraintestinal clinical isolates of Escherichia coli to assess trade-offs between growth rates and resistance to fluoroquinolone and cephalosporin antibiotics. Whole-genome sequencing identifies a broad range of clinically relevant resistance determinants in these strains. We find evidence for a negative correlation between growth rate and antibiotic resistance, consistent with a persistent trade-off between resistance and growth. However, this relationship is sometimes weak and depends on the environment in which growth rates are measured. Using in vitro selection experiments, we find that compensatory evolution in one environment does not guarantee compensation in other environments. Thus, even in the face of compensatory evolution and other genetic background effects, resistance may be broadly costly, supporting the use of drug restriction protocols to limit the spread of resistance. Furthermore, our study demonstrates the power of using natural variation to study evolutionary trade-offs in microbes.
Collapse
Affiliation(s)
- Prabh Basra
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Ahlam Alsaadi
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | | | | | - Bryn Hazlett
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | | | - Andrew Schoenrock
- School of Computer Science, Carleton University, Ottawa, Ontario, Canada
- Research Computing Services, Carleton University, Ottawa, Ontario, Canada
| | - Sylvain Pitre
- Research Computing Services, Carleton University, Ottawa, Ontario, Canada
| | - Alex Wong
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
36
|
Guenther S, Semmler T, Stubbe A, Stubbe M, Wieler LH, Schaufler K. Chromosomally encoded ESBL genes in Escherichia coli of ST38 from Mongolian wild birds. J Antimicrob Chemother 2018; 72:1310-1313. [PMID: 28158613 DOI: 10.1093/jac/dkx006] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 01/04/2017] [Indexed: 01/16/2023] Open
Abstract
Objectives ESBL genes in Escherichia coli are mainly plasmid encoded, although recent studies have also shown chromosomal integration, e.g. in clinical E. coli isolates of ST38. As ESBL-producing E. coli are also found in non-clinical settings, we were interested in determining whether chromosomally integrated ESBL genes occur in ST38 isolates from non-clinical habitats, e.g. wildlife. Methods Four ESBL-producing E. coli isolates of ST38 originating from Mongolian birds of prey sampled in 2015 were subjected to a detailed analysis in terms of phenotypic resistance, plasmid profiling and WGS, followed by the determination of genotypic resistance factors including the chromosomal integration of ESBL and carbapenemase genes. Results Results based on phenotypic and genotypic plasmid profiling, contiguous sequence (contig) sizes and PCR analysis of flanking insertion site regions showed that three of four ST38 isolates harboured chromosomally encoded bla CTX-M genes of three different types ( bla CTX-M-14 , bla CTX-M-15 and bla CTX-M-24 ) that were inserted into three different chromosomal locations. A comparison of WGS data with ST38 isolates from a clinical outbreak in the UK indicated only low numbers of core-genome SNPs detected among one Mongolian wild bird isolate and eight clinical isolates from the UK. Conclusions The chromosomal integration of bla CTX-M genes in E. coli isolates of ST38 appears to be common and is likely independent of antimicrobial selective pressure in clinical environments. Our data corroborate the zoonotic potential of environmental isolates of ESBL-producing E. coli , which harbour stably integrated, chromosomally encoded resistance factors.
Collapse
Affiliation(s)
- Sebastian Guenther
- Centre for Infection Medicine, Institute of Microbiology and Epizootics, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163 Berlin, Germany
| | | | - Annegret Stubbe
- Department of Zoology, Institute of Biology, Martin-Luther-Universität Halle-Wittenberg, Hoher Weg 8, 06120 Halle, Germany
| | - Michael Stubbe
- Department of Zoology, Institute of Biology, Martin-Luther-Universität Halle-Wittenberg, Hoher Weg 8, 06120 Halle, Germany
| | | | - Katharina Schaufler
- Centre for Infection Medicine, Institute of Microbiology and Epizootics, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163 Berlin, Germany
| |
Collapse
|
37
|
ESBL-producing Escherichia coli
and Its Rapid Rise among Healthy People. Food Saf (Tokyo) 2017; 5:122-150. [PMID: 32231938 DOI: 10.14252/foodsafetyfscj.2017011] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 12/11/2017] [Indexed: 02/06/2023] Open
Abstract
Since around the 2000s, Escherichia coli (E. coli) resistant to both oxyimino-cephalosporins and fluoroquinolones has remarkably increased worldwide in clinical settings. The kind of E. coli is also identified in patients suffering from community-onset infectious diseases such as urinary tract infections. Moreover, recoveries of multi-drug resistant E. coli from the feces of healthy people have been increasingly documented in recent years, although the actual state remains uncertain. These E. coli isolates usually produce extended-spectrum β-lactamase (ESBL), as well as acquisition of amino acid substitutions in the quinolone-resistance determining regions (QRDRs) of GyrA and/or ParC, together with plasmid-mediated quinolone resistance determinants such as Qnr, AAC(6')-Ib-cr, and QepA. The actual state of ESBL-producing E. coli in hospitalized patients has been carefully investigated in many countries, while that in healthy people still remains uncertain, although high fecal carriage rates of ESBL producers in healthy people have been reported especially in Asian and South American countries. The issues regarding the ESBL producers have become very complicated and chaotic due to rapid increase of both ESBL variants and plasmids mediating ESBL genes, together with the emergence of various "epidemic strains" or "international clones" of E. coli and Klebsiella pneumoniae harboring transferable-plasmids carrying multiple antimicrobial resistance genes. Thus, the current state of ESBL producers outside hospital settings was overviewed together with the relation among those recovered from livestock, foods, pets, environments and wildlife from the viewpoint of molecular epidemiology. This mini review may contribute to better understanding about ESBL producers among people who are not familiar with the antimicrobial resistance (AMR) threatening rising globally.
Collapse
|
38
|
Impact of the colistin resistance gene mcr-1 on bacterial fitness. Int J Antimicrob Agents 2017; 51:554-561. [PMID: 29180279 DOI: 10.1016/j.ijantimicag.2017.11.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 11/10/2017] [Accepted: 11/17/2017] [Indexed: 11/21/2022]
Abstract
A Klebsiella pneumoniae isolate harbouring a 217 kb IncHI2-type plasmid (pKP2442) encoding the colistin resistance gene mcr-1 was isolated from a leukaemia patient. pKP2442 was mobilised by intragenus and intergenus transconjugation from the clinical isolate to Escherichia coli J53 (transconjugation frequency 6.86 × 10-8 ± 5.57 × 10-8) and K. pneumoniae PRZ (transconjugation frequency 4.04 × 10-8 ± 3.03 × 10-8), respectively. Since acquisition of resistance determinants often results in a loss of fitness, the impact of mcr-1 on the fitness of E. coli and K. pneumoniae was investigated. Escherichia coli J53 and K. pneumoniae PRZ transformants harbouring the TOPO expression vector encoding mcr-1 displayed significantly decreased growth rates compared with isogenic parental strains and controls. In contrast, competitive growth experiments revealed equal growth rates between E. coli J53 pKP2442 transconjugants (TcpKP2442) and the parental strain, whereas K. pneumoniae PRZ TcpKP2442 showed significantly reduced growth rates compared with their parental strain (selection rate constant -1.62 ± 0.49), indicating a decrease in fitness. Infection of A549 human lung epithelial cells with TcpKP2442 or mcr-1 transformants and controls revealed equal lactate dehydrogenase activities, indicating no significant impact of mcr-1 on cytotoxicity. Likewise, survival of Galleria mellonella larvae infected with mcr-1-expressing strains and isogenic controls was similar. These data indicate that expression of mcr-1 is able to cause a fitness cost when encoded on expression vectors and that acquisition of natural plasmid-borne mcr-1 does not impair fitness in E. coli J53 but negatively influences growth rates in K. pneumoniae PRZ.
Collapse
|
39
|
Gama JA, Zilhão R, Dionisio F. Conjugation efficiency depends on intra and intercellular interactions between distinct plasmids: Plasmids promote the immigration of other plasmids but repress co-colonizing plasmids. Plasmid 2017; 93:6-16. [PMID: 28842132 DOI: 10.1016/j.plasmid.2017.08.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 08/17/2017] [Accepted: 08/18/2017] [Indexed: 12/13/2022]
Abstract
Conjugative plasmids encode the genes responsible for the synthesis of conjugative pili and plasmid transfer. Expression of the conjugative machinery (including conjugative pili) may be costly to bacteria, not only due to the energetic/metabolic cost associated with their expression but also because they serve as receptors for certain viruses. Consequently, the presence of two plasmids in the same cell may be disadvantageous to each plasmid, because they may impose a higher fitness cost on the host. Therefore, plasmids may encode mechanisms to cope with co-resident plasmids. Moreover, it is possible that the transfer rate of a plasmid is affected by the presence of a distinct plasmid in the recipient cell. In this work, we measured transfer rates of twelve natural plasmids belonging to seven incompatibility groups in three situations, namely when: (i) donor cells contain a plasmid and recipient cells are plasmid-free; (ii) donor cells contain two unrelated plasmids and recipient cells are plasmid-free; and (iii) half of the cells contain a given plasmid and the other half contain another, unrelated, plasmid. In the third situation, recipient cells of a plasmid are the donor cells of the other plasmid. We show that there are more negative interactions (reduction of a plasmid's conjugative efficiency) between plasmids if they reside in the same cell than if they reside in different cells. However, if plasmids interacted intercellularly, the transfer rate of one of the plasmids was often higher (when the unrelated conjugative plasmid was present in the recipient cell) than if the recipient cell was plasmid-free - a positive effect. Experimental data retrieved from the study of mutant plasmids not expressing conjugative pili on the cell surface suggest that positive effects result from a higher efficiency of mating pair formation. Overall, our results suggest that negative interactions are significantly more frequent when plasmids occupy the same cell. Such interactions may determine how antibiotic resistance disseminates in bacterial populations.
Collapse
Affiliation(s)
- João Alves Gama
- cE3c-Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal; Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Rita Zilhão
- Departamento de Biologia Vegetal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Francisco Dionisio
- cE3c-Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal; Instituto Gulbenkian de Ciência, Oeiras, Portugal; Departamento de Biologia Vegetal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal.
| |
Collapse
|
40
|
Lugsomya K, Chatsuwan T, Niyomtham W, Tummaruk P, Hampson DJ, Prapasarakul N. Routine Prophylactic Antimicrobial Use Is Associated with Increased Phenotypic and Genotypic Resistance in Commensal Escherichia coli Isolates Recovered from Healthy Fattening Pigs on Farms in Thailand. Microb Drug Resist 2017; 24:213-223. [PMID: 28604274 DOI: 10.1089/mdr.2017.0042] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This study examined antimicrobial resistance (AMR) profiles in commensal Escherichia coli derived from healthy fattening pigs in Thai farms that used prophylactic antimicrobials (in-feed tiamulin fumarate and amoxicillin) [PAs], therapeutic antimicrobials (injectable enrofloxacin or gentamicin) [TAs], or no antimicrobials [NAs]. Commensal E. coli were used as a proxy for overall AMR on the farms. There was a high level of multidrug resistance in all three categories of farm, with isolates showing resistance to β-lactams (amoxicillin, ampicillin, and piperacillin) and tetracyclines (tetracycline), and commonly possessing tetA, blaTEM, and plasmid replicons FIB and F. On the other hand, isolates with an extended-spectrum beta-lactamase phenotype (ESBLP) and with resistance to aminoglycosides, chloramphenicol, fluoroquinolones, nitrofurantoin, tiamulin, and trimethoprim/sulfamethoxazole were significantly more common among the PA farms (p < 0.05) than in the other two farm categories. In the PA farms, ESBLP E. coli commonly contained the blaCTX-M-1 group, blaCTX-M-9 group, or both gene groups, and were shown to transfer blaCTX-M genes in a conjugation experiment. E. coli containing N, FIC and A/C replicons were found only in PA farms. In summary, although E. coli isolates from all farms contained a core set of resistance to β-lactams and tetracyclines, the routine use of PA increased resistance rates to other important antimicrobials.
Collapse
Affiliation(s)
- Kittitat Lugsomya
- 1 Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University , Bangkok, Thailand
| | - Thanitta Chatsuwan
- 2 Department of Microbiology, Faculty of Medicine, Chulalongkorn University , Bangkok, Thailand
| | - Waree Niyomtham
- 1 Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University , Bangkok, Thailand
| | - Padet Tummaruk
- 3 Department of Obstetrics Gynecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University , Bangkok, Thailand
| | - David J Hampson
- 4 School of Veterinary and Life Sciences, Murdoch University , Perth, Western Australia, Australia
| | - Nuvee Prapasarakul
- 1 Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University , Bangkok, Thailand
| |
Collapse
|
41
|
Porse A, Gumpert H, Kubicek-Sutherland JZ, Karami N, Adlerberth I, Wold AE, Andersson DI, Sommer MOA. Genome Dynamics of Escherichia coli during Antibiotic Treatment: Transfer, Loss, and Persistence of Genetic Elements In situ of the Infant Gut. Front Cell Infect Microbiol 2017; 7:126. [PMID: 28447026 PMCID: PMC5388698 DOI: 10.3389/fcimb.2017.00126] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 03/28/2017] [Indexed: 12/15/2022] Open
Abstract
Elucidating the adaptive strategies and plasticity of bacterial genomes in situ is crucial for understanding the epidemiology and evolution of pathogens threatening human health. While much is known about the evolution of Escherichia coli in controlled laboratory environments, less effort has been made to elucidate the genome dynamics of E. coli in its native settings. Here, we follow the genome dynamics of co-existing E. coli lineages in situ of the infant gut during the first year of life. One E. coli lineage causes a urinary tract infection (UTI) and experiences several alterations of its genomic content during subsequent antibiotic treatment. Interestingly, all isolates of this uropathogenic E. coli strain carried a highly stable plasmid implicated in virulence of diverse pathogenic strains from all over the world. While virulence elements are certainly beneficial during infection scenarios, their role in gut colonization and pathogen persistence is poorly understood. We performed in vivo competitive fitness experiments to assess the role of this highly disseminated virulence plasmid in gut colonization, but found no evidence for a direct benefit of plasmid carriage. Through plasmid stability assays, we demonstrate that this plasmid is maintained in a parasitic manner, by strong first-line inheritance mechanisms, acting on the single-cell level, rather than providing a direct survival advantage in the gut. Investigating the ecology of endemic accessory genetic elements, in their pathogenic hosts and native environment, is of vital importance if we want to understand the evolution and persistence of highly virulent and drug resistant bacterial isolates.
Collapse
Affiliation(s)
- Andreas Porse
- Novo Nordisk Foundation Center for Biosustainability, Technical University of DenmarkLyngby, Denmark
| | - Heidi Gumpert
- Department of Clinical Microbiology, Hvidovre University HospitalHvidovre, Denmark
| | | | - Nahid Karami
- Department of infectious Diseases, University of Gothenburg, Sahlgrenska AcademyGothenburg, Sweden
| | - Ingegerd Adlerberth
- Department of infectious Diseases, University of Gothenburg, Sahlgrenska AcademyGothenburg, Sweden
| | - Agnes E Wold
- Department of infectious Diseases, University of Gothenburg, Sahlgrenska AcademyGothenburg, Sweden
| | - Dan I Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University Biomedical CentreUppsala, Sweden
| | - Morten O A Sommer
- Novo Nordisk Foundation Center for Biosustainability, Technical University of DenmarkLyngby, Denmark
| |
Collapse
|
42
|
Fitness costs associated with the acquisition of antibiotic resistance. Essays Biochem 2017; 61:37-48. [PMID: 28258228 DOI: 10.1042/ebc20160057] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 12/20/2016] [Accepted: 01/03/2017] [Indexed: 01/09/2023]
Abstract
Acquisition of antibiotic resistance is a relevant problem for human health. The selection and spread of antibiotic-resistant organisms not only compromise the treatment of infectious diseases, but also the implementation of different therapeutic procedures as organ transplantation, advanced surgery or chemotherapy, all of which require proficient methods for avoiding infections. It has been generally accepted that the acquisition of antibiotic resistance will produce a general metabolic burden: in the absence of selection, the resistant organisms would be outcompeted by the susceptible ones. If that was always true, discontinuation of antibiotic use would render the disappearance of resistant microorganisms. However, several studies have shown that, once resistance emerges, the recovery of a fully susceptible population even in the absence of antibiotics is not easy. In the present study, we review updated information on the effect of the acquisition of antibiotic resistance in bacterial physiology as well as on the mechanisms that allow the compensation of the fitness costs associated with the acquisition of resistance.
Collapse
|
43
|
Wong A. Epistasis and the Evolution of Antimicrobial Resistance. Front Microbiol 2017; 8:246. [PMID: 28261193 PMCID: PMC5313483 DOI: 10.3389/fmicb.2017.00246] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 02/06/2017] [Indexed: 01/08/2023] Open
Abstract
The fitness effects of a mutation can depend, sometimes dramatically, on genetic background; this phenomenon is often referred to as “epistasis.” Epistasis can have important practical consequences in the context of antimicrobial resistance (AMR). For example, genetic background plays an important role in determining the costs of resistance, and hence in whether resistance will persist in the absence of antibiotic pressure. Furthermore, interactions between resistance mutations can have important implications for the evolution of multi-drug resistance. I argue that there is a need to better characterize the extent and nature of epistasis for mutations and horizontally transferred elements conferring AMR, particularly in clinical contexts. Furthermore, I suggest that epistasis should be an important consideration in attempts to slow or limit the evolution of AMR.
Collapse
Affiliation(s)
- Alex Wong
- Department of Biology, Carleton University, Ottawa ON, Canada
| |
Collapse
|
44
|
Sun F, Zhou D, Sun Q, Luo W, Tong Y, Zhang D, Wang Q, Feng W, Chen W, Fan Y, Xia P. Genetic characterization of two fully sequenced multi-drug resistant plasmids pP10164-2 and pP10164-3 from Leclercia adecarboxylata. Sci Rep 2016; 6:33982. [PMID: 27658354 PMCID: PMC5034289 DOI: 10.1038/srep33982] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 09/06/2016] [Indexed: 02/04/2023] Open
Abstract
We previously reported the complete sequence of the resistance plasmid pP10164-NDM, harboring blaNDM (conferring carbapenem resistance) and bleMBL (conferring bleomycin resistance), which is recovered from a clinical Leclercia adecarboxylata isolate P10164 from China. This follow-up work disclosed that there were still two multidrug-resistant (MDR) plasmids pP10164-2 and pP10164-3 coexisting in this strain. pP10164-2 and pP10164-3 were completely sequenced and shown to carry a wealth of resistance genes, which encoded the resistance to at least 10 classes of antibiotics (β-lactams. macrolides, quinolones, aminoglycosides, tetracyclines, amphenicols, quaternary ammonium compounds, sulphonamides, trimethoprim, and rifampicin) and 7 kinds of heavy mental (mercury, silver, copper, nickel, chromate, arsenic, and tellurium). All of these antibiotic resistance genes are associated with mobile elements such as transposons, integrons, and insertion sequence-based transposable units, constituting a total of three novel MDR regions, two in pP10164-2 and the other one in pP10164-3. Coexistence of three resistance plasmids pP10164-NDM, pP10164-2 and pP10164-3 makes L. adecarboxylata P10164 tend to become extensively drug-resistant.
Collapse
Affiliation(s)
- Fengjun Sun
- Department of Pharmacy, Southwest Hospital, the Third Military Medical University, Chongqing 400038, China
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Qiang Sun
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Wenbo Luo
- Department of Pharmacy, Southwest Hospital, the Third Military Medical University, Chongqing 400038, China.,State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Yigang Tong
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Defu Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China.,College of Food Science and Project Engineering, Bohai University, Jinzhou 121013, China
| | - Qian Wang
- Department of Pharmacy, Southwest Hospital, the Third Military Medical University, Chongqing 400038, China
| | - Wei Feng
- Department of Pharmacy, Southwest Hospital, the Third Military Medical University, Chongqing 400038, China
| | - Weijun Chen
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Yahan Fan
- Transfusion Department, Southwest Hospital, the Third Military Medical University, Chongqing 400038, China
| | - Peiyuan Xia
- Department of Pharmacy, Southwest Hospital, the Third Military Medical University, Chongqing 400038, China
| |
Collapse
|
45
|
Di Luca MC, Sørum V, Starikova I, Kloos J, Hülter N, Naseer U, Johnsen PJ, Samuelsen Ø. Low biological cost of carbapenemase-encoding plasmids following transfer from Klebsiella pneumoniae to Escherichia coli. J Antimicrob Chemother 2016; 72:85-89. [PMID: 27591293 DOI: 10.1093/jac/dkw350] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 06/20/2016] [Accepted: 07/27/2016] [Indexed: 02/03/2023] Open
Abstract
OBJECTIVES The objective of this study was to determine the biological cost, stability and sequence of two carbapenemase-encoding plasmids containing blaKPC-2 (pG12-KPC-2) and blaVIM-1 (pG06-VIM-1) isolated from Klebsiella pneumoniae when newly acquired by uropathogenic Escherichia coli clinical isolates of different genetic backgrounds. METHODS The two plasmids were transferred into plasmid-free E. coli clinical isolates by transformation. The fitness effect of newly acquired plasmids on the host cell was assessed in head-to-head competitions with the corresponding isogenic strain. Plasmid stability was estimated by propagating monocultures for ∼312 generations. Plasmid nucleotide sequences were determined using next-generation sequencing technology. Assembly, gap closure, annotation and comparative analyses were performed. RESULTS Both plasmids were stably maintained in three of four E. coli backgrounds and resulted in low to moderate reductions in host fitness ranging from 1.1% to 3.6%. A difference in fitness cost was observed for pG12-KPC-2 between two different genetic backgrounds, while no difference was detected for pG06-VIM-1 between three different genetic backgrounds. In addition, a difference was observed between pG12-KPC-2 and pG06-VIM-1 in the same genetic background. In general, the magnitude of biological cost of plasmid carriage was both host and plasmid dependent. The sequences of the two plasmids showed high backbone similarity to previously circulating plasmids in K. pneumoniae. CONCLUSIONS The low to modest fitness cost of newly acquired and stably maintained carbapenemase-encoding plasmids in E. coli indicates a potential for establishment and further dissemination into other Enterobacteriaceae species. We also show that the fitness cost is both plasmid and host specific.
Collapse
Affiliation(s)
- Maria Chiara Di Luca
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
| | - Vidar Sørum
- Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Irina Starikova
- Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Julia Kloos
- Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Nils Hülter
- Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Umaer Naseer
- Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Pål J Johnsen
- Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Ørjan Samuelsen
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway .,Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
46
|
Du J, Li B, Cao J, Wu Q, Chen H, Hou Y, Zhang E, Zhou T. Molecular Characterization and Epidemiologic Study of NDM-1-Producing Extensively Drug-Resistant Escherichia coli. Microb Drug Resist 2016; 23:272-279. [PMID: 27383695 DOI: 10.1089/mdr.2015.0294] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The emergence and dissemination of NDM-1 (New Delhi metallo-β-lactamase-1)-producing Enterobacteriaceae have resulted in a worldwide public health risk. This study described a high incidence and endemic spread of NDM-1-producing extensively drug-resistant Escherichia coli in a teaching hospital in Zhejiang province, China. We recovered six nonduplicated NDM-1-producing E. coli isolates from May 2014 to August 2014 with positive modified Hodge test and EDTA synergistic test. These isolates were highly resistant to β-lactam antimicrobials, aminoglycosides, and quinolones. PCR and DNA sequences analysis showed that all isolates carried the blaNDM-1, blaSHV-11, aac(6')-ib-cr, and qnrB. Several isolates also harbored blaCTX-M-1, blaCTX-M-9, rmtB, and qnrA. Southern blot confirmed that blaNDM-1 was located on the same ∼55 kb plasmid and conjugation experiments further proved the contransferable characteristic of blaNDM-1. The ompC sequences showed various mutations, which was related to multidrug resistance in E. coli. Pulsed-field gel electrophoresis identified four of six isolates that belonged to the same genotype. Multilocus sequence typing assigned them to ST2, except one strain that belonged to ST594. Our study demonstrated that the resistance-associated genes and the loss of the outer membrane proteins could account for high resistance of NDM-1-producing E. coli to multiple antimicrobial drugs. Both horizontal transfer of IncN and transmission of ST2 were responsible for the spread of drug resistance. These findings highlighted an urgent need to limit the further dissemination of NDM-1-producing E. coli in this region.
Collapse
Affiliation(s)
- Jia Du
- 1 Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University , Wenzhou, Zhejiang Province, China
| | - Bin Li
- 1 Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University , Wenzhou, Zhejiang Province, China
| | - Jianming Cao
- 2 School of Medical Lab Science, Wenzhou Medical University , Wenzhou, Zhejiang Province, China
| | - Qing Wu
- 1 Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University , Wenzhou, Zhejiang Province, China
| | - Huale Chen
- 1 Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University , Wenzhou, Zhejiang Province, China
| | - Yuanbo Hou
- 2 School of Medical Lab Science, Wenzhou Medical University , Wenzhou, Zhejiang Province, China
| | - En Zhang
- 3 Ningbo Medical Treatment Center Lihuili Hospital , Ningbo, Zhejiang Province, China
| | - Tieli Zhou
- 1 Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University , Wenzhou, Zhejiang Province, China
| |
Collapse
|
47
|
Evolved resistance to colistin and its loss due to genetic reversion in Pseudomonas aeruginosa. Sci Rep 2016; 6:25543. [PMID: 27150578 PMCID: PMC4858706 DOI: 10.1038/srep25543] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 04/20/2016] [Indexed: 11/17/2022] Open
Abstract
The increased reliance on colistin for treating multidrug-resistant Gram-negative bacterial infections has resulted in the emergence of colistin-resistant Pseudomonas aeruginosa. We attempted to identify genetic contributors to colistin resistance in vitro evolved isogenic colistin-resistant and -susceptible strains of two P. aeruginosa lineages (P5 and P155). Their evolutionary paths to acquisition and loss of colistin resistance were also tracked. Comparative genomic analysis revealed 13 and five colistin resistance determinants in the P5 and P155 lineages, respectively. Lipid A in colistin-resistant mutants was modified through the addition of 4-amino-L-arabinose; this modification was absent in colistin-susceptible revertant strains. Many amino acid substitutions that emerged during the acquisition of colistin resistance were reversed in colistin-susceptible revertants. We demonstrated that evolved colistin resistance in P. aeruginosa was mediated by a complicated regulatory network that likely emerges through diverse genetic alterations. Colistin-resistant P. aeruginosa became susceptible to the colistin upon its withdrawal because of genetic reversion. The mechanisms through which P. aeruginosa acquires and loses colistin resistance have implications on the treatment options that can be applied against P. aeruginosa infections, with respect to improving bactericidal efficacy and preventing further resistance to antibiotics.
Collapse
|
48
|
Shin J, Ko KS. Effect of plasmids harbouring blaCTX-M on the virulence and fitness of Escherichia coli ST131 isolates. Int J Antimicrob Agents 2015; 46:214-8. [DOI: 10.1016/j.ijantimicag.2015.04.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 04/23/2015] [Accepted: 04/26/2015] [Indexed: 11/26/2022]
|
49
|
In Vivo Transmission of an IncA/C Plasmid in Escherichia coli Depends on Tetracycline Concentration, and Acquisition of the Plasmid Results in a Variable Cost of Fitness. Appl Environ Microbiol 2015; 81:3561-70. [PMID: 25769824 DOI: 10.1128/aem.04193-14] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 03/10/2015] [Indexed: 12/18/2022] Open
Abstract
IncA/C plasmids are broad-host-range plasmids enabling multidrug resistance that have emerged worldwide among bacterial pathogens of humans and animals. Although antibiotic usage is suspected to be a driving force in the emergence of such strains, few studies have examined the impact of different types of antibiotic administration on the selection of plasmid-containing multidrug resistant isolates. In this study, chlortetracycline treatment at different concentrations in pig feed was examined for its impact on selection and dissemination of an IncA/C plasmid introduced orally via a commensal Escherichia coli host. Continuous low-dose administration of chlortetracycline at 50 g per ton had no observable impact on the proportions of IncA/C plasmid-containing E. coli from pig feces over the course of 35 days. In contrast, high-dose administration of chlortetracycline at 350 g per ton significantly increased IncA/C plasmid-containing E. coli in pig feces (P < 0.001) and increased movement of the IncA/C plasmid to other indigenous E. coli hosts. There was no evidence of conjugal transfer of the IncA/C plasmid to bacterial species other than E. coli. In vitro competition assays demonstrated that bacterial host background substantially impacted the cost of IncA/C plasmid carriage in E. coli and Salmonella. In vitro transfer and selection experiments demonstrated that tetracycline at 32 μg/ml was necessary to enhance IncA/C plasmid conjugative transfer, while subinhibitory concentrations of tetracycline in vitro strongly selected for IncA/C plasmid-containing E. coli. Together, these experiments improve our knowledge on the impact of differing concentrations of tetracycline on the selection of IncA/C-type plasmids.
Collapse
|
50
|
Abstract
ABSTRACT
Horizontal gene transfer drives the evolution of bacterial genomes, including the adaptation to changing environmental conditions. Exogenous DNA can enter a bacterial cell through transformation (free DNA or plasmids) or through the transfer of mobile genetic elements by conjugation (plasmids) and transduction (bacteriophages). Favorable genes can be acquired, but undesirable traits can also be inadvertently acquired through these processes. Bacteria have systems, such as clustered regularly interspaced short palindromic repeat CRISPR–associated genes (CRISPR-Cas), that can cleave foreign nucleic acid molecules. In this review, we discuss recent advances in understanding CRISPR-Cas system activity against mobile genetic element transfer through transformation and conjugation. We also highlight how CRISPR-Cas systems influence bacterial evolution and how CRISPR-Cas components affect plasmid replication.
Collapse
|