1
|
Belhart K, Sisti F, Gestal MC, Fernández J. Bordetella bronchiseptica diguanylate cyclase BdcB inhibits the type three secretion system and impacts the immune response. Sci Rep 2023; 13:7157. [PMID: 37130958 PMCID: PMC10154355 DOI: 10.1038/s41598-023-34106-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 04/24/2023] [Indexed: 05/04/2023] Open
Abstract
Bordetella bronchiseptica is a gram-negative bacterium that causes respiratory diseases in different animals, including mice, making B. bronchiseptica the gold-standard model to investigate host-pathogen interaction at the molecular level. B. bronchiseptica utilizes many different mechanisms to precisely regulate the expression of virulence factors. Cyclic di-GMP is a second messenger synthesized by diguanylate cyclases and degraded by phosphodiesterases that regulates the expression of multiple virulence factors including biofilm formation. As in other bacteria, we have previously shown that c-di-GMP regulates motility and biofilm formation in B. bronchiseptica. This work describes the diguanylate cyclase BdcB (Bordetella diguanylate cyclase B) as an active diguanylate cyclase that promotes biofilm formation and inhibits motility in B. bronchiseptica. The absence of BdcB increased macrophage cytotoxicity in vitro and induced a greater production of TNF-α, IL-6, and IL-10 by macrophages. Our study reveals that BdcB regulates the expression of components of T3SS, an important virulence factor of B. bronchiseptica. The Bb∆bdcB mutant presented increased expression of T3SS-mediated toxins such as bteA, responsible for cytotoxicity. Our in vivo results revealed that albeit the absence of bdcB did not affect the ability of B. bronchiseptica to infect and colonize the respiratory tract of mice, mice infected with Bb∆bdcB presented a significantly higher pro-inflammatory response than those infected with wild type B. bronchiseptica.
Collapse
Affiliation(s)
- Keila Belhart
- Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Instituto de Biotecnología y Biología Molecular (IBBM)-CCT-CONICET-La Plata, Universidad Nacional de La Plata, La Plata, Argentina
| | - Federico Sisti
- Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Instituto de Biotecnología y Biología Molecular (IBBM)-CCT-CONICET-La Plata, Universidad Nacional de La Plata, La Plata, Argentina
| | - Mónica C Gestal
- Department of Microbiology and Immunology, Louisiana State University (LSU) Health Sciences Center at Shreveport, Shreveport, LA, USA.
| | - Julieta Fernández
- Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Instituto de Biotecnología y Biología Molecular (IBBM)-CCT-CONICET-La Plata, Universidad Nacional de La Plata, La Plata, Argentina.
| |
Collapse
|
2
|
Diversity in Sensing and Signaling of Bacterial Sensor Histidine Kinases. Biomolecules 2021; 11:biom11101524. [PMID: 34680156 PMCID: PMC8534201 DOI: 10.3390/biom11101524] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/13/2021] [Accepted: 10/13/2021] [Indexed: 11/17/2022] Open
Abstract
Two-component signal transduction systems (TCSs) are widely conserved in bacteria to respond to and adapt to the changing environment. Since TCSs are also involved in controlling the expression of virulence, biofilm formation, quorum sensing, and antimicrobial resistance in pathogens, they serve as candidates for novel drug targets. TCSs consist of a sensor histidine kinase (HK) and its cognate response regulator (RR). Upon perception of a signal, HKs autophosphorylate their conserved histidine residues, followed by phosphotransfer to their partner RRs. The phosphorylated RRs mostly function as transcriptional regulators and control the expression of genes necessary for stress response. HKs sense their specific signals not only in their extracytoplasmic sensor domain but also in their cytoplasmic and transmembrane domains. The signals are sensed either directly or indirectly via cofactors and accessory proteins. Accumulating evidence shows that a single HK can sense and respond to multiple signals in different domains. The underlying molecular mechanisms of how HK activity is controlled by these signals have been extensively studied both biochemically and structurally. In this article, we introduce the wide diversity of signal perception in different domains of HKs, together with their recently clarified structures and molecular mechanisms.
Collapse
|
3
|
Structural insight into the role of the PAS domainfor signal transduction in sensor-kinase BvgS. J Bacteriol 2021; 203:JB.00614-20. [PMID: 33619154 PMCID: PMC8092167 DOI: 10.1128/jb.00614-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The two-component system BvgAS controls the virulence regulon in Bordetella pertussis BvgS is the prototype of a family of sensor histidine-kinases harboring periplasmic Venus flytrap (VFT) domains. The VFT domains are connected to the cytoplasmic kinase moiety by helical linkers separated by a Per-ARNT-Sim (PAS) domain. Antagonism between the two linkers, as one forms a coiled coil when the other is dynamic and vice versa, regulates BvgS activity. Here we solved the structure of the intervening PAS domain by X-ray crystallography. Two forms were obtained that notably differ by the connections between the PAS core domain and the flanking helical linkers. Structure-guided mutagenesis indicated that those connections participate in the regulation of BvgS activity. The PAS domain thus appears to function as a switch-facilitator module whose conformation determines the output of the system. As many BvgS homologs have similar architectures, the mechanisms unveiled here are likely to generally apply to the regulation of sensor-histidine kinases of that family.IMPORTANCEThe whooping cough agent Bordetella pertussis colonizes the human respiratory tract using virulence factors co-regulated by the sensory transduction system BvgAS. BvgS is a model for a family of sensor-kinase proteins, some of which are found in important bacterial pathogens. BvgS functions as a kinase or a phosphatase depending on external signals, which determines if B. pertussis is virulent or avirulent. Deciphering its mode of action might thus lead to new ways of fighting infections. Here we used X-ray crystallography to solve the three-dimensional structure of the domain that precedes the enzymatic moiety and identified features that regulate BvgS activity. As many sensor-kinases of the BvgS family harbor homologous domains, the mechanism unveiled here might be of general relevance.
Collapse
|
4
|
The BvgS PAS Domain, an Independent Sensory Perception Module in the Bordetella bronchiseptica BvgAS Phosphorelay. J Bacteriol 2019; 201:JB.00286-19. [PMID: 31235515 DOI: 10.1128/jb.00286-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 06/18/2019] [Indexed: 01/08/2023] Open
Abstract
To detect and respond to the diverse environments they encounter, bacteria often use two-component regulatory systems (TCS) to coordinate essential cellular processes required for survival. In pathogenic Bordetella species, the BvgAS TCS regulates expression of hundreds of genes, including those encoding all known protein virulence factors, and its kinase activity is essential for respiratory infection. Maintenance of BvgS kinase activity in the lower respiratory tract (LRT) depends on the function of another TCS, PlrSR. While the periplasmic Venus flytrap domains of BvgS have been implicated in responding to so-called modulating signals in vitro (nicotinic acid and MgSO4), a role for the cytoplasmic Per-Arnt-Sim (PAS) domain in signal perception has not previously been demonstrated. By comparing B. bronchiseptica strains with mutations in the PAS domain-encoding region of bvgS with wild-type bacteria in vitro and in vivo, we found that although the PAS domain is not required to sense modulating signals in vitro, it is required for the inactivation of BvgS that occurs in the absence of PlrS in the LRTs of mice, suggesting that the BvgS PAS domain functions as an independent signal perception domain. Our data also indicate that the BvgS PAS domain is important for controlling absolute levels of BvgS kinase activity and the efficiency of the response to modulating signals in vitro Our results provide evidence that BvgS integrates sensory inputs from both the periplasm and the cytoplasm to control precise gene expression patterns under diverse environmental conditions.IMPORTANCE Despite high rates of vaccination, pertussis, a severe, highly contagious respiratory disease caused by the bacterium Bordetella pertussis, has reemerged as a significant health threat. In Bordetella pertussis and the closely related species Bordetella bronchiseptica, activity of the BvgAS two-component regulatory system is critical for colonization of the mammalian respiratory tract. We show here that the cytoplasmic PAS domain of BvgS can function as an independent signal perception domain that influences BvgS activity in response to environmental conditions. Our work is significant because it reveals a critical, yet previously unrecognized, role for the PAS domain in the BvgAS phosphorelay and provides a greater understanding of virulence regulation in Bordetella.
Collapse
|
5
|
Luu LDW, Octavia S, Zhong L, Raftery MJ, Sintchenko V, Lan R. Comparison of the Whole Cell Proteome and Secretome of Epidemic Bordetella pertussis Strains From the 2008-2012 Australian Epidemic Under Sulfate-Modulating Conditions. Front Microbiol 2018; 9:2851. [PMID: 30538686 PMCID: PMC6277516 DOI: 10.3389/fmicb.2018.02851] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 11/06/2018] [Indexed: 01/19/2023] Open
Abstract
Sulfate is an important modulator for virulence factor expression in Bordetella pertussis, the causative organism for whooping cough. During infection, sulfate is released when respiratory epithelial cells are damaged which can affect gene expression. The current predominant strains in Australia are found in single nucleotide polymorphism (SNP) cluster I (ptxP3/prn2). It has been reported that ptxP3 strains have higher mRNA expression of virulence genes than ptxP1 strains under intermediate sulfate-modulating conditions (5 mM MgSO4). Our previous proteomic study compared L1423 (cluster I, ptxP3) and L1191 (cluster II, ptxP1) in Thalen-IJssel (THIJS) media without sulfate modulation and identified an upregulation of transport proteins and a downregulation of immunogenic proteins. To determine whether proteomic differences exist between cluster I and cluster II strains in intermediate modulating conditions, this study compared the whole cell proteome and secretome between L1423 and L1191 grown in THIJS media with 5 mM MgSO4 using iTRAQ and high-resolution multiple reaction monitoring (MRM-hr). Two proteins (BP0200 and BP1175) in the whole cell were upregulated in L1423 [fold change (FC) >1.2, false discovery rate (FDR) <0.05]. In the secretome, four proteins from the type III secretion system (T3SS) effectors were downregulated (FC < 0.8, FDR < 0.05) while six proteins, including two adhesins, pertactin (Prn) and tracheal colonization factor A (TcfA), were upregulated which were consistent with our previous proteomic study. The upregulation of Prn and TcfA in SNP cluster I may result in improved adhesion while the downregulation of the T3SS and other immunogenic proteins may reduce immune recognition, which may contribute to the increased fitness of cluster I B. pertussis strains.
Collapse
Affiliation(s)
- Laurence Don Wai Luu
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Sophie Octavia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Ling Zhong
- Bioanalytical Mass Spectrometry Facility, University of New South Wales, Sydney, NSW, Australia
| | - Mark J Raftery
- Bioanalytical Mass Spectrometry Facility, University of New South Wales, Sydney, NSW, Australia
| | - Vitali Sintchenko
- Centre for Infectious Diseases and Microbiology-Public Health, Institute of Clinical Pathology and Medical Research - NSW Health Pathology, Westmead Hospital, Sydney, NSW, Australia.,Marie Bashir Institute for Infectious Diseases and Biosecurity, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Ruiting Lan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
6
|
A Novel Bvg-Repressed Promoter Causes vrg-Like Transcription of fim3 but Does Not Result in the Production of Serotype 3 Fimbriae in Bvg - Mode Bordetella pertussis. J Bacteriol 2018; 200:JB.00175-18. [PMID: 30061354 DOI: 10.1128/jb.00175-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 07/27/2018] [Indexed: 11/20/2022] Open
Abstract
In Bordetella pertussis, two serologically distinct fimbriae, FIM2 and FIM3, undergo on/off phase variation independently of each other via variation in the lengths of C stretches in the promoters for their major subunit genes, fim2 and fim3 These two promoters are also part of the BvgAS virulence regulon and therefore, if in an on configuration, are activated by phosporylated BvgA (BvgA~P) under normal growth conditions (Bvg+ mode) but not in the Bvg- mode, inducible by growth in medium containing MgSO4 or other compounds, termed modulators. In the B. pertussis Tohama I strain (FIM2+ FIM3-), the fim3 promoter is in the off state. However, a high level of transcription of the fim3 gene is observed in the Bvg- mode. In this study, we provide an explanation for this anomalous behavior by defining a Bvg-repressed promoter (BRP), located approximately 400 bp upstream of the Pfim3 transcriptional start. Although transcription of the fim3 gene in the Bvg- mode resulted in Fim3 translation, as measured by LacZ translational fusions, no accumulation of Fim3 protein was detectable. We propose that Fim3 protein resulting from translation of mRNA driven by BRP in the Bvg- mode is unstable due to a lack of the fimbrial assembly apparatus encoded by the fimBC genes, located within the fha operon, and therefore is not expressed in the Bvg- mode.IMPORTANCE In Bordetella pertussis, the promoter Pfim3-15C for the major fimbrial subunit gene fim3 is activated by the two-component system BvgAS in the Bvg+ mode but not in the Bvg- mode. However, many transcriptional profiling studies have shown that fim3 is transcribed in the Bvg- mode even when Pfim3 is in a nonpermissive state (Pfim3-13C), suggesting the presence of a reciprocally regulated element upstream of Pfim3 Here, we provide evidence that BRP is the cause of this anomalous behavior of fim3 Although BRP effects vrg-like transcription of fim3 in the Bvg- mode, it does not lead to stable production of FIM3 fimbriae, because expression of the chaperone and usher proteins FimB and FimC occurs only in the Bvg+ mode.
Collapse
|
7
|
Lesne E, Dupré E, Lensink MF, Locht C, Antoine R, Jacob-Dubuisson F. Coiled-Coil Antagonism Regulates Activity of Venus Flytrap-Domain-Containing Sensor Kinases of the BvgS Family. mBio 2018; 9:e02052-17. [PMID: 29487240 PMCID: PMC5829827 DOI: 10.1128/mbio.02052-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 01/24/2018] [Indexed: 12/14/2022] Open
Abstract
Bordetella pertussis controls the expression of its virulence regulon through the two-component system BvgAS. BvgS is a prototype for a family of multidomain sensor kinases. In BvgS, helical linkers connect periplasmic Venus flytrap (VFT) perception domains to a cytoplasmic Per-Arnt-Sim (PAS) domain and the PAS domain to the dimerization/histidine phosphotransfer (DHp) domain of the kinase. The two linkers can adopt coiled-coil structures but cannot do so simultaneously. The first linker forms a coiled coil in the kinase mode and the second in the phosphatase mode, with the other linker in both cases showing an increase in dynamic behavior. The intervening PAS domain changes its quaternary structure between the two modes. In BvgS homologues without a PAS domain, a helical "X" linker directly connects the VFT and DHp domains. Here, we used BvgS as a platform to characterize regulation in members of the PAS-less subfamily. BvgS chimeras of homologues with natural X linkers displayed various regulation phenotypes. We identified two distinct coiled-coil registers in the N- and C-terminal portions of the X linkers. Stable coil formation in the C-terminal moiety determines the phosphatase mode, similarly to BvgS; in contrast, coil formation in the N-terminal moiety along the other register leads to the kinase mode. Thus, antagonism between two registers in the VFT-DHp linker forms the basis for activity regulation in the absence of the PAS domain. The N and C moieties of the X linker play roles similar to those played by the two independent linkers in sensor kinases with a PAS domain, providing a unified mechanism of regulation for the entire family.IMPORTANCE The whooping cough agent Bordetella pertussis uses the BvgAS sensory transduction two-component system to regulate production of its virulence factors. BvgS serves as a model for a large family of multidomain bacterial sensor kinases. B. pertussis is virulent when BvgS functions as a kinase and avirulent when it switches to phosphatase activity in response to modulating signals. Understanding the molecular regulation of those proteins might lead to new antibacterial strategies. Here, we show that the linker regions between the perception and the enzymatic domains shift between distinct states of conformation in an alternating manner in response to signals and that their antagonistic changes control sensor kinase activity. These linker regions and mechanistic principles appear to be conserved among BvgS homologues, irrespective of the presence or absence of an intervening domain between the perception and the enzymatic domains. This work has thus uncovered general molecular mechanisms that regulate activity of sensor kinases in the BvgS family.
Collapse
Affiliation(s)
- Elodie Lesne
- University of Lille, Lille, France
- CNRS UMR 8204, Lille, France
- Inserm U1019, Lille, France
- CHU Lille, Lille, France
- Centre d'Infection & d'Immunité de Lille, Institut Pasteur de Lille, Lille, France
| | - Elian Dupré
- University of Lille, Lille, France
- CNRS UMR 8204, Lille, France
- Inserm U1019, Lille, France
- CHU Lille, Lille, France
- Centre d'Infection & d'Immunité de Lille, Institut Pasteur de Lille, Lille, France
| | - Marc F Lensink
- University of Lille, CNRS, UMR 8576, UGSF-Unité de Glycobiologie Structurale & Fonctionnelle, Villeneuve d'Ascq, France
| | - Camille Locht
- University of Lille, Lille, France
- CNRS UMR 8204, Lille, France
- Inserm U1019, Lille, France
- CHU Lille, Lille, France
- Centre d'Infection & d'Immunité de Lille, Institut Pasteur de Lille, Lille, France
| | - Rudy Antoine
- University of Lille, Lille, France
- CNRS UMR 8204, Lille, France
- Inserm U1019, Lille, France
- CHU Lille, Lille, France
- Centre d'Infection & d'Immunité de Lille, Institut Pasteur de Lille, Lille, France
| | - Françoise Jacob-Dubuisson
- University of Lille, Lille, France
- CNRS UMR 8204, Lille, France
- Inserm U1019, Lille, France
- CHU Lille, Lille, France
- Centre d'Infection & d'Immunité de Lille, Institut Pasteur de Lille, Lille, France
| |
Collapse
|
8
|
Rojas-Pirela M, Rigden DJ, Michels PA, Cáceres AJ, Concepción JL, Quiñones W. Structure and function of Per-ARNT-Sim domains and their possible role in the life-cycle biology of Trypanosoma cruzi. Mol Biochem Parasitol 2017; 219:52-66. [PMID: 29133150 DOI: 10.1016/j.molbiopara.2017.11.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 10/12/2017] [Accepted: 11/02/2017] [Indexed: 02/07/2023]
Abstract
Per-ARNT-Sim (PAS) domains of proteins play important roles as modules for signalling and cellular regulation processes in widely diverse organisms such as Archaea, Bacteria, protists, plants, yeasts, insects and vertebrates. These domains are present in many proteins where they are used as sensors of stimuli and modules for protein interactions. Characteristically, they can bind a broad spectrum of molecules. Such binding causes the domain to trigger a specific cellular response or to make the protein containing the domain susceptible to responding to additional physical or chemical signals. Different PAS proteins have the ability to sense redox potential, light, oxygen, energy levels, carboxylic acids, fatty acids and several other stimuli. Such proteins have been found to be involved in cellular processes such as development, virulence, sporulation, adaptation to hypoxia, circadian cycle, metabolism and gene regulation and expression. Our analysis of the genome of different kinetoplastid species revealed the presence of PAS domains also in different predicted kinases from these protists. Open-reading frames coding for these PAS-kinases are unusually large. In addition, the products of these genes appear to contain in their structure combinations of domains uncommon in other eukaryotes. The physiological significance of PAS domains in these parasites, specifically in Trypanosoma cruzi, is discussed.
Collapse
Affiliation(s)
- Maura Rojas-Pirela
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela
| | - Daniel J Rigden
- Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, United Kingdom
| | - Paul A Michels
- Centre for Immunity, Infection and Evolution and Centre for Translational and Chemical Biology, School of Biological Sciences, The University of Edinburgh, The King's Buildings, Edinburgh EH9 3FL, Scotland, United Kingdom
| | - Ana J Cáceres
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela
| | - Juan Luis Concepción
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela
| | - Wilfredo Quiñones
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela.
| |
Collapse
|
9
|
Lesne E, Dupré E, Locht C, Antoine R, Jacob-Dubuisson F. Conformational Changes of an Interdomain Linker Mediate Mechanical Signal Transmission in Sensor Kinase BvgS. J Bacteriol 2017; 199:e00114-17. [PMID: 28507245 PMCID: PMC5573084 DOI: 10.1128/jb.00114-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 05/08/2017] [Indexed: 11/20/2022] Open
Abstract
The whooping cough agent, Bordetella pertussis, controls the expression of its large virulence regulon in a coordinated manner through the two-component system BvgAS. BvgS is a dimeric, multidomain sensor kinase. Each monomer comprises, in succession, tandem periplasmic Venus flytrap (VFT) domains, a transmembrane segment, a cytoplasmic Per-Arnt-Sim (PAS) domain, a kinase module, and additional phosphorelay domains. BvgS shifts between kinase and phosphatase modes of activity in response to chemical modulators that modify the clamshell motions of the VFT domains. We have shown previously that this regulation involves a shift between distinct states of conformation and dynamics of the two-helix coiled-coil linker preceding the enzymatic module. In this work, we determined the mechanism of signal transduction across the membrane via a first linker, which connects the VFT and PAS domains of BvgS, using extensive cysteine cross-linking analyses and other approaches. Modulator perception by the periplasmic domains appears to trigger a small, symmetrical motion of the transmembrane segments toward the periplasm, causing rearrangements of the noncanonical cytoplasmic coiled coil that follows. As a consequence, the interface of the PAS domains is modified, which affects the second linker and eventually causes the shift of enzymatic activity. The major features of this first linker are well conserved among BvgS homologs, indicating that the mechanism of signal transduction unveiled here is likely to be generally relevant for this family of sensor kinases.IMPORTANCEBordetella pertussis produces virulence factors coordinately regulated by the two-component system BvgAS. BvgS is a sensor kinase, and BvgA is a response regulator that activates gene transcription when phosphorylated by BvgS. Sensor kinases homologous to BvgS are also found in other pathogens. Our goal is to decipher the mechanisms of BvgS signaling, since these sensor kinases may represent new targets for antibacterial agents. Signal perception by the sensor domains of BvgS triggers small motions of the helical linker region underneath. The protein domain that follows this linker undergoes a large conformational change that amplifies the initial signal, causing a shift of activity from kinase to phosphatase. Because BvgS homologs harbor similar regions, these signaling mechanisms are likely to apply generally to that family of sensor kinases.
Collapse
Affiliation(s)
- Elodie Lesne
- Université Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR 8204-CIIL, Centre d'Infection et d'Immunité de Lille, Lille, France
| | - Elian Dupré
- Université Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR 8204-CIIL, Centre d'Infection et d'Immunité de Lille, Lille, France
| | - Camille Locht
- Université Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR 8204-CIIL, Centre d'Infection et d'Immunité de Lille, Lille, France
| | - Rudy Antoine
- Université Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR 8204-CIIL, Centre d'Infection et d'Immunité de Lille, Lille, France
| | - Françoise Jacob-Dubuisson
- Université Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR 8204-CIIL, Centre d'Infection et d'Immunité de Lille, Lille, France
| |
Collapse
|
10
|
Structural and Functional Analysis of the Escherichia coli Acid-Sensing Histidine Kinase EvgS. J Bacteriol 2017; 199:JB.00310-17. [PMID: 28674068 PMCID: PMC5573083 DOI: 10.1128/jb.00310-17] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 06/19/2017] [Indexed: 01/31/2023] Open
Abstract
The EvgS/EvgA two-component system of Escherichia coli is activated in response to low pH and alkali metals and regulates many genes, including those for the glutamate-dependent acid resistance system and a number of efflux pumps. EvgS, the sensor kinase, is one of five unconventional histidine kinases (HKs) in E. coli and has a large periplasmic domain and a cytoplasmic PAS domain in addition to phospho-acceptor, HK and dimerization, internal receiver, and phosphotransfer domains. Mutations that constitutively activate the protein at pH 7 map to the PAS domain. Here, we built a homology model of the periplasmic region of EvgS, based on the structure of the equivalent region of the BvgS homologue, to guide mutagenesis of potential key residues in this region. We show that histidine 226 is required for induction and that it is structurally colocated with a proline residue (P522) at the top of the predicted transmembrane helix that is expected to play a key role in passing information to the cytoplasmic domains. We also show that the constitutive mutations in the PAS domain can be further activated by low external pH. Expression of the cytoplasmic part of the protein alone also gives constitutive activation, which is lost if the constitutive PAS mutations are present. These findings are consistent with a model in which EvgS senses both external and internal pH and is activated by a shift from a tight inactive to a weak active dimer, and we present an analysis of the purified cytoplasmic portion of EvgS that supports this. IMPORTANCE One of the ways bacteria sense their environment is through two-component systems, which have one membrane-bound protein to do the sensing and another inside the cell to turn genes on or off in response to what the membrane-bound protein has detected. The membrane-bound protein must thus be able to detect the stress and signal this detection event to the protein inside the cell. To understand this process, we studied a protein that helps E. coli to survive exposure to low pH, which it must do before taking up residence in the gastrointestinal tract. We describe a predicted structure for the main sensing part of the protein and identify some key residues within it that are involved in the sensing and signaling processes. We propose a mechanism for how the protein may become activated and present some evidence to support our proposal.
Collapse
|
11
|
Bordetella PlrSR regulatory system controls BvgAS activity and virulence in the lower respiratory tract. Proc Natl Acad Sci U S A 2017; 114:E1519-E1527. [PMID: 28167784 DOI: 10.1073/pnas.1609565114] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bacterial pathogens coordinate virulence using two-component regulatory systems (TCS). The Bordetella virulence gene (BvgAS) phosphorelay-type TCS controls expression of all known protein virulence factor-encoding genes and is considered the "master virulence regulator" in Bordetella pertussis, the causal agent of pertussis, and related organisms, including the broad host range pathogen Bordetella bronchiseptica We recently discovered an additional sensor kinase, PlrS [for persistence in the lower respiratory tract (LRT) sensor], which is required for B. bronchiseptica persistence in the LRT. Here, we show that PlrS is required for BvgAS to become and remain fully active in mouse lungs but not the nasal cavity, demonstrating that PlrS coordinates virulence specifically in the LRT. PlrS is required for LRT persistence even when BvgAS is rendered constitutively active, suggesting the presence of BvgAS-independent, PlrS-dependent virulence factors that are critical for bacterial survival in the LRT. We show that PlrS is also required for persistence of the human pathogen B. pertussis in the murine LRT and we provide evidence that PlrS most likely functions via the putative cognate response regulator PlrR. These data support a model in which PlrS senses conditions present in the LRT and activates PlrR, which controls expression of genes required for the maintenance of BvgAS activity and for essential BvgAS-independent functions. In addition to providing a major advance in our understanding of virulence regulation in Bordetella, which has served as a paradigm for several decades, these results indicate the existence of previously unknown virulence factors that may serve as new vaccine components and therapeutic or diagnostic targets.
Collapse
|
12
|
Lesne E, Krammer EM, Dupre E, Locht C, Lensink MF, Antoine R, Jacob-Dubuisson F. Balance between Coiled-Coil Stability and Dynamics Regulates Activity of BvgS Sensor Kinase in Bordetella. mBio 2016; 7:e02089. [PMID: 26933056 PMCID: PMC4810494 DOI: 10.1128/mbio.02089-15] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 01/28/2016] [Indexed: 11/24/2022] Open
Abstract
UNLABELLED The two-component system BvgAS controls the expression of the virulence regulon of Bordetella pertussis. BvgS is a prototype of bacterial sensor kinases with extracytoplasmic Venus flytrap perception domains. Following its transmembrane segment, BvgS harbors a cytoplasmic Per-Arnt-Sim (PAS) domain and then a predicted 2-helix coiled coil that precede the dimerization-histidine-phosphotransfer domain of the kinase. BvgS homologs have a similar domain organization, or they harbor only a predicted coiled coil between the transmembrane and the dimerization-histidine-phosphotransfer domains. Here, we show that the 2-helix coiled coil of BvgS regulates the enzymatic activity in a mechanical manner. Its marginally stable hydrophobic interface enables a switch between a state of great rotational dynamics in the kinase mode and a more rigid conformation in the phosphatase mode in response to signal perception by the periplasmic domains. We further show that the activity of BvgS is controlled in the same manner if its PAS domain is replaced with the natural α-helical sequences of PAS-less homologs. Clamshell motions of the Venus flytrap domains trigger the shift of the coiled coil's dynamics. Thus, we have uncovered a general mechanism of regulation for the BvgS family of Venus flytrap-containing two-component sensor kinases. IMPORTANCE The two-component system BvgAS of the whooping cough agent Bordetella pertussis regulates the virulence factors necessary for infection in a coordinated manner. BvgS is the prototype of a family of sensor kinase proteins found in major bacterial pathogens. When BvgS functions as a kinase, B. pertussis is virulent, and the bacterium shifts to an avirulent phase after BvgS senses chemicals that make it switch to phosphatase. Our goal is to decipher the signaling mechanisms of BvgS in order to understand virulence regulation in Bordetella, which may lead to new antimicrobial treatments targeting those two-component systems. We discovered that the activity of BvgS is regulated in a mechanical manner. A short region of the protein that precedes the enzymatic domain switches between two states in response to signal perception by other BvgS domains. This switch region is conserved among BvgS homologs, and thus, the regulation uncovered here will likely be relevant for the family.
Collapse
Affiliation(s)
- E Lesne
- Université de Lille, INSERM, CNRS, CHU Lille, Institut Pasteur de Lille, U1019-UMR 8204-CIIL, Centre d'Infection et d'Immunité de Lille, Lille, France
| | - E-M Krammer
- Université de Lille, CNRS, UMR 8576-UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - E Dupre
- Université de Lille, INSERM, CNRS, CHU Lille, Institut Pasteur de Lille, U1019-UMR 8204-CIIL, Centre d'Infection et d'Immunité de Lille, Lille, France
| | - C Locht
- Université de Lille, INSERM, CNRS, CHU Lille, Institut Pasteur de Lille, U1019-UMR 8204-CIIL, Centre d'Infection et d'Immunité de Lille, Lille, France
| | - M F Lensink
- Université de Lille, CNRS, UMR 8576-UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - R Antoine
- Université de Lille, INSERM, CNRS, CHU Lille, Institut Pasteur de Lille, U1019-UMR 8204-CIIL, Centre d'Infection et d'Immunité de Lille, Lille, France
| | - F Jacob-Dubuisson
- Université de Lille, INSERM, CNRS, CHU Lille, Institut Pasteur de Lille, U1019-UMR 8204-CIIL, Centre d'Infection et d'Immunité de Lille, Lille, France
| |
Collapse
|
13
|
Nicholson TL, Shore SM, Register KB, Bayles DO, Kingsley RA, Brunelle BW. Comparative genomic analysis of the swine pathogen Bordetella bronchisepticastrain KM22. Vet Microbiol 2015; 182:87-94. [PMID: 26711033 PMCID: PMC7117204 DOI: 10.1016/j.vetmic.2015.10.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 10/22/2015] [Accepted: 10/27/2015] [Indexed: 11/01/2022]
Abstract
The well-characterized Bordetella bronchiseptica strain KM22, originally isolated from a pig with atrophic rhinitis, has been used to develop a reproducible swine respiratory disease model. The goal of this study was to identify genetic features unique to KM22 by comparing the genome sequence of KM22 to the laboratory reference strain RB50. To gain a broader perspective of the genetic relationship of KM22 among other B. bronchiseptica strains, selected genes of KM22 were then compared to five other B. bronchiseptica strains isolated from different hosts. Overall, the KM22 genome sequence is more similar to the genome sequences of the strains isolated from animals than the strains isolated from humans. The majority of virulence gene expression in Bordetella is positively regulated by the two-component sensory transduction system BvgAS. bopN, bvgA, fimB, and fimC were the most highly conserved BvgAS-regulated genes present in all seven strains analyzed. In contrast, the BvgAS-regulated genes present in all seven strains with the highest sequence divergence werefimN, fim2, fhaL, andfhaS. A total of eight major fimbrial subunit genes were identified in KM22. Quantitative real-time PCR data demonstrated that seven of the eight fimbrial subunit genes identified in KM22 are expressed and regulated by BvgAS. The annotation of the KM22 genome sequence, coupled with the comparative genomic analyses reported in this study, can be used to facilitate the development of vaccines with improved efficacy towards B. bronchiseptica in swine to decrease the prevalence and disease burden caused by this pathogen.
Collapse
Affiliation(s)
| | - Sarah M Shore
- National Animal Disease Center, ARS, USDA, Ames, IA, United States
| | - Karen B Register
- National Animal Disease Center, ARS, USDA, Ames, IA, United States
| | - Darrell O Bayles
- National Animal Disease Center, ARS, USDA, Ames, IA, United States
| | - Robert A Kingsley
- The Wellcome Trust Sanger Institute, the Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Brain W Brunelle
- National Animal Disease Center, ARS, USDA, Ames, IA, United States
| |
Collapse
|
14
|
Dupré E, Lesne E, Guérin J, Lensink MF, Verger A, de Ruyck J, Brysbaert G, Vezin H, Locht C, Antoine R, Jacob-Dubuisson F. Signal Transduction by BvgS Sensor Kinase: BINDING OF MODULATOR NICOTINATE AFFECTS THE CONFORMATION AND DYNAMICS OF THE ENTIRE PERIPLASMIC MOIETY. J Biol Chem 2015. [PMID: 26203186 DOI: 10.1074/jbc.m115.655720] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The two-component sensory transduction system BvgAS controls the virulence regulon of the whooping-cough agent Bordetella pertussis. The periplasmic moiety of the homodimeric sensor kinase BvgS is composed of four bilobed Venus flytrap (VFT) perception domains followed by α helices that extend into the cytoplasmic membrane. In the virulent phase, the default state of B. pertussis, the cytoplasmic enzymatic moiety of BvgS acts as kinase by autophosphorylating and transferring the phosphoryl group to the response regulator BvgA. Under laboratory conditions, BvgS shifts to phosphatase activity in response to modulators, notably nicotinate ions. Here we characterized the effects of nicotinate and related modulators on the BvgS periplasmic moiety by using site-directed mutagenesis and in silico and biophysical approaches. Modulators bind with low affinity to BvgS in the VFT2 cavity. Electron paramagnetic resonance shows that their binding globally affects the conformation and dynamics of the periplasmic moiety. Specific amino acid substitutions designed to slacken interactions within and between the VFT lobes prevent BvgS from responding to nicotinate, showing that BvgS shifts from kinase to phosphatase activity in response to this modulator via a tense transition state that involves a large periplasmic structural block. We propose that this transition enables the transmembrane helices to adopt a distinct conformation that sets the cytoplasmic enzymatic moiety in the phosphatase mode. The bona fide, in vivo VFT ligands that remain to be identified are likely to trigger similar effects on the transmembrane and cytoplasmic moieties. This mechanism may be relevant to the other VFT-containing sensor kinases homologous to BvgS.
Collapse
Affiliation(s)
- Elian Dupré
- From the Institut Pasteur de Lille, Center for Infection and Immunity of Lille, 59019 Lille Cedex, France, the Université Lille Nord de France, 59000 Lille, France, the CNRS, Unité mixte de recherche (UMR) 8204, 59046 Lille, France, the INSERM, U1019, 59045 Lille, France
| | - Elodie Lesne
- From the Institut Pasteur de Lille, Center for Infection and Immunity of Lille, 59019 Lille Cedex, France, the Université Lille Nord de France, 59000 Lille, France, the CNRS, Unité mixte de recherche (UMR) 8204, 59046 Lille, France, the INSERM, U1019, 59045 Lille, France
| | - Jérémy Guérin
- From the Institut Pasteur de Lille, Center for Infection and Immunity of Lille, 59019 Lille Cedex, France, the Université Lille Nord de France, 59000 Lille, France, the CNRS, Unité mixte de recherche (UMR) 8204, 59046 Lille, France, the INSERM, U1019, 59045 Lille, France
| | - Marc F Lensink
- the Université Lille Nord de France, 59000 Lille, France, the Unité de Glycobiologie Structurale et Fonctionnelle, CNRS, UMR 8576, 59658 Villeneuve d'Ascq, France, and
| | - Alexis Verger
- the Université Lille Nord de France, 59000 Lille, France, the Unité de Glycobiologie Structurale et Fonctionnelle, CNRS, UMR 8576, 59658 Villeneuve d'Ascq, France, and
| | - Jérôme de Ruyck
- the Université Lille Nord de France, 59000 Lille, France, the Unité de Glycobiologie Structurale et Fonctionnelle, CNRS, UMR 8576, 59658 Villeneuve d'Ascq, France, and
| | - Guillaume Brysbaert
- the Université Lille Nord de France, 59000 Lille, France, the Unité de Glycobiologie Structurale et Fonctionnelle, CNRS, UMR 8576, 59658 Villeneuve d'Ascq, France, and
| | - Hervé Vezin
- the Université Lille Nord de France, 59000 Lille, France, the Laboratoire de spectrochimie infrarouge et Raman (LASIR), CNRS, UMR 8516, 59658 Villeneuve d'Ascq, France
| | - Camille Locht
- From the Institut Pasteur de Lille, Center for Infection and Immunity of Lille, 59019 Lille Cedex, France, the Université Lille Nord de France, 59000 Lille, France, the CNRS, Unité mixte de recherche (UMR) 8204, 59046 Lille, France, the INSERM, U1019, 59045 Lille, France
| | - Rudy Antoine
- From the Institut Pasteur de Lille, Center for Infection and Immunity of Lille, 59019 Lille Cedex, France, the Université Lille Nord de France, 59000 Lille, France, the CNRS, Unité mixte de recherche (UMR) 8204, 59046 Lille, France, the INSERM, U1019, 59045 Lille, France,
| | - Françoise Jacob-Dubuisson
- From the Institut Pasteur de Lille, Center for Infection and Immunity of Lille, 59019 Lille Cedex, France, the Université Lille Nord de France, 59000 Lille, France, the CNRS, Unité mixte de recherche (UMR) 8204, 59046 Lille, France, the INSERM, U1019, 59045 Lille, France,
| |
Collapse
|
15
|
Dupré E, Herrou J, Lensink MF, Wintjens R, Vagin A, Lebedev A, Crosson S, Villeret V, Locht C, Antoine R, Jacob-Dubuisson F. Virulence regulation with Venus flytrap domains: structure and function of the periplasmic moiety of the sensor-kinase BvgS. PLoS Pathog 2015; 11:e1004700. [PMID: 25738876 PMCID: PMC4352136 DOI: 10.1371/journal.ppat.1004700] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 01/14/2015] [Indexed: 11/23/2022] Open
Abstract
Two-component systems (TCS) represent major signal-transduction pathways for adaptation to environmental conditions, and regulate many aspects of bacterial physiology. In the whooping cough agent Bordetella pertussis, the TCS BvgAS controls the virulence regulon, and is therefore critical for pathogenicity. BvgS is a prototypical TCS sensor-kinase with tandem periplasmic Venus flytrap (VFT) domains. VFT are bi-lobed domains that typically close around specific ligands using clamshell motions. We report the X-ray structure of the periplasmic moiety of BvgS, an intricate homodimer with a novel architecture. By combining site-directed mutagenesis, functional analyses and molecular modeling, we show that the conformation of the periplasmic moiety determines the state of BvgS activity. The intertwined structure of the periplasmic portion and the different conformation and dynamics of its mobile, membrane-distal VFT1 domains, and closed, membrane-proximal VFT2 domains, exert a conformational strain onto the transmembrane helices, which sets the cytoplasmic moiety in a kinase-on state by default corresponding to the virulent phase of the bacterium. Signaling the presence of negative signals perceived by the periplasmic domains implies a shift of BvgS to a distinct state of conformation and activity, corresponding to the avirulent phase. The response to negative modulation depends on the integrity of the periplasmic dimer, indicating that the shift to the kinase-off state implies a concerted conformational transition. This work lays the bases to understand virulence regulation in Bordetella. As homologous sensor-kinases control virulence features of diverse bacterial pathogens, the BvgS structure and mechanism may pave the way for new modes of targeted therapeutic interventions.
Collapse
Affiliation(s)
- Elian Dupré
- Center for Infection and Immunity (CIIL), Institut Pasteur de Lille, Lille, France
- Center for Infection and Immunity (CIIL), University Lille North of France, Lille, France
- UMR 8204, Centre National de la Recherche Scientifique (CNRS), Lille, France
- U1019, Institut National de la Santé et de la Recherche Médicale (INSERM), Lille, France
| | - Julien Herrou
- Center for Infection and Immunity (CIIL), Institut Pasteur de Lille, Lille, France
- Center for Infection and Immunity (CIIL), University Lille North of France, Lille, France
- UMR 8204, Centre National de la Recherche Scientifique (CNRS), Lille, France
- U1019, Institut National de la Santé et de la Recherche Médicale (INSERM), Lille, France
| | - Marc F. Lensink
- Unité de Glycobiologie Structurale et Fonctionnelle, CNRS UMR8576, University Lille North of France, Villeneuve d’Ascq, France
| | - René Wintjens
- Laboratory of Biopolymers and Supramolecular Nanomaterials, Université Libre de Bruxelles, Brussels, Belgium
| | - Alexey Vagin
- Structural Biology Laboratory, University of York, York, England, United Kingdom
| | - Andrey Lebedev
- Research Complex at Harwell, Science and Technology Facilities Council Rutherford Appleton Laboratory, Didcot, England, United Kingdom
| | - Sean Crosson
- Department of Biochemistry & Molecular Biology, University of Chicago, Chicago, Illinois, United States of America
| | - Vincent Villeret
- Unité de Glycobiologie Structurale et Fonctionnelle, CNRS UMR8576, University Lille North of France, Villeneuve d’Ascq, France
| | - Camille Locht
- Center for Infection and Immunity (CIIL), Institut Pasteur de Lille, Lille, France
- Center for Infection and Immunity (CIIL), University Lille North of France, Lille, France
- UMR 8204, Centre National de la Recherche Scientifique (CNRS), Lille, France
- U1019, Institut National de la Santé et de la Recherche Médicale (INSERM), Lille, France
| | - Rudy Antoine
- Center for Infection and Immunity (CIIL), Institut Pasteur de Lille, Lille, France
- Center for Infection and Immunity (CIIL), University Lille North of France, Lille, France
- UMR 8204, Centre National de la Recherche Scientifique (CNRS), Lille, France
- U1019, Institut National de la Santé et de la Recherche Médicale (INSERM), Lille, France
| | - Françoise Jacob-Dubuisson
- Center for Infection and Immunity (CIIL), Institut Pasteur de Lille, Lille, France
- Center for Infection and Immunity (CIIL), University Lille North of France, Lille, France
- UMR 8204, Centre National de la Recherche Scientifique (CNRS), Lille, France
- U1019, Institut National de la Santé et de la Recherche Médicale (INSERM), Lille, France
| |
Collapse
|
16
|
Hoo R, Lam JH, Huot L, Pant A, Li R, Hot D, Alonso S. Evidence for a role of the polysaccharide capsule transport proteins in pertussis pathogenesis. PLoS One 2014; 9:e115243. [PMID: 25501560 PMCID: PMC4264864 DOI: 10.1371/journal.pone.0115243] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Accepted: 11/20/2014] [Indexed: 11/19/2022] Open
Abstract
Polysaccharide (PS) capsules are important virulence determinants for many bacterial pathogens. Bordetella pertussis, the agent of whooping cough, produces a surface associated microcapsule but its role in pertussis pathogenesis remained unknown. Here we showed that the B. pertussis capsule locus is expressed in vivo in murine lungs and that absence of the membrane-associated protein KpsT, involved in the transport of the PS polymers across the envelope, but not the surface-exposed PS capsule itself, affects drastically B. pertussis colonization efficacy in mice. Microarray analysis revealed that absence of KpsT in B. pertussis resulted in global down-regulation of gene expression including key virulence genes regulated by BvgA/S, the master two-component system. Using a BvgS phase-locked mutant, we demonstrated a functional link between KpsT and BvgA/S-mediated signal transduction. Whereas pull-down assays do not support physical interaction between BvgS sensor and any of the capsule locus encoded proteins, absence of KpsT impaired BvgS oligomerization, necessary for BvgS function. Furthermore, complementation studies indicated that instead of KpsT alone, the entire PS capsule transport machinery spanning the cell envelope likely plays a role in BvgS-mediated signal transduction. Our work thus provides the first experimental evidence of a role for a virulence-repressed gene in pertussis pathogenesis.
Collapse
Affiliation(s)
- Regina Hoo
- Department of Microbiology, Immunology Programme, Yong Loo Lin School of Medicine, National University of Singapore, Centre for Life Science #03-05, 28 Medical Drive, Singapore 117597, Singapore
| | - Jian Hang Lam
- Department of Microbiology, Immunology Programme, Yong Loo Lin School of Medicine, National University of Singapore, Centre for Life Science #03-05, 28 Medical Drive, Singapore 117597, Singapore
| | - Ludovic Huot
- Transcriptomics and Applied Genomics, Institut Pasteur de Lille, Centre for Infection and Immunity of Lille (CIIL), U1019, UMR8204, 1 rue du Professeur Calmette, F-59019 Lille, France,
| | - Aakanksha Pant
- Department of Microbiology, Immunology Programme, Yong Loo Lin School of Medicine, National University of Singapore, Centre for Life Science #03-05, 28 Medical Drive, Singapore 117597, Singapore
| | - Rui Li
- Department of Microbiology, Immunology Programme, Yong Loo Lin School of Medicine, National University of Singapore, Centre for Life Science #03-05, 28 Medical Drive, Singapore 117597, Singapore
| | - David Hot
- Transcriptomics and Applied Genomics, Institut Pasteur de Lille, Centre for Infection and Immunity of Lille (CIIL), U1019, UMR8204, 1 rue du Professeur Calmette, F-59019 Lille, France,
| | - Sylvie Alonso
- Department of Microbiology, Immunology Programme, Yong Loo Lin School of Medicine, National University of Singapore, Centre for Life Science #03-05, 28 Medical Drive, Singapore 117597, Singapore
- * E-mail:
| |
Collapse
|
17
|
Abstract
Nucleic acids are diverse polymeric macromolecules that are essential for all life forms. These biomolecules possess a functional three-dimensional structure under aqueous physiological conditions. Mass spectrometry-based approaches have on the other hand opened the possibility to gain structural information on nucleic acids from gas-phase measurements. To correlate gas-phase structural probing results with solution structures, it is therefore important to grasp the extent to which nucleic acid structures are preserved, or altered, when transferred from the solution to a fully anhydrous environment. We will review here experimental and theoretical approaches available to characterize the structure of nucleic acids in the gas phase (with a focus on oligonucleotides and higher-order structures), and will summarize the structural features of nucleic acids that can be preserved in the gas phase on the experiment time scale.
Collapse
|
18
|
Johnson MD, Bell J, Clarke K, Chandler R, Pathak P, Xia Y, Marshall RL, Weinstock GM, Loman NJ, Winn PJ, Lund PA. Characterization of mutations in the PAS domain of the EvgS sensor kinase selected by laboratory evolution for acid resistance in Escherichia coli. Mol Microbiol 2014; 93:911-27. [PMID: 24995530 PMCID: PMC4283999 DOI: 10.1111/mmi.12704] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2014] [Indexed: 01/25/2023]
Abstract
Laboratory-based evolution and whole-genome sequencing can link genotype and phenotype. We used evolution of acid resistance in exponential phase Escherichia coli to study resistance to a lethal stress. Iterative selection at pH 2.5 generated five populations that were resistant to low pH in early exponential phase. Genome sequencing revealed multiple mutations, but the only gene mutated in all strains was evgS, part of a two-component system that has already been implicated in acid resistance. All these mutations were in the cytoplasmic PAS domain of EvgS, and were shown to be solely responsible for the resistant phenotype, causing strong upregulation at neutral pH of genes normally induced by low pH. Resistance to pH 2.5 in these strains did not require the transporter GadC, or the sigma factor RpoS. We found that EvgS-dependent constitutive acid resistance to pH 2.5 was retained in the absence of the regulators GadE or YdeO, but was lost if the oxidoreductase YdeP was also absent. A deletion in the periplasmic domain of EvgS abolished the response to low pH, but not the activity of the constitutive mutants. On the basis of these results we propose a model for how EvgS may become activated by low pH.
Collapse
Affiliation(s)
- Matthew D Johnson
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK; Drug Delivery, Disposition & Dynamics, Monash Institute of Pharmaceutical Sciences, 381 Royal Parade, Parkville, 3062, Vic., Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Hegerle N, Guiso N. Bordetella pertussisand pertactin-deficient clinical isolates: lessons for pertussis vaccines. Expert Rev Vaccines 2014; 13:1135-46. [DOI: 10.1586/14760584.2014.932254] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|