1
|
Grimwood RM, Reyes EMR, Cooper J, Welch J, Taylor G, Makan T, Lim L, Dubrulle J, McInnes K, Holmes EC, Geoghegan JL. From islands to infectomes: host-specific viral diversity among birds across remote islands. BMC Ecol Evol 2024; 24:84. [PMID: 38926829 PMCID: PMC11209962 DOI: 10.1186/s12862-024-02277-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/23/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Accelerating biodiversity loss necessitates monitoring the potential pathogens of vulnerable species. With a third of New Zealand's avifauna considered at risk of extinction, a greater understanding of the factors that influence microbial transmission in this island ecosystem is needed. We used metatranscriptomics to determine the viruses, as well as other microbial organisms (i.e. the infectomes), of seven bird species, including the once critically endangered black robin (Petroica traversi), on two islands in the remote Chatham Islands archipelago, New Zealand. RESULTS We identified 19 likely novel avian viruses across nine viral families. Black robins harboured viruses from the Flaviviridae, Herpesviridae, and Picornaviridae, while introduced starlings (Sturnus vulgaris) and migratory seabirds (Procellariiformes) carried viruses from six additional viral families. Potential cross-species virus transmission of a novel passerivirus (family: Picornaviridae) between native (black robins and grey-backed storm petrels) and introduced (starlings) birds was also observed. Additionally, we identified bacterial genera, apicomplexan parasites, as well as a novel megrivirus linked to disease outbreaks in other native New Zealand birds. Notably, island effects were outweighed by host taxonomy as a significant driver of viral composition, even among sedentary birds. CONCLUSIONS These findings underscore the value of surveillance of avian populations to identify and minimise escalating threats of disease emergence and spread in these island ecosystems. Importantly, they contribute to our understanding of the potential role of introduced and migratory birds in the transmission of microbes and associated diseases, which could impact vulnerable island-endemic species.
Collapse
Affiliation(s)
- Rebecca M Grimwood
- Department of Microbiology and Immunology, University of Otago, Dunedin, 9016, New Zealand
| | - Enzo M R Reyes
- Department of Conservation/Te Papa Atawhai, Nelson, New Zealand
| | - Jamie Cooper
- Department of Conservation/Te Papa Atawhai, Nelson, New Zealand
| | - Jemma Welch
- Department of Conservation/Te Papa Atawhai, Nelson, New Zealand
| | - Graeme Taylor
- Department of Conservation/Te Papa Atawhai, Nelson, New Zealand
| | - Troy Makan
- Department of Conservation/Te Papa Atawhai, Nelson, New Zealand
| | - Lauren Lim
- School of Medical Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Jérémy Dubrulle
- Department of Microbiology and Immunology, University of Otago, Dunedin, 9016, New Zealand
| | - Kate McInnes
- Department of Conservation/Te Papa Atawhai, Nelson, New Zealand
| | - Edward C Holmes
- School of Medical Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Jemma L Geoghegan
- Department of Microbiology and Immunology, University of Otago, Dunedin, 9016, New Zealand.
- Institute of Environmental Science and Research, Wellington, 5018, New Zealand.
| |
Collapse
|
2
|
Olivo D, Kraberger S, Varsani A. New duck papillomavirus type identified in a mallard in Missouri, USA. Arch Virol 2024; 169:77. [PMID: 38517556 DOI: 10.1007/s00705-024-06006-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/27/2024] [Indexed: 03/24/2024]
Abstract
Papillomaviruses are small circular DNA viruses that infect epithelial and mucosal cells and have co-evolved with their hosts. Some papillomaviruses in mammals are well studied (especially those associated with disease). However, there is limited information on papillomaviruses associated with avian hosts. From a cloacal swab sample of a mallard (Anas platyrhynchos) sampled in Missouri, USA (6 Jan 2023), we identified a papillomavirus (7839 nt) that shares ~68% genome-wide nucleotide sequence identity with Anas platyrhynchos papillomavirus 1 (AplaPV1) from a mallard sampled in Newfoundland (Canada) and ~40% with AplaPV2 from a mallard sampled in Minnesota (USA) with mesenchymal dermal tumors. The papillomavirus we identified shares 73.6% nucleotide sequence identity in the L1 gene with that of AplaPV1 and thus represents a new AplaPV type (AplaPV3). The genome sequence of AplaPV3 shares >97% identity with three partial PV genome sequences (1316, 1997, and 4241 nt) identified in a mallard in India, indicating that that virus was also AplaPV3.
Collapse
Affiliation(s)
- Diego Olivo
- Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Simona Kraberger
- Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Arvind Varsani
- Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA.
- Structural Biology Research Unit, Department of Integrative, Biomedical Sciences, University of Cape Town, Observatory, Cape Town, 7925, South Africa.
| |
Collapse
|
3
|
Abou-Zahr T. Avian Dermatology. Vet Clin North Am Exot Anim Pract 2023; 26:327-346. [PMID: 36965874 DOI: 10.1016/j.cvex.2022.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2023]
Abstract
Dermatologic conditions are common in avian practice and can be caused by a huge array of potential disorders, ranging from infectious diseases, ectoparasites, metabolic disorders, nutritional deficiencies, and management deficits. The skin is the largest organ in the body and has the potential to lead to significant discomfort and welfare compromise when pathology is present. Some conditions may be relatively pathognomonic based on gross findings, whereas others may require a full diagnostic workup to investigate. Getting to the bottom of skin lesions and disorders often involves identification and correction of the underlying cause, rather than just treating the lesions present in the integument.
Collapse
Affiliation(s)
- Tariq Abou-Zahr
- Valley Exotics, Vet Partner's Practices Ltd T/A Valley Vets, Unit 2C Gwaelod-Y-Garth Industrial Estate, Gwaelod-Y-Garth, Cardiff, CF15 9AA, UK.
| |
Collapse
|
4
|
Rosenbaum CS, Wünschmann A, Armién AG, Schott R, Singh VK, Mor SK. Novel papillomavirus in a mallard duck with mesenchymal chondroid dermal tumors. J Vet Diagn Invest 2022; 34:231-236. [PMID: 35090373 PMCID: PMC8921809 DOI: 10.1177/10406387221075607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Papillomaviruses, which are epitheliotropic and may induce epithelial tumors, have been identified in several avian species, including ducks. An adult female mallard duck (Anas platyrhynchos) was admitted to a wildlife rehabilitation center with 2 beige, well-demarcated, firm masses: one in the subcutis under a wing, and the other on a digit of the right foot. After euthanasia, the masses were fixed in formalin for histologic examination. Both tumors had a lobular organization with cartilage cores surrounded by densely cellular interlacing bundles of spindle cells. Neoplastic chondroblasts in both masses, particularly the digital mass, contained basophilic intranuclear inclusion bodies, which consisted of assembly complexes of icosahedral virions of 44-nm diameter. Next-generation sequencing allowed whole genome assembly of a novel papillomavirus (Anas platyrhynchos papillomavirus 2) related most closely to Fulmarus glacialis papillomavirus 1 (59.49% nucleotide identity). Our case supports the observation that certain papillomaviruses can productively infect mesenchymal cells and induce neoplasia.
Collapse
Affiliation(s)
- Claire S. Rosenbaum
- Minnesota Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA
| | - Arno Wünschmann
- Arno Wünschmann, Department of Veterinary Population Medicine/Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Minnesota, 1333 Gortner Ave, St. Paul, MN 55108, USA.
| | - Aníbal G. Armién
- California Animal Health & Food Safety Laboratory System (CAHFS), University of California–Davis, Davis, CA, USA
| | - Renee Schott
- Wildlife Rehabilitation Center of Minnesota, Roseville, MN, USA
| | - Vikash K. Singh
- Minnesota Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA
| | - Sunil K. Mor
- Minnesota Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA
| |
Collapse
|
5
|
Gonzalez-Astudillo V, Mete A, Navarro MA, Uzal FA, Asin J. Alimentary squamous cell carcinoma in psittacines: 12 cases and review of the literature. J Vet Diagn Invest 2021; 33:906-912. [PMID: 34078200 DOI: 10.1177/10406387211021480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Squamous cell carcinoma (SCC), which is a neoplasm that usually arises from the integument, is reported uncommonly in pet birds. Only a few reports of SCCs in the alimentary tract of birds, including psittacines, have been published, and a detailed description of the pathology is not available in the literature. We present here 12 cases of alimentary SCC in psittacines. The average age of the birds was 22.2 y (range: 15-29 y), and affected species included 4 Amazon parrots (Amazona sp.), 3 cockatiels (Nymphicus hollandicus), 3 macaws (Ara sp.), 1 conure (Eupsittula sp.), and 1 Senegal parrot (Poicephalus sp.). Frequent clinical complaints included regurgitation, dysphagia, dyspnea, lethargy, and/or weight loss. SCC primarily affected the oral cavity in 6 of 12 cases, the crop alone in 2 of 12 cases, the crop and esophagus in 1 of 12 cases, the proventriculus alone in 1 of 12 cases, and the crop, esophagus, and proventriculus in 2 of 12 cases. Histologically, alimentary SCCs were locally invasive and often resulted in mucosal ulceration. Although there were no metastases in any of our cases, poor clinical outcomes were frequent and associated most commonly with complete effacement of the alimentary segment and severe inflammation with opportunistic bacterial infection. Our review of the literature records commonly affected species, variability of gross presentations and clinical signs, plausible etiologies, and current diagnostic developments.
Collapse
Affiliation(s)
- Viviana Gonzalez-Astudillo
- California Animal Health and Food Safety Laboratory, San Bernardino, University of California-Davis, Davis, CA, USA
| | - Aslı Mete
- Davis branches, University of California-Davis, Davis, CA, USA
| | - Mauricio A Navarro
- California Animal Health and Food Safety Laboratory, San Bernardino, University of California-Davis, Davis, CA, USA
| | - Francisco A Uzal
- California Animal Health and Food Safety Laboratory, San Bernardino, University of California-Davis, Davis, CA, USA
| | - Javier Asin
- California Animal Health and Food Safety Laboratory, San Bernardino, University of California-Davis, Davis, CA, USA
| |
Collapse
|
6
|
First Report of Phodopus sungorus Papillomavirus Type 1 Infection in Roborovski Hamsters ( Phodopus roborovskii). Viruses 2021; 13:v13050739. [PMID: 33922632 PMCID: PMC8145573 DOI: 10.3390/v13050739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 11/17/2022] Open
Abstract
Papillomaviruses (PVs) are considered highly species-specific with cospeciation as the main driving force in their evolution. However, a recent increase in the available PV genome sequences has revealed inconsistencies in virus–host phylogenies, which could be explained by adaptive radiation, recombination, host-switching events and a broad PV host range. Unfortunately, with a relatively low number of animal PVs characterized, understanding these incongruities remains elusive. To improve knowledge of biology and the spread of animal PV, we collected 60 swabs of the anogenital and head and neck regions from a healthy colony of 30 Roborovski hamsters (Phodopus roborovskii) and detected PVs in 44/60 (73.3%) hamster samples. This is the first report of PV infection in Roborovski hamsters. Moreover, Phodopus sungorus papillomavirus type 1 (PsuPV1), previously characterized in Siberian hamsters (Phodopus sungorus), was the only PV detected in Roborovski hamsters. In addition, after a detailed literature search, review and summary of published evidence and construction of a tanglegram linking the cladograms of PVs and their hosts, our findings were discussed in the context of available knowledge on PVs described in at least two different host species.
Collapse
|
7
|
Munday JS, Hardcastle MR, Hunter S, Harvey CJ. Papillomas and probable in situ carcinoma in association with a novel papillomavirus in a red-billed gull (Chroicocephalus novaehollandiae scopulinus). Arch Virol 2021; 166:1157-1161. [PMID: 33550506 DOI: 10.1007/s00705-021-04967-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/04/2020] [Indexed: 01/08/2023]
Abstract
Numerous raised plaques were observed on the feet of a red-billed gull (Chroicocephalus novaehollandiae scopulinus) that had been found dead. The plaques consisted of thickened epidermis with cell changes indicative of papillomavirus (PV) infection prominent within affected areas. Evidence suggesting progression to neoplasia was visible in one lesion. A DNA sequence that was most similar, but only 68.3% identical, to duck PV type 3 was amplified from the papillomas, suggesting a novel PV type. Lesions containing PV DNA have only previously been reported in three avian species. This is the first evidence that PVs could cause neoplasia in birds.
Collapse
Affiliation(s)
- John S Munday
- School of Veterinary Science, Massey University, Palmerston North, New Zealand.
| | | | - Stuart Hunter
- School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | | |
Collapse
|
8
|
Leopardus wiedii Papillomavirus type 1, a novel papillomavirus species in the tree ocelot, suggests Felidae Lambdapapillomavirus polyphyletic origin and host-independent evolution. INFECTION GENETICS AND EVOLUTION 2020; 81:104239. [PMID: 32058075 DOI: 10.1016/j.meegid.2020.104239] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 01/13/2020] [Accepted: 02/08/2020] [Indexed: 12/17/2022]
Abstract
The limited knowledge on Papillomavirus diversity (particularly in wild animal species) influences the accuracy of PVs phylogeny and their evolutionary history, and hinders the comprehension of PVs pathogenicity, especially the mechanism of virus - related cancer progression. This study reports the identification of Leopardus wiedii Papillomavirus type 1 (LwiePV1), the first PV type within Lambdapapillomavirus in a Leopardus host. LwiePV1 full genome sequencing allowed the investigation of its taxonomic position and phylogeny. Based on results, LwiePV1 should be assigned to a novel PV species providing evidence for a polyphyletic origin of feline lambda PVs, and representing an exception to codivergence between feline lambda PVs and their hosts. Results improve our knowledge on PV diversity and pave the way to future studies investigating biological and evolutionary features of animal PVs.
Collapse
|
9
|
Jones AL, Suárez-Bonnet A, Mitchell JA, Ramirez GA, Stidworthy MF, Priestnall SL. Avian Papilloma and Squamous Cell Carcinoma: a Histopathological, Immunohistochemical and Virological study. J Comp Pathol 2020; 175:13-23. [PMID: 32138838 DOI: 10.1016/j.jcpa.2019.11.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/28/2019] [Accepted: 11/25/2019] [Indexed: 01/25/2023]
Abstract
In this retrospective study, we describe the histopathological findings in seven papillomas and 45 squamous cell carcinomas (SCCs) from psittacine birds, raptors and domestic fowl. The age of affected birds ranged from 3 to 40 years, with median age significantly higher in psittacines (P = 0.014). The majority of tumours were located in the skin (24/52, 46.2%) or uropygial gland (10/52, 19.2%). Thirty of the SCCs (66.7%) were well differentiated and 15 (33.3%) were poorly-differentiated. SCCs exhibited a significantly higher degree of nuclear pleomorphism (P = 0.005) and a greater proportion were ulcerated (P = 0.001) compared with papillomas; however, there was no significant difference in mitotic count (MC) or inflammation score. The expression of cyclo-oxygenase (COX)-2 and E-cadherin was investigated by immunohistochemistry. The COX-2 total score (TS) was significantly higher in SCCs compared with papillomas (P = 0.002), but the difference between COX-2 TS of well- and poorly-differentiated SCCs was not significant. COX-2 labelling was predominantly cytoplasmic, but some tumours had concurrent membranous and/or perinuclear labelling. SCCs with membranous labelling had a significantly higher MC (P = 0.028). A significantly higher proportion of SCCs were negative for E-cadherin compared with papillomas (P = 0.042), but there was no significant difference between well- and poorly-differentiated SCCs. Fourteen papillomas and SCCs from psittacines were also tested by polymerase chain reaction for the presence of Psittacus erithacus papillomavirus 1 and Psittacid herpesvirus 1, but all samples tested negative. We demonstrate for the first time the expression of COX-2 and E-cadherin in avian tissues, and suggest that these markers may be useful in differentiating papillomas from SCCs, particularly when sample size is small.
Collapse
Affiliation(s)
- A L Jones
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, Hawkshead Lane, Hatfield, Hertfordshire, UK.
| | - A Suárez-Bonnet
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, Hawkshead Lane, Hatfield, Hertfordshire, UK
| | - J A Mitchell
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, Hawkshead Lane, Hatfield, Hertfordshire, UK
| | - G A Ramirez
- Departament de Ciència Animal, Campus of the Agrifood, Forestry and Veterinary Sciences, Universitat de Lleida, Av. de l'Alcalde Rovira Roure 191, Lleida, Spain
| | - M F Stidworthy
- IZVG Pathology, Station House, Parkwood Street, Keighley, UK
| | - S L Priestnall
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, Hawkshead Lane, Hatfield, Hertfordshire, UK
| |
Collapse
|
10
|
Agius JE, Phalen DN, Rose K, Eden JS. New insights into Sauropsid Papillomaviridae evolution and epizootiology: discovery of two novel papillomaviruses in native and invasive Island geckos. Virus Evol 2019; 5:vez051. [PMID: 31798966 PMCID: PMC6874027 DOI: 10.1093/ve/vez051] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Papillomaviruses cause persistent infections in skin and mucosal membranes and, in at least one species, are also be able to infect a tissue of mesenchymal origin. Infections may either be subclinical or induce proliferative lesions. Of the known papillomaviruses, the majority that have been characterized are from humans and other mammals. Currently, only fifteen complete bird and reptile papillomavirus genomes have been described, and they have been found in birds (n = 11), turtles (n = 2), and snakes (n = 2). Using next-generation sequencing technologies and virus-specific PCR, we have identified two novel papillomavirus genomes, Hemidactylus frenatus Papillomavirus 1 and 2 (HfrePV1, HfrePV2), in the widely distributed and highly invasive Asian house gecko (H.frenatus) and mute gecko (Gehyra mutilata) on Christmas Island and Cocos (Keeling) Islands. HfrePV1 was also detected in critically endangered Lister’s geckos (Lepidodactylus listeri) in their captive breeding colony on Christmas Island. Tissue-containing virus included epidermis, oral mucosa, and liver (HfrePV1) and epidermis, liver, and colon (HfrePV2). Concurrent infections were found in both H.frenatus and G.mutilata. Invasive mourning geckos (Lepidodactylus lugubris) (n = 4), Sri Lankan house geckos (Hemidactylus parvimaculatus) (n = 3), flat-tailed house geckos (Hemidactylus platyurus) (n = 4) from the Cocos Islands, and blue-tailed skinks (Cryptoblepharus egeriae) (n = 10) from Christmas Island were also screened but were not found to be infected. The novel HfrePV1 and HfrePV2 genomes were 7,378 bp and 7,380 bp in length, respectively, and each contained the early (E1, E2, and E7), and late (L1 and L2) open-reading frames. Phylogenetic analysis of the concatenated E1, E2, and L1 proteins from both papillomaviruses revealed that they clustered with, but were basal to, the Sauropsida clade containing bird and reptile viruses. This study sheds light on the evolution of papillomaviruses and the distribution of pathogens in a highly invasive species impacting endangered populations of geckos.
Collapse
Affiliation(s)
- Jessica E Agius
- Faculty of Science, Sydney School of Veterinary Science, University of Sydney, Werombi Road, Camden, New South Wales 2570, Australia
| | - David N Phalen
- Faculty of Science, Sydney School of Veterinary Science, University of Sydney, Werombi Road, Camden, New South Wales 2570, Australia
| | - Karrie Rose
- Australian Registry of Wildlife Health, Taronga Conservation Society Australia, Bradleys Head Road, Mosman, New South Wales 2088, Australia.,College of Public Health, Medical and Veterinary Sciences, James Cook University, James Cook Drive, Townsville, Queensland 4814, Australia
| | - John-Sebastian Eden
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Faculty of Medicine and Health, Sydney School of Medicine, University of Sydney, Missenden Road, Camperdown, New South Wales 2006, Australia.,The Westmead Institute for Medical Research, Centre for Virus Research, Hawkesbury Rd, Westmead, New South Wales 2145, Australia
| |
Collapse
|
11
|
Yan H, Foo SS, Chen W, Yoo JS, Shin WJ, Wu C, Jung JU. Efficient Inhibition of Human Papillomavirus Infection by L2 Minor Capsid-Derived Lipopeptide. mBio 2019; 10:e01834-19. [PMID: 31387913 PMCID: PMC6686047 DOI: 10.1128/mbio.01834-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 07/16/2019] [Indexed: 01/05/2023] Open
Abstract
The amino (N)-terminal region of human papillomavirus (HPV) minor capsid protein (L2) is a highly conserved region which is essential for establishing viral infection. Despite its importance in viral infectivity, the role of the HPV N-terminal domain has yet to be fully characterized. Using fine mapping analysis, we identified a 36-amino-acid (aa) peptide sequence of the L2 N terminus, termed L2N, that is critical for HPV infection. Ectopic expression of L2N with the transmembrane sequence on the target cell surface conferred resistance to HPV infection. Additionally, L2N peptide with chemical or enzymatic lipidation at the carboxyl (C) terminus efficiently abrogated HPV infection in target cells. Among the synthetic L2N lipopeptides, a stearoylated lipopeptide spanning aa 13 to 46 (13-46st) exhibited the most potent anti-HPV activity, with a half-maximal inhibitory concentration (IC50) of ∼200 pM. Furthermore, we demonstrated that the 13-46st lipopeptide inhibited HPV entry by blocking trans-Golgi network retrograde trafficking of virion particles, leading to rapid degradation. Fundamentally, the inhibitory effect of L2N lipopeptides appeared to be evolutionarily conserved, as they showed cross-type inhibition among various papillomaviruses. In conclusion, our findings provide new insights into the critical role of the L2N sequence in the HPV entry mechanism and identify the therapeutic potential of L2N lipopeptide as an effective anti-HPV agent.IMPORTANCE HPV is a human oncogenic virus that causes a major public health problem worldwide, which is responsible for approximately 5% of total human cancers and almost all cases of cervical cancers. HPV capsid consists of two structure proteins, the major capsid L1 protein and the minor capsid L2 protein. While L2 plays critical roles during the viral life cycle, the molecular mechanism in viral entry remains elusive. Here, we performed fine mapping of the L2 N-terminal region and defined a short 36-amino-acid peptide, called L2N, which is critical for HPV infection. Specifically, L2N peptide with carboxyl-terminal lipidation acted as a potent and cross-type HPV inhibitor. Taken together, data from our study highlight the essential role of the L2N sequence at the early step of HPV entry and suggests the L2N lipopeptide as a new strategy to broadly prevent HPV infection.
Collapse
Affiliation(s)
- Huan Yan
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Suan-Sin Foo
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Weiqiang Chen
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Ji-Seung Yoo
- Department of Immunology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Woo-Jin Shin
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Christine Wu
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Jae U Jung
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
12
|
Canuti M, Munro HJ, Robertson GJ, Kroyer ANK, Roul S, Ojkic D, Whitney HG, Lang AS. New Insight Into Avian Papillomavirus Ecology and Evolution From Characterization of Novel Wild Bird Papillomaviruses. Front Microbiol 2019; 10:701. [PMID: 31031718 PMCID: PMC6473165 DOI: 10.3389/fmicb.2019.00701] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 03/20/2019] [Indexed: 11/24/2022] Open
Abstract
Viruses in the family Papillomaviridae have circular dsDNA genomes of approximately 5.7–8.6 kb that are packaged within non-enveloped, icosahedral capsids. The known papillomavirus (PV) representatives infect vertebrates, and there are currently more than 130 recognized PV species in more than 50 genera. We identified 12 novel avian papillomavirus (APV) types in wild birds that could represent five distinct species and two genera. Viruses were detected in paired oropharyngeal/cloacal swabs collected from six bird species, increasing the number of avian species known to harbor PVs by 40%. A new duck PV (DuPV-3) was found in mallard and American black duck (27.6% estimated prevalence) that was monophyletic with other known DuPVs. A single viral type was identified in Atlantic puffin (PuPV-1, 9.8% estimated prevalence), while a higher genetic diversity was found in other Charadriiformes. Specifically, three types [gull PV-1 (GuPV-1), -2, and -3] were identified in two gull species (estimated prevalence of 17% and 2.6% in American herring and great black-backed gull, respectively), and seven types [kittiwake PV-1 (KiPV-1) through -7] were found in black-legged kittiwake (81.3% estimated prevalence). Significantly higher DuPV-3 circulation was observed in spring compared to fall and in adults compared to juveniles. The studied host species’ tendencies to be in crowded environments likely affect infection rates and their migratory behaviors could explain the high viral diversity, illustrating how host behavior can influence viral ecology and distribution. For DuPV-3, GuPV-1, PuPV-1, and KiPV-2, we obtained the complete genomic sequences, which showed the same organization as other known APVs. Phylogenetic analyses showed evidence for virus–host co-divergence at the host taxonomic levels of family, order, and inter-order, but we also observed that host-specificity constraints are relaxed among highly related hosts as we found cross-species transmission within ducks and within gulls. Furthermore, the phylogeny of viruses infecting the Charadriiformes did not match the host phylogeny and gull viruses formed distinct monophyletic clades with kittiwake viruses, possibly reflecting past host-switching events. Considering the vast PV genotype diversity in other hosts and the large number of bird species, many more APVs likely remain to be discovered.
Collapse
Affiliation(s)
- Marta Canuti
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Hannah J Munro
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Gregory J Robertson
- Wildlife Research Division, Environment and Climate Change Canada, Mount Pearl, NL, Canada
| | - Ashley N K Kroyer
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Sheena Roul
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Davor Ojkic
- Animal Health Laboratory, University of Guelph, Guelph, ON, Canada
| | - Hugh G Whitney
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Andrew S Lang
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
13
|
Truchado DA, Williams RA, Benítez L. Natural history of avian papillomaviruses. Virus Res 2018; 252:58-67. [DOI: 10.1016/j.virusres.2018.05.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/12/2018] [Accepted: 05/13/2018] [Indexed: 11/27/2022]
|
14
|
Williams RAJ, Tolf C, Waldenström J. Molecular identification of papillomavirus in ducks. Sci Rep 2018; 8:9096. [PMID: 29904122 PMCID: PMC6002369 DOI: 10.1038/s41598-018-27373-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 06/04/2018] [Indexed: 12/12/2022] Open
Abstract
Papillomaviruses infect many vertebrates, including birds. Persistent infections by some strains can cause malignant proliferation of cells (i.e. cancer), though more typically infections cause benign tumours, or may be completely subclinical. Sometimes extensive, persistent tumours are recorded-notably in chaffinches and humans. In 2016, a novel papillomavirus genotype was characterized from a duck faecal microbiome, in Bhopal, India; the sixth papillomavirus genotype from birds. Prompted by this finding, we screened 160 cloacal swabs and 968 faecal samples collected from 299 ducks sampled at Ottenby Bird Observatory, Sweden in 2015, using a newly designed real-time PCR. Twenty one samples (1.9%) from six individuals (2%) were positive. Eighteen sequences were identical to the published genotype, duck papillomavirus 1. One additional novel genotype was recovered from three samples. Both genotypes were recovered from a wild strain domestic mallard that was infected for more than 60 days with each genotype. All positive individuals were adult (P = 0.004). Significantly more positive samples were detected from swabs than faecal samples (P < 0.0001). Sample type data suggests transmission may be via direct contact, and only infrequently, via the oral-faecal route. Infection in only adult birds supports the hypothesis that this virus is sexually transmitted, though more work is required to verify this.
Collapse
Affiliation(s)
- Richard A J Williams
- Center for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
| | - Conny Tolf
- Center for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
| | - Jonas Waldenström
- Center for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden.
| |
Collapse
|
15
|
Truchado DA, Moens MAJ, Callejas S, Pérez-Tris J, Benítez L. Genomic characterization of the first oral avian papillomavirus in a colony of breeding canaries (Serinus canaria). Vet Res Commun 2018; 42:111-120. [PMID: 29446002 DOI: 10.1007/s11259-018-9713-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 01/31/2018] [Indexed: 01/08/2023]
Abstract
Papillomaviruses are non-enveloped, DNA viruses that infect skin and mucosa of a wide variety of vertebrates, causing neoplasias or simply persisting asymptomatically. Avian papillomaviruses, with six fully sequenced genomes, are the second most studied group after mammalian papillomaviruses. In this study, we describe the first oral avian papillomavirus, detected in the tongue of a dead Yorkshire canary (Serinus canaria) and in oral swabs of the same bird and other two live canaries from an aviary in Madrid, Spain. Its genome is 8,071 bp and presents the canonical papillomavirus architecture with six early (E6, E7, E1, E9, E2, E4) and two late open reading frames (L1 and L2) and a long control region between L1 and E6. This new avian papillomavirus L1 gene shares a 64% pairwise identity with FcPV1 L1, so it has been classified as a new species (ScPV1) within the Ethapapillomavirus genus. Although the canary died after showing breathing problems, there is no evidence that the papillomavirus caused those symptoms so it could be part of the oral microbiota of the birds. Hence, future investigations are needed to evaluate the clinical relevance of the virus.
Collapse
Affiliation(s)
- Daniel A Truchado
- Departamento de Biodiversidad, Ecología y Evolución, Facultad de Biología, Universidad Complutense de Madrid, Calle José Antonio Novais 12, 28040, Madrid, Spain. .,Departamento de Fisiología, Genética y Microbiología, Facultad de Biología, Calle José Antonio Novais 12, 28040, Madrid, Spain.
| | - Michaël A J Moens
- Fundación de Conservación Jocotoco, Lizardo García E9-104 y Andrés Xaura, 170143, Quito, Ecuador
| | - Sergio Callejas
- Unidad de Genómica, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Calle Melchor Fernández Almagro, 3, 28029, Madrid, Spain
| | - Javier Pérez-Tris
- Departamento de Biodiversidad, Ecología y Evolución, Facultad de Biología, Universidad Complutense de Madrid, Calle José Antonio Novais 12, 28040, Madrid, Spain
| | - Laura Benítez
- Departamento de Fisiología, Genética y Microbiología, Facultad de Biología, Calle José Antonio Novais 12, 28040, Madrid, Spain
| |
Collapse
|
16
|
Van Doorslaer K, Ruoppolo V, Schmidt A, Lescroël A, Jongsomjit D, Elrod M, Kraberger S, Stainton D, Dugger KM, Ballard G, Ainley DG, Varsani A. Unique genome organization of non-mammalian papillomaviruses provides insights into the evolution of viral early proteins. Virus Evol 2017; 3:vex027. [PMID: 29026649 PMCID: PMC5632515 DOI: 10.1093/ve/vex027] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The family Papillomaviridae contains more than 320 papillomavirus types, with most having been identified as infecting skin and mucosal epithelium in mammalian hosts. To date, only nine non-mammalian papillomaviruses have been described from birds (n = 5), a fish (n = 1), a snake (n = 1), and turtles (n = 2). The identification of papillomaviruses in sauropsids and a sparid fish suggests that early ancestors of papillomaviruses were already infecting the earliest Euteleostomi. The Euteleostomi clade includes more than 90 per cent of the living vertebrate species, and progeny virus could have been passed on to all members of this clade, inhabiting virtually every habitat on the planet. As part of this study, we isolated a novel papillomavirus from a 16-year-old female Adélie penguin (Pygoscelis adeliae) from Cape Crozier, Ross Island (Antarctica). The new papillomavirus shares ∼64 per cent genome-wide identity to a previously described Adélie penguin papillomavirus. Phylogenetic analyses show that the non-mammalian viruses (expect the python, Morelia spilota, associated papillomavirus) cluster near the base of the papillomavirus evolutionary tree. A papillomavirus isolated from an avian host (Northern fulmar; Fulmarus glacialis), like the two turtle papillomaviruses, lacks a putative E9 protein that is found in all other avian papillomaviruses. Furthermore, the Northern fulmar papillomavirus has an E7 more similar to the mammalian viruses than the other avian papillomaviruses. Typical E6 proteins of mammalian papillomaviruses have two Zinc finger motifs, whereas the sauropsid papillomaviruses only have one such motif. Furthermore, this motif is absent in the fish papillomavirus. Thus, it is highly likely that the most recent common ancestor of the mammalian and sauropsid papillomaviruses had a single motif E6. It appears that a motif duplication resulted in mammalian papillomaviruses having a double Zinc finger motif in E6. We estimated the divergence time between Northern fulmar-associated papillomavirus and the other Sauropsid papillomaviruses be to around 250 million years ago, during the Paleozoic-Mesozoic transition and our analysis dates the root of the papillomavirus tree between 400 and 600 million years ago. Our analysis shows evidence for niche adaptation and that these non-mammalian viruses have highly divergent E6 and E7 proteins, providing insights into the evolution of the early viral (onco-)proteins.
Collapse
Affiliation(s)
| | - Valeria Ruoppolo
- Laboratório de Patologia Comparada de Animais Selvagens (LAPCOM), Departamento de Patologia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, Brazil
| | - Annie Schmidt
- Point Blue Conservation Science, Petaluma, CA 94954, USA
| | - Amelie Lescroël
- Point Blue Conservation Science, Petaluma, CA 94954, USA.,Centre d'Ecologie Fonctionnelle et Evolutive - CNRS, UMR 5175, Montpellier, France
| | | | - Megan Elrod
- Point Blue Conservation Science, Petaluma, CA 94954, USA
| | - Simona Kraberger
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Daisy Stainton
- School of Biological Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Katie M Dugger
- U.S. Geological Survey, Oregon Cooperative Fish and Wildlife Research Unit, Department of Fisheries and Wildlife, Oregon State University, Corvallis, OR 97331, USA
| | - Grant Ballard
- Point Blue Conservation Science, Petaluma, CA 94954, USA
| | | | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life sciences, Arizona State University, Tempe, AZ 85287, USA.,Structural Biology Research Unit, Department of Clinical Laboratory Sciences, University of Cape Town, Observatory, Cape Town, 7925, South Africa
| |
Collapse
|
17
|
Yinda CK, Rector A, Zeller M, Conceição-Neto N, Heylen E, Maes P, Ghogomu SM, Van Ranst M, Matthijnssens J. A single bat species in Cameroon harbors multiple highly divergent papillomaviruses in stool identified by metagenomics analysis. ACTA ACUST UNITED AC 2016; 6:74-80. [PMID: 32289018 PMCID: PMC7103942 DOI: 10.1016/j.virep.2016.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 08/18/2016] [Accepted: 08/18/2016] [Indexed: 01/28/2023]
Abstract
A number of PVs have been described in bats but to the best of our knowledge not from feces. Using a previously described NetoVIR protocol, Eidolon helvum pooled fecal samples (Eh) were treated and sequenced by Illumina next generation sequencing technology. Two complete genomes of novel PVs (EhPV2 and EhPV3) and 3 partial sequences (BATPV61, BATPV890a and BATPV890b) were obtained and analysis showed that the EhPV2 and EhPV3 major capsid proteins cluster with and share 60-64% nucleotide identity with that of Rousettus aegyptiacus PV1, thus representing new species of PVs within the genus Psipapillomavirus. The other PVs clustered in different branches of our phylogenetic tree and may potentially represent novel species and/or genera. This points to the vast diversity of PVs in bats and in Eidolon helvum bats in particular, therefore adding support to the current concept that PV evolution is more complex than merely strict PV-host co-evolution.
Collapse
Affiliation(s)
- Claude Kwe Yinda
- KULeuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Viral Metagenomics, Leuven, Belgium
- KULeuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory for Clinical and Epidemiological Virology, Leuven, Belgium
| | - Annabel Rector
- KULeuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory for Clinical and Epidemiological Virology, Leuven, Belgium
| | - Mark Zeller
- KULeuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Viral Metagenomics, Leuven, Belgium
| | - Nádia Conceição-Neto
- KULeuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Viral Metagenomics, Leuven, Belgium
- KULeuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory for Clinical and Epidemiological Virology, Leuven, Belgium
| | - Elisabeth Heylen
- KULeuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Viral Metagenomics, Leuven, Belgium
| | - Piet Maes
- KULeuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory for Clinical and Epidemiological Virology, Leuven, Belgium
| | - Stephen Mbigha Ghogomu
- University of Buea, Department of Biochemistry and Molecular Biology, Biotechnology Unit, Molecular and Cell Biology Laboratory, Buea, Cameroon
| | - Marc Van Ranst
- KULeuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory for Clinical and Epidemiological Virology, Leuven, Belgium
| | - Jelle Matthijnssens
- KULeuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Viral Metagenomics, Leuven, Belgium
- Corresponding author.
| |
Collapse
|
18
|
Peng C, Wang P, Xu X, Wang X, Wei W, Chen X, Xu J. Development of a qualitative real-time PCR method to detect 19 targets for identification of genetically modified organisms. SPRINGERPLUS 2016; 5:889. [PMID: 27386337 PMCID: PMC4920734 DOI: 10.1186/s40064-016-2395-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 05/24/2016] [Indexed: 11/12/2022]
Abstract
As the amount of commercially available genetically modified organisms (GMOs) grows recent years, the diversity of target sequences for molecular detection techniques are eagerly needed. Considered as the gold standard for GMO analysis, the real-time PCR technology was optimized to produce a high-throughput GMO screening method. With this method we can detect 19 transgenic targets. The specificity of the assays was demonstrated to be 100 % by the specific amplification of DNA derived from reference material from 20 genetically modified crops and 4 non modified crops. Furthermore, most assays showed a very sensitive detection, reaching the limit of ten copies. The 19 assays are the most frequently used genetic elements present in GM crops and theoretically enable the screening of the known GMO described in Chinese markets. Easy to use, fast and cost efficient, this method approach fits the purpose of GMO testing laboratories.
Collapse
Affiliation(s)
- Cheng Peng
- Institute of Quality and Standard for Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021 China ; State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Hangzhou, 310021 China
| | - Pengfei Wang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058 China
| | - Xiaoli Xu
- Institute of Quality and Standard for Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021 China ; State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Hangzhou, 310021 China
| | - Xiaofu Wang
- Institute of Quality and Standard for Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021 China ; State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Hangzhou, 310021 China
| | - Wei Wei
- Institute of Quality and Standard for Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021 China ; State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Hangzhou, 310021 China
| | - Xiaoyun Chen
- Institute of Quality and Standard for Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021 China ; State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Hangzhou, 310021 China
| | - Junfeng Xu
- Institute of Quality and Standard for Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021 China ; State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Hangzhou, 310021 China
| |
Collapse
|
19
|
Fawaz M, Vijayakumar P, Mishra A, Gandhale PN, Dutta R, Kamble NM, Sudhakar SB, Roychoudhary P, Kumar H, Kulkarni DD, Raut AA. Duck gut viral metagenome analysis captures snapshot of viral diversity. Gut Pathog 2016; 8:30. [PMID: 27284287 PMCID: PMC4899906 DOI: 10.1186/s13099-016-0113-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 05/30/2016] [Indexed: 11/18/2022] Open
Abstract
Background Ducks (Anas platyrhynchos) an economically important waterfowl for meat, eggs and feathers; is also a natural reservoir for influenza A viruses. The emergence of novel viruses is attributed to the status of co-existence of multiple types and subtypes of viruses in the reservoir hosts. For effective prediction of future viral epidemic or pandemic an in-depth understanding of the virome status in the key reservoir species is highly essential. Methods To obtain an unbiased measure of viral diversity in the enteric tract of ducks by viral metagenomic approach, we deep sequenced the viral nucleic acid extracted from cloacal swabs collected from the flock of 23 ducks which shared the water bodies with wild migratory birds. Result In total 7,455,180 reads with average length of 146 bases were generated of which 7,354,300 reads were de novo assembled into 24,945 contigs with an average length of 220 bases and the remaining 100,880 reads were singletons. The duck virome were identified by sequence similarity comparisons of contigs and singletons (BLASTx E score, <10−3) against viral reference database. Numerous duck virome sequences were homologous to the animal virus of the Papillomaviridae family; and phages of the Caudovirales, Inoviridae, Tectiviridae, Microviridae families and unclassified phages. Further, several duck virome sequences had homologous with the insect viruses of the Poxviridae, Alphatetraviridae, Baculoviridae, Densovirinae, Iflaviridae and Dicistroviridae families; and plant viruses of the Secoviridae, Virgaviridae, Tombusviridae and Partitiviridae families, which reflects the diet and habitation of ducks. Conclusion This study increases our understanding of the viral diversity and expands the knowledge about the spectrum of viruses harboured in the enteric tract of ducks.
Collapse
Affiliation(s)
- Mohammed Fawaz
- OIE Reference Laboratory for Avian Influenza, ICAR-National Institute of High Security Animal Diseases, Bhopal, Madhya Pradesh India
| | - Periyasamy Vijayakumar
- OIE Reference Laboratory for Avian Influenza, ICAR-National Institute of High Security Animal Diseases, Bhopal, Madhya Pradesh India
| | - Anamika Mishra
- OIE Reference Laboratory for Avian Influenza, ICAR-National Institute of High Security Animal Diseases, Bhopal, Madhya Pradesh India
| | - Pradeep N Gandhale
- OIE Reference Laboratory for Avian Influenza, ICAR-National Institute of High Security Animal Diseases, Bhopal, Madhya Pradesh India
| | - Rupam Dutta
- OIE Reference Laboratory for Avian Influenza, ICAR-National Institute of High Security Animal Diseases, Bhopal, Madhya Pradesh India
| | - Nitin M Kamble
- OIE Reference Laboratory for Avian Influenza, ICAR-National Institute of High Security Animal Diseases, Bhopal, Madhya Pradesh India
| | - Shashi B Sudhakar
- OIE Reference Laboratory for Avian Influenza, ICAR-National Institute of High Security Animal Diseases, Bhopal, Madhya Pradesh India
| | - Parimal Roychoudhary
- College of Veterinary Sciences and Animal Husbandry, Central Agricultural University, Aizawl, Mizoram India
| | - Himanshu Kumar
- Laboratory of Immunology, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh India
| | - Diwakar D Kulkarni
- OIE Reference Laboratory for Avian Influenza, ICAR-National Institute of High Security Animal Diseases, Bhopal, Madhya Pradesh India
| | - Ashwin Ashok Raut
- OIE Reference Laboratory for Avian Influenza, ICAR-National Institute of High Security Animal Diseases, Bhopal, Madhya Pradesh India
| |
Collapse
|
20
|
Escudero Duch C, Williams RAJ, Timm RM, Perez-Tris J, Benitez L. A Century of Shope Papillomavirus in Museum Rabbit Specimens. PLoS One 2015; 10:e0132172. [PMID: 26147570 PMCID: PMC4493010 DOI: 10.1371/journal.pone.0132172] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 06/10/2015] [Indexed: 11/19/2022] Open
Abstract
Sylvilagus floridanus Papillomavirus (SfPV) causes growth of large horn-like tumors on rabbits. SfPV was described in cottontail rabbits (probably Sylvilagus floridanus) from Kansas and Iowa by Richard Shope in 1933, and detected in S. audubonii in 2011. It is known almost exclusively from the US Midwest. We explored the University of Kansas Natural History Museum for historical museum specimens infected with SfPV, using molecular techniques, to assess if additional wild species host SfPV, and whether SfPV occurs throughout the host range, or just in the Midwest. Secondary aims were to detect distinct strains, and evidence for strain spatio-temporal specificity. We found 20 of 1395 rabbits in the KU collection SfPV symptomatic. Three of 17 lagomorph species (S. nuttallii, and the two known hosts) were symptomatic, while Brachylagus, Lepus and eight additional Sylvilagus species were not. 13 symptomatic individuals were positive by molecular testing, including the first S. nuttallii detection. Prevalence of symptomatic individuals was significantly higher in Sylvilagus (1.8%) than Lepus. Half of these specimens came from Kansas, though new molecular detections were obtained from Jalisco—Mexico’s first—and Nebraska, Nevada, New Mexico, and Texas, USA. We document the oldest lab-confirmed case (Kansas, 1915), pre-dating Shope’s first case. SfPV amplification was possible from 63.2% of symptomatic museum specimens. Using multiple methodologies, rolling circle amplification and, multiple isothermal displacement amplification in addition to PCR, greatly improved detection rates. Short sequences were obtained from six individuals for two genes. L1 gene sequences were identical to all previously detected sequences; E7 gene sequences, were more variable, yielding five distinct SfPV1 strains that differing by less than 2% from strains circulating in the Midwest and Mexico, between 1915 and 2005. Our results do not clarify whether strains are host species specific, though they are consistent with SfPV specificity to genus Sylvilagus.
Collapse
Affiliation(s)
- Clara Escudero Duch
- Department of Microbiology III, Faculty of Biological Sciences, Universidad Complutense de Madrid, Madrid, Spain
| | - Richard A. J. Williams
- Department of Zoology and Physical Anthropology, Faculty of Biological Sciences, Universidad Complutense de Madrid, Madrid, Spain
- Natural Sciences, Saint Louis University, Madrid, Spain
- Department of Ecology and Evolutionary Biology & Natural History Museum, University of Kansas, Lawrence, Kansas 66045, United States of America
| | - Robert M. Timm
- Department of Ecology and Evolutionary Biology & Natural History Museum, University of Kansas, Lawrence, Kansas 66045, United States of America
| | - Javier Perez-Tris
- Department of Zoology and Physical Anthropology, Faculty of Biological Sciences, Universidad Complutense de Madrid, Madrid, Spain
| | - Laura Benitez
- Department of Microbiology III, Faculty of Biological Sciences, Universidad Complutense de Madrid, Madrid, Spain
- * E-mail:
| |
Collapse
|
21
|
Varsani A, Kraberger S, Jennings S, Porzig EL, Julian L, Massaro M, Pollard A, Ballard G, Ainley DG. A novel papillomavirus in Adélie penguin (Pygoscelis adeliae) faeces sampled at the Cape Crozier colony, Antarctica. J Gen Virol 2014; 95:1352-1365. [PMID: 24686913 DOI: 10.1099/vir.0.064436-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Papillomaviruses are epitheliotropic viruses that have circular dsDNA genomes encapsidated in non-enveloped virions. They have been found to infect a variety of mammals, reptiles and birds, but so far they have not been found in amphibians. Using a next-generation sequencing de novo assembly contig-informed recovery, we cloned and Sanger sequenced the complete genome of a novel papillomavirus from the faecal matter of Adélie penguins (Pygoscelis adeliae) nesting on Ross Island, Antarctica. The genome had all the usual features of a papillomavirus and an E9 ORF encoding a protein of unknown function that is found in all avian papillomaviruses to date. This novel papillomavirus genome shared ~60 % pairwise identity with the genomes of the other three known avian papillomaviruses: Fringilla coelebs papillomavirus 1 (FcPV1), Francolinus leucoscepus papillomavirus 1 (FlPV1) and Psittacus erithacus papillomavirus 1. Pairwise identity analysis and phylogenetic analysis of the major capsid protein gene clearly indicated that it represents a novel species, which we named Pygoscelis adeliae papillomavirus 1 (PaCV1). No evidence of recombination was detected in the genome of PaCV1, but we did detect a recombinant region (119 nt) in the E6 gene of FlPV1 with the recombinant region being derived from ancestral FcPV1-like sequences. Previously only paramyxoviruses, orthomyxoviruses and avian pox viruses have been genetically identified in penguins; however, the majority of penguin viral identifications have been based on serology or histology. This is the first report, to our knowledge, of a papillomavirus associated with a penguin species.
Collapse
Affiliation(s)
- Arvind Varsani
- Electron Microscope Unit, Division of Medical Biochemistry, Department of Clinical Laboratory Sciences, University of Cape Town, Observatory, 7700, South Africa.,Department of Plant Pathology and Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611, USA.,School of Biological Sciences and Biomolecular Interaction Centre, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - Simona Kraberger
- School of Biological Sciences and Biomolecular Interaction Centre, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - Scott Jennings
- Department of Fisheries and Wildlife, Oregon Cooperative Fish and Wildlife Research Unit, US Geological Survey, Oregon State University, Corvallis, OR, USA
| | | | - Laurel Julian
- School of Biological Sciences and Biomolecular Interaction Centre, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - Melanie Massaro
- School of Environmental Sciences, Charles Sturt University, Albury, NSW 2640, Australia
| | | | - Grant Ballard
- Point Blue Conservation Science, Petaluma, CA 94954, USA
| | | |
Collapse
|
22
|
Rector A, Van Ranst M. Animal papillomaviruses. Virology 2013; 445:213-23. [PMID: 23711385 DOI: 10.1016/j.virol.2013.05.007] [Citation(s) in RCA: 164] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 04/29/2013] [Accepted: 05/03/2013] [Indexed: 11/26/2022]
Abstract
We provide an overview of the host range, taxonomic classification and genomic diversity of animal papillomaviruses. The complete genomes of 112 non-human papillomavirus types, recovered from 54 different host species, are currently available in GenBank. The recent characterizations of reptilian papillomaviruses extend the host range of the Papillomaviridae to include all amniotes. Although the genetically diverse papillomaviruses have a highly conserved genomic lay-out, deviations from this prototypic genome organization are observed in several animal papillomaviruses, and only the core ORFs E1, E2, L2 and L1 are present in all characterized papillomavirus genomes. The discovery of papilloma-polyoma hybrids BPCV1 and BPCV2, containing a papillomaviral late region but an early region encoding typical polyomaviral nonstructural proteins, and the detection of recombination breakpoints between the early and late coding regions of cetacean papillomaviruses, could indicate that early and late gene cassettes of papillomaviruses are relatively independent entities that can be interchanged by recombination.
Collapse
Affiliation(s)
- Annabel Rector
- Laboratory of Clinical and Epidemiological Virology, Rega Institute for Medical Research, University of Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium.
| | | |
Collapse
|
23
|
Vande Pol SB, Klingelhutz AJ. Papillomavirus E6 oncoproteins. Virology 2013; 445:115-37. [PMID: 23711382 DOI: 10.1016/j.virol.2013.04.026] [Citation(s) in RCA: 248] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 04/22/2013] [Accepted: 04/25/2013] [Indexed: 02/07/2023]
Abstract
Papillomaviruses induce benign and malignant epithelial tumors, and the viral E6 oncoprotein is essential for full transformation. E6 contributes to transformation by associating with cellular proteins, docking on specific acidic LXXLL peptide motifs found on these proteins. This review examines insights from recent studies of human and animal E6 proteins that determine the three-dimensional structure of E6 when bound to acidic LXXLL peptides. The structure of E6 is related to recent advances in the purification and identification of E6 associated protein complexes. These E6 protein-complexes, together with other proteins that bind to E6, alter a broad array of biological outcomes including modulation of cell survival, cellular transcription, host cell differentiation, growth factor dependence, DNA damage responses, and cell cycle progression.
Collapse
Affiliation(s)
- Scott B Vande Pol
- Department of Pathology, University of Virginia, Charlottesville, VA 22901, USA.
| | | |
Collapse
|
24
|
|
25
|
Tse H, Tsang AKL, Tsoi HW, Leung ASP, Ho CC, Lau SKP, Woo PCY, Yuen KY. Identification of a novel bat papillomavirus by metagenomics. PLoS One 2012; 7:e43986. [PMID: 22937142 PMCID: PMC3427170 DOI: 10.1371/journal.pone.0043986] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 07/27/2012] [Indexed: 01/09/2023] Open
Abstract
The discovery of novel viruses in animals expands our knowledge of viral diversity and potentially emerging zoonoses. High-throughput sequencing (HTS) technology gives millions or even billions of sequence reads per run, allowing a comprehensive survey of the genetic content within a sample without prior nucleic acid amplification. In this study, we screened 156 rectal swab samples from apparently healthy bats (n = 96), pigs (n = 9), cattles (n = 9), stray dogs (n = 11), stray cats (n = 11) and monkeys (n = 20) using a HTS metagenomics approach. The complete genome of a novel papillomavirus (PV), Miniopterus schreibersii papillomavirus type 1 (MscPV1), with L1 of 60% nucleotide identity to Canine papillomavirus (CPV6), was identified in a specimen from a Common Bent-wing Bat (M. schreibersii). It is about 7.5kb in length, with a G+C content of 45.8% and a genomic organization similar to that of other PVs. Despite the higher nucleotide identity between the genomes of MscPV1 and CPV6, maximum-likelihood phylogenetic analysis of the L1 gene sequence showed that MscPV1 and Erethizon dorsatum papillomavirus (EdPV1) are most closely related. Estimated divergence time of MscPV1 from the EdPV1/MscPV1 common ancestor was approximately 60.2–91.9 millions of years ago, inferred under strict clocks using the L1 and E1 genes. The estimates were limited by the lack of reliable calibration points from co-divergence because of possible host shifts. As the nucleotide sequence of this virus only showed limited similarity with that of related animal PVs, the conventional approach of PCR using consensus primers would be unlikely to have detected the novel virus in the sample. Unlike the first bat papillomavirus RaPV1, MscPV1 was found in an asymptomatic bat with no apparent mucosal or skin lesions whereas RaPV1 was detected in the basosquamous carcinoma of a fruit bat Rousettus aegyptiacus. We propose MscPV1 as the first member of the novel Dyolambda-papillomavirus genus.
Collapse
Affiliation(s)
- Herman Tse
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, The University of Hong Kong, Queen Mary Hospital, Pok Fu Lam, Hong Kong Island, Hong Kong
| | - Alan K. L. Tsang
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, The University of Hong Kong, Queen Mary Hospital, Pok Fu Lam, Hong Kong Island, Hong Kong
| | - Hoi-Wah Tsoi
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, The University of Hong Kong, Queen Mary Hospital, Pok Fu Lam, Hong Kong Island, Hong Kong
| | - Andy S. P. Leung
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, The University of Hong Kong, Queen Mary Hospital, Pok Fu Lam, Hong Kong Island, Hong Kong
| | - Chi-Chun Ho
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, The University of Hong Kong, Queen Mary Hospital, Pok Fu Lam, Hong Kong Island, Hong Kong
| | - Susanna K. P. Lau
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, The University of Hong Kong, Queen Mary Hospital, Pok Fu Lam, Hong Kong Island, Hong Kong
| | - Patrick C. Y. Woo
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, The University of Hong Kong, Queen Mary Hospital, Pok Fu Lam, Hong Kong Island, Hong Kong
| | - Kwok-Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, The University of Hong Kong, Queen Mary Hospital, Pok Fu Lam, Hong Kong Island, Hong Kong
- * E-mail:
| |
Collapse
|
26
|
Pérez-Tris J, Williams RAJ, Abel-Fernández E, Barreiro J, Conesa JJ, Figuerola J, Martinez-Martínez M, Ramírez A, Benitez L. A multiplex PCR for detection of poxvirus and papillomavirus in cutaneous warts from live birds and museum skins. Avian Dis 2012; 55:545-53. [PMID: 22312972 DOI: 10.1637/9685-021411-reg.1] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Viral cutaneous lesions are frequent in some bird populations, though we are generally ignorant of the causal agent. In some instances, they represent a threat to livestock and wildlife health. We present here a multiplex PCR which detects and distinguishes infection by two such agents, avipoxviruses and papillomaviruses, in avian hosts. We assayed biopsies and superficial skin swabs from field and preserved museum skin specimens. Ninety-three percent of samples from symptomatic specimens tested positive for the presence of avipox (n = 23) or papillomavirus (n = 5). Sixteen and five sequences, corresponding to the P4b and L1 genes, were obtained from avipox and papillomavirus, respectively. One museum specimen, of Fringilla coelebs (chaffinch), was apparently infected with both viruses. Although papillomavirus sequences proved identical to previously published sequences, four novel avipox sequences were generated and used to build a neighbor-joining phylogenetic tree. Our tree recovered a similar topology to that of several recent authors; however, we also propose here two new minor avipox clades (B1b and B3). This multiplex PCR technique shows improved sensitivity compared to other avipox and papillomavirus assays, is able to detect a wide range of avipox and papillomavirus types (it amplifies all three avian-derived papillomavirus genera described thus far and sequences from both major avipox clades), and was even able to detect ancient viral DNA contained in museum specimens of greater than 75 years antiquity for both viruses.
Collapse
Affiliation(s)
- J Pérez-Tris
- Department de Zoología y Antropología Física, Facultad de Biología, Universidad Complutense de Madrid, C/Jose Antonio Novais, 28040, Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Lange CE, Favrot C, Ackermann M, Gull J, Vetsch E, Tobler K. Novel snake papillomavirus does not cluster with other non-mammalian papillomaviruses. Virol J 2011; 8:436. [PMID: 21910860 PMCID: PMC3179961 DOI: 10.1186/1743-422x-8-436] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 09/12/2011] [Indexed: 11/24/2022] Open
Abstract
Papillomaviruses (PVs) are associated with the development of neoplasias and have been found in several different species, most of them in humans and other mammals. We identified, cloned and sequenced PV DNA from pigmented papilloma-like lesions of a diamond python (Morelia spilota spilota). This represents the first complete PV genome discovered in a Squamata host (MsPV1). It consists of 7048 nt and contains the characteristic open reading (ORF) frames E6, E7, E1, E2, L1 and L2. The L1 ORF sequence showed the highest percentage of sequence identities to human PV5 (57.9%) and Caribbean manatee (Trichechus manatus) PV1 (55.4%), thus, establishing a new clade. According to phylogenetic analysis, the MsPV1 genome clusters with PVs of mammalian rather than sauropsid hosts.
Collapse
Affiliation(s)
- Christian E Lange
- Dermatology Department, Clinic for Small Animal internal Medicine, Vetsuisse Faculty, Winterthurerstrasse 260, CH-8057 Zurich, Switzerland.
| | | | | | | | | | | |
Collapse
|
28
|
Modular organizations of novel cetacean papillomaviruses. Mol Phylogenet Evol 2011; 59:34-42. [DOI: 10.1016/j.ympev.2010.12.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Revised: 12/02/2010] [Accepted: 12/22/2010] [Indexed: 11/20/2022]
|
29
|
Wood CE, Tannehill-Gregg SH, Chen Z, Doorslaer KV, Nelson DR, Cline JM, Burk RD. Novel betapapillomavirus associated with hand and foot papillomas in a cynomolgus macaque. Vet Pathol 2010; 48:731-6. [PMID: 20921322 DOI: 10.1177/0300985810383875] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Betapapillomavirus is a genus of papillomaviruses (PVs) commonly found in human skin and associated with both benign and malignant skin lesions. Only 2 previous beta-PVs have been fully characterized in nonhuman species. This report describes a novel beta-PV, named Macaca fascicularis PV type 2 (MfPV2), isolated from exophytic skin papillomas on the hands and feet of a 2-year-old male cynomolgus monkey (M. fascicularis). On histology the papillomas were composed of diffusely thickened epidermis with superficial foci of cytomegaly, cytoplasmic pallor, marginalized chromatin, and rare eosinophilic intranuclear inclusion bodies. Positive immunostaining for p16 and the proliferation marker Ki67 was present multifocally within affected epidermis, most prominently within basal-type cells. Complete sequence identity (100%) was noted between PV genomes fully sequenced from hand and foot lesions. The MfPV2 genome was 7632 base pairs in length and included putative open reading frames (ORFs) for E1, E2, E4, E6, E7, L1, and L2 genes, similar to other PVs. The closest relatives to MfPV2 based on the L1 ORF sequence were all beta-PVs. These included human PV (HPV) 9, HPV115, HPV76, HPV75, and MfPV1 (60-70% pairwise identity for all), the latter of which was also isolated from hand and foot papillomas in a cynomolgus macaque. Phylogenetic analysis placed MfPV2 in a new species group (beta-6), distinct from HPVs (beta-1 to beta-5) and MfPV1 (beta-1). These findings characterize a new nonhuman beta-PV and provide additional support for the idea that tissue tropism among ancestral primate PVs developed prior to divergence of certain Old World primate lineages.
Collapse
Affiliation(s)
- C E Wood
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC 27157-1040, USA.
| | | | | | | | | | | | | |
Collapse
|
30
|
Katoh H, Ogawa H, Ohya K, Fukushi H. A review of DNA viral infections in psittacine birds. J Vet Med Sci 2010; 72:1099-106. [PMID: 20424393 DOI: 10.1292/jvms.10-0022] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To date, several DNA viral infections have been reported in psittacine birds. Psittacine beak and feather disease (PBFD) is characterized by symmetric feather dystrophy and loss and development of beak deformities. PBFD is caused by beak and feather virus, which belongs to the Circoviridae, and is the most important infection in psittacine birds worldwide. Avian polyomavirus infection causes acute death, abdominal distention, and feather abnormalities. Pacheco's disease (PD), which is caused by psittacid herpesvirus type 1, is an acute lethal disease without a prodrome. Psittacine adenovirus infections are described as having a clinical progression similar to PD. The clinical changes in psittacine poxvirus-infected birds include serious ocular discharge, rhinitis, and conjunctivitis, followed by the appearance of ulcerations on the medial canthi of the eyes. Internal papillomatosis of parrots (IPP) is a tumor disease characterized by progressive development of papillomas in the oral and cloacal mucosa. IPP has been suggested to caused by papillomavirus or herpesvirus. However, information about these diseases is limited. Here we review the etiology, clinical features, pathology, epidemiology, and diagnosis of these DNA viruses.
Collapse
Affiliation(s)
- Hiroshi Katoh
- Department of Applied Veterinary Sciences, United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| | | | | | | |
Collapse
|
31
|
Classification of papillomaviruses (PVs) based on 189 PV types and proposal of taxonomic amendments. Virology 2010; 401:70-9. [PMID: 20206957 DOI: 10.1016/j.virol.2010.02.002] [Citation(s) in RCA: 1112] [Impact Index Per Article: 79.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Revised: 01/27/2010] [Accepted: 02/03/2010] [Indexed: 10/19/2022]
Abstract
We present an expansion of the classification of the family Papillomaviridae, which now contains 29 genera formed by 189 papillomavirus (PV) types isolated from humans (120 types), non-human mammals, birds and reptiles (64, 3 and 2 types, respectively). To accommodate the number of PV genera exceeding the Greek alphabet, the prefix "dyo" is used, continuing after the Omega-PVs with Dyodelta-PVs. The current set of human PVs is contained within five genera, whereas mammalian, avian and reptile PVs are contained within 20, 3 and 1 genera, respectively. We propose standardizations to the names of a number of animal PVs. As prerequisite for a coherent nomenclature of animal PVs, we propose founding a reference center for animal PVs. We discuss that based on emerging species concepts derived from genome sequences, PV types could be promoted to the taxonomic level of species, but we do not recommend implementing this change at the current time.
Collapse
|
32
|
Shah SD, Doorbar J, Goldstein RA. Analysis of host-parasite incongruence in papillomavirus evolution using importance sampling. Mol Biol Evol 2010; 27:1301-14. [PMID: 20093429 PMCID: PMC2872622 DOI: 10.1093/molbev/msq015] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The papillomaviruses (PVs) are a family of viruses infecting several mammalian and nonmammalian species that cause cervical cancer in humans. The evolutionary history of the PVs as it associated with a wide range of host species is not well understood. Incongruities between the phylogenetic trees of various viral genes as well as between these genes and the host phylogenies suggest historical viral recombination as well as violations of strict virus–host cospeciation. The extent of recombination events among PVs is uncertain, however, and there is little evidence to support a theory of PV spread via recent host transfers. We have investigated incongruence between PV genes and hence, the possibility of recombination, using Bayesian phylogenetic methods. We find significant evidence for phylogenetic incongruence among the six PV genes E1, E2, E6, E7, L1, and L2, indicating substantial recombination. Analysis of E1 and L1 phylogenies suggests ancestral recombination events. We also describe a new method for examining alternative host–parasite association mechanisms by applying importance sampling to Bayesian divergence time estimation. This new approach is not restricted by a fixed viral tree topology or knowledge of viral divergence times, multiple parasite taxa per host may be included, and it can distinguish between prior divergence of the virus before host speciation and host transfer of the virus following speciation. Using this method, we find prior divergence of PV lineages associated with the ancestral mammalian host resulting in at least 6 PV lineages prior to speciation of this host. These PV lineages have then followed paths of prior divergence and cospeciation to eventually become associated with the extant host species. Only one significant instance of host transfer is supported, the transfer of the ancestral L1 gene between a Primate and Hystricognathi host based on the divergence times between the υ human type 41 and porcupine PVs.
Collapse
Affiliation(s)
- Seena D Shah
- Division of Mathematical Biology, MRC National Institute for Medical Research, Mill Hill, London, United Kingdom
| | | | | |
Collapse
|
33
|
Van Doorslaer K, Sidi AOMO, Zanier K, Rybin V, Deryckère F, Rector A, Burk RD, Lienau EK, van Ranst M, Travé G. Identification of unusual E6 and E7 proteins within avian papillomaviruses: cellular localization, biophysical characterization, and phylogenetic analysis. J Virol 2009; 83:8759-70. [PMID: 19553340 PMCID: PMC2738182 DOI: 10.1128/jvi.01777-08] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2008] [Accepted: 05/12/2009] [Indexed: 11/20/2022] Open
Abstract
Papillomaviruses (PVs) are a large family of small DNA viruses infecting mammals, reptiles, and birds. PV infection induces cell proliferation that may lead to the formation of orogenital or skin tumors. PV-induced cell proliferation has been related mainly to the expression of two small oncoproteins, E6 and E7. In mammalian PVs, E6 contains two 70-residue zinc-binding repeats, whereas E7 consists of a natively unfolded N-terminal region followed by a zinc-binding domain which folds as an obligate homodimer. Here, we show that both the novel francolin bird PV Francolinus leucoscepus PV type 1 (FlPV-1) and the chaffinch bird PV Fringilla coelebs PV contain unusual E6 and E7 proteins. The avian E7 proteins contain an extended unfolded N terminus and a zinc-binding domain of reduced size, whereas the avian E6 proteins consist of a single zinc-binding domain. A comparable single-domain E6 protein may have existed in a common ancestor of mammalian and avian PVs. Mammalian E6 C-terminal domains are phylogenetically related to those of single-domain avian E6, whereas mammalian E6 N-terminal domains seem to have emerged by duplication and subsequently diverged from the original ancestral domain. In avian and mammalian cells, both FlPV-1 E6 and FlPV-1 E7 were evenly expressed in the cytoplasm and the nucleus. Finally, samples of full-length FlPV-1 E6 and the FlPV-1 E7 C-terminal zinc-binding domain were prepared for biophysical analysis. Both constructs were highly soluble and well folded, according to nuclear magnetic resonance spectroscopy measurements.
Collapse
Affiliation(s)
- Koenraad Van Doorslaer
- Laboratory of Clinical Virology, Rega Institute for Medical Research, University of Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Woolford L, Bennett MD, Sims C, Thomas N, Friend JA, Nicholls PK, Warren KS, O'Hara AJ. Prevalence, emergence, and factors associated with a viral papillomatosis and carcinomatosis syndrome in wild, reintroduced, and captive western barred bandicoots (Perameles bougainville). ECOHEALTH 2009; 6:414-425. [PMID: 19898897 DOI: 10.1007/s10393-009-0258-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2008] [Revised: 07/23/2009] [Accepted: 09/14/2009] [Indexed: 05/28/2023]
Abstract
Once widespread across western and southern Australia, wild populations of the western barred bandicoot (WBB) are now only found on Bernier and Dorre Islands, Western Australia. Conservation efforts to prevent the extinction of the WBB are presently hampered by a papillomatosis and carcinomatosis syndrome identified in captive and wild bandicoots, associated with infection with the bandicoot papillomatosis carcinomatosis virus type 1 (BPCV1). This study examined the prevalence and distribution of BPCV1 and the associated syndrome in two island and four mainland (reintroduced and captive) WBB populations in Western Australia, and factors that may be associated with susceptibility to this syndrome. BPCV1 and the syndrome were found in the wild WBB population at Red Cliff on Bernier Island, and in mainland populations established from all or a proportion of founder WBBs from Red Cliff. BPCV1 and the syndrome were not found in the wild population on Dorre Island or in the mainland population founded by animals exclusively from Dorre Island. Findings suggested that BPCV1 and the syndrome were disseminated into mainland WBB populations through the introduction of affected WBBs from Red Cliff. No difference in susceptibility to the syndrome was found between Dorre Island, Bernier Island, and island-cross individuals. Severity of lesions and the number of affected animals observed in captivity was greater than that observed in wild populations. This study provided epidemiological evidence to support the pathological and molecular association between BPCV1 infection and the papillomatosis and carcinomatosis syndrome and revealed increasing age as an additional risk factor for this disease.
Collapse
Affiliation(s)
- Lucy Woolford
- School of Veterinary and Biomedical Sciences, Murdoch University, South Street, Murdoch, WA, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Li L, Barry P, Yeh E, Glaser C, Schnurr D, Delwart E. Identification of a novel human gammapapillomavirus species. J Gen Virol 2009; 90:2413-2417. [PMID: 19570953 DOI: 10.1099/vir.0.012344-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
By using random PCR amplification, shotgun sequencing and sequence similarity searches, we analysed nucleic acids present in cell cultures inoculated with samples from unexplained cases of encephalitis. We identified a divergent human papillomavirus (HPV) sequence originating from a rectal swab. The full genome was amplified by inverse PCR and sequenced. The prototype of the sixth gammapapillomavirus species, HPV116, was not found in the patient's cerebrospinal fluid or respiratory secretions, nor in culture supernatants from other unexplained cases of encephalitis, indicating that its identification in an encephalitis patient was accidental.
Collapse
Affiliation(s)
- Linlin Li
- Department of Laboratory Medicine, University of California, San Francisco, CA 94118, USA
- Blood Systems Research Institute, San Francisco, CA 94118, USA
| | - Pennan Barry
- Department of Medicine, University of California, San Francisco, CA 94143, USA
| | - Elaine Yeh
- Viral and Rickettsial Disease Laboratory, California Department of Public Health, Richmond, CA 94804, USA
| | - Carol Glaser
- Viral and Rickettsial Disease Laboratory, California Department of Public Health, Richmond, CA 94804, USA
| | - David Schnurr
- Viral and Rickettsial Disease Laboratory, California Department of Public Health, Richmond, CA 94804, USA
| | - Eric Delwart
- Department of Laboratory Medicine, University of California, San Francisco, CA 94118, USA
- Blood Systems Research Institute, San Francisco, CA 94118, USA
| |
Collapse
|
36
|
Stevens H, Rector A, Van Der Kroght K, Van Ranst M. Isolation and cloning of two variant papillomaviruses from domestic pigs: Sus scrofa papillomaviruses type 1 variants a and b. J Gen Virol 2008; 89:2475-2481. [PMID: 18796716 DOI: 10.1099/vir.0.2008/003186-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The healthy skin of two female domestic pigs (Sus scrofa domestica) was sampled with cotton-tipped swabs. Total genomic DNA was extracted from the samples and subjected to PCR with degenerate papillomavirus (PV)-specific primers. Similarity searches performed with blastn showed that partial E1 and L1 sequences of two novel PVs were amplified. Subsequently, the complete genomes of these Sus scrofa papillomaviruses (SsPVs) were amplified by long-template PCR, cloned and sequenced using a transposon insertion method. They contained the typical PV open reading frames (ORFs) E1, E2, E4, E6, L1 and L2, but the E7 ORF was absent in both viruses. Pairwise nucleotide sequence alignment of the L1 ORFs of the SsPVs showed 98.5 % similarity, classifying these viruses as SsPV type 1 'variants' (SsPV-1a and -1b). Based on a concatenated alignment of the E1, E2, L1 and L2 ORFs of SsPV-1 variants a and b, and 81 other human and animal PV type species, a neighbour-joining phylogenetic tree was constructed. This phylogenetic analysis showed that the SsPV-1a and -1b variants did not cluster with the other PVs of artiodactyls (cloven-hoofed) host species, but clustered on the edge of the genus Alphapapillomavirus, very near to the root of this genus.
Collapse
Affiliation(s)
- Hans Stevens
- Laboratory of Clinical and Epidemiological Virology, Rega Institute for Medical Research, University of Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | - Annabel Rector
- Laboratory of Clinical and Epidemiological Virology, Rega Institute for Medical Research, University of Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | - Kees Van Der Kroght
- Laboratory of Clinical and Epidemiological Virology, Rega Institute for Medical Research, University of Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | - Marc Van Ranst
- Laboratory of Clinical and Epidemiological Virology, Rega Institute for Medical Research, University of Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| |
Collapse
|
37
|
Rector A, Stevens H, Lacave G, Lemey P, Mostmans S, Salbany A, Vos M, Van Doorslaer K, Ghim SJ, Rehtanz M, Bossart GD, Jenson AB, Van Ranst M. Genomic characterization of novel dolphin papillomaviruses provides indications for recombination within the Papillomaviridae. Virology 2008; 378:151-61. [PMID: 18579177 DOI: 10.1016/j.virol.2008.05.020] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2008] [Revised: 04/29/2008] [Accepted: 05/16/2008] [Indexed: 10/21/2022]
Abstract
Phylogenetic analysis of novel dolphin (Tursiops truncatus) papillomavirus sequences, TtPV1, -2, and -3, indicates that the early and late protein coding regions of their genomes differ in evolutionary history. Sliding window bootscan analysis showed a significant a change in phylogenetic clustering, in which the grouped sequences of TtPV1 and -3 move from a cluster with the Phocoena spinipinnis PsPV1 in the early region to a cluster with TtPV2 in the late region. This provides indications for a possible recombination event near the end of E2/beginning of L2. A second possible recombination site could be located near the end of L1, in the upstream regulatory region. Selection analysis by using maximum likelihood models of codon substitutions ruled out the possibility of intense selective pressure, acting asymmetrically on the viral genomes, as an alternative explanation for the observed difference in evolutionary history between the early and late genomic regions of these cetacean papillomaviruses.
Collapse
Affiliation(s)
- Annabel Rector
- Laboratory of Clinical Virology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Woolford L, O'Hara AJ, Bennett MD, Slaven M, Swan R, Friend JA, Ducki A, Sims C, Hill S, Nicholls PK, Warren KS. Cutaneous papillomatosis and carcinomatosis in the Western barred bandicoot (Perameles bougainville). Vet Pathol 2008; 45:95-103. [PMID: 18192585 DOI: 10.1354/vp.45-1-95] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A progressive wart-like syndrome in both captive and wild populations of the Western barred bandicoot (WBB) is hindering conservation efforts to prevent the extinction of this endangered marsupial. In this study, 42 WBBs exhibiting the papillomatosis and carcinomatosis syndrome were examined. The disease was characterized by multicentric proliferative lesions involving cutaneous and mucosal surfaces, which were seen clinically to increase in size with time. Grossly and histologically the smaller skin lesions resembled papillomas, whereas the larger lesions were most commonly observed to be squamous cell carcinomas. Large amphophilic intranuclear inclusion bodies were observed in hyperplastic conjunctival lesions of 8 WBBs under light microscopy. Conjunctival lesions from 2 WBBs examined using transmission electron microscopy contained a crystalline array of spherical electron-dense particles of 45-nm diameter, within the nucleus of conjunctival epithelial cells, consistent with a papillomavirus or polyomavirus. Conjunctival samples from 3 bandicoots that contained intranuclear inclusion bodies also demonstrated a positive immunohistochemical reaction after indirect immunohistochemistry for papillomavirus structural antigens. Ultrastructural and/or immunohistochemical evidence of an etiologic agent was not identified in the nonconjunctival lesions examined. Here we describe the gross, histopathologic, ultrastructural, and immunohistochemical findings of a papillomatosis and carcinomatosis syndrome recently identified in the WBB.
Collapse
Affiliation(s)
- L Woolford
- School of Veterinary and Biomedical Sciences, Murdoch University, Western Australia, Australia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Manire CA, Stacy BA, Kinsel MJ, Daniel HT, Anderson ET, Wellehan JFX. Proliferative dermatitis in a loggerhead turtle, Caretta caretta, and a green turtle, Chelonia mydas, associated with novel papillomaviruses. Vet Microbiol 2008; 130:227-37. [PMID: 18328645 DOI: 10.1016/j.vetmic.2008.01.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2007] [Revised: 01/12/2008] [Accepted: 01/22/2008] [Indexed: 10/22/2022]
Abstract
A subadult loggerhead turtle, Caretta caretta, presented with generalized small, white, raised lesions over its neck, shoulders, and all four flippers. A juvenile green turtle, Chelonia mydas, recently treated for fibropapillomatosis, presented with four similar localized lesions on one flipper. To diagnose the conditions, biopsies of the lesions were taken for histopathology, electron microscopy, and molecular diagnostics. Histopathologic findings were similar in the two turtles and skin lesions were characterized by multifocal areas of epidermal hyperplasia accompanied by variation and abnormalities in the nuclear morphology of keratinocytes and a few intranuclear inclusions in some cells. Transmission electron microscopy revealed multiple epithelial cells with large intranuclear aggregates of virions consistent in morphology with papillomavirus. Papillomavirus was detected in samples from both turtles by polymerase chain reaction (PCR). Sequence analysis of the partial sequence of the papillomavirus E1 gene revealed two viruses (CcPV and CmPV) that were distinct from each other and from other species in Papillomaviridae, and likely represent two novel species and perhaps a new genus.
Collapse
Affiliation(s)
- Charles A Manire
- Mote Marine Laboratory and Aquarium, 1600 Ken Thompson Parkway, Sarasota, FL 34236, USA.
| | | | | | | | | | | |
Collapse
|
40
|
Abstract
Cervical cancer is not only the most frequently reported cancer among women, but also the most common female genital tract neoplasm in Taiwan. Early detection is effective, because the development, maintenance and progression of precursor lesions (cervical intraepithelial neoplasia [CIN]) evolve slowly into invasive cancer, typically over a period of more than 10 years. It is now recognized that human papillomavirus (HPV) infection is a necessary cause for over 99% of cervical cancer cases. Advances in the understanding of the causative role of HPV in the etiology of high-grade cervical lesions (CIN 2/3) and cervical cancer have led to the development, evaluation and recommendation of HPV-based technologies for cervical cancer prevention and control. The prevention of HPV infection before the onset of CIN is now possible with recently available prophylactic HPV vaccines, e.g. the quadrivalent Gardasil (Merck & Co., NJ, USA) and bivalent Cervarix (GlaxoSmithKline, London, UK). This review article provides an up-to-date summary of recent studies and available information concerning HPV and vaccination in cervical cancer.
Collapse
Affiliation(s)
- Kung-Liahng Wang
- Department of Obstetrics and Gynecology, Mackay Memorial Hospital, National Taipei College of Nursing, Taipei, Taiwan.
| |
Collapse
|
41
|
Stevens H, Rector A, Bertelsen MF, Leifsson PS, Van Ranst M. Novel papillomavirus isolated from the oral mucosa of a polar bear does not cluster with other papillomaviruses of carnivores. Vet Microbiol 2007; 129:108-16. [PMID: 18215475 DOI: 10.1016/j.vetmic.2007.11.037] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2007] [Revised: 11/15/2007] [Accepted: 11/21/2007] [Indexed: 10/22/2022]
Abstract
Papillomatosis has been documented in several carnivores, and papillomavirus (PV) types have been characterized from lesions in a number of carnivore species: the canine oral PV (COPV), the Felis domesticus PV type 1 (FdPV-1) isolated from a Persian cat, the Procyon lotor PV type 1 (PlPV-1) isolated from a raccoon, the canine PV type 2 (CPV-2) from a dog's foot pad lesion and the canine PV type 3 (CPV-3) associated with a canine epidermodysplasia verruciformis - like disease. A tissue sample was taken from a papillomatous lesion on the oral mucosa of a polar bear (Ursus maritimus). Extracted DNA was used as a template for multiply primed rolling-circle amplification (RCA), and restriction enzyme analysis of the RCA product indicated the presence of papillomaviral DNA. The genome of this PV was cloned and the complete genomic sequence was determined. The Ursus maritimus PV type 1 (UmPV-1) genome counts 7582 basepairs and is smaller than that of other papillomaviruses from carnivore species. UmPV-1 contains the typical noncoding region NCR1, but unlike the carnivore PVs of the Lambda genus, UmPV-1 does not possess a second noncoding region NCR2. Phylogenetic analysis based on a nucleotide sequence alignment of the L1 ORF of UmPV-1 and 51 other PV types indicates that UmPV-1 does not cluster with any of the other carnivore PVs, but branches off near the root of the common branch of the genus Alphapapillomavirus.
Collapse
Affiliation(s)
- Hans Stevens
- Laboratory of Clinical and Epidemiological Virology, Rega Institute, University of Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | | | | | | | | |
Collapse
|
42
|
Abstract
Human papillomaviruses complete their life cycle in differentiating epithelial cells that would not normally be competent for either cellular or viral DNA replication. To overcome this, papillomaviruses encode two groups of proteins that work together in the upper epithelial layers to amplify viral genomes. The E6 and E7 proteins play a critical role in driving differentiating epithelial cells that have left the basal layer, back into the cell cycle, in order to produce a replication-competent environment that can be used by the virus for genome amplification. Papillomavirus replication is heavily dependent on cellular replication proteins, but in addition needs the viral E1 and E2 proteins, which act to unwind viral DNA around the origin of replication, and to recruit essential cellular proteins to the replication site. Recent work using mutant viral genomes has suggested that two other viral proteins, E4 and E5, contribute to efficient replication in the upper epithelial layers, although the mechanisms by which they do this have not yet been clearly established. Genome amplification in the upper epithelial layers differs from maintenance replication in the basal layer, where viral genome replication appears coupled to that of the cellular genome. The onset of genome amplification during differentiation is thought to be triggered at least in part by an increase in E1 and E2 levels, and possibly also by a change in the relative levels of the two proteins. The role of E6 and E7 in basal cell replication is, however, uncertain and there is even some question as to the exact requirement for E1. Although similarities in papillomavirus lifecycle organization and protein function suggest a common mechanism by which viral DNA replication is regulated, differences in the site of infection and transmission route appear to manifest themselves as differences in the timing and extent of genome amplification. Understanding the patterns of protein expression seen during natural infection will be important in fully understanding how these differences arise.
Collapse
Affiliation(s)
- John Doorbar
- National Institute for Medical Research, Division of Virology, The Ridgeway, Mill Hill, London, NW7 1AA, UK
| | - Kenneth Raj
- National Institute for Medical Research, Division of Virology, The Ridgeway, Mill Hill, London, NW7 1AA, UK
| |
Collapse
|
43
|
Bravo IG, Alonso A. Phylogeny and evolution of papillomaviruses based on the E1 and E2 proteins. Virus Genes 2007; 34:249-62. [PMID: 16927128 DOI: 10.1007/s11262-006-0017-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2006] [Accepted: 06/09/2006] [Indexed: 12/26/2022]
Abstract
Papillomaviridae are a family of small double-stranded DNA viruses that infect stratified squamous epithelia in vertebrates. Members of this family are causative agents of malignant tumours, such as cervical cancer while others are associated with benign proliferative lesions. So far, Papillomaviruses (PVs) are classified according to the sequence identity in the capsid gene L1. However, evidence has accumulated indicating a discontinuity in the evolutionary history of the L1 and L2 genes of many PVs, giving rise to differences in the phylogenetic reconstructions of the early and of the late genes. Neither the oncogenes E5, E6 and E7 nor the upstream regulatory region are suitable for phylogenetic inference due to the poor conservation along the Papillomaviridae family. We have analysed here the evolutionary relationships of the PVs with respect to the E1 and E2 proteins, and the results provide both phylogeny and biologic behaviour of the viruses. The hierarchical taxonomic relationships can be structured as an alternative classification system in which mucosal high-risk viruses, mucosal low-risk viruses and viruses associated with cutaneous lesions are grouped separately and do not appear intermingled. Some important trends are also observed: first, evolution of the PVs has not been homogeneous, even in viruses that infect the same host, and second mucosal human PVs have evolved faster than their cutaneous counterparts. The evolutionary analysis based on the E1 and E2 proteins will allow us to better understand the generation of the diversity of the PVs and the development of malignancy associated with these viruses.
Collapse
Affiliation(s)
- Ignacio G Bravo
- Deutsches Krebsforschungszentrum (F050), Im Neuenheimer Feld-242, 69120 Heidelberg, Germany.
| | | |
Collapse
|
44
|
Van Doorslaer K, Rector A, Jenson AB, Sundberg JP, Van Ranst M, Ghim SJ. Complete genomic characterization of a murine papillomavirus isolated from papillomatous lesions of a European harvest mouse (Micromys minutus). J Gen Virol 2007; 88:1484-1488. [PMID: 17412977 DOI: 10.1099/vir.0.82615-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The papillomaviruses form a large group of species-specific pathogens that cause epithelial proliferations in a wide spectrum of animal hosts. Previous reports demonstrated a relatively high frequency of a variety of skin lesions in captive European harvest mice. The Micromys minutus papillomavirus (MmPV) was isolated from one of these lesions found on a captive European harvest mouse in a regional zoo in Chicago. In this study we present the entire genomic sequence of MmPV. The MmPV genome is organized into the seven classical papillomaviral open reading frames. Phylogenetic analysis places MmPV together with a papillomavirus (PV) isolated from a Syrian golden Hamster (HaOPV) in the genus Pipapillomavirus. The similar clustering pattern of the MmPV–HaOPV pair and their rodent hosts support the hypothesis of papillomaviral and host co-phylogenetic descent. The availability of the complete genomic sequence of a mouse PV should allow researchers to use MmPV as a model for PV carcinogenesis.
Collapse
Affiliation(s)
- Koenraad Van Doorslaer
- Laboratory of Clinical and Epidemiological Virology, Rega Institute for Medical Research, University of Leuven, Belgium
| | - Annabel Rector
- Laboratory of Clinical and Epidemiological Virology, Rega Institute for Medical Research, University of Leuven, Belgium
| | - A Bennett Jenson
- The James Graham Brown Cancer Center, University of Louisville, KY, USA
| | | | - Marc Van Ranst
- Laboratory of Clinical and Epidemiological Virology, Rega Institute for Medical Research, University of Leuven, Belgium
| | - Shin-Je Ghim
- The James Graham Brown Cancer Center, University of Louisville, KY, USA
| |
Collapse
|
45
|
Abstract
Papillomaviruses are a group of ubiquitous viruses that are often found in normal skin of humans, as well as a range of different vertebrates. In this study, swab samples collected from the healthy skin of 225 Australian animals from 54 species were analysed for the presence of papillomavirus DNA with the general skin papillomavirus primer pair FAP59/FAP64. A total of five putative and potential new animal papillomavirus types were identified from three different animal species. The papillomaviruses were detected in one monotreme and two marsupial species: three from koalas, and one each from an Eastern grey kangaroo and an echidna. The papillomavirus prevalence in the three species was 14 % (10/72) in koalas, 20 % (1/5) in echidnas and 4 % (1/23) in Eastern grey kangaroos. Phylogenetic analysis was performed on the putative koala papillomavirus type that could be cloned and it appears in the phylogenetic tree as a novel putative papillomavirus genus. The data extend the range of species infected by papillomaviruses to the most primitive mammals: the monotremes and the marsupials.
Collapse
Affiliation(s)
- Annika Antonsson
- Centre for Immunology and Cancer Research, University of Queensland, Princess Alexandra Hospital, Brisbane, QLD 4102, Australia
| | - Nigel A J McMillan
- Centre for Immunology and Cancer Research, University of Queensland, Princess Alexandra Hospital, Brisbane, QLD 4102, Australia
| |
Collapse
|
46
|
Snoeck R. Papillomavirus and treatment. Antiviral Res 2006; 71:181-91. [PMID: 16831473 DOI: 10.1016/j.antiviral.2006.06.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2006] [Revised: 06/16/2006] [Accepted: 06/16/2006] [Indexed: 12/12/2022]
Abstract
Human papillomaviruses (HPVs) are small DNA viruses responsible for a broad range of clinical presentations, characterized histologically by the proliferation of epithelial cells. HPVs are responsible for benign as well as malignant lesions, the most frequent of the latter being cervical carcinoma. A better knowledge of the immunobiology of these lesions allowed the development of prophylactic vaccines (for the most frequent genital types) that are presently under evaluation. The present paper describes different approaches for the treatment of HPV lesions, still mostly based on surgery, and underlines the importance of developing adjuvant therapies.
Collapse
Affiliation(s)
- Robert Snoeck
- Rega Institute for Medical Research, K.U. Leuven, Belgium.
| |
Collapse
|
47
|
Rector A, Mostmans S, Van Doorslaer K, McKnight CA, Maes RK, Wise AG, Kiupel M, Van Ranst M. Genetic characterization of the first chiropteran papillomavirus, isolated from a basosquamous carcinoma in an Egyptian fruit bat: the Rousettus aegyptiacus papillomavirus type 1. Vet Microbiol 2006; 117:267-75. [PMID: 16854536 PMCID: PMC7127635 DOI: 10.1016/j.vetmic.2006.06.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2006] [Revised: 05/24/2006] [Accepted: 06/12/2006] [Indexed: 11/24/2022]
Abstract
The complete genomic DNA of a novel papillomavirus (PV) was isolated from a basosquamous carcinoma on the wing of an Egyptian fruit bat (Rousettus aegyptiacus). Initial short sequences of the E1 and L1 genes of this virus were retrieved by PCR with degenerate papillomavirus-specific primers, and the entire R. aegyptiacus papillomavirus type 1 (RaPV-1) DNA was then amplified by long template PCR, cloned and sequenced with a transposon insertion method. The RaPV-1 genome counts 7970 basepairs and contains the typical papillomavirus open reading frames (ORF) (E1, E2, E4, E6, E7, L1 and L2). Based on a concatenated alignment of the E1, E2, L1 and L2 open reading frames of RaPV-1 and 46 other human and animal papillomavirus type species, a neighbor-joining phylogenetic tree was constructed. This phylogenetic analysis shows that RaPV-1 has a close-to-root position in the papillomavirus evolutionary tree. Since RaPV-1 is only distantly related to other papillomaviruses (with maximally 50% nucleotide sequence identity across the L1 open reading frame), it cannot be assigned to one of the existing papillomavirus genera and therefore represents the first member of a novel, as yet unnamed, close-to-root papillomavirus genus. This is the first time a papillomavirus has been isolated and characterized from a member of the Chiroptera order.
Collapse
Affiliation(s)
- Annabel Rector
- Laboratory of Clinical & Epidemiological Virology, Rega Institute, University of Leuven, Minderbroedersstraat 10, Leuven, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Van Doorslaer K, Rector A, Vos P, Van Ranst M. Genetic characterization of the Capra hircus papillomavirus: A novel close-to-root artiodactyl papillomavirus. Virus Res 2006; 118:164-9. [PMID: 16430985 DOI: 10.1016/j.virusres.2005.12.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2005] [Revised: 12/14/2005] [Accepted: 12/14/2005] [Indexed: 11/23/2022]
Abstract
The healthy skin of a seven-year-old female goat (Capra hircus) was sampled with a cotton tip swab. Total genomic DNA was extracted from the sample and subjected to multiply primed rolling-circle amplification (RCA). Restriction analysis showed that the complete genome of a papillomavirus was amplified, measuring approximately 7,600 bp in length. The Capra hircus papillomavirus (ChPV-1) genome was cloned from this rolling-circle amplification product, and the complete nucleotide sequence was determined. The ChPV-1 genome counts 7,542 bp, and contains the typical papillomaviral open reading frames (ORFs). Based on a concatenated alignment of the E1, E2, L1 and L2 open reading frames of ChPV-1 and 54 other animal and human papillomavirus types, a neighbor-joining phylogenetic tree was constructed. In this tree ChPV-1 clusters with BPV-3, -4 and -6. Pairwise nucleotide sequence alignments of the L1 open reading frame of ChPV-1 with its closest relatives showed less than 60% similarity, placing the ChPV-1 in a novel genus.
Collapse
Affiliation(s)
- Koenraad Van Doorslaer
- Laboratory of Clinical and Epidemiological Virology, Rega Institute for Medical Research, University of Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | | | | | | |
Collapse
|
49
|
García-Vallvé S, Alonso A, Bravo IG. Papillomaviruses: different genes have different histories. Trends Microbiol 2005; 13:514-21. [PMID: 16181783 DOI: 10.1016/j.tim.2005.09.003] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2005] [Revised: 08/25/2005] [Accepted: 09/13/2005] [Indexed: 11/17/2022]
Abstract
Papillomaviruses (PVs) infect stratified squamous epithelia in vertebrates. Some PVs are associated with different types of cancer and with certain benign lesions. It has been assumed that PVs coevolved with their hosts. However, recently it has been shown that different regions of the genome have different evolutionary histories. The PV genome has a modular nature and appeared after the addition of pre-existent blocks. This order of appearance in the PV genome is evident today in the different evolutionary rates of the different genes, with new genes--E5, E6 and E7--diverging faster than old genes--E1, E2, L2 and L1. Here, we propose an evolutionary framework aiming to integrate genome evolution, PV biology and epidemiology of PV infections.
Collapse
Affiliation(s)
- Santiago García-Vallvé
- Evolutionary Genomics Group, Biochemistry and Biotechnology Department, Rovira i Virgili University (URV), c/ Marcel-li Domingo, s/n. Campus Sescelades, 43007 Tarragona, Spain
| | | | | |
Collapse
|
50
|
Rector A, Van Doorslaer K, Bertelsen M, Barker IK, Olberg RA, Lemey P, Sundberg JP, Van Ranst M. Isolation and cloning of the raccoon (Procyon lotor) papillomavirus type 1 by using degenerate papillomavirus-specific primers. J Gen Virol 2005; 86:2029-2033. [PMID: 15958682 DOI: 10.1099/vir.0.80874-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Partial sequences of a novel papillomavirus were amplified from a cutaneous lesion biopsy of a raccoon (Procyon lotor), by using PCR with degenerate papillomavirus-specific primers. The Procyon lotor papillomavirus type 1 (PlPV-1) DNA was amplified with long template PCR in two overlapping fragments, together encompassing the entire genome, and the complete PlPV-1 genomic sequence was determined. The PlPV-1 genome consists of 8170 bp, and contains the typical papillomaviral open reading frames, encoding five early proteins and two late capsid proteins. Besides the classical non-coding region (NCR1) between the end of L1 and the start of E6, PlPV-1 contains an additional non-coding region (NCR2) of 1065 bp between the early and late protein region, which has previously also been described for the canine oral papillomavirus (COPV) and the Felis domesticus papillomavirus (FdPV-1). Phylogenetic analysis places PlPV-1 together with COPV and FdPV-1 in a monophyletic branch which encompasses the Lambda papillomavirus genus.
Collapse
Affiliation(s)
- Annabel Rector
- Laboratory of Clinical and Epidemiological Virology, Rega Institute for Medical Research, University of Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | - Koenraad Van Doorslaer
- Laboratory of Clinical and Epidemiological Virology, Rega Institute for Medical Research, University of Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | - Mads Bertelsen
- Toronto Zoo, Ontario M1B 5K7, Canada
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Ontario N1G 2W1, Canada
| | - Ian K Barker
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Ontario N1G 2W1, Canada
| | - Rolf-Arne Olberg
- Toronto Zoo, Ontario M1B 5K7, Canada
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Ontario N1G 2W1, Canada
| | - Philippe Lemey
- Laboratory of Clinical and Epidemiological Virology, Rega Institute for Medical Research, University of Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | | | - Marc Van Ranst
- Laboratory of Clinical and Epidemiological Virology, Rega Institute for Medical Research, University of Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| |
Collapse
|