1
|
Schalk IJ. Bacterial siderophores: diversity, uptake pathways and applications. Nat Rev Microbiol 2025; 23:24-40. [PMID: 39251840 DOI: 10.1038/s41579-024-01090-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2024] [Indexed: 09/11/2024]
Abstract
Iron is an essential nutrient for the growth, survival and virulence of almost all bacteria. To access iron, many bacteria produce siderophores, molecules with a high affinity for iron. Research has highlighted substantial diversity in the chemical structure of siderophores produced by bacteria, as well as remarkable variety in the molecular mechanisms involved in strategies for acquiring iron through these molecules. The metal-chelating properties of siderophores, characterized by their high affinity for iron and ability to chelate numerous other metals (albeit with lower affinity compared with iron), have also generated interest in diverse fields. Siderophores find applications in the environment, such as in bioremediation and agriculture, in which emerging and innovative strategies are being developed to address pollution and enhance nutrient availability for plants. Moreover, in medicine, siderophores could be used as a tool for novel antimicrobial therapies and medical imaging, as well as in haemochromatosis, thalassemia or cancer treatments. This Review offers insights into the diversity of siderophores, highlighting their potential applications in environmental and medical contexts.
Collapse
|
2
|
Fernandez-Perez J, Senoo A, Caaveiro JMM, Nakakido M, de Vega S, Nakagawa I, Tsumoto K. Structural basis for the ligand promiscuity of the hydroxamate siderophore binding protein FtsB from Streptococcus pyogenes. Structure 2024; 32:2410-2421.e3. [PMID: 39395422 DOI: 10.1016/j.str.2024.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 08/04/2024] [Accepted: 09/17/2024] [Indexed: 10/14/2024]
Abstract
Pathogenic bacteria must secure the uptake of nutritional metals such as iron for their growth, making their import systems attractive targets for the development of new antimicrobial modalities. In the pathogenic bacterium Streptococcus pyogenes, the iron uptake system FtsABCD transports iron encapsulated by siderophores of the hydroxamate class. However, the inability of S. pyogenes to produce these metabolites makes the biological and clinical relevance of this route unresolved. Herein, we demonstrated that the periplasmic binding protein FtsB recognizes not only the hydroxamate siderophore ferrichrome, as previously documented, but also ferrioxamine E (FOE), ferrioxamine B (FOB), and bisucaberin (BIS), each of them with high affinity (nM level). Up to seven aromatic residues in the binding pocket accommodate the variable backbones of the different siderophores through CH-π interactions, explaining ligand promiscuity. Collectively, our observations revealed how S. pyogenes exploits the diverse xenosiderophores produced by other microorganisms as iron sources to secure this precious nutrient.
Collapse
Affiliation(s)
- Jorge Fernandez-Perez
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Akinobu Senoo
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan; Laboratory of Protein Drug Discovery, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Jose M M Caaveiro
- Laboratory of Protein Drug Discovery, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | - Makoto Nakakido
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Susana de Vega
- Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Ichiro Nakagawa
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kouhei Tsumoto
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan; Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan; Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.
| |
Collapse
|
3
|
Akhtar AA, Turner DP. The role of bacterial ATP-binding cassette (ABC) transporters in pathogenesis and virulence: Therapeutic and vaccine potential. Microb Pathog 2022; 171:105734. [PMID: 36007845 DOI: 10.1016/j.micpath.2022.105734] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 11/24/2022]
Abstract
The ATP-binding cassette (ABC) transporter superfamily is found in all domains of life, facilitating critical biological processes through the translocation of a wide variety of substrates from, ions to proteins, across cellular membranes in an ATP-coupled process. The role of ABC transporters in eukaryotes has been well established: the facilitation of genetic diseases and multi-drug resistance (MDR) in cancer patients. In contrast, the role of ABC transporters in prokaryotes has been ambiguous due to their diverse functions and the sheer number of organisms in which they reside. This review examines the role of bacterial ABC transporters in pathogenesis and virulence, and their potential for therapeutic and vaccine application. We demonstrate how ABC transporters play a vital role in the virulence and pathogenesis of several pathogenic bacteria through the import of essential molecules, such as metal ions, amino acids, peptides, vitamins and osmoprotectants, as well as, the export of virulent determinants involved in glycoconjugate biosynthesis and Type I secretion. Furthermore, ABC exporters facilitate the persistence of pathogenic bacteria through the export of toxic xenobiotic substances, thus, contributing to the development of antimicrobial resistance. We also show that ABC transporters display considerable potential for therapeutic application through immunisation and resistance reversal. In conclusion, bacterial ABC transporters play an immense role in virulence and pathogenesis and display desirable traits for clinical use, therefore, potentially aiding in the battle against MDR.
Collapse
Affiliation(s)
- Armaan A Akhtar
- School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom.
| | - David Pj Turner
- School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom
| |
Collapse
|
4
|
He LY, Yu YB, Liu Y, Le YJ, Li S, Yang XY. Immunization with the lipoprotein FtsB stimulates protective immunity against Streptococcus pyogenes infection in mice. Front Microbiol 2022; 13:969490. [PMID: 36016779 PMCID: PMC9396372 DOI: 10.3389/fmicb.2022.969490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/22/2022] [Indexed: 11/13/2022] Open
Abstract
Streptococcus pyogenes is one of the main pathogenic bacteria that causes disease in humans. It is reported that over 18 million cases of S. pyogenes disease occurred in the world, and more than 500,000 deaths occur annually worldwide. An effective vaccine is widely regarded as the most reliable way to control and prevent streptococcal infections. However, there is currently no approved vaccine for S. pyogenes. In this study, we evaluated the potential of lipoprotein FtsB as a new vaccine candidate to prevent S. pyogenes infection. Mice vaccinated with purified FtsB protein elicited high titers of IgG, IgG1 and IgG2a antibodies in mouse serum. Vaccinated with FtsB can reduce bacterial systemic dissemination in the blood, heart, and spleen and reduce organ damage in the mouse bacteremia model. In addition, active immunization with FtsB protected against streptococcal abscess formation. Furthermore, immunization with FtsB was efficient in inducing a mixed cellular immune response and promoting the maturation of dendritic cells in mice. The lipoprotein HtsA was served as a positive control because it has been reported to protect mice from S. pyogenes infection in both active and passive immunization. These findings demonstrated that lipoprotein FtsB may serve as a candidate vaccine for the prevention of S. pyogenes infection.
Collapse
|
5
|
Akbari MS, Doran KS, Burcham LR. Metal Homeostasis in Pathogenic Streptococci. Microorganisms 2022; 10:1501. [PMID: 35893559 PMCID: PMC9331361 DOI: 10.3390/microorganisms10081501] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 02/05/2023] Open
Abstract
Streptococcus spp. are an important genus of Gram-positive bacteria, many of which are opportunistic pathogens that are capable of causing invasive disease in a wide range of populations. Metals, especially transition metal ions, are an essential nutrient for all organisms. Therefore, to survive across dynamic host environments, Streptococci have evolved complex systems to withstand metal stress and maintain metal homeostasis, especially during colonization and infection. There are many different types of transport systems that are used by bacteria to import or export metals that can be highly specific or promiscuous. Focusing on the most well studied transition metals of zinc, manganese, iron, nickel, and copper, this review aims to summarize the current knowledge of metal homeostasis in pathogenic Streptococci, and their role in virulence.
Collapse
Affiliation(s)
| | - Kelly S. Doran
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | | |
Collapse
|
6
|
Nairz M, Weiss G. Iron in infection and immunity. Mol Aspects Med 2020; 75:100864. [PMID: 32461004 DOI: 10.1016/j.mam.2020.100864] [Citation(s) in RCA: 182] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 04/25/2020] [Accepted: 05/05/2020] [Indexed: 12/12/2022]
Abstract
Iron is an essential micronutrient for virtually all living cells. In infectious diseases, both invading pathogens and mammalian cells including those of the immune system require iron to sustain their function, metabolism and proliferation. On the one hand, microbial iron uptake is linked to the virulence of most human pathogens. On the other hand, the sequestration of iron from bacteria and other microorganisms is an efficient strategy of host defense in line with the principles of 'nutritional immunity'. In an acute infection, host-driven iron withdrawal inhibits the growth of pathogens. Chronic immune activation due to persistent infection, autoimmune disease or malignancy however, sequesters iron not only from infectious agents, autoreactive lymphocytes and neoplastic cells but also from erythroid progenitors. This is one of the key mechanisms which collectively result in the anemia of chronic inflammation. In this review, we highlight the most important interconnections between iron metabolism and immunity, focusing on host defense against relevant infections and on the clinical consequences of anemia of inflammation.
Collapse
Affiliation(s)
- Manfred Nairz
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, Austria
| | - Günter Weiss
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, Austria; Christian Doppler Laboratory for Iron Metabolism and Anemia Research, Medical University of Innsbruck, Austria.
| |
Collapse
|
7
|
Chatterjee N, Cook LCC, Lyles KV, Nguyen HAT, Devlin DJ, Thomas LS, Eichenbaum Z. A Novel Heme Transporter from the Energy Coupling Factor Family Is Vital for Group A Streptococcus Colonization and Infections. J Bacteriol 2020; 202:e00205-20. [PMID: 32393520 PMCID: PMC7317044 DOI: 10.1128/jb.00205-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 05/04/2020] [Indexed: 12/16/2022] Open
Abstract
Group A streptococcus (GAS) produces millions of infections worldwide, including mild mucosal infections, postinfection sequelae, and life-threatening invasive diseases. During infection, GAS readily acquires nutritional iron from host heme and hemoproteins. Here, we identified a new heme importer, named SiaFGH, and investigated its role in GAS pathophysiology. The SiaFGH proteins belong to a group of transporters with an unknown ligand from the recently described family of energy coupling factors (ECFs). A siaFGH deletion mutant exhibited high streptonigrin resistance compared to the parental strain, suggesting that iron ions or an iron complex is the likely ligand. Iron uptake and inductively coupled plasma mass spectrometry (ICP-MS) studies showed that the loss of siaFGH did not impact GAS import of ferric or ferrous iron, but the mutant was impaired in using hemoglobin iron for growth. Analysis of cells growing on hemoglobin iron revealed a substantial decrease in the cellular heme content in the mutant compared to the complemented strain. The induction of the siaFGH genes in trans resulted in the induction of heme uptake. The siaFGH mutant exhibited a significant impairment in murine models of mucosal colonization and systemic infection. Together, the data show that SiaFGH is a new type of heme importer that is key for GAS use of host hemoproteins and that this system is imperative for bacterial colonization and invasive infection.IMPORTANCE ECF systems are new transporters that take up various vitamins, cobalt, or nickel with a high affinity. Here, we establish the GAS SiaFGH proteins as a new ECF module that imports heme and demonstrate its importance in virulence. SiaFGH is the first heme ECF system described in bacteria. We identified homologous systems in the genomes of related pathogens from the Firmicutes phylum. Notably, GAS and other pathogens that use a SiaFGH-type importer rely on host hemoproteins for a source of iron during infection. Hence, recognizing the function of this noncanonical ABC transporter in heme acquisition and the critical role that it plays in disease has broad implications.
Collapse
Affiliation(s)
| | - Laura C C Cook
- Binghamton Biofilm Research Center, Department of Biology, Binghamton University, Binghamton, New York, USA
| | - Kristin V Lyles
- Department of Biology, Georgia State University, Atlanta, Georgia, USA
| | - Hong Anh T Nguyen
- Department of Biology, Georgia State University, Atlanta, Georgia, USA
| | - Darius J Devlin
- Department of Biology, Georgia State University, Atlanta, Georgia, USA
| | - Lamar S Thomas
- Binghamton Biofilm Research Center, Department of Biology, Binghamton University, Binghamton, New York, USA
| | - Zehava Eichenbaum
- Department of Biology, Georgia State University, Atlanta, Georgia, USA
| |
Collapse
|
8
|
Do H, Makthal N, Chandrangsu P, Olsen RJ, Helmann JD, Musser JM, Kumaraswami M. Metal sensing and regulation of adaptive responses to manganese limitation by MtsR is critical for group A streptococcus virulence. Nucleic Acids Res 2019; 47:7476-7493. [PMID: 31188450 PMCID: PMC6698748 DOI: 10.1093/nar/gkz524] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/29/2019] [Accepted: 06/03/2019] [Indexed: 01/24/2023] Open
Abstract
Pathogenic bacteria encounter host-imposed manganese (Mn) limitation during infection. Herein we report that in the human pathogen Streptococcus pyogenes, the adaptive response to Mn limitation is controlled by a DtxR family metalloregulator, MtsR. Genes upregulated by MtsR during Mn limitation include Mn (mtsABC) and Fe acquisition systems (sia operon), and a metal-independent DNA synthesis enzyme (nrdFEI.2). To elucidate the mechanism of metal sensing and gene regulation by MtsR, we determined the crystal structure of MtsR. MtsR employs two Mn-sensing sites to monitor metal availability, and metal occupancy at each site influences MtsR regulatory activity. The site 1 acts as the primary Mn sensing site, and loss of metal at site 1 causes robust upregulation of mtsABC. The vacant site 2 causes partial induction of mtsABC, indicating that site 2 functions as secondary Mn sensing site. Furthermore, we show that the C-terminal FeoA domains of adjacent dimers participate in the oligomerization of MtsR on DNA, and multimerization is critical for MtsR regulatory activity. Finally, the mtsR mutant strains defective in metal sensing and oligomerization are attenuated for virulence in a mouse model of invasive infection, indicating that Mn sensing and gene regulation by MtsR are critical processes during S. pyogenes infection.
Collapse
Affiliation(s)
- Hackwon Do
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Nishanth Makthal
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Pete Chandrangsu
- Department of Microbiology, Cornell University, Ithaca, NY 14853-8101, USA.,W.M. Keck Science Department, Claremont McKenna, Pitzer and Scripps College, Claremont, CA 91711, USA
| | - Randall J Olsen
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX 77030, USA.,Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, NY 10021, USA
| | - John D Helmann
- Department of Microbiology, Cornell University, Ithaca, NY 14853-8101, USA
| | - James M Musser
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX 77030, USA.,Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, NY 10021, USA
| | - Muthiah Kumaraswami
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX 77030, USA
| |
Collapse
|
9
|
Comparative genomics of Sphingopyxis spp. unravelled functional attributes. Genomics 2019; 112:1956-1969. [PMID: 31740292 DOI: 10.1016/j.ygeno.2019.11.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 11/12/2019] [Accepted: 11/14/2019] [Indexed: 01/01/2023]
Abstract
Members of genus Sphingopyxis are known to thrive in diverse environments. Genomes of 21 Sphingopyxis strains were selected. Phylogenetic analysis was performed using GGDC, AAI and core-SNP showed agreement at sub-species level. Based on our results, we propose that both S. baekryungensis DSM16222 and Sphingopyxis sp. LPB0140 strains should not be included under genus Sphingopyxis. Core-analysis revealed, 1422 genes were shared which included essential pathways and genes for conferring adaptation against stress environment. Polyhydroxybutyrate degradation, anaerobic respiration, type IV secretion were notable abundant pathways and exopolysaccharide, hyaluronic acid production and toxin-antitoxin system were differentially present families. Interestingly, genome of S. witflariensis DSM14551, Sphingopyxis sp. MG and Sphingopyxis sp. FD7 provided a hint of probable pathogenic abilities. Protein-Protein Interactome depicted that membrane proteins and stress response has close integration with core-proteins while aromatic compounds degradation and virulence ability formed a separate network. Thus, these should be considered as strain specific attributes.
Collapse
|
10
|
Group A Streptococcus co-ordinates manganese import and iron efflux in response to hydrogen peroxide stress. Biochem J 2019; 476:595-611. [PMID: 30670571 DOI: 10.1042/bcj20180902] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/17/2019] [Accepted: 01/17/2019] [Indexed: 01/08/2023]
Abstract
Bacterial pathogens encounter a variety of adverse physiological conditions during infection, including metal starvation, metal overload and oxidative stress. Here, we demonstrate that group A Streptococcus (GAS) utilises Mn(II) import via MtsABC during conditions of hydrogen peroxide stress to optimally metallate the superoxide dismutase, SodA, with Mn. MtsABC expression is controlled by the DtxR family metalloregulator MtsR, which also regulates the expression of Fe uptake systems in GAS. Our results indicate that the SodA in GAS requires Mn for full activity and has lower activity when it contains Fe. As a consequence, under conditions of hydrogen peroxide stress where Fe is elevated, we observed that the PerR-regulated Fe(II) efflux system PmtA was required to reduce intracellular Fe, thus protecting SodA from becoming mismetallated. Our findings demonstrate the co-ordinate action of MtsR-regulated Mn(II) import by MtsABC and PerR-regulated Fe(II) efflux by PmtA to ensure appropriate Mn(II) metallation of SodA for optimal superoxide dismutase function.
Collapse
|
11
|
Disruption of a Novel Iron Transport System Reverses Oxidative Stress Phenotypes of a dpr Mutant Strain of Streptococcus mutans. J Bacteriol 2018; 200:JB.00062-18. [PMID: 29735760 DOI: 10.1128/jb.00062-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/30/2018] [Indexed: 01/30/2023] Open
Abstract
The Dps-like peroxide resistance protein (Dpr) is essential for H2O2 stress tolerance and aerobic growth of the oral pathogen Streptococcus mutans Dpr accumulates during oxidative stress, protecting the cell by sequestering iron ions and thereby preventing the generation of toxic hydroxyl radicals that result from the interaction of iron with H2O2 Previously, we reported that the SpxA1 and SpxA2 regulators positively regulate expression of dpr in S. mutans Using an antibody raised against S. mutans Dpr, we confirmed at the protein level the central and cooperative nature of SpxA1 and SpxA2 regulation in Dpr production. During phenotypic characterization of the S. mutans Δdpr strain, we observed the appearance of distinct colony variants, which sometimes lost the oxidative stress sensitivity typical of Δdpr strains. Whole-genome sequencing of these phenotypically distinct Δdpr isolates revealed that a putative iron transporter operon, smu995-smu998, was a genomic hot spot with multiple single nucleotide polymorphisms identified within the different isolates. Deletion of smu995 or the entire smu995-smu998 operon in the Δdpr background strain completely reversed the oxidative stress-sensitive phenotypes associated with dpr inactivation. Conversely, inactivation of genes encoding the ferrous iron transport system FeoABC did not alleviate phenotypes of the Δdpr strain. Preliminary characterization of strains lacking smu995-smu998, feoABC, and the iron/manganese transporter gene sloABC revealed the interactive nature of these three systems in iron transport but also indicated that there may be additional iron uptake systems in S. mutansIMPORTANCE The dental caries-associated pathogen Streptococcus mutans routinely encounters oxidative stress within the human plaque biofilm. Previous studies revealed that the iron-binding protein Dpr confers protection toward oxidative stress by limiting free iron availability, which is associated with the generation of toxic hydroxyl radicals. Here, we report the identification of spontaneously occurring mutations within Δdpr strains. Several of those mutations were mapped to the operon smu995-smu998, revealing a previously uncharacterized system that appears to be important in iron acquisition. Disruption of the smu995-smu998 operon resulted in reversion of the stress-sensitive phenotype typical of a Δdpr strain. Our data suggest that the Smu995-Smu998 system works along with other known metal transport systems of S. mutans, i.e., FeoABC and SloABC, to coordinate iron uptake.
Collapse
|
12
|
Song Y, Zhang X, Cai M, Lv C, Zhao Y, Wei D, Zhu H. The Heme Transporter HtsABC of Group A Streptococcus Contributes to Virulence and Innate Immune Evasion in Murine Skin Infections. Front Microbiol 2018; 9:1105. [PMID: 29887858 PMCID: PMC5981463 DOI: 10.3389/fmicb.2018.01105] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/08/2018] [Indexed: 02/06/2023] Open
Abstract
Group A Streptococcus (GAS) requires iron for growth, and heme is an important source of iron for GAS. Streptococcus heme transporter A (HtsA) is the lipoprotein component of the GAS heme-specific ABC transporter (HtsABC). The objective of this study is to examine the contribution of HtsABC to virulence and host interaction of hypervirulent M1T1 GAS using an isogenic htsA deletion mutant (ΔhtsA). The htsA deletion exhibited a significantly increased survival rate, reduced skin lesion size, and reduced systemic GAS dissemination in comparison to the wild type strain. The htsA deletion also decreased the GAS adhesion rate to Hep-2 cells, the survival in human blood and rat neutrophils, and increased the production of cytokine IL-1β, IL-6, and TNF-α levels in air pouch exudate of a mouse model of subcutaneous infection. Complementation of ΔhtsA restored the wild type phenotype. These findings support that the htsA gene is required for GAS virulence and that the htsA deletion augments host innate immune responses.
Collapse
Affiliation(s)
- Yingli Song
- Department of Physiology, Harbin Medical University, Harbin, China
| | - Xiaolan Zhang
- Department of Physiology, Harbin Medical University, Harbin, China
| | - Minghui Cai
- Department of Physiology, Harbin Medical University, Harbin, China
| | - Chunmei Lv
- Department of Physiology, Harbin Medical University, Harbin, China
| | - Yuan Zhao
- Department of Physiology, Harbin Medical University, Harbin, China
| | - Deqin Wei
- Department of Physiology, Harbin Medical University, Harbin, China
| | - Hui Zhu
- Department of Physiology, Harbin Medical University, Harbin, China
| |
Collapse
|
13
|
Silva WM, Carvalho RDDO, Dorella FA, Folador EL, Souza GHMF, Pimenta AMC, Figueiredo HCP, Le Loir Y, Silva A, Azevedo V. Quantitative Proteomic Analysis Reveals Changes in the Benchmark Corynebacterium pseudotuberculosis Biovar Equi Exoproteome after Passage in a Murine Host. Front Cell Infect Microbiol 2017; 7:325. [PMID: 28791255 PMCID: PMC5524672 DOI: 10.3389/fcimb.2017.00325] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 07/03/2017] [Indexed: 11/13/2022] Open
Abstract
Corynebacterium pseudotuberculosis biovar equi is the etiologic agent of ulcerative lymphangitis. To investigate proteins that could be related to the virulence of this pathogen, we combined an experimental passage process using a murine model and high-throughput proteomics with a mass spectrometry, data-independent acquisition (LC-MSE) approach to identify and quantify the proteins released into the supernatants of strain 258_equi. To our knowledge, this approach allowed characterization of the exoproteome of a C. pseudotuberculosis equi strain for the first time. Interestingly, the recovery of this strain from infected mouse spleens induced a change in its virulence potential, and it became more virulent in a second infection challenge. Proteomic screening performed from culture supernatant of the control and recovered conditions revealed 104 proteins that were differentially expressed between the two conditions. In this context, proteomic analysis of the recovered condition detected the induction of proteins involved in bacterial pathogenesis, mainly related to iron uptake. In addition, KEGG enrichment analysis showed that ABC transporters, bacterial secretion systems and protein export pathways were significantly altered in the recovered condition. These findings show that secretion and secreted proteins are key elements in the virulence and adaptation of C. pseudotuberculosis. Collectively, bacterial pathogenesis-related proteins were identified that contribute to the processes of adherence, intracellular growth and evasion of the immune system. Moreover, this study enhances our understanding of the factors that may influence the pathogenesis of C. pseudotuberculosis.
Collapse
Affiliation(s)
- Wanderson M Silva
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas GeraisBelo Horizonte, Brazil.,Institut National de la Recherche Agronomique (INRA), UMR1253 Science & Technologie du Lait & de l'Oeuf (STLO)Rennes, France.,Agrocampus Ouest, UMR1253 Science & Technologie du Lait & de l'Oeuf (STLO)Rennes, France
| | - Rodrigo D De Oliveira Carvalho
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas GeraisBelo Horizonte, Brazil
| | - Fernanda A Dorella
- Escola de Veterinária, Universidade Federal de Minas GeraisBelo Horizonte, Brazil
| | - Edson L Folador
- Centro de Biotecnologia, Universidade Federal da ParaíbaJoão Pessoa, Brazil
| | - Gustavo H M F Souza
- Waters Corporation, Waters Technologies Brazil, MS Applications LaboratorySão Paulo, Brazil
| | - Adriano M C Pimenta
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas GeraisBelo Horizonte, Brazil
| | | | - Yves Le Loir
- Institut National de la Recherche Agronomique (INRA), UMR1253 Science & Technologie du Lait & de l'Oeuf (STLO)Rennes, France.,Agrocampus Ouest, UMR1253 Science & Technologie du Lait & de l'Oeuf (STLO)Rennes, France
| | - Artur Silva
- Instituto de Ciências Biológicas, Universidade Federal do ParáBelém, Brazil
| | - Vasco Azevedo
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas GeraisBelo Horizonte, Brazil
| |
Collapse
|
14
|
The PerR-Regulated P 1B-4-Type ATPase (PmtA) Acts as a Ferrous Iron Efflux Pump in Streptococcus pyogenes. Infect Immun 2017; 85:IAI.00140-17. [PMID: 28373352 DOI: 10.1128/iai.00140-17] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 03/25/2017] [Indexed: 01/11/2023] Open
Abstract
Streptococcus pyogenes (group A Streptococcus [GAS]) is an obligate human pathogen responsible for a broad spectrum of human disease. GAS has a requirement for metal homeostasis within the human host and, as such, tightly modulates metal uptake and efflux during infection. Metal acquisition systems are required to combat metal sequestration by the host, while metal efflux systems are essential to protect against metal overload poisoning. Here, we investigated the function of PmtA (PerR-regulated metal transporter A), a P1B-4-type ATPase efflux pump, in invasive GAS M1T1 strain 5448. We reveal that PmtA functions as a ferrous iron [Fe(II)] efflux system. In the presence of high Fe(II) concentrations, the 5448ΔpmtA deletion mutant exhibited diminished growth and accumulated 5-fold-higher levels of intracellular Fe(II) than did the wild type and the complemented mutant. The 5448ΔpmtA deletion mutant also showed enhanced susceptibility to killing by the Fe-dependent antibiotic streptonigrin as well as increased sensitivity to hydrogen peroxide and superoxide. We suggest that the PerR-mediated control of Fe(II) efflux by PmtA is important for bacterial defense against oxidative stress. PmtA represents an exemplar for an Fe(II) efflux system in a host-adapted Gram-positive bacterial pathogen.
Collapse
|
15
|
Inhibitory role of acyl homoserine lactones in hemolytic activity and viability of Streptococcus pyogenes M6 S165. Sci Rep 2017; 7:44902. [PMID: 28303956 PMCID: PMC5355980 DOI: 10.1038/srep44902] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 02/14/2017] [Indexed: 12/28/2022] Open
Abstract
Streptococcus pyogenes an adapted human pathogen asymptomatically colonizes the nasopharynx, among other polymicrobial communities. However, information on the events leading to the colonization and expression of virulence markers subject to interspecies and host-bacteria interactions are limited. The interference of acyl homoserine lactones (AHLs) with the hemolytic activity and viability of S. pyogenes M6 S165 was examined. AHLs, with fatty acid side chains ≥12 carbon atoms, inhibited hemolytic activity by downregulating the expression of the sag operon involved in the production of streptolysin S. Inhibitory AHLs upregulated the expression of transcriptional regulator LuxR. Electrophoretic mobility shift assays revealed the interaction of LuxR with the region upstream of sagA. AHL-mediated bactericidal activity observed at higher concentrations (mM range) was an energy-dependent process, constrained by the requirement of glucose and iron. Ferrichrome transporter FtsABCD facilitated transport of AHLs across the streptococcal membrane. The study demonstrates a previously unreported role for AHLs in S. pyogenes virulence.
Collapse
|
16
|
Turner AG, Ong CLY, Walker MJ, Djoko KY, McEwan AG. Transition Metal Homeostasis in Streptococcus pyogenes and Streptococcus pneumoniae. Adv Microb Physiol 2017; 70:123-191. [PMID: 28528647 DOI: 10.1016/bs.ampbs.2017.01.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Trace metals such as Fe, Mn, Zn and Cu are essential for various biological functions including proper innate immune function. The host immune system has complicated and coordinated mechanisms in place to either starve and/or overload invading pathogens with various metals to combat the infection. Here, we discuss the roles of Fe, Mn and Zn in terms of nutritional immunity, and also the roles of Cu and Zn in metal overload in relation to the physiology and pathogenesis of two human streptococcal species, Streptococcus pneumoniae and Streptococcus pyogenes. S. pneumoniae is a major human pathogen that is carried asymptomatically in the nasopharynx by up to 70% of the population; however, transition to internal sites can cause a range of diseases such as pneumonia, otitis media, meningitis and bacteraemia. S. pyogenes is a human pathogen responsible for diseases ranging from pharyngitis and impetigo, to severe invasive infections. Both species have overlapping capacity with respect to metal acquisition, export and regulation and how metal homeostasis relates to their virulence and ability to invade and survive within the host. It is becoming more apparent that metals have an important role to play in the control of infection, and with further investigations, it could lead to the potential use of metals in novel antimicrobial therapies.
Collapse
Affiliation(s)
- Andrew G Turner
- School of Chemistry and Molecular Biosciences and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Cheryl-Lynn Y Ong
- School of Chemistry and Molecular Biosciences and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Mark J Walker
- School of Chemistry and Molecular Biosciences and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Karrera Y Djoko
- School of Chemistry and Molecular Biosciences and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Alastair G McEwan
- School of Chemistry and Molecular Biosciences and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
17
|
A Neutralizing Monoclonal IgG1 Antibody of Platelet-Activating Factor Acetylhydrolase SsE Protects Mice against Lethal Subcutaneous Group A Streptococcus Infection. Infect Immun 2015; 83:2796-805. [PMID: 25916987 DOI: 10.1128/iai.00073-15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Accepted: 04/21/2015] [Indexed: 11/20/2022] Open
Abstract
Group A Streptococcus (GAS) can cause life-threatening invasive infections, including necrotizing fasciitis. There are no effective treatments for severe invasive GAS infections. The platelet-activating factor (PAF) acetylhydrolase SsE produced by GAS is required for invasive GAS to evade innate immune responses and to invade soft tissues. This study determined whether the enzymatic activity of SsE is critical for its function in GAS skin invasion and inhibition of neutrophil recruitment and whether SsE is a viable target for immunotherapy for severe invasive GAS infections. An isogenic derivative of M1T1 strain MGAS5005 producing SsE with an S178A substitution (SsE(S178A)), an enzymatically inactive SsE mutant protein, was generated. This strain induced higher levels of neutrophil infiltration and caused smaller lesions than MGAS5005 in subcutaneous infections of mice. This phenotype is similar to that of MGAS5005 sse deletion mutants, indicating that the enzymatic activity of SsE is critical for its function. An anti-SsE IgG1 monoclonal antibody (MAb), 2B11, neutralized the PAF acetylhydrolase activity of SsE. Passive immunization with 2B11 increased neutrophil infiltration, reduced skin invasion, and protected mice against MGAS5005 infection. However, 2B11 did not protect mice when it was administered after MGAS5005 inoculation. MGAS5005 induced vascular effusion at infection sites at early hours after GAS inoculation, suggesting that 2B11 did not always have access to infection sites. Thus, the enzymatic activity of SsE mediates its function, and SsE has the potential to be included in a vaccine but is not a therapeutic target. An effective MAb-based immunotherapy for severe invasive GAS infections may need to target virulence factors that are critical for systemic survival of GAS.
Collapse
|
18
|
Sheldon JR, Heinrichs DE. Recent developments in understanding the iron acquisition strategies of gram positive pathogens. FEMS Microbiol Rev 2015; 39:592-630. [DOI: 10.1093/femsre/fuv009] [Citation(s) in RCA: 166] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2015] [Indexed: 12/26/2022] Open
|
19
|
Henningham A, Döhrmann S, Nizet V, Cole JN. Mechanisms of group A Streptococcus resistance to reactive oxygen species. FEMS Microbiol Rev 2015; 39:488-508. [PMID: 25670736 PMCID: PMC4487405 DOI: 10.1093/femsre/fuu009] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 12/19/2014] [Indexed: 12/16/2022] Open
Abstract
Streptococcus pyogenes, also known as group A Streptococcus (GAS), is an exclusively human Gram-positive bacterial pathogen ranked among the ‘top 10’ causes of infection-related deaths worldwide. GAS commonly causes benign and self-limiting epithelial infections (pharyngitis and impetigo), and less frequent severe invasive diseases (bacteremia, toxic shock syndrome and necrotizing fasciitis). Annually, GAS causes 700 million infections, including 1.8 million invasive infections with a mortality rate of 25%. In order to establish an infection, GAS must counteract the oxidative stress conditions generated by the release of reactive oxygen species (ROS) at the infection site by host immune cells such as neutrophils and monocytes. ROS are the highly reactive and toxic byproducts of oxygen metabolism, including hydrogen peroxide (H2O2), superoxide anion (O2•−), hydroxyl radicals (OH•) and singlet oxygen (O2*), which can damage bacterial nucleic acids, proteins and cell membranes. This review summarizes the enzymatic and regulatory mechanisms utilized by GAS to thwart ROS and survive under conditions of oxidative stress. This review discusses the mechanisms utilized by the bacterial pathogen group A Streptococcus to detoxify reactive oxygen species and survive in the human host under conditions of oxidative stress.
Collapse
Affiliation(s)
- Anna Henningham
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA The School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia The Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Simon Döhrmann
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Victor Nizet
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA Rady Children's Hospital, San Diego, CA 92123, USA
| | - Jason N Cole
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA The School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia The Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
20
|
Abstract
Gram-positive Streptococcus species are responsible for millions of cases of meningitis, bacterial pneumonia, endocarditis, erysipelas and necrotizing fasciitis. Iron is essential for the growth and survival of Streptococcus in the host environment. Streptococcus species have developed various mechanisms to uptake iron from an environment with limited available iron. Streptococcus can directly extract iron from host iron-containing proteins such as ferritin, transferrin, lactoferrin and hemoproteins, or indirectly by relying on the employment of specialized secreted hemophores (heme chelators) and small siderophore molecules (high affinity ferric chelators). This review presents the most recent discoveries in the iron acquisition system of Streptococcus species - the transporters as well as the regulators.
Collapse
Affiliation(s)
- Ruiguang Ge
- Key Laboratory of Gene Engineering of the Ministry of Education and State Key Laboratory of Biocontrol, College of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China.
| | | |
Collapse
|
21
|
Wang J, Zou LL, Li AX. A novel iron transporter in Streptococcus iniae. JOURNAL OF FISH DISEASES 2013; 36:1007-1015. [PMID: 24102320 DOI: 10.1111/j.1365-2761.2012.01439.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2012] [Revised: 07/04/2012] [Accepted: 07/11/2012] [Indexed: 06/02/2023]
Abstract
Streptococcus iniae is a major pathogen that results in considerable economic loss to fish farms. Restricted availability of iron is a huge obstacle to survival for pathogenic bacteria during infection, and iron acquisition is important in bacterial virulence. In this study, S. iniae HD-1 was shown not to produce siderophores (low-molecular-weight compounds) but rather to require iron-containing proteins for growth under iron-restricted conditions. The adenosine triphosphate (ATP)-binding-cassette (ABC) transporter system (ftsABCD), which is cotranscribed by four downstream genes, namely, ftsA, ftsB, ftsC and ftsD, was identified as responsible for haem utilization of S. iniae. Analysis of the corresponding recombinant protein, FtsB, indicated that it is a putative lipoprotein which plays a role in haem utilization and is produced in vivo during infection with S. iniae HD-1, and therefore may be a potential candidate antigen for a streptococcal vaccine.
Collapse
Affiliation(s)
- J Wang
- Key Laboratory for Aquatic Products Safety of Ministry of Education/State Key Laboratory of Bio-control, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | | | | |
Collapse
|
22
|
Lipoprotein FtsB in Streptococcus pyogenes binds ferrichrome in two steps with residues Tyr137 and Trp204 as critical ligands. PLoS One 2013; 8:e65682. [PMID: 23840354 PMCID: PMC3688767 DOI: 10.1371/journal.pone.0065682] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 04/25/2013] [Indexed: 11/19/2022] Open
Abstract
Lipoprotein FtsB is a component of the FtsABCD transporter that is responsible for ferrichrome binding and uptake in the Gram-positive pathogen Streptococcus pyogenes. In the present study, FtsB was cloned and purified from the bacteria and its Fch binding characteristics were investigated in detail by using various biophysical and biochemical methods. Based on the crystal structures of homogeneous proteins, FtsB was simulated to have bi-lobal structure forming a deep cleft with four residues in the cleft as potential ligands for Fch binding. With the assistance of site-directed mutagenesis, residue Trp204 was confirmed as a key ligand and Tyr137 was identified to be another essential residue for Fch binding. Kinetics experiments demonstrated that Fch binding in FtsB occurred in two steps, corresponding to the bindings to Tyr137 at N-lobe and Trp204 from C-lobe, respectively, and so that closing the protein conformation. Without either residue Tyr137 or Trp204, Fch binding in the protein as mutants Fch-Y137A and Fch-W204A may have a loose conformation, resembling the apo-proteins in proteolysis resistance and migration behaviors in native gel. This study revealed the inconsistence in the key amino acids among Fch-binding proteins from Gram-positive and –negative bacteria, providing interesting findings for understanding the differences between Gram-positive and –negative bacteria in the mechanism of iron uptake via siderophore (Fch) binding and transport.
Collapse
|
23
|
Lewis VG, Ween MP, McDevitt CA. The role of ATP-binding cassette transporters in bacterial pathogenicity. PROTOPLASMA 2012; 249:919-942. [PMID: 22246051 DOI: 10.1007/s00709-011-0360-8] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 11/29/2011] [Indexed: 05/31/2023]
Abstract
The ATP-binding cassette transporter superfamily is present in all three domains of life. This ubiquitous class of integral membrane proteins have diverse biological functions, but their fundamental role involves the unidirectional translocation of compounds across cellular membranes in an ATP coupled process. The importance of this class of proteins in eukaryotic systems is well established as typified by their association with genetic diseases and roles in the multi-drug resistance of cancer. In stark contrast, the ABC transporters of prokaryotes have not been exhaustively investigated due to the sheer number of different roles and organisms in which they function. In this review, we examine the breadth of functions associated with microbial ABC transporters in the context of their contribution to bacterial pathogenicity and virulence.
Collapse
Affiliation(s)
- Victoria G Lewis
- Research Centre for Infectious Diseases, School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia, 5005, Australia
| | | | | |
Collapse
|
24
|
Smith AD, Wilks A. Extracellular heme uptake and the challenges of bacterial cell membranes. CURRENT TOPICS IN MEMBRANES 2012; 69:359-92. [PMID: 23046657 PMCID: PMC3731948 DOI: 10.1016/b978-0-12-394390-3.00013-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In bacteria, the fine balance of maintaining adequate iron levels while preventing the deleterious effects of excess iron has led to the evolution of sophisticated cellular mechanisms to obtain, store, and regulate iron. Iron uptake provides a significant challenge given its limited bioavailability and need to be transported across the bacterial cell wall and membranes. Pathogenic bacteria have circumvented the iron-availability issue by utilizing the hosts' heme-containing proteins as a source of iron. Once internalized, iron is liberated from the porphyrin enzymatically for cellular processes within the bacterial cell. Heme, a lipophilic and toxic molecule, poses a significant challenge in terms of transport given its chemical reactivity. As such, pathogenic bacteria have evolved sophisticated membrane transporters to coordinate, sequester, and transport heme. Recent advances in the biochemical and structural characterization of the membrane-bound heme transport proteins are discussed in the context of ligand coordination, protein-protein interaction, and heme transfer.
Collapse
Affiliation(s)
- Aaron D. Smith
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, USA
| | - Angela Wilks
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, USA
| |
Collapse
|
25
|
Abstract
We have characterized group A Streptococcus (GAS) genome-wide responses to hydrogen peroxide and assessed the role of the peroxide response regulator (PerR) in GAS under oxidative stress. Comparison of transcriptome changes elicited by peroxide in wild-type bacteria with those in a perR deletion mutant showed that 76 out of 237 peroxide-regulated genes are PerR dependent. Unlike the PerR-mediated upregulation of peroxidases and other peroxide stress defense mechanisms previously reported in gram-positive species, PerR-dependent genes in GAS were almost exclusively downregulated and encoded proteins involved in purine and deoxyribonucleotide biosynthesis, heme uptake, and amino acid/peptide transport, but they also included a strongly activated putative transcriptional regulator (SPy1198). Of the 161 PerR-independent loci, repressed genes (86 of 161) encoded proteins with functions similar to those coordinated by PerR, in contrast to upregulated loci that encoded proteins that function in DNA damage repair, cofactor metabolism, reactive oxygen species detoxification, pilus biosynthesis, and hypothetical proteins. Complementation of the perR deletion mutant with wild-type PerR restored PerR-dependent regulation, whereas complementation with either one of two PerR variants carrying single mutations in two predicted metal-binding sites did not rescue the mutant phenotype. Metal content analyses of the recombinant wild type and respective PerR mutants, in addition to regulation studies in metal-supplemented and iron-depleted media, showed binding of zinc and iron by PerR and an iron requirement for optimal responses to peroxide. Our findings reveal a novel physiological contribution of PerR in coordinating DNA and protein metabolic functions in peroxide and identify GAS adaptive responses that may serve to enhance oxidative stress resistance and virulence in the host.
Collapse
|
26
|
Waller AS, Paillot R, Timoney JF. Streptococcus equi: a pathogen restricted to one host. J Med Microbiol 2011; 60:1231-1240. [DOI: 10.1099/jmm.0.028233-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Andrew S. Waller
- Centre for Preventive Medicine, Animal Health Trust, Lanwades Park, Kentford, Newmarket, Suffolk CB8 7UU, UK
| | - Romain Paillot
- Centre for Preventive Medicine, Animal Health Trust, Lanwades Park, Kentford, Newmarket, Suffolk CB8 7UU, UK
| | - John F. Timoney
- Gluck Equine Research Center, University of Kentucky, Lexington, KY 40546, USA
| |
Collapse
|
27
|
Xiao Q, Jiang X, Moore KJ, Shao Y, Pi H, Dubail I, Charbit A, Newton SM, Klebba PE. Sortase independent and dependent systems for acquisition of haem and haemoglobin in Listeria monocytogenes. Mol Microbiol 2011; 80:1581-97. [PMID: 21545655 DOI: 10.1111/j.1365-2958.2011.07667.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We studied three Fur-regulated systems of Listeria monocytogenes: the srtB region, that encodes sortase-anchored proteins and a putative ABC transporter, and the fhu and hup operons, that produce putative ABC transporters for ferric hydroxamates and haemin (Hn)/haemoglobin (Hb) respectively. Deletion of lmo2185 in the srtB region reduced listerial [(59) Fe]-Hn transport, and purified Lmo2185 bound [(59) Fe]-Hn (K(D) = 12 nM), leading to its designation as a Hn/Hb binding protein (hbp2). Purified Hbp2 also acted as a haemophore, capturing and supplying Hn from the environment. Nevertheless, Hbp2 only functioned in [(59) Fe]-Hn transport at external concentrations less than 50 nM: at higher Hn levels its uptake occurred with equivalent affinity and rate without Hbp2. Similarly, deletion of sortase A had no effect on ferric siderophore or Hn/Hb transport at any concentration, and the srtA-independence of listerial Hn/Hb uptake distinguished it from comparable systems of Staphylococcus aureus. In the cytoplasmic membrane, the Hup transporter was specific for Hn: its lipoprotein (HupD) only showed high affinity for the iron porphyrin (K(D) = 26 nM). Conversely, the FhuD lipoprotein encoded by the fhu operon had broad specificity: it bound both ferric siderophores and Hn, with the highest affinity for ferrioxamine B (K(D) = 123 nM). Deletions of Hup permease components hupD, hupG or hupDGC reduced Hn/Hb uptake, and complementation of ΔhupC and ΔhupG by chromosomal integration of hupC(+) and hupG(+) alleles on pPL2 restored growth promotion by Hn/Hb. However, ΔhupDGC did not completely eliminate [(59) Fe]-Hn transport, implying the existence of another cytoplasmic membrane Hn transporter. The overall K(M) of Hn uptake by wild-type strain EGD-e was 1 nM, and it occurred at similar rates (V(max) = 23 pmol 10(9) cells(-1) min(-1)) to those of ferric siderophore transporters. In the ΔhupDGC strain uptake occurred at a threefold lower rate (V(max) = 7 pmol 10(9) cells(-1) min(-1)). The results show that at low (< 50 nM) levels of Hn, SrtB-dependent peptidoglycan-anchored proteins (e.g. Hbp2) bind the porphyrin, and HupDGC or another transporter completes its uptake into the cytoplasm. However, at higher concentrations Hn uptake is SrtB-independent: peptidoglycan-anchored binding proteins are dispensable because HupDGC directly absorbs and internalizes Hn. Finally, ΔhupDGC increased the LD(50) of L. monocytogenes 100-fold in the mouse infection model, reiterating the importance of this system in listerial virulence.
Collapse
Affiliation(s)
- Qiaobin Xiao
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Lei B. Benfang Lei’s research on heme acquisition in Gram-positive pathogens and bacterial pathogenesis. World J Biol Chem 2010; 1:286-90. [PMID: 21537486 PMCID: PMC3083973 DOI: 10.4331/wjbc.v1.i9.286] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2010] [Revised: 08/20/2010] [Accepted: 08/27/2010] [Indexed: 02/05/2023] Open
Abstract
Benfang Lei’s laboratory conducts research on pathogenesis of human pathogen Group A Streptococcus (GAS) and horse pathogen Streptococcus equi (S. equi). His current research focuses on heme acquisition in Gram-positive pathogens and molecular mechanism of GAS and S. equi pathogenesis. Heme is an important source of essential iron for bacterial pathogens. Benfang Lei and colleagues identified the first cell surface heme-binding protein in Gram-positive pathogens and the heme acquisition system in GAS, demonstrated direct heme transfer from one protein to another, demonstrated an experimental pathway of heme acquisition by the Staphylococcus aureus Isd system, elucidated the activated heme transfer mechanism, and obtained evidence for a chemical mechanism of direct axial ligand displacement during the Shp-to-HtsA heme transfer reaction. These findings have considerably contributed to the progress that has been made over recent years in understanding the heme acquisition process in Gram-positive pathogens. Pathogenesis of GAS is mediated by an abundance of extracellular proteins, and pathogenic role and functional mechanism are not known for many of these virulence factors. Lei laboratory identified a secreted protein of GAS as a CovRS-regulated virulence factor that is a protective antigen and is critical for GAS spreading in the skin and systemic dissemination. These studies may lead to development of novel strategies to prevent and treat GAS infections.
Collapse
Affiliation(s)
- Benfang Lei
- Benfang Lei, Department of Veterinary Molecular Biology, Montana State University, 960 Technology Blvd, Bozeman, MT 59717, United States
| |
Collapse
|
29
|
Zeng X, Yuan Y, Wei Y, Jiang H, Zheng Y, Guo Z, Tang J, Yang R, Zhou D, Jiang Y. Microarray analysis of temperature-induced transcriptome of Streptococcus suis serotype 2. Vector Borne Zoonotic Dis 2010; 11:215-21. [PMID: 20795872 DOI: 10.1089/vbz.2009.0225] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Streptococcus suis serotype 2 (S. suis S2) is able to cause human infections ranging from superficial wounded skin infections to severe invasive infections such as meningitis and streptococcal toxic shock-like syndrome. During its infection cycle, S. suis S2 must acclimatize itself to temperature shift. Herein, a whole-genome DNA microarray was used to investigate the global transcriptional regulation of an invasive strain of S. suis S2 grown to late-exponential phase at 29°C or 40°C relative to 37°C. The differentially regulated genes that were detected included those encoding virulence factors, antigenic proteins, ATP-binding-cassette transporters, and proteins of unknown functions. Our data provided a global profile of gene transcription induced by temperature alteration and shed light on some unforeseen lines for further pathogenesis investigation.
Collapse
Affiliation(s)
- Xiaotao Zeng
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Meehan M, Burke FM, Macken S, Owen P. Characterization of the haem-uptake system of the equine pathogen Streptococcus equi subsp. equi. Microbiology (Reading) 2010; 156:1824-1835. [DOI: 10.1099/mic.0.036087-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Streptococcus equi possesses a haem-uptake system homologous to that of Streptococcus pyogenes and Streptococcus zooepidemicus. The system consists of two ligand-binding proteins (Shr and Shp) and proteins (HtsA–C) with homology to an ABC transporter. The haem-uptake system of S. equi differs from that of S. pyogenes and S. zooepidemicus in that Shr is truncated by two-thirds. This study focused on the SeShr, SeShp and SeHtsA proteins of S. equi. Analysis of shr, shp and shphtsA knockout mutants showed that all three proteins were expressed in vitro and that expression was upregulated under conditions of iron limitation. SeShr possesses no membrane-/cell wall-spanning sequences and was shown to be secreted. Both SeShp and SeHtsA were confirmed to be envelope-associated. Recombinant SeShp and SeHtsA proteins have been previously shown to bind haem and SeHtsA could capture haem from SeShp. This report extends these studies and shows that both SeShp and SeHtsA can sequester haem from haemoglobin but not from haemoglobin–haptoglobin complexes. Like full-length Shr, SeShr possesses haemoglobin and haemoglobin–haptoglobin binding ability but unlike full-length Shr, it lacks haem- or fibronectin-binding capabilities. Analysis of SeShr truncates showed that residues within and upstream of the near transporter (NEAT) domain are required for this ligand binding. Structural predictions suggest that truncation of NEAT1 in SeShr accounts for its impaired ability to bind haem. Haem and haemoglobin restored to almost normal the impaired growth rates of wild-type S. equi cultured under iron-limiting conditions. However, no difference in the growth rates of wild-type and mutants could be detected under the in vitro growth conditions tested.
Collapse
Affiliation(s)
- Mary Meehan
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin 2, Ireland
| | - Fiona M. Burke
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin 2, Ireland
| | - Susan Macken
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin 2, Ireland
| | - Peter Owen
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
31
|
Toukoki C, Gold KM, McIver KS, Eichenbaum Z. MtsR is a dual regulator that controls virulence genes and metabolic functions in addition to metal homeostasis in the group A streptococcus. Mol Microbiol 2010; 76:971-89. [PMID: 20398221 DOI: 10.1111/j.1365-2958.2010.07157.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
MtsR is a metal-dependent regulator in the group A streptococcus (GAS) that directly represses the transcription of genes involved in haem and metal uptake. While MtsR has been implicated in GAS virulence, the DNA recognition and full regulatory scope exerted by the protein are unknown. In this study we identified the shr promoter (P(shr)) and mapped MtsR binding to a 69 bp segment in P(shr) that overlaps the core promoter elements. A global transcriptional analysis demonstrated that MtsR modulates the expression of 64 genes in GAS, 44 of which were upregulated and 20 were downregulated in the mtsR mutant. MtsR controls genes with diverse functions including metal homeostasis, nucleic acid and amino acid metabolism, and protein fate. Importantly, the MtsR regulon includes mga, emm49 and ska, which are central for GAS pathogenesis. MtsR binding to the promoter region of both negatively and positively regulated genes demonstrates that it functions as a dual regulator. MtsR footprints are large (47-130 bp) and vary between target promoters. A 16 bp motif that consists of an interrupted palindrome is implicated in the DNA recognition by the metalloregulator. In conclusion, we report here that MtsR is a global regulator in GAS that shapes the expression of vital virulence factors and genes involved in metabolic functions and metal transport, and we discuss the implications for the GAS disease process.
Collapse
Affiliation(s)
- Chadia Toukoki
- Department of Biology, College of Arts and Sciences, Georgia State University, Atlanta, GA 30303, USA
| | | | | | | |
Collapse
|
32
|
Tsou CC, Chiang-Ni C, Lin YS, Chuang WJ, Lin MT, Liu CC, Wu JJ. Oxidative stress and metal ions regulate a ferritin-like gene, dpr, in Streptococcus pyogenes. Int J Med Microbiol 2009; 300:259-64. [PMID: 19879189 DOI: 10.1016/j.ijmm.2009.09.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Revised: 09/27/2009] [Accepted: 09/29/2009] [Indexed: 11/28/2022] Open
Abstract
Bacteria encounter oxidative stress by exposure to reactive oxygen species (ROS) present in the aerobic environment and during immune responses. In Streptococcus pyogenes, Dpr has been identified as a stress protein conferring resistance to hydrogen peroxide and multiple other stresses. The expression of Dpr is under perR (peroxide stress response regulator) control. However, the exact molecular mechanism of PerR regulation of Dpr is not clear. In this study, a perR deletion mutant was constructed by double cross-over mutagenesis. The profile of Dpr expression, performed by Western blot assay, revealed growth-phase dependency under normal culture conditions. Dpr expression decreased under iron-restricted conditions, whereas iron, zinc, nickel, and hydrogen peroxide induced its expression. The perR mutant does not induce Dpr as well when exposed to environmental signals. PerR binds the promoter region of dpr. Increased iron and hydrogen peroxide concentrations decreased PerR binding to the promoter region of dpr, suggesting that regulation of Dpr by environmental signals is mediated by PerR directly.
Collapse
Affiliation(s)
- Chih-Cheng Tsou
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, No. 1, University Road, Tainan, Taiwan
| | | | | | | | | | | | | |
Collapse
|
33
|
The secreted esterase of group a streptococcus is important for invasive skin infection and dissemination in mice. Infect Immun 2009; 77:5225-32. [PMID: 19805529 DOI: 10.1128/iai.00636-09] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Virulence factors regulated by the CovRS/CsrRS two-component gene regulatory system contribute to the invasive diseases caused by group A Streptococcus (GAS). To determine whether the streptococcal secreted esterase (Sse), an antigen that protects against subcutaneous GAS infection, is one of these virulence factors, we investigated the phenotype of a nonpolar sse deletion mutant strain (Deltasse). In addition, we examined the effects of covS mutation on sse expression. As assessed using a mouse model of subcutaneous infection, the virulence of the Deltasse strain is attenuated and the overall pathology is reduced. Furthermore, GAS was detected in the blood and spleens from mice subcutaneously infected with the parental strain, whereas mice subcutaneously infected with the Deltasse strain had no GAS present in their blood and spleens. The ability of the mutant to survive in the subcutis of mice appeared to be compromised. The growth of the Deltasse strain in rich and chemically defined media and nonimmune human blood and sera was slower than that of the wild-type strain. Complementation restored the phenotype of the Deltasse strain to that of the wild-type strain. The wild-type, Deltasse, and complement strains had no detectable SpeB activity. Expression of Sse is negatively controlled by CovRS. These findings suggest that Sse is a CovRS-regulated virulence factor that is important for the virulence of GAS in subcutaneous infection and plays an important role in severe soft tissue infections and systemic dissemination of GAS from the skin.
Collapse
|
34
|
Nobbs AH, Lamont RJ, Jenkinson HF. Streptococcus adherence and colonization. Microbiol Mol Biol Rev 2009; 73:407-50, Table of Contents. [PMID: 19721085 PMCID: PMC2738137 DOI: 10.1128/mmbr.00014-09] [Citation(s) in RCA: 437] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Streptococci readily colonize mucosal tissues in the nasopharynx; the respiratory, gastrointestinal, and genitourinary tracts; and the skin. Each ecological niche presents a series of challenges to successful colonization with which streptococci have to contend. Some species exist in equilibrium with their host, neither stimulating nor submitting to immune defenses mounted against them. Most are either opportunistic or true pathogens responsible for diseases such as pharyngitis, tooth decay, necrotizing fasciitis, infective endocarditis, and meningitis. Part of the success of streptococci as colonizers is attributable to the spectrum of proteins expressed on their surfaces. Adhesins enable interactions with salivary, serum, and extracellular matrix components; host cells; and other microbes. This is the essential first step to colonization, the development of complex communities, and possible invasion of host tissues. The majority of streptococcal adhesins are anchored to the cell wall via a C-terminal LPxTz motif. Other proteins may be surface anchored through N-terminal lipid modifications, while the mechanism of cell wall associations for others remains unclear. Collectively, these surface-bound proteins provide Streptococcus species with a "coat of many colors," enabling multiple intimate contacts and interplays between the bacterial cell and the host. In vitro and in vivo studies have demonstrated direct roles for many streptococcal adhesins as colonization or virulence factors, making them attractive targets for therapeutic and preventive strategies against streptococcal infections. There is, therefore, much focus on applying increasingly advanced molecular techniques to determine the precise structures and functions of these proteins, and their regulatory pathways, so that more targeted approaches can be developed.
Collapse
Affiliation(s)
- Angela H Nobbs
- Oral Microbiology Unit, Department of Oral and Dental Science, University of Bristol, Bristol BS1 2LY, United Kingdom
| | | | | |
Collapse
|
35
|
|
36
|
Miller JD, Sal MS, Schell M, Whittimore JD, Raulston JE. Chlamydia trachomatis YtgA is an iron-binding periplasmic protein induced by iron restriction. MICROBIOLOGY-SGM 2009; 155:2884-2894. [PMID: 19556290 DOI: 10.1099/mic.0.030247-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Chlamydia trachomatis is a Gram-negative obligate intracellular bacterium that is the causative agent of common sexually transmitted diseases and the leading cause of preventable blindness worldwide. It has been observed that YtgA (CT067) is very immunogenic in patients with chlamydial genital infections. Homology analyses suggested that YtgA is a soluble periplasmic protein and a component of an ATP-binding cassette (ABC) transport system for metals such as iron. Since little is known about iron transport in C. trachomatis, biochemical assays were used to determine the potential role of YtgA in iron acquisition. (59)Fe binding and competition studies revealed that YtgA preferentially binds iron over nickel, zinc or manganese. Western blot and densitometry techniques showed that YtgA concentrations specifically increased 3-5-fold in C. trachomatis, when cultured under iron-starvation conditions rather than under general stress conditions, such as exposure to penicillin. Finally, immuno-transmission electron microscopy provided evidence that YtgA is more concentrated in C. trachomatis during iron restriction, supporting a possible role for YtgA as a component of an ABC transporter.
Collapse
Affiliation(s)
- J D Miller
- Dept of Molecular Biomedical Sciences, School of Veterinary Medicine, N.C. State University, Raleigh, NC 27606, USA
| | - M S Sal
- Dept of Microbiology, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 3761, USA
| | - M Schell
- Dept of Microbiology, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 3761, USA
| | - J D Whittimore
- Dept of Microbiology, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 3761, USA
| | - J E Raulston
- Dept of Pathology, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 3761, USA.,Dept of Microbiology, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 3761, USA
| |
Collapse
|
37
|
Heather Z, Holden MTG, Steward KF, Parkhill J, Song L, Challis GL, Robinson C, Davis-Poynter N, Waller AS. A novel streptococcal integrative conjugative element involved in iron acquisition. Mol Microbiol 2009; 70:1274-92. [PMID: 18990191 PMCID: PMC3672683 DOI: 10.1111/j.1365-2958.2008.06481.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In this study, we determined the function of a novel non-ribosomal peptide synthetase (NRPS) system carried by a streptococcal integrative conjugative element (ICE), ICESe2. The NRPS shares similarity with the yersiniabactin system found in the high-pathogenicity island of Yersinia sp. and is the first of its kind to be identified in streptococci. We named the NRPS product 'equibactin' and genes of this locus eqbA-N. ICESe2, although absolutely conserved in Streptococcus equi, the causative agent of equine strangles, was absent from all strains of the closely related opportunistic pathogen Streptococcus zooepidemicus. Binding of EqbA, a DtxR-like regulator, to the eqbB promoter was increased in the presence of cations. Deletion of eqbA resulted in a small-colony phenotype. Further deletion of the irp2 homologue eqbE, or the genes eqbH, eqbI and eqbJ encoding a putative ABC transporter, or addition of the iron chelator nitrilotriacetate, reversed this phenotype, implicating iron toxicity. Quantification of (55)Fe accumulation and sensitivity to streptonigrin suggested that equibactin is secreted by S. equi and that the eqbH, eqbI and eqbJ genes are required for its associated iron import. In agreement with a structure-based model of equibactin synthesis, supplementation of chemically defined media with salicylate was required for equibactin production.
Collapse
Affiliation(s)
- Zoe Heather
- Centre for Preventive Medicine, Animal Health Trust, Lanwades Park, Kentford, Newmarket, Suffolk, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Liu M, McClure MJ, Zhu H, Xie G, Lei B. The Two-Component Regulatory System VicRK is Important to Virulence of Streptococcus equi Subspecies equi. Open Microbiol J 2008; 2:89-93. [PMID: 19088917 PMCID: PMC2593050 DOI: 10.2174/1874285800802010089] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2008] [Revised: 06/06/2008] [Accepted: 06/09/2008] [Indexed: 12/03/2022] Open
Abstract
This study aims at evaluating the importance of the two-component regulatory system VicRK to virulence of the horse pathogen Streptococcus equi subspecies equi and the potential of a vicK mutant as a live vaccine candidate using mouse infection models. The vicK gene was deleted by gene replacement. The ΔvicK mutant is attenuated in virulence in both subcutaneous and intranasal infections in mice. ΔvicK grows less slowly than the parent strain but retains the ability of S. equi to resist to phagocytosis by polymorphoneuclear leukocytes, suggesting that the vicK deletion causes growth defect. ΔvicK infection protects mice against reinfection with a wild-type S. equi strain. Intranasal ΔvicK infection induces production of anti-SeM mucosal IgA and systemic IgG. These results indicate that VicRK is important to S. equi growth and virulence and suggest that ΔvicK has the potential to be developed as a live S. equi vaccine.
Collapse
Affiliation(s)
- Mengyao Liu
- Department of Veterinary Molecular Biology, Montana State University, Bozeman, Montana 59717, USA
| | | | | | | | | |
Collapse
|
39
|
Sun X, Ge R, Chiu JF, Sun H, He QY. Lipoprotein MtsA of MtsABC inStreptococcus pyogenesprimarily binds ferrous ion with bicarbonate as a synergistic anion. FEBS Lett 2008; 582:1351-4. [PMID: 18364240 DOI: 10.1016/j.febslet.2008.03.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Revised: 03/14/2008] [Accepted: 03/14/2008] [Indexed: 01/06/2023]
|
40
|
The surface protein Shr of Streptococcus pyogenes binds heme and transfers it to the streptococcal heme-binding protein Shp. BMC Microbiol 2008; 8:15. [PMID: 18215300 PMCID: PMC2266757 DOI: 10.1186/1471-2180-8-15] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2007] [Accepted: 01/23/2008] [Indexed: 11/30/2022] Open
Abstract
Background The heme acquisition machinery in Streptococcus pyogenes is believed to consist of the surface proteins, Shr and Shp, and heme-specific ATP-binding cassette transporter HtsABC. Shp has been shown to rapidly transfer its heme to the lipoprotein component, HtsA, of HtsABC. The function of Shr and the heme source of Shp have not been established. Results The objective of this study was to determine whether Shr binds heme and is a heme source of Shp. To achieve the objective, recombinant Shr protein was prepared. The purified Shr displays a spectrum typical of hemoproteins, indicating that Shr binds heme and acquires heme from Escherichia coli hemoproteins in vivo. Spectral analysis of Shr and Shp isolated from a mixture of Shr and heme-free Shp (apoShp) indicates that Shr and apoShp lost and gained heme, respectively; whereas Shr did not efficiently lose its heme in incubation with apoHtsA under the identical conditions. These results suggest that Shr directly transfers its heme to Shp. In addition, the rates of heme transfer from human hemoglobin to apoShp are close to those of simple ferric heme dissociation from hemoglobin, suggesting that methemoglobin does not directly transfer its heme to apoShp. Conclusion We have demonstrated that recombinant Shr can acquire heme from E. coli hemoproteins in vivo and appears to directly transfer its heme to Shp and that Shp appears not to directly acquire heme from human methemoglobin. These results suggest the possibility that Shr is a source of heme for Shp and that the Shr-to-Shp heme transfer is a step of the heme acquisition process in S. pyogenes. Further characterization of the Shr/Shp/HtsA system would advance our understanding of the mechanism of heme acquisition in S. pyogenes.
Collapse
|
41
|
Autoinducer-2-regulated genes in Streptococcus mutans UA159 and global metabolic effect of the luxS mutation. J Bacteriol 2007; 190:401-15. [PMID: 17981981 DOI: 10.1128/jb.01086-07] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Autoinducer 2 (AI-2) is the only species-nonspecific autoinducer known in bacteria and is produced by both gram-negative and gram-positive organisms. Consequently, it is proposed to function as a universal quorum-sensing signal for interaction between bacterial species. AI-2 is produced as the by-product of a metabolic transformation carried out by the LuxS enzyme. To separate the metabolic function of the LuxS enzyme from the signaling role of AI-2, we carried out a global transcriptome analysis of a luxS null mutant culture of Streptococcus mutans UA159, an important cariogenic bacterium and a crucial component of the dental plaque biofilm community, in comparison to a luxS null mutant culture supplemented with chemically pure 4,5-dihydroxy-2,3-pentanedione, the precursor of AI-2. The data revealed fundamental changes in gene expression affecting 585 genes (30% of the genome) which could not be restored by the signal molecule AI-2 and are therefore not caused by quorum sensing but by lack of the transformation carried out by the LuxS enzyme in the activated methyl cycle. All functional classes of enzymes were affected, including genes known to be important for biofilm formation, bacteriocin synthesis, competence, and acid tolerance. At the same time, 59 genes were identified whose transcription clearly responded to the addition of AI-2. Some of them were related to protein synthesis, stress, and cell division. Three membrane transport proteins were upregulated which are not related to any of the known AI-2 transporters. Three transcription factors were identified whose transcription was stimulated repeatedly by AI-2 addition during growth. Finally, a global regulatory protein, the delta subunit of the RNA polymerase (rpoE), was induced 147-fold by AI-2, representing the largest differential gene expression observed. The data show that many phenotypes related to the luxS mutation cannot be ascribed to quorum sensing and have identified for the first time regulatory proteins potentially mediating AI-2-based signaling in gram-positive bacteria.
Collapse
|
42
|
Hanks TS, Liu M, McClure MJ, Fukumura M, Duffy A, Lei B. Differential regulation of iron- and manganese-specific MtsABC and heme-specific HtsABC transporters by the metalloregulator MtsR of group A Streptococcus. Infect Immun 2006; 74:5132-9. [PMID: 16926405 PMCID: PMC1594851 DOI: 10.1128/iai.00176-06] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genome of the human pathogen group A Streptococcus (GAS) encodes the transporters MtsABC, FtsABCD, and HtsABC to take up ferric and manganese ions, ferric ferrichrome, and heme, respectively. The GAS genome also encodes two metalloregulators PerR and MtsR. To understand the regulation of the expression of these transporters, the mtsR and perR deletion mutants of a GAS serotype M1 strain were generated, and the effects of the deletions and Fe(3+), Mn(2+), and Zn(2+) on the expression of mtsA, htsA, and ftsB were examined. Mn(2+) dramatically depresses mtsA transcription and levels of the MtsA protein but does not downregulate the expression of htsA and ftsB. Fe(3+) decreases the expression of mtsA and htsA but has no effect on ftsB expression. Zn(2+) has no effect on the expression of all three genes. The deletion of mtsR abolishes the Mn(2+)- and Fe(3+)-induced depression of mtsA expression and the Fe(3+)-dependent decrease in htsA expression. The deletion of mtsR does not significantly alter GAS virulence in a mouse model of subcutaneous infection. The deletion of perR does not affect the expression of the genes in response to the metal ions. MtsR binds to the mts promoter region in the presence of Mn(2+) or Fe(2+). The results indicate that MtsR differentially regulates the expression of mtsABC and htsABC.
Collapse
Affiliation(s)
- Tracey S Hanks
- Veterinary Molecular Biology, Montana State University, P.O. Box 173610, Bozeman, MT 59717, USA
| | | | | | | | | | | |
Collapse
|
43
|
Nygaard TK, Liu M, McClure MJ, Lei B. Identification and characterization of the heme-binding proteins SeShp and SeHtsA of Streptococcus equi subspecies equi. BMC Microbiol 2006; 6:82. [PMID: 17007644 PMCID: PMC1592302 DOI: 10.1186/1471-2180-6-82] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2006] [Accepted: 09/28/2006] [Indexed: 05/12/2023] Open
Abstract
Background Heme is a preferred iron source of bacterial pathogens. Streptococcus equi subspecies equi is a bacterial pathogen that causes strangles in horses. Whether S. equi has a heme acquisition transporter is unknown. Results An S. equi genome database was blasted with the heme binding proteins Shp and HtsA of Streptococcus pyogenes, and found that S. equi has the homologue of Shp (designated SeShp) and HtsA (designated SeHtsA). Tag-free recombinant SeShp and SeHtsA and 6xHis-tagged SeHtsA (SeHtsAHis) were prepared and characterized. Purified holoSeShp and holoSeHtsA bind Fe(II)-protoporphyrin IX (heme) and Fe(III)-protoporphyrin IX (hemin) in a 1:1 stoichiometry, respectively, and are designated hemoSeShp and hemiSeHtsA. HemiSeShp and hemiSeHtsAHis can be reconstituted from apoSeShp and apoSeHtsAHis and hemin. HemoSeShp is stable in air and can be oxidized to hemiSeShp by ferricyanide. HemiSeHtsA can be reduced into hemoSeHtsA, which autoxidizes readily. HemoSeShp rapidly transfers its heme to apoSeHtsAHis. In addition, hemoSeShp can also transfer its heme to apoHtsA, and hemoShp is able to donate heme to apoSeHtsAHis. Conclusion The primary structures, optical properties, oxidative stability, and in vitro heme transfer reaction of SeShp and SeHtsA are very similar to those of S. pyogenes Shp and HtsA. The data suggest that the putative cell surface protein SeShp and lipoprotein SeHtsA are part of the machinery to acquire heme in S. equi. The results also imply that the structure, function, and functional mechanism of the heme acquisition machinery are conserved in S. equi and S. pyogenes.
Collapse
Affiliation(s)
- Tyler K Nygaard
- Department of Veterinary Molecular Biology, Montana State University, Bozeman, Montana 59717, USA
| | - Mengyao Liu
- Department of Veterinary Molecular Biology, Montana State University, Bozeman, Montana 59717, USA
| | - Michael J McClure
- Department of Veterinary Molecular Biology, Montana State University, Bozeman, Montana 59717, USA
| | - Benfang Lei
- Department of Veterinary Molecular Biology, Montana State University, Bozeman, Montana 59717, USA
| |
Collapse
|
44
|
Liu M, Hanks TS, Zhang J, McClure MJ, Siemsen DW, Elser JL, Quinn MT, Lei B. Defects in ex vivo and in vivo growth and sensitivity to osmotic stress of group A Streptococcus caused by interruption of response regulator gene vicR. MICROBIOLOGY-SGM 2006; 152:967-978. [PMID: 16549661 PMCID: PMC2423276 DOI: 10.1099/mic.0.28706-0] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The regulator VicR of the two-component regulatory system VicRK is essential in several Gram-positive bacteria. However, the authors were able to generate an unconditional vicR insertional mutant of group A Streptococcus. This mutant grew well in rich media but not in non-immune human blood and serum, had attenuated virulence, and was unstable in mice. Complementation of the mutant with vicR expressed in trans restored its phenotype to wild-type. A vicK deletion mutant had a phenotype similar to that of the vicR mutant. Phagocytosis and killing of the vicR mutant were normal, suggesting that VicRK does not regulate processes involved in evasion of host defence. Microarray analysis showed that vicR inactivation down-regulated the transcription of 13 genes, including putative cell wall hydrolase gene pcsB and spy1058-1060, which encode a putative phosphotransferase system enzyme II for carbohydrate transport, and upregulated the expression of five genes, including spy0183 and spy0184, which encode an osmoprotectant transporter OpuA. Consistent with microarray analysis, the vicR mutant took up more of the osmoprotectants betaine and proline and was sensitive to osmotic stress, indicating that vicR inactivation induced osmotic stress and increased susceptibility to osmotic pressure. Additionally, a spy1060 deletion mutant also displayed attenuated virulence. These results suggest that VicRK regulates processes involved in cell wall metabolism, nutrient uptake, and osmotic protection.
Collapse
Affiliation(s)
- Mengyao Liu
- Department of Veterinary Molecular Biology, Montana State University, Bozeman, MT 59717, USA
| | - Tracey S Hanks
- Department of Veterinary Molecular Biology, Montana State University, Bozeman, MT 59717, USA
| | - Jinlian Zhang
- Department of Veterinary Molecular Biology, Montana State University, Bozeman, MT 59717, USA
| | - Michael J McClure
- Department of Veterinary Molecular Biology, Montana State University, Bozeman, MT 59717, USA
| | - Daniel W Siemsen
- Department of Veterinary Molecular Biology, Montana State University, Bozeman, MT 59717, USA
| | - Julie L Elser
- Department of Veterinary Molecular Biology, Montana State University, Bozeman, MT 59717, USA
| | - Mark T Quinn
- Department of Veterinary Molecular Biology, Montana State University, Bozeman, MT 59717, USA
| | - Benfang Lei
- Department of Veterinary Molecular Biology, Montana State University, Bozeman, MT 59717, USA
| |
Collapse
|
45
|
Pramanik A, Braun V. Albomycin uptake via a ferric hydroxamate transport system of Streptococcus pneumoniae R6. J Bacteriol 2006; 188:3878-86. [PMID: 16707680 PMCID: PMC1482914 DOI: 10.1128/jb.00205-06] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2006] [Accepted: 03/20/2006] [Indexed: 11/20/2022] Open
Abstract
The antibiotic albomycin is highly effective against Streptococcus pneumoniae, with an MIC of 10 ng/ml. The reason for the high efficacy was studied by measuring the uptake of albomycin into S. pneumoniae. Albomycin was transported via the system that transports the ferric hydroxamates ferrichrome and ferrioxamine B. These two ferric hydroxamates antagonized the growth inhibition by albomycin and salmycin. Cross-inhibition of the structurally different ferric hydroxamates to both antibiotics can be explained by the similar iron coordination centers of the four compounds. [(55)Fe(3+)]ferrichrome and [(55)Fe(3+)]ferrioxamine B were taken up by the same transport system into S. pneumoniae. Mutants in the adjacent fhuD, fhuB, and fhuG genes were transport inactive and resistant to the antibiotics. Albomycin, ferrichrome, ferrioxamine B, and salmycin bound to the isolated FhuD protein and prevented degradation by proteinase K. The fhu locus consisting of the fhuD, fhuB, fhuG, and fhuC genes determines a predicted ABC transporter composed of the FhuD binding lipoprotein, the FhuB and FhuG transport proteins, and the FhuC ATPase. It is concluded that active transport of albomycin mediates the high antibiotic efficacy in S. pneumoniae.
Collapse
Affiliation(s)
- Avijit Pramanik
- Mikrobiologie/Membranphysiologie, Auf der Morgenstelle 28, D-72076 Tübingen, Germany
| | | |
Collapse
|
46
|
Beres SB, Richter EW, Nagiec MJ, Sumby P, Porcella SF, DeLeo FR, Musser JM. Molecular genetic anatomy of inter- and intraserotype variation in the human bacterial pathogen group A Streptococcus. Proc Natl Acad Sci U S A 2006; 103:7059-64. [PMID: 16636287 PMCID: PMC1459018 DOI: 10.1073/pnas.0510279103] [Citation(s) in RCA: 153] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In recent years we have studied the relationship between strain genotypes and patient phenotypes in group A Streptococcus (GAS), a model human bacterial pathogen that causes extensive morbidity and mortality worldwide. We have concentrated our efforts on serotype M3 organisms because these strains are common causes of pharyngeal and invasive infections, produce unusually severe invasive infections, and can exhibit epidemic behavior. Our studies have been hindered by the lack of genome-scale phylogenies of multiple GAS strains and whole-genome sequences of multiple serotype M3 strains recovered from individuals with defined clinical phenotypes. To remove some of these impediments, we sequenced to closure the genome of four additional GAS strains and conducted comparative genomic resequencing of 12 contemporary serotype M3 strains representing distinct genotypes and phenotypes. Serotype M3 strains are a single phylogenetic lineage. Strains from asymptomatic throat carriers were significantly less virulent for mice than sterile-site isolates and evolved to a less virulent phenotype by multiple genetic pathways. Strain persistence or extinction between epidemics was strongly associated with presence or absence, respectively, of the prophage encoding streptococcal pyrogenic exotoxin A. A serotype M3 clone significantly underrepresented among necrotizing fasciitis cases has a unique frameshift mutation that truncates MtsR, a transcriptional regulator controlling expression of genes encoding iron-acquisition proteins. Expression microarray analysis of this clone confirmed significant alteration in expression of genes encoding iron metabolism proteins. Our analysis provided unprecedented detail about the molecular anatomy of bacterial strain genotype-patient phenotype relationships.
Collapse
Affiliation(s)
- Stephen B. Beres
- *Center for Molecular and Translational Human Infectious Diseases Research, The Methodist Hospital Research Institute, Houston, TX 77030; and
| | - Ellen W. Richter
- *Center for Molecular and Translational Human Infectious Diseases Research, The Methodist Hospital Research Institute, Houston, TX 77030; and
| | - Michal J. Nagiec
- *Center for Molecular and Translational Human Infectious Diseases Research, The Methodist Hospital Research Institute, Houston, TX 77030; and
| | - Paul Sumby
- *Center for Molecular and Translational Human Infectious Diseases Research, The Methodist Hospital Research Institute, Houston, TX 77030; and
| | - Stephen F. Porcella
- Laboratory of Human Bacterial Pathogenesis, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 South Fourth Street, Hamilton, MT 59840
| | - Frank R. DeLeo
- Laboratory of Human Bacterial Pathogenesis, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 South Fourth Street, Hamilton, MT 59840
| | - James M. Musser
- *Center for Molecular and Translational Human Infectious Diseases Research, The Methodist Hospital Research Institute, Houston, TX 77030; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|