1
|
Fukushi M, Ohsawa R, Okinaka Y, Oikawa D, Kiyono T, Moriwaki M, Irie T, Oda K, Kamei Y, Tokunaga F, Sotomaru Y, Maruyama H, Kawakami H, Sakaguchi T. Optineurin deficiency impairs autophagy to cause interferon beta overproduction and increased survival of mice following viral infection. PLoS One 2023; 18:e0287545. [PMID: 37352136 PMCID: PMC10289332 DOI: 10.1371/journal.pone.0287545] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/07/2023] [Indexed: 06/25/2023] Open
Abstract
BACKGROUND Optineurin (OPTN) is associated with several human diseases, including amyotrophic lateral sclerosis (ALS), and is involved in various cellular processes, including autophagy. Optineurin regulates the expression of interferon beta (IFNβ), which plays a central role in the innate immune response to viral infection. However, the role of optineurin in response to viral infection has not been fully clarified. It is known that optineurin-deficient cells produce more IFNβ than wild-type cells following viral infection. In this study, we investigate the reasons for, and effects of, IFNβ overproduction during optineurin deficiency both in vitro and in vivo. METHODS To investigate the mechanism of IFNβ overproduction, viral nucleic acids in infected cells were quantified by RT-qPCR and the autophagic activity of optineurin-deficient cells was determined to understand the basis for the intracellular accumulation of viral nucleic acids. Moreover, viral infection experiments using optineurin-disrupted (Optn-KO) animals were performed with several viruses. RESULTS IFNβ overproduction following viral infection was observed not only in several types of optineurin-deficient cell lines but also in Optn-KO mice and human ALS patient cells carrying mutations in OPTN. IFNβ overproduction in Optn-KO cells was revealed to be caused by excessive accumulation of viral nucleic acids, which was a consequence of reduced autophagic activity caused by the loss of optineurin. Additionally, IFNβ overproduction in Optn-KO mice suppressed viral proliferation, resulting in increased mouse survival following viral challenge. CONCLUSION Our findings indicate that the combination of optineurin deficiency and viral infection leads to IFNβ overproduction in vitro and in vivo. The effects of optineurin deficiency are elicited by viral infection, therefore, viral infection may be implicated in the development of optineurin-related diseases.
Collapse
Affiliation(s)
- Masaya Fukushi
- Department of Virology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Ryosuke Ohsawa
- Department of Epidemiology, Research Institute of Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Yasushi Okinaka
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima City, Hiroshima, Japan
| | - Daisuke Oikawa
- Department of Medical Biochemistry, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Tohru Kiyono
- Project for Prevention of HPV-related Cancer, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Chiba, Japan
| | - Masaya Moriwaki
- Department of Epidemiology, Research Institute of Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Takashi Irie
- Department of Virology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kosuke Oda
- Department of Virology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yasuhiro Kamei
- Spectrography and Bioimaging Facility, National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Fuminori Tokunaga
- Department of Medical Biochemistry, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Yusuke Sotomaru
- Natural Science Center for Basic Research and Development, Hiroshima University, Hiroshima, Japan
| | - Hirofumi Maruyama
- Department of Clinical Neuroscience & Therapeutics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hideshi Kawakami
- Department of Epidemiology, Research Institute of Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Takemasa Sakaguchi
- Department of Virology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
2
|
Evolutionary differentiation of androgen receptor is responsible for sexual characteristic development in a teleost fish. Nat Commun 2023; 14:1428. [PMID: 36918573 PMCID: PMC10014959 DOI: 10.1038/s41467-023-37026-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 02/28/2023] [Indexed: 03/16/2023] Open
Abstract
Teleost fishes exhibit complex sexual characteristics in response to androgens, such as fin enlargement and courtship display. However, the molecular mechanisms underlying their evolutionary acquisition remain largely unknown. To address this question, we analyse medaka (Oryzias latipes) mutants deficient in teleost-specific androgen receptor ohnologs (ara and arb). We discovered that neither ar ohnolog was required for spermatogenesis, whilst they appear to be functionally redundant for the courtship display in males. However, both were required for reproductive success: ara for tooth enlargement and the reproductive behaviour eliciting female receptivity, arb for male-specific fin morphogenesis and sexual motivation. We further showed that differences between the two ar ohnologs in their transcription, cellular localisation of their encoded proteins, and their downstream genetic programmes could be responsible for the phenotypic diversity between the ara and arb mutants. These findings suggest that the ar ohnologs have diverged in two ways: first, through the loss of their roles in spermatogenesis and second, through gene duplication followed by functional differentiation that has likely resolved the pleiotropic roles derived from their ancestral gene. Thus, our results provide insights into how genome duplication impacts the massive diversification of sexual characteristics in the teleost lineage.
Collapse
|
3
|
Wang Y, Salt DE, Koornneef M, Aarts MGM. Construction and analysis of a Noccaea caerulescens TILLING population. BMC PLANT BIOLOGY 2022; 22:360. [PMID: 35869423 PMCID: PMC9308233 DOI: 10.1186/s12870-022-03739-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 06/27/2022] [Indexed: 05/11/2023]
Abstract
BACKGROUND Metals such as Zn or Cd are toxic to plant and humans when they are exposed in high quantities through contaminated soil or food. Noccaea caerulescens, an extraordinary Zn/Cd/Ni hyperaccumulating species, is used as a model plant for metal hyperaccumulation and phytoremediation studies. Current reverse genetic techniques to generate mutants based on transgenesis is cumbersome due to the low transformation efficiency of this species. We aimed to establish a mutant library for functional genomics by a non-transgenic approach, to identify mutants with an altered mineral profiling, and to screen for mutations in bZIP19, a regulator of Zn homeostasis in N. caerulescens. RESULTS To generate the N. caerulescens mutant library, 3000 and 5000 seeds from two sister plants of a single-seed recurrent inbred descendant of the southern French accession Saint-Félix-de-Pallières (SF) were mutagenized respectively by 0.3 or 0.4% ethyl methane sulfonate (EMS). Two subpopulations of 5000 and 7000 M2 plants were obtained after 0.3 or 0.4% EMS treatment. The 0.4% EMS treatment population had a higher mutant frequency and was used for TILLING. A High Resolution Melting curve analysis (HRM) mutation screening platform was optimized and successfully applied to detect mutations for NcbZIP19, encoding a transcription factor controlling Zn homeostasis. Of four identified point mutations in NcbZIP19, two caused non-synonymous substitutions, however, these two mutations did not alter the ionome profile compared to the wild type. Forward screening of the 0.4% EMS treatment population by mineral concentration analysis (ionomics) in leaf material of each M2 plant revealed putative mutants affected in the concentration of one or more of the 20 trace elements tested. Several of the low-Zn mutants identified in the ionomic screen did not give progeny, illustrating the importance of Zn for the species. The mutant frequency of the population was evaluated based on an average of 2.3 knockout mutants per tested monogenic locus. CONCLUSIONS The 0.4% EMS treatment population is effectively mutagenized suitable for forward mutant screens and TILLING. Difficulties in seed production in low Zn mutants, obtained by both forward and reverse genetic approach, hampered further analysis of the nature of the low Zn phenotypes.
Collapse
Affiliation(s)
- Yanli Wang
- Laboratory of Genetics, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
- College of Horticulture Science & Technology, Hebei Normal University of Science & Technology, No 360, West of HeBei street, Qinhuang Dao, China
| | - David E Salt
- Future Food Beacon of Excellence & School of Biosciences, University of Nottingham, Sutton Bonington, LE12 5RD, UK
| | - Maarten Koornneef
- Laboratory of Genetics, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Mark G M Aarts
- Laboratory of Genetics, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.
| |
Collapse
|
4
|
Yasuda T, Li D, Sha E, Kakimoto F, Mitani H, Yamamoto H, Ishikawa-Fujiwara T, Todo T, Oda S. 3D reconstructed brain images reveal the possibility of the ogg1 gene to suppress the irradiation-induced apoptosis in embryonic brain in medaka (Oryzias latipes). JOURNAL OF RADIATION RESEARCH 2022; 63:319-330. [PMID: 35276012 PMCID: PMC9124622 DOI: 10.1093/jrr/rrac005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/07/2021] [Indexed: 06/14/2023]
Abstract
The accumulation of oxidative DNA lesions in neurons is associated with neurodegenerative disorders and diseases. Ogg1 (8-oxoG DNA glycosylase-1) is a primary repair enzyme to excise 7,8-dihydro-8-oxoguanine (8-oxoG), the most frequent mutagenic base lesion produced by oxidative DNA damage. We have developed ogg1-deficient medaka by screening with a high resolution melting (HRM) assay in Targeting-Induced Local Lesions In Genomes (TILLING) library. In this study, we identified that ogg1-deficient embryos have smaller brains than wild-type during the period of embryogenesis and larvae under normal conditions. To reveal the function of ogg1 when brain injury occurs during embryogenesis, we examined the induction of apoptosis in brains after exposure to gamma-rays with 10 Gy (137Cs, 7.3 Gy/min.) at 24 h post-irradiation both in wild-type and ogg1-deficient embryos. By acridine orange (AO) assay, clustered apoptosis in irradiated ogg1-deficient embryonic brains were distributed in a similar manner to those of irradiated wild-type embryos. To evaluate possible differences of gamma-ray induced apoptosis in both types of embryonic brains, we constructed 3D images of the whole brain based on serial histological sections. This analysis identified that the clustered apoptotic volume was about 3 times higher in brain of irradiated ogg1-deficient embryos (n = 3) compared to wild-type embryos (n = 3) (P = 0.04), suggesting that irradiation-induced apoptosis in medaka embryonic brain can be suppressed in the presence of functional ogg1. Collectively, reconstruction of 3D images can be a powerful approach to reveal slight differences in apoptosis induction post-irradiation.
Collapse
Affiliation(s)
- Takako Yasuda
- Corresponding author: Center for Environmental Risk Research, National Institute for Environmental Studies, Onogawa 16-2, Tsukuba, Ibaraki 305-8506, Japan/tel 029-850-2864/Fax 029-850-2870, E-mail address: ;
| | | | | | - Fumitaka Kakimoto
- Laboratory of Genome Stability, Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Hiroshi Mitani
- Laboratory of Genome Stability, Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Hiroshi Yamamoto
- Center for Environmental Risk Research, National Institute for Environmental Studies, Onogawa 16-2, Tsukuba, Ibaraki 305-8506, Japan
| | - Tomoko Ishikawa-Fujiwara
- Department of Radiation Biology and Medical Genetics, Graduate School of Medicine, Osaka University, B4, 2-2, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takeshi Todo
- Department of Radiation Biology and Medical Genetics, Graduate School of Medicine, Osaka University, B4, 2-2, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shoji Oda
- Laboratory of Genome Stability, Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| |
Collapse
|
5
|
A point-mutation in the C-domain of CMP-sialic acid synthetase leads to lethality of medaka due to protein insolubility. Sci Rep 2021; 11:23211. [PMID: 34853329 PMCID: PMC8636478 DOI: 10.1038/s41598-021-01715-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 10/05/2021] [Indexed: 01/22/2023] Open
Abstract
Vertebrate CMP-sialic acid synthetase (CSS), which catalyzes the synthesis of CMP-sialic acid (CMP-Sia), consists of a 28 kDa-N-domain and a 20 kDa-C-domain. The N-domain is known to be a catalytic domain; however, the significance of the C-domain still remains unknown. To elucidate the function of the C-domain at the organism level, we screened the medaka TILLING library and obtained medaka with non-synonymous mutations (t911a), or single amino acid substitutions of CSS, L304Q, in the C-domain. Prominently, most L304Q medaka was lethal within 19 days post-fertilization (dpf). L304Q young fry displayed free Sia accumulation, and impairment of sialylation, up to 8 dpf. At 8 dpf, a marked abnormality in ventricular contraction and skeletal myogenesis was observed. To gain insight into the mechanism of L304Q-induced abnormalities, L304Q was biochemically characterized. Although bacterially expressed soluble L304Q and WT showed the similar Vmax/Km values, very few soluble L304Q was detected when expressed in CHO cells in sharp contrast to the WT. Additionally, the thermostability of various mutations of L304 greatly decreased, except for WT and L304I. These results suggest that L304 is important for the stability of CSS, and that an appropriate level of expression of soluble CSS is significant for animal survival.
Collapse
|
6
|
Beedgen L, Hüllen A, Gücüm S, Thumberger T, Wittbrodt J, Thiel C. A rapid and simple procedure for the isolation and cultivation of fibroblast-like cells from medaka and zebrafish embryos and fin clip biopsies. Lab Anim 2021; 56:270-278. [PMID: 34551636 DOI: 10.1177/00236772211045483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In many human diseases, the molecular pathophysiological mechanisms are not understood, which makes the development and testing of new therapeutic approaches difficult. The generation and characterization of animal models such as mice, rats, fruit flies, worms or fish offers the possibility for in detail studies of a disease's development, its course and potential therapies in an organismal context, which considerably minimizes the risk of therapeutic side effects for patients. Nevertheless, due to the high numbers of experimental animals used in research worldwide, attempts to develop alternative test systems will help in reducing their count. In this regard, the cell culture system displays a suitable option due to its potential of delivering nearly unlimited material and the good opportunities for high-throughput studies such as drug testing. Here, we describe a quick and simple method to isolate and cultivate vital fibroblast-like cells from embryos and adults of two popular teleost model organisms, the Japanese rice fish medaka (Oryzias latipes) and the zebrafish (Danio rerio).
Collapse
Affiliation(s)
- Lars Beedgen
- Centre for Child and Adolescent Medicine, University Hospital Heidelberg, Germany
| | - Andreas Hüllen
- Centre for Child and Adolescent Medicine, University Hospital Heidelberg, Germany
| | - Sevinç Gücüm
- Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, Germany.,Heidelberg Biosciences International Graduate School (HBIGS), Heidelberg University, Germany
| | - Thomas Thumberger
- Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, Germany
| | - Jochen Wittbrodt
- Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, Germany
| | - Christian Thiel
- Centre for Child and Adolescent Medicine, University Hospital Heidelberg, Germany
| |
Collapse
|
7
|
Kriangwanich W, Nganvongpanit K, Buddhachat K, Siengdee P, Chomdej S, Ponsuksili S, Thitaram C. Mammalian species identification using ISSR-HRM technique. Sci Prog 2021; 104:368504211026163. [PMID: 34143702 PMCID: PMC10455004 DOI: 10.1177/00368504211026163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Wildlife trading and the illegal hunting of wildlife are contributing factors to the biodiversity crisis that is presently unfolding across the world. The inability to control the trade of animal body parts or available biological materials is a major challenge for those who investigate wildlife crime. The effective management of this illegal trade is an important facet of wildlife forensic sciences and can be a key factor in the enforcement of effective legislation surrounding the illegal trade of protected and endangered species. However, the science of wildlife forensics is limited by the absence of a comprehensive database for wildlife investigations. Inter-simple sequence repeat markers (ISSR) coupled with high resolution melting analysis (HRM) have been effectively used for species identification of 38 mammalian species. Six primers of the ISSR markers were chosen for species identification analysis. From six ISSR primers resulting in a range of accuracy of 33.3%-100% and 100% in terms of precision in every primer. Furthermore, 161 mammalian samples were 100% distinguished to the correct species using these six ISSR primers. ISSR-HRM analysis was successfully employed in determining mammal identification among varying mammalian species, and thus could serve as an effective alternative tool or technique in the species identification process. This option would offer researchers a heightened level of convenience in terms of its performance and the ease with which researchers or field practice veterinarians would be able to interpret results in effectively identifying animal parts at wildlife investigation crime scenes.
Collapse
Affiliation(s)
- Wannapimol Kriangwanich
- Department of Veterinary Biosciences and Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Korakot Nganvongpanit
- Department of Veterinary Biosciences and Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
- Excellence Center in Veterinary Bioscience, Chiang Mai University, Chiang Mai, Thailand
| | - Kittisak Buddhachat
- Excellence Center in Veterinary Bioscience, Chiang Mai University, Chiang Mai, Thailand
- Department of Biology, Faculty of Science, Naresuan University, Phitsanulok, Thailand
| | - Puntita Siengdee
- Excellence Center in Veterinary Bioscience, Chiang Mai University, Chiang Mai, Thailand
- Leibniz Institute for Farm Animal Biology, Dummerstorf, Germany
| | - Siriwadee Chomdej
- Excellence Center in Veterinary Bioscience, Chiang Mai University, Chiang Mai, Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | | | - Chatchote Thitaram
- Center of Excellence in Elephant and Wildlife Research, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
8
|
Patrone PN, Kearsley AJ, Majikes JM, Liddle JA. Analysis and uncertainty quantification of DNA fluorescence melt data: Applications of affine transformations. Anal Biochem 2020; 607:113773. [PMID: 32526200 DOI: 10.1016/j.ab.2020.113773] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 04/22/2020] [Accepted: 05/10/2020] [Indexed: 12/17/2022]
Abstract
Fluorescence-based measurements are a standard tool for characterizing the thermodynamic properties of DNA systems. Nonetheless, experimental melt data obtained from polymerase chain-reaction (PCR) machines (for example) often leads to signals that vary significantly between datasets. In many cases, this lack of reproducibility has led to difficulties in analyzing results and computing reasonable uncertainty estimates. To address this problem, we propose a data analysis procedure based on constrained, convex optimization of affine transformations, which can determine when and how melt curves collapse onto one another. A key aspect of this approach is its ability to provide a reproducible and more objective measure of whether a collection of datasets yields a consistent "universal" signal according to an appropriate model of the raw signals. Importantly, integrating this validation step into the analysis hardens the measurement protocol by allowing one to identify experimental conditions and/or modeling assumptions that may corrupt a measurement. Moreover, this robustness facilitates extraction of thermodynamic information at no additional cost in experimental time. We illustrate and test our approach on experiments of Förster resonance energy transfer (FRET) pairs used study the thermodynamics of DNA loops.
Collapse
|
9
|
Estrogen and estrogen receptors chauffeur the sex-biased autophagic action in liver. Cell Death Differ 2020; 27:3117-3130. [PMID: 32483382 DOI: 10.1038/s41418-020-0567-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 05/20/2020] [Accepted: 05/20/2020] [Indexed: 01/02/2023] Open
Abstract
Autophagy, or cellular self-digestion, is an essential cellular process imperative for energy homeostasis, development, differentiation, and survival. However, the intrinsic factors that bring about the sex-biased differences in liver autophagy are still unknown. In this work, we found that autophagic genes variably expresses in the steroidogenic tissues, mostly abundant in liver, and is influenced by the individual's sexuality. Starvation-induced autophagy in a time-dependent female-dominated manner, and upon starvation, a strong gender responsive circulating steroid-HK2 relation was observed, which highlighted the importance of estrogen in autophagy regulation. This was further confirmed by the enhanced or suppressed autophagy upon estrogen addition (male) or blockage (female), respectively. In addition, we found that estrogen proved to be the common denominator between stress management, glucose metabolism, and autophagic action in female fish. To understand further, we used estrogen receptor (ER)α- and ER-β2-knockout (KO) medaka and found ER-specific differences in sex-biased autophagy. Interestingly, starvation resulted in significantly elevated mTOR transcription (compared with control) in male ERα-KO fish while HK2 and ULK activation was greatly decreased in both KO fish in a female oriented fashion. Later, ChIP analysis confirmed that, NRF2, an upstream regulator of mTOR, only binds to ERα, while both ERα and ERβ2 are effectively pulled down the HK2 and LC3. FIHC data show that, in both ER-KO fish, LC3 nuclear-cytoplasmic transport and its associated pathways involving SIRT1 and DOR were greatly affected. Cumulatively, our data suggest that, ERα-KO strongly affected the early autophagic initiation and altered the LC3 nuclear-cytoplasmic translocation, thereby influencing the sex-biased final autophagosome formation in medaka. Thus, existence of steroid responsive autophagy regulatory-switches and sex-biased steroid/steroid receptor availability influences the gender-skewed autophagy. Expectedly, this study may furnish newer appreciation for gender-specific medicine research and therapeutics.
Collapse
|
10
|
Abstract
Oxytocin is a central neuromodulator required for facilitating mate preferences for familiar individuals in a monogamous rodent (prairie vole), irrespective of sex. While the role of oxytocin in mate choice is only understood in a few monogamous species, its function in nonmonogamous species, comprising the vast majority of vertebrate species, remains unclear. To address this issue, we evaluated the involvement of an oxytocin homolog (isotocin, referred herein as oxt) in mate choice in medaka fish (Oryzias latipes). Female medaka prefer to choose familiar mates, whereas male medaka court indiscriminately, irrespective of familiarity. We generated mutants of the oxt ligand (oxt) and receptor genes (oxtr1 and oxtr2) and revealed that the oxt-oxtr1 signaling pathway was essential for eliciting female mate preference for familiar males. This pathway was also required for unrestricted and indiscriminate mating strategy in males. That is, either oxt or oxtr1 mutation in males decreased the number of courtship displays toward novel females, but not toward familiar females. Further, males with these mutations exhibited enhanced mate-guarding behaviors toward familiar females, but not toward novel females. In addition, RNA-sequencing (seq) analysis revealed that the transcription of genes involved in gamma-amino butyric acid metabolism as well as those encoding ion-transport ATPase are up-regulated in both oxt and oxtr1 mutants only in female medaka, potentially explaining the sex difference of the mutant phenotype. Our findings provide genetic evidence that oxt-oxtr1 signaling plays a role in the mate choice for familiar individuals in a sex-specific manner in medaka fish.
Collapse
|
11
|
Fujikawa Y, Ishikawa-Fujiwara T, Kuo T, Shinkai N, Shoji T, Kawasaki T, Kamei Y, Sakuraba Y, Sato A, Kinoshita M, Gondo Y, Yuba S, Tsujimura T, Sese J, Todo T. Involvement of Rev1 in alkylating agent-induced loss of heterozygosity in Oryzias latipes. Genes Cells 2020; 25:124-138. [PMID: 31917895 PMCID: PMC7079036 DOI: 10.1111/gtc.12746] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/25/2019] [Accepted: 12/26/2019] [Indexed: 12/21/2022]
Abstract
Translesion synthesis (TLS) polymerases mediate DNA damage bypass during replication. The TLS polymerase Rev1 has two important functions in the TLS pathway, including dCMP transferase activity and acting as a scaffolding protein for other TLS polymerases at the C‐terminus. Because of the former activity, Rev1 bypasses apurinic/apyrimidinic sites by incorporating dCMP, whereas the latter activity mediates assembly of multipolymerase complexes at the DNA lesions. We generated rev1 mutants lacking each of these two activities in Oryzias latipes (medaka) fish and analyzed cytotoxicity and mutagenicity in response to the alkylating agent diethylnitrosamine (DENA). Mutant lacking the C‐terminus was highly sensitive to DENA cytotoxicity, whereas mutant with reduced dCMP transferase activity was slightly sensitive to DENA cytotoxicity, but exhibited a higher tumorigenic rate than wild‐type fish. There was no significant difference in the frequency of DENA‐induced mutations between mutant with reduced dCMP transferase activity and wild‐type cultured cell. However, loss of heterozygosity (LOH) occurred frequently in cells with reduced dCMP transferase activity. LOH is a common genetic event in many cancer types and plays an important role on carcinogenesis. To our knowledge, this is the first report to identify the involvement of the catalytic activity of Rev1 in suppression of LOH.
Collapse
Affiliation(s)
- Yoshihiro Fujikawa
- Radioisotope Research Center, Institute for Radiation Research, Osaka University, Suita, Japan.,Radiation Biology and Medical Genetics, Department of Genome Biology, Graduate School of Medicine, Osaka University, Suita, Japan.,Japan Society for the Promotion of Science Research Fellow, Tokyo, Japan
| | - Tomoko Ishikawa-Fujiwara
- Radioisotope Research Center, Institute for Radiation Research, Osaka University, Suita, Japan.,Radiation Biology and Medical Genetics, Department of Genome Biology, Graduate School of Medicine, Osaka University, Suita, Japan
| | | | - Norio Shinkai
- Artificial Intelligence Research Center (AIRC), AIST, Tokyo, Japan.,Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, Tokyo, Japan.,Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, Tokyo, Japan
| | - Tatsuma Shoji
- Artificial Intelligence Research Center (AIRC), AIST, Tokyo, Japan.,Humanome Lab., Inc., Tokyo, Japan
| | - Takashi Kawasaki
- Functional Biomolecular Research Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ikeda, Japan
| | - Yasuhiro Kamei
- Spectrography and Bioimaging Facility, National Institute for Basic Biology, Okazaki, Japan
| | - Yoshiyuki Sakuraba
- Genomic Sciences Center (GSC), RIKEN Yokohama Institute, Yokohama, Japan
| | - Ayuko Sato
- Department of Pathology, Hyogo College of Medicine, Nishinomiya, Japan
| | - Masato Kinoshita
- Division of Applied Bioscience, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Yoichi Gondo
- Genomic Sciences Center (GSC), RIKEN Yokohama Institute, Yokohama, Japan
| | - Shunsuke Yuba
- Functional Biomolecular Research Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ikeda, Japan
| | - Tohru Tsujimura
- Department of Pathology, Hyogo College of Medicine, Nishinomiya, Japan
| | - Jun Sese
- RWBC-OIL, AIST, Tokyo, Japan.,Artificial Intelligence Research Center (AIRC), AIST, Tokyo, Japan.,Humanome Lab., Inc., Tokyo, Japan
| | - Takeshi Todo
- Radioisotope Research Center, Institute for Radiation Research, Osaka University, Suita, Japan.,Radiation Biology and Medical Genetics, Department of Genome Biology, Graduate School of Medicine, Osaka University, Suita, Japan
| |
Collapse
|
12
|
Watanabe Y, Furukawa E, Tatsukawa H, Hashimoto H, Kamei Y, Taniguchi Y, Hitomi K. Higher susceptibility to osmolality of the medaka (Oryzias latipes) mutants in orthologue genes of mammalian skin transglutaminases. Biosci Biotechnol Biochem 2018; 82:1165-1168. [DOI: 10.1080/09168451.2018.1453294] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Abstract
Transglutaminase (TG) is an essential enzyme to catalyze cross-linking reactions of epidermal proteins. Recently, we biochemically characterized human skin TG orthologues for medaka (Oryzias latipes), a model fish. By genome editing, gene-modified fishes for the two orthologues were obtained, both of which lack the ordinal enzymes. These fish appeared to exhibit higher susceptibility to osmolality at the period of larvae.
Collapse
Affiliation(s)
- Yuko Watanabe
- Graduate School of Pharmaceutical Sciences, Nagoya University , Nagoya, Japan
| | - Eri Furukawa
- Graduate School of Pharmaceutical Sciences, Nagoya University , Nagoya, Japan
| | - Hideki Tatsukawa
- Graduate School of Pharmaceutical Sciences, Nagoya University , Nagoya, Japan
| | | | | | - Yoshihito Taniguchi
- Department of Preventive Medicine and Public Health, School of Medicine, Kyorin University , Tokyo, Japan
| | - Kiyotaka Hitomi
- Graduate School of Pharmaceutical Sciences, Nagoya University , Nagoya, Japan
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University , Nagoya, Japan
| |
Collapse
|
13
|
Tonoyama Y, Shinya M, Toyoda A, Kitano T, Oga A, Nishimaki T, Katsumura T, Oota H, Wan MT, Yip BWP, Helen MOL, Chisada S, Deguchi T, Au DWT, Naruse K, Kamei Y, Taniguchi Y. Abnormal nuclear morphology is independent of longevity in a zmpste24-deficient fish model of Hutchinson-Gilford progeria syndrome (HGPS). Comp Biochem Physiol C Toxicol Pharmacol 2018; 209:54-62. [PMID: 29567411 DOI: 10.1016/j.cbpc.2018.03.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 03/11/2018] [Accepted: 03/16/2018] [Indexed: 12/21/2022]
Abstract
Lamin is an intermediate protein underlying the nuclear envelope and it plays a key role in maintaining the integrity of the nucleus. A defect in the processing of its precursor by a metalloprotease, ZMPSTE24, results in the accumulation of farnesylated prelamin in the nucleus and causes various diseases, including Hutchinson-Gilford progeria syndrome (HGPS). However, the role of lamin processing is unclear in fish species. Here, we generated zmpste24-deficient medaka and evaluated their phenotype. Unlike humans and mice, homozygous mutants did not show growth defects or lifespan shortening, despite lamin precursor accumulation. Gonadosomatic indices, blood glucose levels, and regenerative capacity of fins were similar in 1-year-old mutants and their wild-type (WT) siblings. Histological examination showed that the muscles, subcutaneous fat tissues, and gonads were normal in the mutants at the age of 1 year. However, the mutants showed hypersensitivity to X-ray irradiation, although p53target genes, p21 and mdm2, were induced 6 h after irradiation. Immunostaining of primary cultured cells from caudal fins and visualization of nuclei using H2B-GFP fusion proteins revealed an abnormal nuclear shape in the mutants both in vitro and in vivo. The telomere lengths were significantly shorter in the mutants compared to WT. Taken together, these results suggest that zmpste24-deficient medaka phenocopied HGPS only partially and that abnormal nuclear morphology and lifespan shortening are two independent events in vertebrates.
Collapse
Affiliation(s)
- Yasuhiro Tonoyama
- Branch Laboratory of Gene Medicine, School of Medicine, Keio University, 2 Okubo, Tsukuba, Ibaraki 300-2611, Japan
| | - Minori Shinya
- Department of Biology, Keio University, 4-1-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8521, Japan
| | - Atsushi Toyoda
- Center for Information Biology, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan
| | - Takeshi Kitano
- Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Atsunori Oga
- Department of Pathology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi 755-8505, Japan
| | - Toshiyuki Nishimaki
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0674, Japan
| | - Takafumi Katsumura
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0674, Japan
| | - Hiroki Oota
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0674, Japan
| | - Miles T Wan
- State Key Laboratory in Marine Pollution, Department of Chemistry, City University of, Hong Kong, China
| | - Bill W P Yip
- State Key Laboratory in Marine Pollution, Department of Chemistry, City University of, Hong Kong, China
| | - Mok O L Helen
- State Key Laboratory in Marine Pollution, Department of Chemistry, City University of, Hong Kong, China
| | - Shinichi Chisada
- Department of Preventive Medicine and Public Health, Kyorin University, School of Medicine, Tokyo 181-8611, Japan
| | - Tomonori Deguchi
- Advanced Genome Design Research Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Midorigaoka 1-8-31, Ikeda, Osaka, 563-8577, Japan
| | - Doris W T Au
- State Key Laboratory in Marine Pollution, Department of Chemistry, City University of, Hong Kong, China
| | - Kiyoshi Naruse
- Laboratory of Bioresources, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi 444-8585, Japan
| | - Yasuhiro Kamei
- Spectrography and Bioimaging Facility, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi 444-8585, Japan
| | - Yoshihito Taniguchi
- Department of Preventive Medicine and Public Health, Kyorin University, School of Medicine, Tokyo 181-8611, Japan.
| |
Collapse
|
14
|
Nagao Y, Takada H, Miyadai M, Adachi T, Seki R, Kamei Y, Hara I, Taniguchi Y, Naruse K, Hibi M, Kelsh RN, Hashimoto H. Distinct interactions of Sox5 and Sox10 in fate specification of pigment cells in medaka and zebrafish. PLoS Genet 2018; 14:e1007260. [PMID: 29621239 PMCID: PMC5886393 DOI: 10.1371/journal.pgen.1007260] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 02/15/2018] [Indexed: 01/06/2023] Open
Abstract
Mechanisms generating diverse cell types from multipotent progenitors are fundamental for normal development. Pigment cells are derived from multipotent neural crest cells and their diversity in teleosts provides an excellent model for studying mechanisms controlling fate specification of distinct cell types. Zebrafish have three types of pigment cells (melanocytes, iridophores and xanthophores) while medaka have four (three shared with zebrafish, plus leucophores), raising questions about how conserved mechanisms of fate specification of each pigment cell type are in these fish. We have previously shown that the Sry-related transcription factor Sox10 is crucial for fate specification of pigment cells in zebrafish, and that Sox5 promotes xanthophores and represses leucophores in a shared xanthophore/leucophore progenitor in medaka. Employing TILLING, TALEN and CRISPR/Cas9 technologies, we generated medaka and zebrafish sox5 and sox10 mutants and conducted comparative analyses of their compound mutant phenotypes. We show that specification of all pigment cells, except leucophores, is dependent on Sox10. Loss of Sox5 in Sox10-defective fish partially rescued the formation of all pigment cells in zebrafish, and melanocytes and iridophores in medaka, suggesting that Sox5 represses Sox10-dependent formation of these pigment cells, similar to their interaction in mammalian melanocyte specification. In contrast, in medaka, loss of Sox10 acts cooperatively with Sox5, enhancing both xanthophore reduction and leucophore increase in sox5 mutants. Misexpression of Sox5 in the xanthophore/leucophore progenitors increased xanthophores and reduced leucophores in medaka. Thus, the mode of Sox5 function in xanthophore specification differs between medaka (promoting) and zebrafish (repressing), which is also the case in adult fish. Our findings reveal surprising diversity in even the mode of the interactions between Sox5 and Sox10 governing specification of pigment cell types in medaka and zebrafish, and suggest that this is related to the evolution of a fourth pigment cell type. How individual cell fates become specified from multipotent progenitors is a fundamental question in developmental and stem cell biology. Body pigment cells derive from a multipotent progenitor, but while in zebrafish there are three types of pigment cells (melanocytes, iridophores and xanthophores), in medaka these progenitors form four (as zebrafish, plus leucophores). Here, we address whether mechanisms generating each cell-type are conserved between the two species. We focus on two key regulatory proteins, Sox5 and Sox10, which we previously showed were involved in pigment cell development in medaka and zebrafish, respectively. We compare experimentally how the two proteins interact in regulating development of each of the pigment cell lineages in these fish. We show that development of all pigment cells, except leucophores, is dependent on Sox10, and that Sox5 modulates Sox10 activity antagonistically in all pigment cells in zebrafish, and melanocytes and iridophores in medaka. Surprisingly, in medaka, Sox5 acts co-operatively with Sox10 to promote xanthophore fate and to repress leucophore fate. Our findings reveal surprising diversity how Sox5 and Sox10 interact to govern pigment cell development in medaka and zebrafish, and suggest that this likely relates to the evolution of the novel leucophore pigment cell type in medaka.
Collapse
Affiliation(s)
- Yusuke Nagao
- Bioscience and Biotechnology Center and Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, United Kingdom
| | - Hiroyuki Takada
- Bioscience and Biotechnology Center and Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan
| | - Motohiro Miyadai
- Bioscience and Biotechnology Center and Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan
| | - Tomoko Adachi
- Bioscience and Biotechnology Center and Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan
| | - Ryoko Seki
- Bioscience and Biotechnology Center and Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan
| | - Yasuhiro Kamei
- Department of Basic Biology, School of Life Science, Graduate University of Advanced Studies (SOKENDAI), Myodaiji, Okazaki, Aichi, Japan
- Spectrography and Bioimaging Facility, National Institute for Basic Biology, Myodaiji, Okazaki, Aichi, Japan
| | - Ikuyo Hara
- Department of Basic Biology, School of Life Science, Graduate University of Advanced Studies (SOKENDAI), Myodaiji, Okazaki, Aichi, Japan
- Laboratory of Bioresources, National Institute for Basic Biology, Myodaiji, Okazaki, Aichi, Japan
| | - Yoshihito Taniguchi
- Department of Public Health and Preventive Medicine, Kyorin University, School of Medicine, Mitaka, Tokyo, Japan
| | - Kiyoshi Naruse
- Department of Basic Biology, School of Life Science, Graduate University of Advanced Studies (SOKENDAI), Myodaiji, Okazaki, Aichi, Japan
- Laboratory of Bioresources, National Institute for Basic Biology, Myodaiji, Okazaki, Aichi, Japan
| | - Masahiko Hibi
- Bioscience and Biotechnology Center and Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan
| | - Robert N. Kelsh
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, United Kingdom
- * E-mail: (HH); (RNK)
| | - Hisashi Hashimoto
- Bioscience and Biotechnology Center and Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan
- * E-mail: (HH); (RNK)
| |
Collapse
|
15
|
Comastri A, Janni M, Simmonds J, Uauy C, Pignone D, Nguyen HT, Marmiroli N. Heat in Wheat: Exploit Reverse Genetic Techniques to Discover New Alleles Within the Triticum durum sHsp26 Family. FRONTIERS IN PLANT SCIENCE 2018; 9:1337. [PMID: 30283469 PMCID: PMC6156267 DOI: 10.3389/fpls.2018.01337] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 08/24/2018] [Indexed: 05/21/2023]
Abstract
Wheat breeding nowadays must address producers and consumers' desire. According to the last FAO report, a dramatic decrease in wheat production is expected in the next decades mainly due to the upcoming climate change. The identification of the processes which are triggered by heat stress and how thermotolerance develops in wheat is an active research topic. Genomic approach may help wheat breeding since it allows direct study on the genotype and relationship with the phenotype. Here the isolation and characterization of four members of the chloroplast-localized small heat shock proteins (sHSP) encoded by the Hsp26 gene family is reported. Furthermore, two high throughput TILLING (Targeting Induced Local Lesions In Genomes) approaches in vivo and in silico were used for the identification of new alleles within this family. Small heat shock proteins are known to prevent the irreversible aggregation of misfolded proteins and contribute to the acquisition of thermotolerance. Chloroplast-localized sHSPs protect the photosynthetic machinery during episodes of high temperature stress. The modulation of the newly discovered genes within the sHsp26 family has been analyzed in vivo and by the ExpVIP platform widening the abiotic stress analysis; and their involvement in the heat stress response has been demonstrated. In addition, in this study a total of 50 TILLING mutant lines have been identified. A set of KASP (Kompetitive Allele Specific PCR) markers was also developed to follow the specific mutations in the ongoing backcrosses, applicable to high throughput genotyping approaches and usable in marker assisted selection breeding programs.
Collapse
Affiliation(s)
- Alessia Comastri
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Michela Janni
- Department of DiSBA, CNR, Institute of Bioscience and Bioresources, Bari, Italy
- Department of DiTET, CNR, Institute of Materials for Electronics and Magnetism, Parma, Italy
- *Correspondence: Michela Janni
| | - James Simmonds
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Cristobal Uauy
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Domenico Pignone
- Department of DiSBA, CNR, Institute of Bioscience and Bioresources, Bari, Italy
| | - Henry T. Nguyen
- Division of Plant Sciences, University of Missouri, Columbia, MO, United States
| | - Nelson Marmiroli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| |
Collapse
|
16
|
Ishikawa T, Kashima M, Nagano AJ, Ishikawa-Fujiwara T, Kamei Y, Todo T, Mori K. Unfolded protein response transducer IRE1-mediated signaling independent of XBP1 mRNA splicing is not required for growth and development of medaka fish. eLife 2017; 6:26845. [PMID: 28952924 PMCID: PMC5636610 DOI: 10.7554/elife.26845] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 09/25/2017] [Indexed: 12/14/2022] Open
Abstract
When activated by the accumulation of unfolded proteins in the endoplasmic reticulum, metazoan IRE1, the most evolutionarily conserved unfolded protein response (UPR) transducer, initiates unconventional splicing of XBP1 mRNA. Unspliced and spliced mRNA are translated to produce pXBP1(U) and pXBP1(S), respectively. pXBP1(S) functions as a potent transcription factor, whereas pXBP1(U) targets pXBP1(S) to degradation. In addition, activated IRE1 transmits two signaling outputs independent of XBP1, namely activation of the JNK pathway, which is initiated by binding of the adaptor TRAF2 to phosphorylated IRE1, and regulated IRE1-dependent decay (RIDD) of various mRNAs in a relatively nonspecific manner. Here, we conducted comprehensive and systematic genetic analyses of the IRE1-XBP1 branch of the UPR using medaka fish and found that the defects observed in XBP1-knockout or IRE1-knockout medaka were fully rescued by constitutive expression of pXBP1(S). Thus, the JNK and RIDD pathways are not required for the normal growth and development of medaka. The unfolded protein response sensor/transducer IRE1-mediated splicing of XBP1 mRNA encoding its active downstream transcription factor to maintain the homeostasis of the endoplasmic reticulum is sufficient for growth and development of medaka fish.
Collapse
Affiliation(s)
- Tokiro Ishikawa
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Makoto Kashima
- Research Institute for Food and Agriculture, Ryukoku University, Otsu, Japan
| | | | | | - Yasuhiro Kamei
- Spectrography and Bioimaging Facility, National Institute for Basic Biology, Okazaki, Japan
| | - Takeshi Todo
- Graduate School of Medicine, Osaka University, Suita, Japan
| | - Kazutoshi Mori
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| |
Collapse
|
17
|
Ishikawa T, Toyama T, Nakamura Y, Tamada K, Shimizu H, Ninagawa S, Okada T, Kamei Y, Ishikawa-Fujiwara T, Todo T, Aoyama E, Takigawa M, Harada A, Mori K. UPR transducer BBF2H7 allows export of type II collagen in a cargo- and developmental stage-specific manner. J Cell Biol 2017; 216:1761-1774. [PMID: 28500182 PMCID: PMC5461018 DOI: 10.1083/jcb.201609100] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 03/05/2017] [Accepted: 04/12/2017] [Indexed: 12/22/2022] Open
Abstract
The unfolded protein response (UPR) handles unfolded/misfolded proteins accumulated in the endoplasmic reticulum (ER). However, it is unclear how vertebrates correctly use the total of ten UPR transducers. We have found that ER stress occurs physiologically during early embryonic development in medaka fish and that the smooth alignment of notochord cells requires ATF6 as a UPR transducer, which induces ER chaperones for folding of type VIII (short-chain) collagen. After secretion of hedgehog for tissue patterning, notochord cells differentiate into sheath cells, which synthesize type II collagen. In this study, we show that this vacuolization step requires both ATF6 and BBF2H7 as UPR transducers and that BBF2H7 regulates a complete set of genes (Sec23/24/13/31, Tango1, Sedlin, and KLHL12) essential for the enlargement of COPII vesicles to accommodate long-chain collagen for export, leading to the formation of the perinotochordal basement membrane. Thus, the most appropriate UPR transducer is activated to cope with the differing physiological ER stresses of different content types depending on developmental stage.
Collapse
Affiliation(s)
- Tokiro Ishikawa
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Takuya Toyama
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Yuki Nakamura
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Kentaro Tamada
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Hitomi Shimizu
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Satoshi Ninagawa
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Tetsuya Okada
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Yasuhiro Kamei
- Spectrography and Bioimaging Facility, National Institute for Basic Biology, Okazaki 444-8585, Japan
| | - Tomoko Ishikawa-Fujiwara
- Department of Radiation Biology and Medical Genetics, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan
| | - Takeshi Todo
- Department of Radiation Biology and Medical Genetics, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan
| | - Eriko Aoyama
- Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Dental School/Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8525, Japan
| | - Masaharu Takigawa
- Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Dental School/Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8525, Japan
| | - Akihiro Harada
- Department of Cell Biology, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan
| | - Kazutoshi Mori
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
18
|
Ishikawa-Fujiwara T, Shiraishi E, Fujikawa Y, Mori T, Tsujimura T, Todo T. Targeted Inactivation of DNA Photolyase Genes in Medaka Fish (Oryzias latipes). Photochem Photobiol 2016; 93:315-322. [PMID: 27861979 DOI: 10.1111/php.12658] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 10/21/2016] [Indexed: 12/22/2022]
Abstract
Proteins of the cryptochrome/photolyase family (CPF) exhibit sequence and structural conservation, but their functions are divergent. Photolyase is a DNA repair enzyme that catalyzes the light-dependent repair of ultraviolet (UV)-induced photoproducts, whereas cryptochrome acts as a photoreceptor or circadian clock protein. Two types of DNA photolyase exist: CPD photolyase, which repairs cyclobutane pyrimidine dimers (CPDs), and 6-4 photolyase, which repairs 6-4 pyrimidine-pyrimidone photoproducts (6-4PPs). Although the Cry-DASH protein is classified as a cryptochrome, it also has light-dependent DNA repair activity. To determine the significance of the three light-dependent repair enzymes in recovering from solar UV-induced DNA damage at the organismal level, we generated mutants in each gene in medaka using the CRISPR genome editing technique. The light-dependent repair activity of the mutants was examined in vitro in cultured cells and in vivo in skin tissue. Light-dependent repair of CPD was lost in the CPD photolyase-deficient mutant, whereas weak repair activity against 6-4PPs persisted in the 6-4 photolyase-deficient mutant. These results suggest the existence of a heretofore unknown 6-4PP repair pathway and thus improve our understanding of the mechanisms of defense against solar UV in vertebrates.
Collapse
Affiliation(s)
- Tomoko Ishikawa-Fujiwara
- Radiation Biology and Medical Genetics, Department of Genome Biology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Eri Shiraishi
- Radiation Biology and Medical Genetics, Department of Genome Biology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Yoshihiro Fujikawa
- Radiation Biology and Medical Genetics, Department of Genome Biology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Toshio Mori
- Radioisotope Research Center, Nara Medical University, Kashihara, Nara, Japan
| | - Tohru Tsujimura
- Department of Pathology, Hyogo College of Medicine, Nishinomiya, Japan
| | - Takeshi Todo
- Radiation Biology and Medical Genetics, Department of Genome Biology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
19
|
Okabe Y, Ariizumi T. Mutant Resources and TILLING Platforms in Tomato Research. BIOTECHNOLOGY IN AGRICULTURE AND FORESTRY 2016. [DOI: 10.1007/978-3-662-48535-4_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
20
|
Uemura N, Koike M, Ansai S, Kinoshita M, Ishikawa-Fujiwara T, Matsui H, Naruse K, Sakamoto N, Uchiyama Y, Todo T, Takeda S, Yamakado H, Takahashi R. Viable neuronopathic Gaucher disease model in Medaka (Oryzias latipes) displays axonal accumulation of alpha-synuclein. PLoS Genet 2015; 11:e1005065. [PMID: 25835295 PMCID: PMC4383526 DOI: 10.1371/journal.pgen.1005065] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 02/09/2015] [Indexed: 02/06/2023] Open
Abstract
Homozygous mutations in the glucocerebrosidase (GBA) gene result in Gaucher disease (GD), the most common lysosomal storage disease. Recent genetic studies have revealed that GBA mutations confer a strong risk for sporadic Parkinson’s disease (PD). To investigate how GBA mutations cause PD, we generated GBA nonsense mutant (GBA-/-) medaka that are completely deficient in glucocerebrosidase (GCase) activity. In contrast to the perinatal death in humans and mice lacking GCase activity, GBA-/- medaka survived for months, enabling analysis of the pathological progression. GBA-/- medaka displayed the pathological phenotypes resembling human neuronopathic GD including infiltration of Gaucher cell-like cells into the brains, progressive neuronal loss, and microgliosis. Detailed pathological findings represented lysosomal abnormalities in neurons and alpha-synuclein (α-syn) accumulation in axonal swellings containing autophagosomes. Unexpectedly, disruption of α-syn did not improve the life span, formation of axonal swellings, neuronal loss, or neuroinflammation in GBA-/- medaka. Taken together, the present study revealed GBA-/- medaka as a novel neuronopathic GD model, the pahological mechanisms of α-syn accumulation caused by GCase deficiency, and the minimal contribution of α-syn to the pathogenesis of neuronopathic GD. Parkinson’s disease (PD) is a neurodegenerative disease characterized by intraneuronal accumulation of alpha-synuclein (α-syn) called Lewy bodies and Lewy neurites. Recent genetic studies have revealed that mutations in glucocerebrosidase (GBA), a causative gene of Gaucher disease (GD), are a strong risk for PD. However, its pathological mechanisms leading to PD remain largely unknown. Here, we generated GBA nonsense mutant (GBA-/-) medaka which survive long enough for pathological analysis of disease progression. These mutant medaka display not only the phenotypes resembling human neuronopathic GD but also axonal accumulation of α-syn accompanied by impairment of the autophagy-lysosome pathway. Furthermore, the present study demonstrates this α-syn accumulation has negligible contribution to the pathogenesis of neuronopathic GD in medaka. GBA-/- medaka represent a valuable model for exploring the pathological mechanisms of PD with GBA mutations as well as neuronopathic GD, and our findings have important implications for the association of GBA mutations with PD.
Collapse
Affiliation(s)
- Norihito Uemura
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masato Koike
- Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Satoshi Ansai
- Division of Applied Biosciences, Kyoto University Graduate School of Agriculture, Kyoto, Japan
| | - Masato Kinoshita
- Division of Applied Biosciences, Kyoto University Graduate School of Agriculture, Kyoto, Japan
| | - Tomoko Ishikawa-Fujiwara
- Department of Radiation Biology and Medical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
| | - Hideaki Matsui
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kiyoshi Naruse
- National Institute for Basic Biology, Laboratory of Bioresources, Okazaki, Japan
| | - Naoaki Sakamoto
- Department of Mathematical and Life Sciences, Hiroshima University Graduate School of Science, Higashi-Hiroshima, Japan
| | - Yasuo Uchiyama
- Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takeshi Todo
- Department of Radiation Biology and Medical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
| | - Shunichi Takeda
- Department of Radiation Genetics, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Kawaguchi, Japan
| | - Hodaka Yamakado
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Kawaguchi, Japan
| | - Ryosuke Takahashi
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Kawaguchi, Japan
- * E-mail:
| |
Collapse
|
21
|
Yokoi S, Okuyama T, Kamei Y, Naruse K, Taniguchi Y, Ansai S, Kinoshita M, Young LJ, Takemori N, Kubo T, Takeuchi H. An essential role of the arginine vasotocin system in mate-guarding behaviors in triadic relationships of medaka fish (Oryzias latipes). PLoS Genet 2015; 11:e1005009. [PMID: 25719383 PMCID: PMC4342251 DOI: 10.1371/journal.pgen.1005009] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 01/15/2015] [Indexed: 12/26/2022] Open
Abstract
To increase individual male fitness, males of various species remain near a (potential) mating partner and repel their rivals (mate-guarding). Mate-guarding is assumed to be mediated by two different types of motivation: sexual motivation toward the opposite sex and competitive motivation toward the same sex. The genetic/molecular mechanisms underlying how mate presence affects male competitive motivation in a triadic relationship has remained largely unknown. Here we showed that male medaka fish prominently exhibit mate-guarding behavior. The presence of a female robustly triggers male-male competition for the female in a triadic relationship (2 males and 1 female). The male-male competition resulted in one male occupying a dominant position near the female while interfering with the other male's approach of the female. Paternity testing revealed that the dominant male had a significantly higher mating success rate than the other male in a triadic relationship. We next generated medaka mutants of arginine-vasotocin (avt) and its receptors (V1a1, V1a2) and revealed that two genes, avt and V1a2, are required for normal mate-guarding behavior. In addition, behavioral analysis of courtship behaviors in a dyadic relationship and aggressive behaviors within a male group revealed that avt mutant males displayed decreased sexual motivation but showed normal aggression. In contrast, heterozygote V1a2 mutant males displayed decreased aggression, but normal mate-guarding and courtship behavior. Thus, impaired mate-guarding in avt and V1a2 homozygote mutants may be due to the loss of sexual motivation toward the opposite sex, and not to the loss of competitive motivation toward rival males. The different behavioral phenotypes between avt, V1a2 heterozygote, and V1a2 homozygote mutants suggest that there are redundant systems to activate V1a2 and that endogenous ligands activating the receptor may differ according to the social context.
Collapse
Affiliation(s)
- Saori Yokoi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Teruhiro Okuyama
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Laboratory of Bioresources, National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Yasuhiro Kamei
- Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Japan
- The Spectrography and Bioimaging Facility, National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Kiyoshi Naruse
- Laboratory of Bioresources, National Institute for Basic Biology, Okazaki, Aichi, Japan
- Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Japan
- NIBB Center of the Interuniversity Bio-Backup Project, National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Yoshihito Taniguchi
- Department of Public Health and Preventive Medicine, Kyorin University, School of Medicine, Mitaka, Tokyo, Japan
| | - Satoshi Ansai
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Masato Kinoshita
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Larry J. Young
- Center for Translational Social Neuroscience, Department of Psychiatry and Behavioral Sciences, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Nobuaki Takemori
- Proteo-Science Center, Division of Proteomics Research, Ehime University, Toon City, Ehime, Japan
| | - Takeo Kubo
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Hideaki Takeuchi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- * E-mail:
| |
Collapse
|
22
|
Abstract
TILLING is a method to find mutations in a gene of interest by scanning amplicons from a mutagenized population for sequence changes, commonly a single nucleotide. In the past 5 years, mutation detection by sequencing has become increasingly popular. This chapter details the experimental flow for TILLING-by-Sequencing, highlighting the critical steps involved in tridimensional pooling of genomic DNA templates, preparation of libraries for high-throughput sequencing, and bioinformatic processing of the sequence data.
Collapse
Affiliation(s)
- Helen Tsai
- Department of Plant Biology and Genome Center, University of California at Davis, One Shields Avenue, Davis, CA, 95616, USA
| | | | | | | | | |
Collapse
|
23
|
Murozumi N, Nakashima R, Hirai T, Kamei Y, Ishikawa-Fujiwara T, Todo T, Kitano T. Loss of follicle-stimulating hormone receptor function causes masculinization and suppression of ovarian development in genetically female medaka. Endocrinology 2014; 155:3136-45. [PMID: 24877625 DOI: 10.1210/en.2013-2060] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
FSH, a glycoprotein hormone, is circulated from the pituitary and functions by binding to a specific FSH receptor (FSHR). FSHR is a G protein-coupled, seven-transmembrane receptor linked to the adenylyl cyclase or other pathways and is expressed in gonadal somatic cells. In some nonmammalian species, fshr expression is much higher in the ovary than in the testis during gonadal sex differentiation, suggesting that FSHR is involved in ovarian development in nonmammalian vertebrates. However, little is known of FSHR knockout phenotypes in these species. Here we screened for fshr mutations by a medaka (Oryzias latipes) target-induced local lesion in the genomes and identified one nonsense mutation located in the BXXBB motif, which is involved in G protein activation. Next, we used an in vitro reporter gene assay to demonstrate that this mutation prevents FSHR function. We then analyzed the phenotypes of fshr mutant medaka. The fshr mutant male medaka displayed normal testes and were fertile, whereas the mutant female fish displayed small ovaries and were infertile because vitellogenesis was inhibited. The mutant females also have suppressed expression of ovary-type aromatase (cyp19a1a), a steroidogenic enzyme responsible for the conversion of androgens to estrogens, resulting in decreased 17β-estradiol levels. Moreover, loss of FSHR function caused female-to-male sex reversal in some cases. In addition, the transgenic overexpression of fshr in fshr mutants rescued FSHR function. These findings strongly suggest that in the medaka, FSH regulates the ovarian development and the maintenance mainly by the elevation of estrogen levels. We present the first FSHR knockout phenotype in a nonmammalian species.
Collapse
Affiliation(s)
- Norikazu Murozumi
- Department of Biological Sciences (N.M., R.N., T.K.), Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan; Department of Bioscience (T.H.), Teikyo University of Science, Yamanashi 409-0193, Japan; Spectrography and Bioimaging Facility (Y.K.), National Institute for Basic Biology Core Research Facilities, National Institute for Basic Biology, Okazaki 444-8585, Japan; and Department of Radiation Biology and Medical Genetics (T.I.-F., T.T.), Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | |
Collapse
|
24
|
Takei Y, Hiroi J, Takahashi H, Sakamoto T. Diverse mechanisms for body fluid regulation in teleost fishes. Am J Physiol Regul Integr Comp Physiol 2014; 307:R778-92. [PMID: 24965789 DOI: 10.1152/ajpregu.00104.2014] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Teleost fishes are the major group of ray-finned fishes and represent more than one-half of the total number of vertebrate species. They have experienced in their evolution an additional third-round whole genome duplication just after the divergence of their lineage, which endowed them with an extra adaptability to invade various aquatic habitats. Thus their physiology is also extremely diverse compared with other vertebrate groups as exemplified by the many patterns of body fluid regulation or osmoregulation. The key osmoregulatory organ for teleosts, whose body fluid composition is similar to mammals, is the gill, where ions are absorbed from or excreted into surrounding waters of various salinities against concentration gradients. It has been shown that the underlying molecular physiology of gill ionocytes responsible for ion regulation is highly variable among species. This variability is also seen in the endocrine control of osmoregulation where some hormones have distinct effects on body fluid regulation in different teleost species. A typical example is atrial natriuretic peptide (ANP); ANP is secreted in response to increased blood volume and acts on various osmoregulatory organs to restore volume in rainbow trout as it does in mammals, but it is secreted in response to increased plasma osmolality, and specifically decreases NaCl, and not water, in the body of eels. The distinct actions of other osmoregulatory hormones such as growth hormone, prolactin, angiotensin II, and vasotocin among teleost species are also evident. We hypothesized that such diversity of ionocytes and hormone actions among species stems from their intrinsic differences in body fluid regulation that originated from their native habitats, either fresh water or seawater. In this review, we summarized remarkable differences in body fluid regulation and its endocrine control among teleost species, although the number of species is still limited to substantiate the hypothesis.
Collapse
Affiliation(s)
- Yoshio Takei
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba, Japan;
| | - Junya Hiroi
- Department of Anatomy, St. Marianna University School of Medicine, Kawasaki, Kanagawa, Japan; and
| | - Hideya Takahashi
- Ushimado Marine Institute (UMI), Faculty of Science, Okayama University, Setouchi, Okayama, Japan
| | - Tatsuya Sakamoto
- Ushimado Marine Institute (UMI), Faculty of Science, Okayama University, Setouchi, Okayama, Japan
| |
Collapse
|
25
|
Nagao Y, Suzuki T, Shimizu A, Kimura T, Seki R, Adachi T, Inoue C, Omae Y, Kamei Y, Hara I, Taniguchi Y, Naruse K, Wakamatsu Y, Kelsh RN, Hibi M, Hashimoto H. Sox5 functions as a fate switch in medaka pigment cell development. PLoS Genet 2014; 10:e1004246. [PMID: 24699463 PMCID: PMC3974636 DOI: 10.1371/journal.pgen.1004246] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 02/02/2014] [Indexed: 11/30/2022] Open
Abstract
Mechanisms generating diverse cell types from multipotent progenitors are crucial for normal development. Neural crest cells (NCCs) are multipotent stem cells that give rise to numerous cell-types, including pigment cells. Medaka has four types of NCC-derived pigment cells (xanthophores, leucophores, melanophores and iridophores), making medaka pigment cell development an excellent model for studying the mechanisms controlling specification of distinct cell types from a multipotent progenitor. Medaka many leucophores-3 (ml-3) mutant embryos exhibit a unique phenotype characterized by excessive formation of leucophores and absence of xanthophores. We show that ml-3 encodes sox5, which is expressed in premigratory NCCs and differentiating xanthophores. Cell transplantation studies reveal a cell-autonomous role of sox5 in the xanthophore lineage. pax7a is expressed in NCCs and required for both xanthophore and leucophore lineages; we demonstrate that Sox5 functions downstream of Pax7a. We propose a model in which multipotent NCCs first give rise to pax7a-positive partially fate-restricted intermediate progenitors for xanthophores and leucophores; some of these progenitors then express sox5, and as a result of Sox5 action develop into xanthophores. Our results provide the first demonstration that Sox5 can function as a molecular switch driving specification of a specific cell-fate (xanthophore) from a partially-restricted, but still multipotent, progenitor (the shared xanthophore-leucophore progenitor). How individual cell fates are specified from multipotent progenitor cells is a fundamental question in developmental and stem cell biology. Accumulating evidence indicates that stem cells develop into each of their final, diverse cell-types after progression through one or more partially-restricted intermediates, but the molecular mechanisms underlying final fate choice are largely unknown. Neural crest cells (NCCs) give rise to diverse cell-types including multiple pigment cells and thus are a favored model for understanding the mechanism of fate specification. We have investigated how a specific fate choice is made from partially-restricted pigment cell progenitors in medaka. We show that Sry-related transcription factor Sox5 is required for fate determination between yellow xanthophore and white leucophore, and its loss causes excessive formation of leucophores and absence of xanthophores. We demonstrate that Sox5 functions cell-autonomously in the xanthophore lineage in medaka. Furthermore, pax7a is expressed in the partially-restricted progenitor cells shared with xanthophore and leucophore lineages, and Sox5 acts in some of these cells to promote xanthophore lineage. Our work reveals the role of Sox5 as a molecular switch determining xanthophore versus leucophore fate choice from the shared progenitor, and identifies an important mechanism regulating pigment cell fate choice from NCCs.
Collapse
Affiliation(s)
- Yusuke Nagao
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan
| | - Takao Suzuki
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan
| | - Atsushi Shimizu
- Division of Biomedical Information Analysis, Iwate Tohoku Medical Megabank Organization, Iwate Medical University, Yahaba-cho, Shiwa-gun, Iwate, Japan
| | - Tetsuaki Kimura
- National Institute for Basic Biology, Interuniversity Bio-Backup Project Center, Okazaki, Aichi, Japan
- Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Myodaiji, Okazaki, Aichi, Japan
| | - Ryoko Seki
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan
| | - Tomoko Adachi
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan
- Centre for Regenerative Medicine and Department of Biology and Biochemistry, University of Bath, Bath, Claverton Down, United Kingdom
| | - Chikako Inoue
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan
| | - Yoshihiro Omae
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan
| | - Yasuhiro Kamei
- Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Myodaiji, Okazaki, Aichi, Japan
- Spectrography and Bioimaging Facility, National Institute for Basic Biology, Myodaiji, Okazaki, Aichi, Japan
| | - Ikuyo Hara
- Laboratory of Bioresources, National Institute for Basic Biology, Myodaiji, Okazaki, Aichi, Japan
| | - Yoshihito Taniguchi
- Department of Preventive Medicine and Public Health, School of Medicine, Keio University, Shinjuku-ku, Tokyo, Japan
| | - Kiyoshi Naruse
- National Institute for Basic Biology, Interuniversity Bio-Backup Project Center, Okazaki, Aichi, Japan
- Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Myodaiji, Okazaki, Aichi, Japan
- Laboratory of Bioresources, National Institute for Basic Biology, Myodaiji, Okazaki, Aichi, Japan
| | - Yuko Wakamatsu
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan
| | - Robert N. Kelsh
- Centre for Regenerative Medicine and Department of Biology and Biochemistry, University of Bath, Bath, Claverton Down, United Kingdom
| | - Masahiko Hibi
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan
| | - Hisashi Hashimoto
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan
- * E-mail:
| |
Collapse
|
26
|
Oliveri P, Fortunato AE, Petrone L, Ishikawa-Fujiwara T, Kobayashi Y, Todo T, Antonova O, Arboleda E, Zantke J, Tessmar-Raible K, Falciatore A. The Cryptochrome/Photolyase Family in aquatic organisms. Mar Genomics 2014; 14:23-37. [DOI: 10.1016/j.margen.2014.02.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 02/05/2014] [Accepted: 02/10/2014] [Indexed: 01/12/2023]
|
27
|
Acanda Y, Martínez Ó, Prado MJ, González MV, Rey M. EMS mutagenesis and qPCR-HRM prescreening for point mutations in an embryogenic cell suspension of grapevine. PLANT CELL REPORTS 2014; 33:471-481. [PMID: 24362838 DOI: 10.1007/s00299-013-1547-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 11/12/2013] [Accepted: 11/25/2013] [Indexed: 06/03/2023]
Abstract
KEY MESSAGE Embryogenic suspension cultures are suitable for EMS mutagenesis in grapevine, and HRM prescreening of EMS-treated somatic embryo clusters allows rapid detection of point mutations before plant regeneration. ABSTRACT Somatic embryogenesis is an excellent system for induced mutagenesis and clonal propagation in woody plants. Our work was focused on establishing a procedure for inducing ethyl methanesulfonate (EMS) mutagenesis in grapevine. Embryogenic cell aggregates (ECAs) growing in liquid medium were treated with increasing concentrations of EMS. We found that EMS dramatically affects the viability of ECAs at concentrations above 20 mM (25.5 ± 2.9 % survival), whereas concentrations above 10 mM affect embryogenic potential (22.1 ± 1.7 % of ECAs gave rise to embryos). Embryo masses generated from EMS-treated embryogenic cell aggregates were prescreened by quantitative PCR-High Resolution Melting (qPCR-HRM) to detect single nucleotide polymorphisms (SNPs) in a 1,000-bp VvNCED1-encoding DNA fragment, which served as the target gene. Detected mutations were verified in regenerated plants by PCR and sequencing. qPCR-HRM analysis of the difference plots for the fluorescence signals allowed detection of a mutation in a sample from an embryogenic aggregate treated with 10 mM EMS. To confirm the nature of the mutation, embryos from this aggregate were recovered and germinated, and leaves were collected for PCR and sequencing analysis. The alignment of sequences from regenerated plants with the wild-type sequence revealed a transitional mutation (G/C to A/T) in the 1,000-bp VvNCED1-encoding region. To our knowledge, this is the first time that EMS mutagenesis has been performed using an embryogenic cell suspension of grapevine.
Collapse
Affiliation(s)
- Yosvanis Acanda
- Departamento de Biología Vegetal y Ciencia del Suelo, Universidad de Vigo, Campus Universitario, 36310, Vigo, Spain
| | | | | | | | | |
Collapse
|
28
|
Otozai S, Ishikawa-Fujiwara T, Oda S, Kamei Y, Ryo H, Sato A, Nomura T, Mitani H, Tsujimura T, Inohara H, Todo T. p53-Dependent suppression of genome instability in germ cells. Mutat Res 2014; 760:24-32. [PMID: 24406868 DOI: 10.1016/j.mrfmmm.2013.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 12/02/2013] [Accepted: 12/27/2013] [Indexed: 06/03/2023]
Abstract
Radiation increases mutation frequencies at tandem repeat loci. Germline mutations in γ-ray-irradiated medaka fish (Oryzias latipes) were studied, focusing on the microsatellite loci. Mismatch-repair genes suppress microsatellite mutation by directly removing altered sequences at the nucleotide level, whereas the p53 gene suppresses genetic alterations by eliminating damaged cells. The contribution of these two defense mechanisms to radiation-induced microsatellite instability was addressed. The spontaneous mutation frequency was significantly higher in msh2(-/-) males than in wild-type fish, whereas there was no difference in the frequency of radiation-induced mutations between msh2(-/-) and wild-type fish. By contrast, irradiated p53(-/-) fish exhibited markedly increased mutation frequencies, whereas their spontaneous mutation frequency was the same as that of wild-type fish. In the spermatogonia of the testis, radiation induced a high level of apoptosis both in wild-type and msh2(-/-) fish, but negligible levels in p53(-/-) fish. The results demonstrate that the msh2 and p53 genes protect genome integrity against spontaneous and radiation-induced mutation by two different pathways: direct removal of mismatches and elimination of damaged cells.
Collapse
Affiliation(s)
- Shinji Otozai
- Department of Otorhinolaryngology and Head and Neck Surgery, Osaka University School of Medicine, Osaka 565-0871, Japan
| | - Tomoko Ishikawa-Fujiwara
- Department of Radiation Biology and Medical Genetics, Graduate School of Medicine, Osaka University, B4, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shoji Oda
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan
| | - Yasuhiro Kamei
- Department of Radiation Biology and Medical Genetics, Graduate School of Medicine, Osaka University, B4, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Haruko Ryo
- Nomura Project, National Institute of Biomedical Innovation, Osaka 565-0085, Japan
| | - Ayuko Sato
- Department of Pathology, Hyogo College of Medicine, Hyogo 663-8501, Japan
| | - Taisei Nomura
- Nomura Project, National Institute of Biomedical Innovation, Osaka 565-0085, Japan
| | - Hiroshi Mitani
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan
| | - Tohru Tsujimura
- Department of Pathology, Hyogo College of Medicine, Hyogo 663-8501, Japan
| | - Hidenori Inohara
- Department of Otorhinolaryngology and Head and Neck Surgery, Osaka University School of Medicine, Osaka 565-0871, Japan
| | - Takeshi Todo
- Department of Radiation Biology and Medical Genetics, Graduate School of Medicine, Osaka University, B4, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
29
|
Okuyama T, Yokoi S, Abe H, Isoe Y, Suehiro Y, Imada H, Tanaka M, Kawasaki T, Yuba S, Taniguchi Y, Kamei Y, Okubo K, Shimada A, Naruse K, Takeda H, Oka Y, Kubo T, Takeuchi H. A Neural Mechanism Underlying Mating Preferences for Familiar Individuals in Medaka Fish. Science 2014; 343:91-4. [DOI: 10.1126/science.1244724] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Social familiarity affects mating preference among various vertebrates. Here, we show that visual contact of a potential mating partner before mating (visual familiarization) enhances female preference for the familiarized male, but not for an unfamiliarized male, in medaka fish. Terminal-nerve gonadotropin-releasing hormone 3 (TN-GnRH3) neurons, an extrahypothalamic neuromodulatory system, function as a gate for activating mating preferences based on familiarity. Basal levels of TN-GnRH3 neuronal activity suppress female receptivity for any male (default mode). Visual familiarization facilitates TN-GnRH3 neuron activity (preference mode), which correlates with female preference for the familiarized male. GnRH3 peptides, which are synthesized specifically in TN-GnRH3 neurons, are required for the mode-switching via self-facilitation. Our study demonstrates the central neural mechanisms underlying the regulation of medaka female mating preference based on visual social familiarity.
Collapse
|
30
|
Kuroyanagi M, Katayama T, Imai T, Yamamoto Y, Chisada SI, Yoshiura Y, Ushijima T, Matsushita T, Fujita M, Nozawa A, Suzuki Y, Kikuchi K, Okamoto H. New approach for fish breeding by chemical mutagenesis: establishment of TILLING method in fugu (Takifugu rubripes) with ENU mutagenesis. BMC Genomics 2013; 14:786. [PMID: 24225309 PMCID: PMC3830513 DOI: 10.1186/1471-2164-14-786] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 11/04/2013] [Indexed: 11/26/2022] Open
Abstract
Background In fish breeding, it is essential to discover and generate fish exhibiting an effective phenotype for the aquaculture industry, but screening for natural mutants by only depending on natural spontaneous mutations is limited. Presently, reverse genetics has become an important tool to generate mutants, which exhibit the phenotype caused by inactivation of a gene. TILLING (Targeting Induced Local Lesions INGenomes) is a reverse genetics strategy that combines random chemical mutagenesis with high-throughput discovery technologies for screening the induced mutations in target genes. Although the chemical mutagenesis has been used widely in a variety of model species and also genetic breeding of microorganisms and crops, the application of the mutagenesis in fish breeding has been only rarely reported. Results In this study, we developed the TILLING method in fugu with ENU mutagenesis and high-resolution melting (HRM) analysis to detect base pair changes in target sequences. Fugu males were treated 3 times at weekly intervals with various ENU concentrations, and then the collected sperm after the treatment was used to fertilize normal female for generating the mutagenized population (F1). The fertilization and the hatching ratios were similar to those of the control and did not reveal a dose dependency of ENU. Genomic DNA from the harvested F1 offspring was used for the HRM analysis. To obtain a fish exhibiting a useful phenotype (e.g. high meat production and rapid growth), fugu myostatin (Mstn) gene was examined as a target gene, because it has been clarified that the mstn deficient medaka exhibited double-muscle phenotype in common with MSTN knockout mice and bovine MSTN mutant. As a result, ten types of ENU-induced mutations were identified including a nonsense mutation in the investigated region with HRM analysis. In addition, the average mutation frequency in fugu Mstn gene was 1 mutant per 297 kb, which is similar to values calculated for zebrafish and medaka TILLING libraries. Conclusions These results demonstrate that the TILLING method in fugu was established. We anticipate that this TILLING approach can be used to generate a wide range of mutant alleles, and be applicable to many farmed fish that can be chemically mutagenized.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Kiyoshi Kikuchi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 2971-4 Bentenjima, Maisaka, Hamamatsu, Shizuoka 431-0214, Japan.
| | | |
Collapse
|
31
|
New approach for fish breeding by chemical mutagenesis: establishment of TILLING method in fugu (Takifugu rubripes) with ENU mutagenesis. BMC Genomics 2013. [PMID: 24225309 DOI: 10.1186/1471-2164-14-786.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In fish breeding, it is essential to discover and generate fish exhibiting an effective phenotype for the aquaculture industry, but screening for natural mutants by only depending on natural spontaneous mutations is limited. Presently, reverse genetics has become an important tool to generate mutants, which exhibit the phenotype caused by inactivation of a gene. TILLING (Targeting Induced Local Lesions IN Genomes) is a reverse genetics strategy that combines random chemical mutagenesis with high-throughput discovery technologies for screening the induced mutations in target genes. Although the chemical mutagenesis has been used widely in a variety of model species and also genetic breeding of microorganisms and crops, the application of the mutagenesis in fish breeding has been only rarely reported. RESULTS In this study, we developed the TILLING method in fugu with ENU mutagenesis and high-resolution melting (HRM) analysis to detect base pair changes in target sequences. Fugu males were treated 3 times at weekly intervals with various ENU concentrations, and then the collected sperm after the treatment was used to fertilize normal female for generating the mutagenized population (F1). The fertilization and the hatching ratios were similar to those of the control and did not reveal a dose dependency of ENU. Genomic DNA from the harvested F1 offspring was used for the HRM analysis. To obtain a fish exhibiting a useful phenotype (e.g. high meat production and rapid growth), fugu myostatin (Mstn) gene was examined as a target gene, because it has been clarified that the mstn deficient medaka exhibited double-muscle phenotype in common with MSTN knockout mice and bovine MSTN mutant. As a result, ten types of ENU-induced mutations were identified including a nonsense mutation in the investigated region with HRM analysis. In addition, the average mutation frequency in fugu Mstn gene was 1 mutant per 297 kb, which is similar to values calculated for zebrafish and medaka TILLING libraries. CONCLUSIONS These results demonstrate that the TILLING method in fugu was established. We anticipate that this TILLING approach can be used to generate a wide range of mutant alleles, and be applicable to many farmed fish that can be chemically mutagenized.
Collapse
|
32
|
Effects of body-color mutations on vitality: an attempt to establish easy-to-breed see-through medaka strains by outcrossing. G3-GENES GENOMES GENETICS 2013; 3:1577-85. [PMID: 23893740 PMCID: PMC3755918 DOI: 10.1534/g3.113.007575] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
“See-through” strains of medaka are unique tools for experiments: their skin is transparent, and their internal organs can be externally monitored throughout life. However, see-through fish are less vital than normally pigmented wild-type fish, which allows only skilled researchers to make the most of their advantages. Expecting that hybrid vigor (heterosis) would increase the vitality, we outcrossed two see-through strains (SK2 and STIII) with a genetically distant wild-type strain (HNI). Fish with the see-through phenotypes were successfully restored in the F2 generation and maintained as closed colonies. We verified that genomes of these hybrid see-through strains actually consisted of approximately 50% HNI and approximately 50% SK2 or STIII alleles, but we could not obtain evidence supporting improved survival of larvae or fecundity of adults, at least under our breeding conditions. We also found that four of the five see-through mutations (bg8, i-3, gu, and il-1 but not lf) additively decrease viability. Given that heterosis could not overwhelm the viability-reducing effects of the see-through mutations, easy-to-breed see-through strains will only be established by other methods such as conditional gene targeting or screening of new body-color mutations that do not reduce viability.
Collapse
|
33
|
Okabe Y, Ariizumi T, Ezura H. Updating the Micro-Tom TILLING platform. BREEDING SCIENCE 2013; 63:42-8. [PMID: 23641180 PMCID: PMC3621444 DOI: 10.1270/jsbbs.63.42] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 09/25/2012] [Indexed: 05/25/2023]
Abstract
The dwarf tomato variety Micro-Tom is regarded as a model system for functional genomics studies in tomato. Various tomato genomic tools in the genetic background of Micro-Tom have been established, such as mutant collections, genome information and a metabolomic database. Recent advances in tomato genome sequencing have brought about a significant need for reverse genetics tools that are accessible to the larger community, because a great number of gene sequences have become available from public databases. To meet the requests from the tomato research community, we have developed the Micro-Tom Targeting-Induced Local Lesions IN Genomes (TILLING) platform, which is comprised of more than 5000 EMS-mutagenized lines. The platform serves as a reverse genetics tool for efficiently identifying mutant alleles in parallel with the development of Micro-Tom mutant collections. The combination of Micro-Tom mutant libraries and the TILLING approach enables researchers to accelerate the isolation of desirable mutants for unraveling gene function or breeding. To upgrade the genomic tool of Micro-Tom, the development of a new mutagenized population is underway. In this paper, the current status of the Micro-Tom TILLING platform and its future prospects are described.
Collapse
Affiliation(s)
- Yoshihiro Okabe
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Tohru Ariizumi
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Hiroshi Ezura
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| |
Collapse
|
34
|
Ishikawa T, Okada T, Ishikawa-Fujiwara T, Todo T, Kamei Y, Shigenobu S, Tanaka M, Saito TL, Yoshimura J, Morishita S, Toyoda A, Sakaki Y, Taniguchi Y, Takeda S, Mori K. ATF6α/β-mediated adjustment of ER chaperone levels is essential for development of the notochord in medaka fish. Mol Biol Cell 2013; 24:1387-95. [PMID: 23447699 PMCID: PMC3639050 DOI: 10.1091/mbc.e12-11-0830] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
ATF6α and ATF6β are membrane-bound transcription factors activated by regulated intramembrane proteolysis in response to endoplasmic reticulum (ER) stress to induce various ER quality control proteins. ATF6α- and ATF6β single-knockout mice develop normally, but ATF6α/β double knockout causes embryonic lethality, the reason for which is unknown. Here we show in medaka fish that ATF6α is primarily responsible for transcriptional induction of the major ER chaperone BiP and that ATF6α/β double knockout, but not ATF6α- or ATF6β single knockout, causes embryonic lethality, as in mice. Analyses of ER stress reporters reveal that ER stress occurs physiologically during medaka early embryonic development, particularly in the brain, otic vesicle, and notochord, resulting in ATF6α- and ATF6β-mediated induction of BiP, and that knockdown of the α1 chain of type VIII collagen reduces such ER stress. The absence of transcriptional induction of several ER chaperones in ATF6α/β double knockout causes more profound ER stress and impaired notochord development, which is partially rescued by overexpression of BiP. Thus ATF6α/β-mediated adjustment of chaperone levels to increased demands in the ER is essential for development of the notochord, which synthesizes and secretes large amounts of extracellular matrix proteins to serve as the body axis before formation of the vertebra.
Collapse
Affiliation(s)
- Tokiro Ishikawa
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Takahashi H, Sakamoto T. The role of 'mineralocorticoids' in teleost fish: relative importance of glucocorticoid signaling in the osmoregulation and 'central' actions of mineralocorticoid receptor. Gen Comp Endocrinol 2013; 181:223-8. [PMID: 23220000 DOI: 10.1016/j.ygcen.2012.11.016] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 11/26/2012] [Accepted: 11/27/2012] [Indexed: 12/26/2022]
Abstract
It has long been held that cortisol, a glucocorticoid in many vertebrates, performs glucocorticoid and mineralocorticoid actions in the teleost fish since it lacks aldosterone. However, in addition to the counterparts of tetrapod mineralocorticoid receptors (MRs), 11-deoxycorticosterone (DOC) has been recently identified as a specific endogenous ligand for the MRs in teleosts. Here, we point out the minor role of mineralocorticoid signaling (i.e., DOC-MR) in the osmoregulation compared with those of glucocorticoid signaling (i.e., cortisol-glucocorticoid receptor [GR]), and review the current findings on the physiological roles of the DOC-MR in teleosts. Cortisol promotes both freshwater and seawater adaptation via the GRs in the osmoregulatory organs such as gills and gastrointestinal tracts, but the expressions of MR mRNA are abundant in the brains especially in the key components of the stress axis and cerebellums. Together with the behavioral effects of intracerebroventricular injection with DOC, the MR is suggested to play an important role in the brain dependent behaviors. Since the abundant expression of central MRs has been reported also in higher vertebrates and the MR is thought to be ancestral to the GR, the role of MR in fish might reflect the principal and original function of corticosteroid signaling. Functional evolution of corticosteroid systems is summarized and areas in need of research like our on-going experiments with MR-knockout medaka are outlined.
Collapse
Affiliation(s)
- Hideya Takahashi
- Ushimado Marine Institute, Faculty of Science, Okayama University, Ushimado, Setouchi 701-4303, Japan.
| | | |
Collapse
|
36
|
Urushihara Y, Kobayashi J, Matsumoto Y, Komatsu K, Oda S, Mitani H. DNA-PK inhibition causes a low level of H2AX phosphorylation and homologous recombination repair in Medaka (Oryzias latipes) cells. Biochem Biophys Res Commun 2012; 429:131-6. [PMID: 23142596 DOI: 10.1016/j.bbrc.2012.10.128] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 10/27/2012] [Indexed: 01/03/2023]
Abstract
Nonhomologous end joining (NHEJ) and homologous recombination (HR) are known as DNA double-strand break (DSB) repair pathways. It has been reported that DNA-PK, a member of PI3 kinase family, promotes NHEJ and aberrant DNA-PK causes NHEJ deficiency. However, in this study, we demonstrate that a wild-type cell line treated with DNA-PK inhibitor and a mutant cell line with dysfunctional DNA-PK showed decreased HR efficiency in fish cells (Medaka, Oryzias latipes). Previously, we reported that the radiation-sensitive mutant RIC1 strain has a defect in the Histone H2AX phosphorylation after γ-irradiation. Here, we showed that a DNA-PK inhibitor, NU7026, treatment resulted in significant reduction in the number of γH2AX foci after γ-irradiation in wild-type cells, but had no significant effect in RIC1 cells. In addition, RIC1 cells showed significantly lower levels of DNA-PK kinase activity compared with wild-type cells. We investigated NHEJ and HR efficiency after induction of DSBs. Wild-type cells treated with NU7026 and RIC1 cells showed decreased HR efficiency. These results indicated that aberrant DNA-PK causes the reduction in the number of γH2AX foci and HR efficiency in RIC1 cells. We performed phosphorylated DNA-PKcs (Thr2609) and 53BP1 focus assay after γ-irradiation. RIC1 cells showed significant reduction in the number of phosphorylated DNA-PKcs foci and no deference in the number of 53BP1 foci compared with wild-type cells. These results suggest that low level of DNA-PK activity causes aberrant DNA-PKcs autophosphorylation in RIC1 cells. It is known that 53BP1 is involved in both DNA-PK dependent and independent NHEJ. Therefore we suggest that DNA-PK independent NHEJ repair DSBs under the condition of decreased DNA-PK activity, which causes reduction of HR efficiency.
Collapse
Affiliation(s)
- Yusuke Urushihara
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan
| | | | | | | | | | | |
Collapse
|
37
|
Chen J, Zhang X, Wang T, Li Z, Guan G, Hong Y. Efficient detection, quantification and enrichment of subtle allelic alterations. DNA Res 2012; 19:423-33. [PMID: 23075543 PMCID: PMC3473374 DOI: 10.1093/dnares/dss023] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 09/03/2012] [Indexed: 12/20/2022] Open
Abstract
Gene targeting (GT) can introduce subtle alterations into a particular locus and represents a powerful tool for genome editing. Engineered zinc finger nucleases (ZFNs) are effective for generating minor allelic alterations. Efficient detection of such minor alterations remains one of the challenges in ZFN-mediated GT experiments. Here, we report the establishment of procedures allowing for efficient detection, quantification and enrichment of such subtle alterations. In a biallelic model, polyacrylamide gel electrophoresis (PAGE) is capable of detecting rare allelic variations in the form of DNA heteroduplexes at a high efficiency of ~0.4% compared with ~6.3% by the traditional T7 endonuclease I-digestion and agarose gel electrophoresis. In a multiple allelic model, PAGE could discriminate different alleles bearing addition or deletion of 1-18 bp as distinct bands that were easily quantifiable by densitometry. Furthermore, PAGE enables enrichment for rare alleles. We show for the first time that direct endogenous GT is possible in medaka by ZFN RNA injection, whereas PAGE allows for detection and cloning of ZFN-targeted alleles in adults arising from ZFN-injected medaka embryos. Therefore, PAGE is effective for detection, quantification and enrichment of multiple fine allelic differences and thus offers a versatile tool for screening targeted subtle gene alterations.
Collapse
Affiliation(s)
- Jianbin Chen
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore117543, Singapore
| | - Xi Zhang
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore117543, Singapore
| | - Tiansu Wang
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore117543, Singapore
| | - Zhendong Li
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore117543, Singapore
| | - Guijun Guan
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore117543, Singapore
- Department of Bioresources, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan
| | - Yunhan Hong
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore117543, Singapore
| |
Collapse
|
38
|
Sasano Y, Yoshimura A, Fukamachi S. Reassessment of the function of somatolactin alpha in lipid metabolism using medaka mutant and transgenic strains. BMC Genet 2012; 13:64. [PMID: 22827540 PMCID: PMC3467165 DOI: 10.1186/1471-2156-13-64] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 07/09/2012] [Indexed: 01/12/2023] Open
Abstract
Background Somatolactin alpha (SLa) is a fish-specific peptide hormone secreted from the pituitary. In medaka, SLa functions to darken the skin color and lack of SLa makes it pale. Transcription of SLa is enhanced or suppressed when fish are kept in dark or bright conditions, respectively, indicating SLa’s important role in background acclimation of the skin color. Bizarrely, however, the lack of SLa seems to cause the additional defect of increased triglycerides in organs, which could not be rescued (decreased) by its overexpression. Results To assess this enigmatic result, we investigated genetic (the SLa, Slc45a2, r, and Y genes) and nongenetic (age, fasting, water temperature, and background color) effects on hepatic triglycerides. These experiments found that percent hepatic triglycerides quickly change in response to external/internal environments. Effects of SLa seemed to be much less obvious, although it may increase the proportion of hepatic triglycerides at least during certain breeding conditions or under certain genetic backgrounds. Conclusions The present results do not exclude the possibility that SLa takes part in lipid metabolism or other physiological processes. However, we suggest that skin-color regulation is the only definite role of SLa so far demonstrated in this species.
Collapse
Affiliation(s)
- Yuko Sasano
- Laboratory of Evolutionary Genetics, Department of Chemical and Biological Sciences, Japan Women's University, Mejirodai 2-8-1, Bunkyo-ku, Tokyo, 112-8681, Japan
| | | | | |
Collapse
|
39
|
Ansai S, Ochiai H, Kanie Y, Kamei Y, Gou Y, Kitano T, Yamamoto T, Kinoshita M. Targeted disruption of exogenous EGFP gene in medaka using zinc-finger nucleases. Dev Growth Differ 2012; 54:546-56. [PMID: 22642582 DOI: 10.1111/j.1440-169x.2012.01357.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 04/09/2012] [Accepted: 04/18/2012] [Indexed: 01/15/2023]
Abstract
Zinc-finger nucleases (ZFNs) are artificial enzymes that create site-specific double-strand breaks and thereby induce targeted genome editing. Here, we demonstrated successful gene disruption in somatic and germ cells of medaka (Oryzias latipes) using ZFN to target exogenous EGFP genes. Embryos that were injected with an RNA sequence pair coding for ZFNs showed mosaic loss of green fluorescent protein fluorescence in skeletal muscle. A number of mutations that included both deletions and insertions were identified within the ZFN target site in each embryo, whereas no mutations were found at the non-targeted sites. In addition, ZFN-induced mutations were introduced in germ cells and efficiently transmitted to the next generation. The mutation frequency varied (6-100%) in the germ cells from each founder, and a founder carried more than two types of mutation in germ cells. Our results have introduced the possibility of targeted gene disruption and reverse genetics in medaka.
Collapse
Affiliation(s)
- Satoshi Ansai
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Deguchi T, Fujimori KE, Kawasaki T, Maruyama K, Yuba S. In vivo visualization of the lymphatic vessels in pFLT4-EGFP transgenic medaka. Genesis 2012; 50:625-34. [PMID: 22334443 DOI: 10.1002/dvg.22018] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 01/18/2012] [Accepted: 02/06/2012] [Indexed: 12/30/2022]
Abstract
Feline McDonough Sarcoma (FMS)-like tyrosine kinase 4 (FLT4) is a marker for lymphatic vessels and some high endothelial venules in human adult tissues. We generated a transgenic medaka fish in which the lymphatic vessels and some blood vessels are visible in vivo by transferring the promoter of medaka flt4 driving the expression of enhanced green fluorescent protein (EGFP) using a see-through medaka line. To do this, we identified and cloned medaka flt4 and generated a construct in which the promoter was the 4-kb region upstream of the translation initiation site. The fluorescent signal of EGFP could be observed with little background, and the expression pattern correlated well with that of flt4 determined by whole-mount RNA in situ hybridization. Because a see-through medaka line is transparent until adult, the model is useful for visualizing the lymphatic vessels not only in embryo and fry but also in adult. This model will be a useful tool for analyzing lymphatic development.
Collapse
Affiliation(s)
- Tomonori Deguchi
- Health Research Institute (HRI), National Institute of Advanced Industrial Science and Technology (AIST), Amagasaki, Hyogo, Japan.
| | | | | | | | | |
Collapse
|
41
|
Sikora P, Chawade A, Larsson M, Olsson J, Olsson O. Mutagenesis as a tool in plant genetics, functional genomics, and breeding. INTERNATIONAL JOURNAL OF PLANT GENOMICS 2012; 2011:314829. [PMID: 22315587 PMCID: PMC3270407 DOI: 10.1155/2011/314829] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 12/02/2011] [Accepted: 12/15/2011] [Indexed: 05/19/2023]
Abstract
Plant mutagenesis is rapidly coming of age in the aftermath of recent developments in high-resolution molecular and biochemical techniques. By combining the high variation of mutagenised populations with novel screening methods, traits that are almost impossible to identify by conventional breeding are now being developed and characterised at the molecular level. This paper provides a comprehensive overview of the various techniques and workflows available to researchers today in the field of molecular breeding, and how these tools complement the ones already used in traditional breeding. Both genetic (Targeting Induced Local Lesions in Genomes; TILLING) and phenotypic screens are evaluated. Finally, different ways of bridging the gap between genotype and phenotype are discussed.
Collapse
Affiliation(s)
- Per Sikora
- Department of Plant and Environmental Sciences, Göteborg University, 40530 Göteborg, Sweden
| | - Aakash Chawade
- CropTailorAB, Erik Dahlbergsgatan 11A, 41126 Göteborg, Sweden
| | - Mikael Larsson
- Department of Chemical and Biological Engineering, Chalmers University of Technology, 41296 Göteborg, Sweden
| | - Johanna Olsson
- CropTailorAB, Erik Dahlbergsgatan 11A, 41126 Göteborg, Sweden
| | - Olof Olsson
- Department of Plant and Environmental Sciences, Göteborg University, 40530 Göteborg, Sweden
- CropTailorAB, Erik Dahlbergsgatan 11A, 41126 Göteborg, Sweden
| |
Collapse
|
42
|
Dmrt1 mutation causes a male-to-female sex reversal after the sex determination by Dmy in the medaka. Chromosome Res 2011; 20:163-76. [DOI: 10.1007/s10577-011-9264-x] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
43
|
Lochlainn SÓ, Amoah S, Graham NS, Alamer K, Rios JJ, Kurup S, Stoute A, Hammond JP, Østergaard L, King GJ, White PJ, Broadley MR. High Resolution Melt (HRM) analysis is an efficient tool to genotype EMS mutants in complex crop genomes. PLANT METHODS 2011; 7:43. [PMID: 22152063 PMCID: PMC3251530 DOI: 10.1186/1746-4811-7-43] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Accepted: 12/08/2011] [Indexed: 05/20/2023]
Abstract
BACKGROUND Targeted Induced Loci Lesions IN Genomes (TILLING) is increasingly being used to generate and identify mutations in target genes of crop genomes. TILLING populations of several thousand lines have been generated in a number of crop species including Brassica rapa. Genetic analysis of mutants identified by TILLING requires an efficient, high-throughput and cost effective genotyping method to track the mutations through numerous generations. High resolution melt (HRM) analysis has been used in a number of systems to identify single nucleotide polymorphisms (SNPs) and insertion/deletions (IN/DELs) enabling the genotyping of different types of samples. HRM is ideally suited to high-throughput genotyping of multiple TILLING mutants in complex crop genomes. To date it has been used to identify mutants and genotype single mutations. The aim of this study was to determine if HRM can facilitate downstream analysis of multiple mutant lines identified by TILLING in order to characterise allelic series of EMS induced mutations in target genes across a number of generations in complex crop genomes. RESULTS We demonstrate that HRM can be used to genotype allelic series of mutations in two genes, BraA.CAX1a and BraA.MET1.a in Brassica rapa. We analysed 12 mutations in BraA.CAX1.a and five in BraA.MET1.a over two generations including a back-cross to the wild-type. Using a commercially available HRM kit and the Lightscanner™ system we were able to detect mutations in heterozygous and homozygous states for both genes. CONCLUSIONS Using HRM genotyping on TILLING derived mutants, it is possible to generate an allelic series of mutations within multiple target genes rapidly. Lines suitable for phenotypic analysis can be isolated approximately 8-9 months (3 generations) from receiving M3 seed of Brassica rapa from the RevGenUK TILLING service.
Collapse
Affiliation(s)
- Seosamh Ó Lochlainn
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | | | - Neil S Graham
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | - Khalid Alamer
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | - Juan J Rios
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | | | | | - John P Hammond
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | - Lars Østergaard
- Department of Crop Genetics, John Innes Centre, Norwich, NR4 7UH, UK
| | - Graham J King
- Southern Cross Plant Science, Southern Cross University, PO Box 157Lismore NSW 2480, Australia
| | - Phillip J White
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Martin R Broadley
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| |
Collapse
|
44
|
Kurowska M, Daszkowska-Golec A, Gruszka D, Marzec M, Szurman M, Szarejko I, Maluszynski M. TILLING: a shortcut in functional genomics. J Appl Genet 2011; 52:371-90. [PMID: 21912935 PMCID: PMC3189332 DOI: 10.1007/s13353-011-0061-1] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 08/16/2011] [Accepted: 08/17/2011] [Indexed: 11/01/2022]
Abstract
Recent advances in large-scale genome sequencing projects have opened up new possibilities for the application of conventional mutation techniques in not only forward but also reverse genetics strategies. TILLING (Targeting Induced Local Lesions IN Genomes) was developed a decade ago as an alternative to insertional mutagenesis. It takes advantage of classical mutagenesis, sequence availability and high-throughput screening for nucleotide polymorphisms in a targeted sequence. The main advantage of TILLING as a reverse genetics strategy is that it can be applied to any species, regardless of its genome size and ploidy level. The TILLING protocol provides a high frequency of point mutations distributed randomly in the genome. The great mutagenic potential of chemical agents to generate a high rate of nucleotide substitutions has been proven by the high density of mutations reported for TILLING populations in various plant species. For most of them, the analysis of several genes revealed 1 mutation/200-500 kb screened and much higher densities were observed for polyploid species, such as wheat. High-throughput TILLING permits the rapid and low-cost discovery of new alleles that are induced in plants. Several research centres have established a TILLING public service for various plant species. The recent trends in TILLING procedures rely on the diversification of bioinformatic tools, new methods of mutation detection, including mismatch-specific and sensitive endonucleases, but also various alternatives for LI-COR screening and single nucleotide polymorphism (SNP) discovery using next-generation sequencing technologies. The TILLING strategy has found numerous applications in functional genomics. Additionally, wide applications of this throughput method in basic and applied research have already been implemented through modifications of the original TILLING strategy, such as Ecotilling or Deletion TILLING.
Collapse
Affiliation(s)
- Marzena Kurowska
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Jagiellonska 28, 40-032 Katowice, Poland
| | - Agata Daszkowska-Golec
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Jagiellonska 28, 40-032 Katowice, Poland
| | - Damian Gruszka
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Jagiellonska 28, 40-032 Katowice, Poland
| | - Marek Marzec
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Jagiellonska 28, 40-032 Katowice, Poland
| | - Miriam Szurman
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Jagiellonska 28, 40-032 Katowice, Poland
| | - Iwona Szarejko
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Jagiellonska 28, 40-032 Katowice, Poland
| | - Miroslaw Maluszynski
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Jagiellonska 28, 40-032 Katowice, Poland
| |
Collapse
|
45
|
Yasuda T, Oda S, Yasuda H, Hibi Y, Anzai K, Mitani H. Neurocytotoxic effects of iron-ions on the developing brain measured in vivo using medaka (Oryzias latipes), a vertebrate model. Int J Radiat Biol 2011; 87:915-22. [PMID: 21770703 PMCID: PMC3169016 DOI: 10.3109/09553002.2011.584944] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2011] [Revised: 04/16/2011] [Accepted: 04/21/2011] [Indexed: 12/02/2022]
Abstract
PURPOSE Exposure to heavy-ion radiation is considered a critical health risk on long-term space missions. The developing central nervous system (CNS) is a highly radiosensitive tissue; however, the biological effects of heavy-ion radiation, which are greater than those of low-linear energy transfer (LET) radiation, are not well studied, especially in vivo in intact organisms. Here, we examined the effects of iron-ions on the developing CNS using vertebrate organism, fish embryos of medaka (Oryzias latipes). MATERIALS AND METHODS Medaka embryos at developmental stage 28 were irradiated with iron-ions at various doses of 0-1.5 Gy. At 24 h after irradiation, radiation-induced apoptosis was examined using an acridine orange (AO) assay and histologically. To estimate the relative biological effectiveness (RBE), we quantified only characteristic AO-stained rosette-shaped apoptosis in the developing optic tectum (OT). At the time of hatching, morphological abnormalities in the irradiated brain were examined histologically. RESULTS The dose-response curve utilizing an apoptotic index for the iron-ion irradiated embryos was much steeper than that for X-ray irradiated embryos, with RBE values of 3.7-4.2. Histological examinations of irradiated medaka brain at 24 h after irradiation showed AO-positive rosette-shaped clusters as aggregates of condensed nuclei, exhibiting a circular hole, mainly in the marginal area of the OT and in the retina. However, all of the irradiated embryos hatched normally without apparent histological abnormalities in their brains. CONCLUSION Our present study indicates that the medaka embryo is a useful model for evaluating neurocytotoxic effects on the developing CNS induced by exposure to heavy iron-ions relevant to the aerospace radiation environment.
Collapse
Affiliation(s)
- Takako Yasuda
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, the University of Tokyo, Kashiwa, Chiba.
| | | | | | | | | | | |
Collapse
|
46
|
Missirian V, Comai L, Filkov V. Statistical mutation calling from sequenced overlapping DNA pools in TILLING experiments. BMC Bioinformatics 2011. [PMID: 21756356 DOI: 10.1186/1471‐2105‐12‐287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND TILLING (Targeting induced local lesions IN genomes) is an efficient reverse genetics approach for detecting induced mutations in pools of individuals. Combined with the high-throughput of next-generation sequencing technologies, and the resolving power of overlapping pool design, TILLING provides an efficient and economical platform for functional genomics across thousands of organisms. RESULTS We propose a probabilistic method for calling TILLING-induced mutations, and their carriers, from high throughput sequencing data of overlapping population pools, where each individual occurs in two pools. We assign a probability score to each sequence position by applying Bayes' Theorem to a simplified binomial model of sequencing error and expected mutations, taking into account the coverage level. We test the performance of our method on variable quality, high-throughput sequences from wheat and rice mutagenized populations. CONCLUSIONS We show that our method effectively discovers mutations in large populations with sensitivity of 92.5% and specificity of 99.8%. It also outperforms existing SNP detection methods in detecting real mutations, especially at higher levels of coverage variability across sequenced pools, and in lower quality short reads sequence data. The implementation of our method is available from: http://www.cs.ucdavis.edu/filkov/CAMBa/.
Collapse
Affiliation(s)
- Victor Missirian
- Department of Computer Science, UC Davis, 1 Shields Ave., Davis, CA 95616, USA
| | | | | |
Collapse
|
47
|
Missirian V, Comai L, Filkov V. Statistical mutation calling from sequenced overlapping DNA pools in TILLING experiments. BMC Bioinformatics 2011; 12:287. [PMID: 21756356 PMCID: PMC3150297 DOI: 10.1186/1471-2105-12-287] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Accepted: 07/14/2011] [Indexed: 11/17/2022] Open
Abstract
Background TILLING (Targeting induced local lesions IN genomes) is an efficient reverse genetics approach for detecting induced mutations in pools of individuals. Combined with the high-throughput of next-generation sequencing technologies, and the resolving power of overlapping pool design, TILLING provides an efficient and economical platform for functional genomics across thousands of organisms. Results We propose a probabilistic method for calling TILLING-induced mutations, and their carriers, from high throughput sequencing data of overlapping population pools, where each individual occurs in two pools. We assign a probability score to each sequence position by applying Bayes' Theorem to a simplified binomial model of sequencing error and expected mutations, taking into account the coverage level. We test the performance of our method on variable quality, high-throughput sequences from wheat and rice mutagenized populations. Conclusions We show that our method effectively discovers mutations in large populations with sensitivity of 92.5% and specificity of 99.8%. It also outperforms existing SNP detection methods in detecting real mutations, especially at higher levels of coverage variability across sequenced pools, and in lower quality short reads sequence data. The implementation of our method is available from: http://www.cs.ucdavis.edu/filkov/CAMBa/.
Collapse
Affiliation(s)
- Victor Missirian
- Department of Computer Science, UC Davis, 1 Shields Ave., Davis, CA 95616, USA
| | | | | |
Collapse
|