1
|
Bischof L, Schweitzer F, Heinisch JJ. Functional Conservation of the Small GTPase Rho5/Rac1-A Tale of Yeast and Men. Cells 2024; 13:472. [PMID: 38534316 DOI: 10.3390/cells13060472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/02/2024] [Accepted: 03/06/2024] [Indexed: 03/28/2024] Open
Abstract
Small GTPases are molecular switches that participate in many essential cellular processes. Amongst them, human Rac1 was first described for its role in regulating actin cytoskeleton dynamics and cell migration, with a close relation to carcinogenesis. More recently, the role of Rac1 in regulating the production of reactive oxygen species (ROS), both as a subunit of NADPH oxidase complexes and through its association with mitochondrial functions, has drawn attention. Malfunctions in this context affect cellular plasticity and apoptosis, related to neurodegenerative diseases and diabetes. Some of these features of Rac1 are conserved in its yeast homologue Rho5. Here, we review the structural and functional similarities and differences between these two evolutionary distant proteins and propose yeast as a useful model and a device for high-throughput screens for specific drugs.
Collapse
Affiliation(s)
- Linnet Bischof
- AG Genetik, Fachbereich Biologie/Chemie, University of Osnabrück, Barbarastrasse 11, D-49076 Osnabrück, Germany
| | - Franziska Schweitzer
- AG Genetik, Fachbereich Biologie/Chemie, University of Osnabrück, Barbarastrasse 11, D-49076 Osnabrück, Germany
| | - Jürgen J Heinisch
- AG Genetik, Fachbereich Biologie/Chemie, University of Osnabrück, Barbarastrasse 11, D-49076 Osnabrück, Germany
| |
Collapse
|
2
|
Parnell E, Voorn RA, Martin-de-Saavedra MD, Loizzo DD, Dos Santos M, Penzes P. A developmental delay linked missense mutation in Kalirin-7 disrupts protein function and neuronal morphology. Front Mol Neurosci 2022; 15:994513. [PMID: 36533124 PMCID: PMC9751355 DOI: 10.3389/fnmol.2022.994513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/28/2022] [Indexed: 07/30/2023] Open
Abstract
The Rac1 guanine exchange factor Kalirin-7 is a key regulator of dendritic spine morphology, LTP and dendritic arborization. Kalirin-7 dysfunction and genetic variation has been extensively linked to various neurodevelopmental and neurodegenerative disorders. Here we characterize a Kalirin-7 missense mutation, glu1577lys (E1577K), identified in a patient with severe developmental delay. The E1577K point mutation is located within the catalytic domain of Kalirin-7, and results in a robust reduction in Kalirin-7 Rac1 Guanosine exchange factor activity. In contrast to wild type Kalirin-7, the E1577K mutant failed to drive dendritic arborization, spine density, NMDAr targeting to, and activity within, spines. Together these results indicate that reduced Rac1-GEF activity as result of E1577K mutation impairs neuroarchitecture, connectivity and NMDAr activity, and is a likely contributor to impaired neurodevelopment in a patient with developmental delay.
Collapse
Affiliation(s)
- Euan Parnell
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Roos A. Voorn
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - M. Dolores Martin-de-Saavedra
- Department of Biochemistry and Molecular Biology, School of Pharmacy, Instituto Universitario de Investigación en Neuroquímica, Complutense University of Madrid, Madrid, Spain
| | - Daniel D. Loizzo
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Marc Dos Santos
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Peter Penzes
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Centre for Autism and Neurodevelopment, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
3
|
Wang C, Chang Y, Zhu J, Ma R, Li G. Dual Role of Inositol-requiring Enzyme 1α–X-box Binding protein 1 Signaling in Neurodegenerative Diseases. Neuroscience 2022; 505:157-170. [DOI: 10.1016/j.neuroscience.2022.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 10/11/2022] [Accepted: 10/17/2022] [Indexed: 11/05/2022]
|
4
|
Abstract
The cognitive dysfunction experienced by patients with schizophrenia represents a major unmet clinical need. We believe that enhancing synaptic function and plasticity by targeting kalirin may provide a novel means to remediate these symptoms. Karilin (a protein encoded by the KALRN gene) has multiple functional domains, including two Dbl homology (DH) guanine exchange factor (GEF) domains, which act to enhance the activity of the Rho family guanosine triphosphate (GTP)-ases. Here, we provide an overview of kalirin's roles in brain function and its therapeutic potential in schizophrenia. We outline how it mediates diverse effects via a suite of distinct isoforms that couple to members of the Rho GTPase family to regulate synapse formation and stabilisation, and how genomic and post-mortem data implicate it in schizophrenia. We then review the current state of knowledge about the influence of kalirin on brain function at a systems level, based largely on evidence from transgenic mouse models, which support its proposed role in regulating dendritic spine function and plasticity. We demonstrate that, whilst the GTPases are classically considered to be 'undruggable', targeting kalirin and other Rho GEFs provides a means to indirectly modulate their activity. Finally, we integrate across the information presented to assess the therapeutic potential of kalirin for schizophrenia and highlight the key outstanding questions required to advance it in this capacity; namely, the need for more information about the diversity and function of its isoforms, how these change across neurodevelopment, and how they affect brain function in vivo.
Collapse
|
5
|
Zhu Y, Qu Y, Zhang J, Hou J, Fang J, Shen J, Xu C, Huang M, Qiao H, An S. Phencynonate hydrochloride exerts antidepressant effects by regulating the dendritic spine density and altering glutamate receptor expression. Behav Pharmacol 2021; 32:660-672. [PMID: 34751176 DOI: 10.1097/fbp.0000000000000660] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Phencynonate hydrochloride (PCH) is a drug that crosses the blood-brain barrier. Cellular experiments confirmed that PCH protects against glutamate toxicity and causes only weak central inhibition and limited side effects. As shown in our previous studies, PCH alleviates depression-like behaviours induced by chronic unpredictable mild stress (CUMS). Here we administered PCH at three different doses (4, 8 and 16 mg/kg) to male rats for two continuous days after CUMS and conducted behavioural tests to assess the dose-dependent antidepressant effects of PCH and its effects on the neuroplasticity in the hippocampus and medial prefrontal cortex (mPFC). Meanwhile, we measured the spine density and expression of related proteins to illustrate the mechanism of PCH. PCH treatment (8 mg/kg) significantly alleviated depression-like behaviours induced by CUMS. All doses of PCH treatment reversed the spine loss in prelimbic and CA3 regions induced by CUMS. Kalirin-7 expression was decreased in the hippocampus and mPFC of the CUMS group. The expression of the NR1 and NR2B subunits in the hippocampus, and NR2B in mPFC are increased by CUMS. PCH treatment (8 and 16 mg/kg) reversed all of these changes of Kalirin-7 in PFC and hippocampus, as well as NR1 and NR2B expression in the hippocampus. PCH is expected to be developed as a new type of rapid antidepressant. Its antidepressant effect may be closely related to the modulation of dendritic spine density in the prelimbic and CA3 regions and the regulation of Kalilin-7 and N-methyl-D-aspartic acid receptor levels in the hippocampus.
Collapse
Affiliation(s)
- Yingqi Zhu
- Institute of Brain and Behavioural Sciences, College of Life Science, Shaanxi Normal University, Xi'an, Shaanxi
| | - Yishan Qu
- Institute of Brain and Behavioural Sciences, College of Life Science, Shaanxi Normal University, Xi'an, Shaanxi
| | - Jing Zhang
- Institute of Brain and Behavioural Sciences, College of Life Science, Shaanxi Normal University, Xi'an, Shaanxi
| | - Jun Hou
- Institute of Brain and Behavioural Sciences, College of Life Science, Shaanxi Normal University, Xi'an, Shaanxi
| | - Jie Fang
- Institute of Brain and Behavioural Sciences, College of Life Science, Shaanxi Normal University, Xi'an, Shaanxi
| | - Jingxuan Shen
- Institute of Brain and Behavioural Sciences, College of Life Science, Shaanxi Normal University, Xi'an, Shaanxi
| | - Chang Xu
- Institute of Brain and Behavioural Sciences, College of Life Science, Shaanxi Normal University, Xi'an, Shaanxi
| | - Minyi Huang
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, Hunan, China
| | - Hui Qiao
- Institute of Brain and Behavioural Sciences, College of Life Science, Shaanxi Normal University, Xi'an, Shaanxi
| | - Shucheng An
- Institute of Brain and Behavioural Sciences, College of Life Science, Shaanxi Normal University, Xi'an, Shaanxi
| |
Collapse
|
6
|
Cheng J, Scala F, Blanco FA, Niu S, Firozi K, Keehan L, Mulherkar S, Froudarakis E, Li L, Duman JG, Jiang X, Tolias KF. The Rac-GEF Tiam1 Promotes Dendrite and Synapse Stabilization of Dentate Granule Cells and Restricts Hippocampal-Dependent Memory Functions. J Neurosci 2021; 41:1191-1206. [PMID: 33328293 PMCID: PMC7888217 DOI: 10.1523/jneurosci.3271-17.2020] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 11/25/2020] [Accepted: 12/01/2020] [Indexed: 12/14/2022] Open
Abstract
The dentate gyrus (DG) controls information flow into the hippocampus and is critical for learning, memory, pattern separation, and spatial coding, while DG dysfunction is associated with neuropsychiatric disorders. Despite its importance, the molecular mechanisms regulating DG neural circuit assembly and function remain unclear. Here, we identify the Rac-GEF Tiam1 as an important regulator of DG development and associated memory processes. In the hippocampus, Tiam1 is predominantly expressed in the DG throughout life. Global deletion of Tiam1 in male mice results in DG granule cells with simplified dendritic arbors, reduced dendritic spine density, and diminished excitatory synaptic transmission. Notably, DG granule cell dendrites and synapses develop normally in Tiam1 KO mice, resembling WT mice at postnatal day 21 (P21), but fail to stabilize, leading to dendrite and synapse loss by P42. These results indicate that Tiam1 promotes DG granule cell dendrite and synapse stabilization late in development. Tiam1 loss also increases the survival, but not the production, of adult-born DG granule cells, possibly because of greater circuit integration as a result of decreased competition with mature granule cells for synaptic inputs. Strikingly, both male and female mice lacking Tiam1 exhibit enhanced contextual fear memory and context discrimination. Together, these results suggest that Tiam1 is a key regulator of DG granule cell stabilization and function within hippocampal circuits. Moreover, based on the enhanced memory phenotype of Tiam1 KO mice, Tiam1 may be a potential target for the treatment of disorders involving memory impairments.SIGNIFICANCE STATEMENT The dentate gyrus (DG) is important for learning, memory, pattern separation, and spatial navigation, and its dysfunction is associated with neuropsychiatric disorders. However, the molecular mechanisms controlling DG formation and function remain elusive. By characterizing mice lacking the Rac-GEF Tiam1, we demonstrate that Tiam1 promotes the stabilization of DG granule cell dendritic arbors, spines, and synapses, whereas it restricts the survival of adult-born DG granule cells, which compete with mature granule cells for synaptic integration. Notably, mice lacking Tiam1 also exhibit enhanced contextual fear memory and context discrimination. These findings establish Tiam1 as an essential regulator of DG granule cell development, and identify it as a possible therapeutic target for memory enhancement.
Collapse
Affiliation(s)
- Jinxuan Cheng
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
| | - Federico Scala
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
| | - Francisco A Blanco
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
- Integrative Molecular and Biomedical Science Graduate Program, Baylor College of Medicine, Houston, Texas 77030
| | - Sanyong Niu
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
| | - Karen Firozi
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
| | - Laura Keehan
- Department of Biosciences, Rice University, Houston, Texas 77005
| | - Shalaka Mulherkar
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
| | | | - Lingyong Li
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
| | - Joseph G Duman
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
| | - Xiaolong Jiang
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas 77030
| | - Kimberley F Tolias
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
7
|
Zhang KX, Zhao JJ, Chai W, Chen JY. Synaptic remodeling in mouse motor cortex after spinal cord injury. Neural Regen Res 2021; 16:744-749. [PMID: 33063737 PMCID: PMC8067930 DOI: 10.4103/1673-5374.295346] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Spinal cord injury dramatically blocks information exchange between the central nervous system and the peripheral nervous system. The resulting fate of synapses in the motor cortex has not been well studied. To explore synaptic reorganization in the motor cortex after spinal cord injury, we established mouse models of T12 spinal cord hemi-section and then monitored the postsynaptic dendritic spines and presynaptic axonal boutons of pyramidal neurons in the hindlimb area of the motor cortex in vivo. Our results showed that spinal cord hemi-section led to the remodeling of dendritic spines bilaterally in the motor cortex and the main remodeling regions changed over time. It made previously stable spines unstable and eliminated spines more unlikely to be re-emerged. There was a significant increase in new spines in the contralateral motor cortex. However, the low survival rate of the new spines demonstrated that new spines were still fragile. Observation of presynaptic axonal boutons found no significant change. These results suggest the existence of synapse remodeling in motor cortex after spinal cord hemi-section and that spinal cord hemi-section affected postsynaptic dendritic spines rather than presynaptic axonal boutons. This study was approved by the Ethics Committee of Chinese PLA General Hospital, China (approval No. 201504168S) on April 16, 2015.
Collapse
Affiliation(s)
- Ke-Xue Zhang
- Department of Pediatric Surgery, Chinese PLA General Hospital, Beijing, China
| | - Jia-Jia Zhao
- Department of Anesthesiology, Shunyi District Hospital, Beijing, China
| | - Wei Chai
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Ji-Ying Chen
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
8
|
Stress-Sensitive Protein Rac1 and Its Involvement in Neurodevelopmental Disorders. Neural Plast 2020; 2020:8894372. [PMID: 33299404 PMCID: PMC7707960 DOI: 10.1155/2020/8894372] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 11/01/2020] [Accepted: 11/12/2020] [Indexed: 02/07/2023] Open
Abstract
Ras-related C3 botulinum toxin substrate 1 (Rac1) is a small GTPase that is well known for its sensitivity to the environmental stress of a cell or an organism. It senses the external signals which are transmitted from membrane-bound receptors and induces downstream signaling cascades to exert its physiological functions. Rac1 is an important regulator of a variety of cellular processes, such as cytoskeletal organization, generation of oxidative products, and gene expression. In particular, Rac1 has a significant influence on certain brain functions like neuronal migration, synaptic plasticity, and memory formation via regulation of actin dynamics in neurons. Abnormal Rac1 expression and activity have been observed in multiple neurological diseases. Here, we review recent findings to delineate the role of Rac1 signaling in neurodevelopmental disorders associated with abnormal spine morphology, synaptogenesis, and synaptic plasticity. Moreover, certain novel inhibitors of Rac1 and related pathways are discussed as potential avenues toward future treatment for these diseases.
Collapse
|
9
|
Parnell E, Shapiro LP, Voorn RA, Forrest MP, Jalloul HA, Loizzo DD, Penzes P. KALRN: A central regulator of synaptic function and synaptopathies. Gene 2020; 768:145306. [PMID: 33189799 DOI: 10.1016/j.gene.2020.145306] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/28/2020] [Accepted: 11/06/2020] [Indexed: 12/23/2022]
Abstract
The synaptic regulator, kalirin, plays a key role in synaptic plasticity and formation of dendritic arbors and spines. Dysregulation of the KALRN gene has been linked to various neurological disorders, including autism spectrum disorder, Alzheimer's disease, schizophrenia, addiction and intellectual disabilities. Both genetic and molecular studies highlight the importance of normal KALRN expression for healthy neurodevelopment and function. This review aims to give an in-depth analysis of the structure and molecular mechanisms of kalirin function, particularly within the brain. These data are correlated to genetic evidence of patient mutations within KALRN and animal models of Kalrn that together give insight into the manner in which this gene may be involved in neurodevelopment and the etiology of disease. The emerging links to human disease from post-mortem, genome wide association (GWAS) and exome sequencing studies are examined to highlight the disease relevance of kalirin, particularly in neurodevelopmental diseases. Finally, we will discuss efforts to pharmacologically regulate kalirin protein activity and the implications of such endeavors for the treatment of human disease. As multiple disease states arise from deregulated synapse formation and altered KALRN expression and function, therapeutics may be developed to provide control over KALRN activity and thus synapse dysregulation. As such, a detailed understanding of how kalirin regulates neuronal development, and the manner in which kalirin dysfunction promotes neurological disease, may support KALRN as a valuable therapeutic avenue for future pharmacological intervention.
Collapse
Affiliation(s)
- Euan Parnell
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, 60611 IL, USA
| | - Lauren P Shapiro
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, 60611 IL, USA
| | - Roos A Voorn
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, 60611 IL, USA
| | - Marc P Forrest
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, 60611 IL, USA
| | - Hiba A Jalloul
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, 60611 IL, USA
| | - Daniel D Loizzo
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, 60611 IL, USA
| | - Peter Penzes
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, 60611 IL, USA; Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, 60611 IL, USA; Northwestern University Center for Autism and Neurodevelopment, Chicago, IL 60611, USA.
| |
Collapse
|
10
|
Gray JL, von Delft F, Brennan PE. Targeting the Small GTPase Superfamily through Their Regulatory Proteins. Angew Chem Int Ed Engl 2020; 59:6342-6366. [PMID: 30869179 PMCID: PMC7204875 DOI: 10.1002/anie.201900585] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/11/2019] [Indexed: 12/11/2022]
Abstract
The Ras superfamily of small GTPases are guanine-nucleotide-dependent switches essential for numerous cellular processes. Mutations or dysregulation of these proteins are associated with many diseases, but unsuccessful attempts to target the small GTPases directly have resulted in them being classed as "undruggable". The GTP-dependent signaling of these proteins is controlled by their regulators; guanine nucleotide exchange factors (GEFs), GTPase activating proteins (GAPs), and in the Rho and Rab subfamilies, guanine nucleotide dissociation inhibitors (GDIs). This review covers the recent small molecule and biologics strategies to target the small GTPases through their regulators. It seeks to critically re-evaluate recent chemical biology practice, such as the presence of PAINs motifs and the cell-based readout using compounds that are weakly potent or of unknown specificity. It highlights the vast scope of potential approaches for targeting the small GTPases in the future through their regulatory proteins.
Collapse
Affiliation(s)
- Janine L. Gray
- Structural Genomics ConsortiumUniversity of Oxford, NDMRBOld Road CampusOxfordOX3 7DQUK
- Target Discovery InstituteNuffield Department of MedicineUniversity of OxfordOld Road CampusOxfordOX3 7FZUK
- Diamond Light SourceHarwell Science and Innovation CampusDidcotOX11 0QXUK
| | - Frank von Delft
- Structural Genomics ConsortiumUniversity of Oxford, NDMRBOld Road CampusOxfordOX3 7DQUK
- Diamond Light SourceHarwell Science and Innovation CampusDidcotOX11 0QXUK
- Department of BiochemistryUniversity of JohannesburgAuckland Park2006South Africa
| | - Paul E. Brennan
- Structural Genomics ConsortiumUniversity of Oxford, NDMRBOld Road CampusOxfordOX3 7DQUK
- Target Discovery InstituteNuffield Department of MedicineUniversity of OxfordOld Road CampusOxfordOX3 7FZUK
- Alzheimer's Research (UK) Oxford Drug Discovery InstituteNuffield Department of MedicineUniversity of OxfordOxfordOX3 7FZUK
| |
Collapse
|
11
|
Gray JL, Delft F, Brennan PE. Targeting der kleinen GTPasen über ihre regulatorischen Proteine. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201900585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Janine L. Gray
- Structural Genomics ConsortiumUniversity of Oxford, NDMRB Old Road Campus Oxford OX3 7DQ Großbritannien
- Target Discovery InstituteNuffield Department of MedicineUniversity of Oxford Old Road Campus Oxford OX3 7FZ Großbritannien
- Diamond Light Source Harwell Science and Innovation Campus Didcot OX11 0QX Großbritannien
| | - Frank Delft
- Structural Genomics ConsortiumUniversity of Oxford, NDMRB Old Road Campus Oxford OX3 7DQ Großbritannien
- Diamond Light Source Harwell Science and Innovation Campus Didcot OX11 0QX Großbritannien
- Department of BiochemistryUniversity of Johannesburg Auckland Park 2006 Südafrika
| | - Paul E. Brennan
- Structural Genomics ConsortiumUniversity of Oxford, NDMRB Old Road Campus Oxford OX3 7DQ Großbritannien
- Target Discovery InstituteNuffield Department of MedicineUniversity of Oxford Old Road Campus Oxford OX3 7FZ Großbritannien
- Alzheimer's Research (UK) Oxford Drug Discovery InstituteNuffield Department of MedicineUniversity of Oxford Oxford OX3 7FZ Großbritannien
| |
Collapse
|
12
|
Li MX, Qiao H, Zhang M, Ma XM. Role of Cdk5 in Kalirin7-Mediated Formation of Dendritic Spines. Neurochem Res 2019; 44:1243-1251. [PMID: 30875016 DOI: 10.1007/s11064-019-02771-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 03/04/2019] [Accepted: 03/07/2019] [Indexed: 02/06/2023]
Abstract
A majority of excitatory synapses in the brain are localized on the dendritic spines. Alterations of spine density and morphology are associated with many neurological diseases. Understanding the molecular mechanisms underlying spine formation is important for understanding these diseases. Kalirin7 (Kal-7) is localized to the postsynaptic side of excitatory synapses in the neurons. Overexpression of Kal-7 causes an increase in spine density whereas knockdown expression of endogenous Kal-7 results in a decrease in spine density in primary cultured cortical neurons. However, the mechanisms underlying Kal-7-mediated spine formation are not entirely clear. Cyclin-dependent kinase 5 (Cdk5) plays a vital role in the formation of spines and synaptic plasticity. Kal-7 is phosphorylated by CDK5 at Thr1590, the unique Cdk5 phosphorylation site in the Kal-7 protein. This study was to explore the role of CDK5-mediated phosphorylation of Kal-7 in spine formation and the underlying mechanisms. Our results showed expression of Kal-7T/D (mimicked phosphorylation), Kal-7T/A mutants (blocked phosphorylation) or wild-type (Wt) Kal-7 caused in a similar increase in spine density, while spine size of Wt Kal-7-expressing cortical neurons was bigger than that in Kal-7 T\A-expressing neurons, but smaller than that in Kal-7T/D-expressing neurons. The fluorescence intensity of NMDA receptor subunit NR2B (GluN2B) staining was stronger along the MAP2 positive dendrites of Kal-7T/D-expressing neurons than that in Kal-7T/A- or Wt Kal-7-expressing neurons. The fluorescence intensity of AMPA receptor subunit GluR1 (GluA1) staining showed the same trend as GluN2B staining. These findings suggest that Cdk5 affects the function of Kal-7 on spine morphology and function via GluN2B and GluA1 receptors during dendritic spine formation.
Collapse
Affiliation(s)
- Ming-Xing Li
- State Key Laboratory of Subtropical Agro-Bioresource Conservation and Utilization, Guangxi University, Nanning, 530004, Guangxi, China
- College of Life Science, Shaanxi Normal University, Xi'an, 710062, Shaanxi, China
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Hui Qiao
- College of Life Science, Shaanxi Normal University, Xi'an, 710062, Shaanxi, China
| | - Ming Zhang
- State Key Laboratory of Subtropical Agro-Bioresource Conservation and Utilization, Guangxi University, Nanning, 530004, Guangxi, China
| | - Xin-Ming Ma
- College of Life Science, Shaanxi Normal University, Xi'an, 710062, Shaanxi, China.
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, 06030, USA.
| |
Collapse
|
13
|
Gerakis Y, Hetz C. Emerging roles of ER stress in the etiology and pathogenesis of Alzheimer's disease. FEBS J 2017; 285:995-1011. [PMID: 29148236 DOI: 10.1111/febs.14332] [Citation(s) in RCA: 160] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 10/03/2017] [Accepted: 11/13/2017] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by synaptic dysfunction and accumulation of abnormal aggregates formed by amyloid-β peptides or phosphorylated tau proteins. Accumulating evidence suggests that alterations in the buffering capacity of the proteostasis network are a salient feature of AD. The endoplasmic reticulum (ER) is the main compartment involved in protein folding and secretion and is drastically affected in AD neurons. ER stress triggers the activation of the unfolded protein response (UPR), a signal transduction pathway that enforces adaptive programs to recover homeostasis or trigger apoptosis of irreversibly damaged cells. Experimental manipulation of specific UPR signaling modules in preclinical models of AD has revealed a key role of this pathway in regulating protein misfolding and neurodegeneration. Recent studies suggest that the UPR also influences synaptic plasticity and memory through ER stress-independent mechanisms. Consequently, targeting of the UPR in AD is emerging as an interesting therapeutic approach to modify the two pillars of AD, protein misfolding and synaptic failure. Here, we review the functional role of ER stress signaling in AD, discussing the complex involvement of the pathway in controlling neuronal survival, the amyloid cascade, neurodegeneration and synaptic function. Recent intervention efforts to target the UPR with pharmacological and gene therapy strategies are also discussed.
Collapse
Affiliation(s)
- Yannis Gerakis
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Claudio Hetz
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile.,Center for Geroscience, Brain Health and Metabolism, Santiago, Chile.,Buck Institute for Research on Aging, Novato, CA, USA.,Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA, USA.,Cellular and Molecular Biology Program, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| |
Collapse
|
14
|
Miller MB, Yan Y, Machida K, Kiraly DD, Levy AD, Wu YI, Lam TT, Abbott T, Koleske AJ, Eipper BA, Mains RE. Brain Region and Isoform-Specific Phosphorylation Alters Kalirin SH2 Domain Interaction Sites and Calpain Sensitivity. ACS Chem Neurosci 2017; 8:1554-1569. [PMID: 28418645 DOI: 10.1021/acschemneuro.7b00076] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Kalirin7 (Kal7), a postsynaptic Rho GDP/GTP exchange factor (RhoGEF), plays a crucial role in long-term potentiation and in the effects of cocaine on behavior and spine morphology. The KALRN gene has been linked to schizophrenia and other disorders of synaptic function. Mass spectrometry was used to quantify phosphorylation at 26 sites in Kal7 from individual adult rat nucleus accumbens and prefrontal cortex before and after exposure to acute or chronic cocaine. Region- and isoform-specific phosphorylation was observed along with region-specific effects of cocaine on Kal7 phosphorylation. Evaluation of the functional significance of multisite phosphorylation in a complex protein like Kalirin is difficult. With the identification of five tyrosine phosphorylation (pY) sites, a panel of 71 SH2 domains was screened, identifying subsets that interacted with multiple pY sites in Kal7. In addition to this type of reversible interaction, endoproteolytic cleavage by calpain plays an essential role in long-term potentiation. Calpain cleaved Kal7 at two sites, separating the N-terminal domain, which affects spine length, and the PDZ binding motif from the GEF domain. Mutations preventing phosphorylation did not affect calpain sensitivity or GEF activity; phosphomimetic mutations at specific sites altered protein stability, increased calpain sensitivity, and reduced GEF activity.
Collapse
Affiliation(s)
| | | | | | - Drew D. Kiraly
- Department
of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Chen YC, Ma YL, Lin CH, Cheng SJ, Hsu WL, Lee EHY. Galectin-3 Negatively Regulates Hippocampus-Dependent Memory Formation through Inhibition of Integrin Signaling and Galectin-3 Phosphorylation. Front Mol Neurosci 2017; 10:217. [PMID: 28744198 PMCID: PMC5504160 DOI: 10.3389/fnmol.2017.00217] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Accepted: 06/20/2017] [Indexed: 01/06/2023] Open
Abstract
Galectin-3, a member of the galectin protein family, has been found to regulate cell proliferation, inhibit apoptosis and promote inflammatory responses. Galectin-3 is also expressed in the adult rat hippocampus, but its role in learning and memory function is not known. Here, we found that contextual fear-conditioning training, spatial training or injection of NMDA into the rat CA1 area each dramatically decreased the level of endogenous galectin-3 expression. Overexpression of galectin-3 impaired fear memory, whereas galectin-3 knockout (KO) enhanced fear retention, spatial memory and hippocampal long-term potentiation. Galectin-3 was further found to associate with integrin α3, an association that was decreased after fear-conditioning training. Transfection of the rat CA1 area with small interfering RNA against galectin-3 facilitated fear memory and increased phosphorylated focal adhesion kinase (FAK) levels, effects that were blocked by co-transfection of the FAK phosphorylation-defective mutant Flag-FAKY397F. Notably, levels of serine-phosphorylated galectin-3 were decreased by fear conditioning training. In addition, blockade of galectin-3 phosphorylation at Ser-6 facilitated fear memory, whereas constitutive activation of galectin-3 at Ser-6 impaired fear memory. Interestingly galectin-1 plays a role in fear-memory formation similar to that of galectin-3. Collectively, our data provide the first demonstration that galectin-3 is a novel negative regulator of memory formation that exerts its effects through both extracellular and intracellular mechanisms.
Collapse
Affiliation(s)
- Yan-Chu Chen
- Graduate Institute of Life Sciences, National Defense Medical CenterTaipei, Taiwan
| | - Yun-Li Ma
- Institute of Biomedical Sciences, Academia SinicaTaipei, Taiwan
| | | | - Sin-Jhong Cheng
- Institute of Biomedical Sciences, Academia SinicaTaipei, Taiwan.,Neuroscience Program in Academia SinicaTaipei, Taiwan
| | - Wei-Lun Hsu
- Institute of Biomedical Sciences, Academia SinicaTaipei, Taiwan
| | - Eminy H-Y Lee
- Graduate Institute of Life Sciences, National Defense Medical CenterTaipei, Taiwan.,Institute of Biomedical Sciences, Academia SinicaTaipei, Taiwan
| |
Collapse
|
16
|
LaRese TP, Yan Y, Eipper BA, Mains RE. Using Kalirin conditional knockout mice to distinguish its role in dopamine receptor mediated behaviors. BMC Neurosci 2017; 18:45. [PMID: 28535798 PMCID: PMC5442696 DOI: 10.1186/s12868-017-0363-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 05/19/2017] [Indexed: 01/25/2023] Open
Abstract
Background Mice lacking Kalirin-7 (Kal7KO), a Rho GDP/GTP exchange factor, self-administer cocaine at a higher rate than wildtype mice, and show an exaggerated locomotor response to experimenter-administered cocaine. Kal7, which localizes to post-synaptic densities at glutamatergic synapses, interacts directly with the GluN2B subunit of the N-methyl-d-aspartate (NMDA; GluN) receptor. Consistent with these observations, Kal7 plays an essential role in NMDA receptor dependent long term potentiation and depression, and glutamatergic transmission plays a key role in the response to chronic cocaine. A number of genetic studies have implicated altered Kalirin expression in schizophrenia and other disorders such as Alzheimer’s Disease. Results A comparison of the effects of experimenter-administered cocaine on mice lacking all Kalirin isoforms to its effects on mice lacking only Kalirin-7 identified Kal7 as the key isoform whose deletion produces exaggerated locomotor responses to cocaine. Pretreatment of Kal7KO mice with a low dose of ifenprodil, a selective GluN2B antagonist, eliminated their enhanced locomotor response to cocaine, revealing an important role for GluN2B in this behavior. Selective knockout of Kalirin in dopamine transporter expressing neurons produced a transient enhancement of cocaine-induced locomotion, while knockout of Kalirin in Drd1a- or Drd2-dopamine receptor expressing neurons was without effect. As observed in Kalirin global knockout mice, eliminating Kalirin expression in Drd2-expressing neurons increased exploratory behavior in the elevated zero maze, an effect eliminated by pretreatment with ifenprodil. Conclusions The cocaine-sensitive neuronal pathways which are most sensitive to altered Kalirin function may be the pathways most dependent on GluN2B and Drd2. Electronic supplementary material The online version of this article (doi:10.1186/s12868-017-0363-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Taylor P LaRese
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, 06030-3401, USA
| | - Yan Yan
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, 06030-3401, USA
| | - Betty A Eipper
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, 06030-3401, USA.,Departments of Neuroscience and Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT, 06030-3401, USA
| | - Richard E Mains
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, 06030-3401, USA.
| |
Collapse
|
17
|
Qiao H, An SC, Xu C, Ma XM. Role of proBDNF and BDNF in dendritic spine plasticity and depressive-like behaviors induced by an animal model of depression. Brain Res 2017; 1663:29-37. [DOI: 10.1016/j.brainres.2017.02.020] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 02/14/2017] [Accepted: 02/20/2017] [Indexed: 10/20/2022]
|
18
|
Ba W, Nadif Kasri N. RhoGTPases at the synapse: An embarrassment of choice. Small GTPases 2017; 8:106-113. [PMID: 27492682 PMCID: PMC5464131 DOI: 10.1080/21541248.2016.1206352] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 06/22/2016] [Accepted: 06/22/2016] [Indexed: 12/14/2022] Open
Abstract
Activity-dependent modifications in the strength of excitatory synapses are considered to be major cellular mechanisms that contribute to the plasticity of neuronal networks underlying learning and memory. Key mechanisms for the regulation of synaptic efficacy involve the dynamic changes in size and number of dendritic spines, as well as the synaptic incorporation and removal of AMPA-type glutamate receptors (AMPAr). As key regulators of the actin cytoskeleton, the Rho subfamily of GTP-binding proteins play a critical role in synaptic development and plasticity. They shuttle between the active GTP-bound form and the inactive GDP-bound form under the regulation of dedicated guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs). More than 80 human GEFs and 70 GAPs have been identified, most of which are expressed in the brain with a specific spatial and temporal expression pattern. However, the function of most GEFs and GAPs in the brain has not been elucidated. In this review, we highlight the novel neuronal function of the synaptic RhoGAP ARHGAP12 and the ID-associated RhoGEF TRIO and further propose 3 possible approaches of neurons utilizing Rho GTPase regulatory proteins to accurately modulate synaptic function.
Collapse
Affiliation(s)
- W. Ba
- Department of Cognitive Neuroscience, Radboudumc, Nijmegen, the Netherlands
- Department of Human Genetics, Radboudumc, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition, and Behavior, Nijmegen, the Netherlands
| | - N. Nadif Kasri
- Department of Cognitive Neuroscience, Radboudumc, Nijmegen, the Netherlands
- Department of Human Genetics, Radboudumc, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition, and Behavior, Nijmegen, the Netherlands
| |
Collapse
|
19
|
Cissé M, Duplan E, Checler F. The transcription factor XBP1 in memory and cognition: Implications in Alzheimer disease. Mol Med 2017; 22:905-917. [PMID: 28079229 DOI: 10.2119/molmed.2016.00229] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 12/23/2016] [Indexed: 12/21/2022] Open
Abstract
X-box binding protein 1 (XBP1) is a unique basic region leucine zipper transcription factor isolated two decades ago in a search for regulators of major histocompatibility complex class II gene expression. XBP1 is a very complex protein regulating many physiological functions, including immune system, inflammatory responses, and lipid metabolism. Evidence over the past few years suggests that XBP1 also plays important roles in pathological settings since its activity as transcription factor has profound effects on the prognosis and progression of diseases such as cancer, neurodegeneration, and diabetes. Here we provide an overview on recent advances in our understanding of this multifaceted molecule, particularly in regulating synaptic plasticity and memory function, and the implications in neurodegenerative diseases with emphasis on Alzheimer disease.
Collapse
Affiliation(s)
- Moustapha Cissé
- Université Côte d'Azur, INSERM, CNRS, IPMC, team labeled "Fondation pour la Recherche Médicale" and "Laboratory of Excellence (LABEX) Distalz", 660 route des Lucioles, 06560, Sophia-Antipolis, Valbonne, France
| | - Eric Duplan
- Université Côte d'Azur, INSERM, CNRS, IPMC, team labeled "Fondation pour la Recherche Médicale" and "Laboratory of Excellence (LABEX) Distalz", 660 route des Lucioles, 06560, Sophia-Antipolis, Valbonne, France
| | - Frédéric Checler
- Université Côte d'Azur, INSERM, CNRS, IPMC, team labeled "Fondation pour la Recherche Médicale" and "Laboratory of Excellence (LABEX) Distalz", 660 route des Lucioles, 06560, Sophia-Antipolis, Valbonne, France
| |
Collapse
|
20
|
Miller MB, Yan Y, Wu Y, Hao B, Mains RE, Eipper BA. Alternate promoter usage generates two subpopulations of the neuronal RhoGEF Kalirin-7. J Neurochem 2016; 140:889-902. [PMID: 27465683 DOI: 10.1111/jnc.13749] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 07/15/2016] [Accepted: 07/25/2016] [Indexed: 11/28/2022]
Abstract
Kalirin (Kal), a dual Rho GDP/GTP exchange factor (GEF), plays essential roles within and outside the nervous system. Tissue-specific, developmentally regulated alternative splicing generates isoforms with one (Kal7) or two (Kal9, Kal12) GEF domains along with a kinase (Kal12) domain; while Kal9 and Kal12 are crucial for neurite outgrowth, Kal7 plays important roles in spine maintenance and synaptic plasticity. Tissue-specific usage of alternate Kalrn promoters (A, B, C, D) places four different peptides before the Sec14 domain. cSec14, with an amphipathic helix encoded by the C-promoter (Kal-C-helix), is the only variant known to interact with phosphoinositides. We sought to elucidate the biological significance of Kalirin promoter usage and lipid binding. While Ex1B expression was predominant early in development, Ex1C expression increased when synaptogenesis occurred. Kal-C-helix-containing Kal7 (cKal7) was enriched at the postsynaptic density, present in the microsomal fraction and absent from cytosol; no significant amount of cKal9 or cKal12 could be identified in mouse brain. Similarly, in primary hippocampal neurons, endogenous cKalirin colocalized with postsynaptic density 95 in dendritic spines, juxtaposed to Vglut1-positive puncta. When expressed in young neurons, bSec14-EGFP was diffusely distributed, while cSec14-EGFP localized to internal puncta. Transfected bKal7-EGFP and cKal7-EGFP localized to dendritic spines and increased spine density in more mature cultured neurons. Although promoter usage did not alter the Rac-GEF activity of Kal7, the synaptic puncta formed by cKal7-EGFP were smaller than those formed by bKal7-EGFP. Molecular modeling predicted a role for Kal-C-helix residue Arg15 in the interaction of cSec14 with phosphoinositides. Consistent with this prediction, mutation of Arg15 to Gln altered the localization of cSec14-EGFP and cKal7-EGFP. These data suggest that phosphoinositide-dependent interactions unique to cKal7 contribute to protein localization and function. Cover Image for this issue: doi. 10.1111/jnc.13791.
Collapse
Affiliation(s)
- Megan B Miller
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Yan Yan
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Yi Wu
- Center for Cell Analysis and Modeling, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Bing Hao
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Richard E Mains
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Betty A Eipper
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut, USA.,Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, Connecticut, USA
| |
Collapse
|
21
|
Kalirin and Trio proteins serve critical roles in excitatory synaptic transmission and LTP. Proc Natl Acad Sci U S A 2016; 113:2264-9. [PMID: 26858404 DOI: 10.1073/pnas.1600179113] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The molecular mechanism underlying long-term potentiation (LTP) is critical for understanding learning and memory. CaMKII, a key kinase involved in LTP, is both necessary and sufficient for LTP induction. However, how CaMKII gives rise to LTP is currently unknown. Recent studies suggest that Rho GTPases are necessary for LTP. Rho GTPases are activated by Rho guanine exchange factors (RhoGEFs), but the RhoGEF(s) required for LTP also remain unknown. Here, using a combination of molecular, electrophysiological, and imaging techniques, we show that the RhoGEF Kalirin and its paralog Trio play critical and redundant roles in excitatory synapse structure and function. Furthermore, we show that CaMKII phosphorylation of Kalirin is sufficient to enhance synaptic AMPA receptor expression, and that preventing CaMKII signaling through Kalirin and Trio prevents LTP induction. Thus, our data identify Kalirin and Trio as the elusive targets of CaMKII phosphorylation responsible for AMPA receptor up-regulation during LTP.
Collapse
|
22
|
Puigdellívol M, Cherubini M, Brito V, Giralt A, Suelves N, Ballesteros J, Zamora-Moratalla A, Martín ED, Eipper BA, Alberch J, Ginés S. A role for Kalirin-7 in corticostriatal synaptic dysfunction in Huntington's disease. Hum Mol Genet 2015; 24:7265-85. [PMID: 26464483 DOI: 10.1093/hmg/ddv426] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 10/05/2015] [Indexed: 01/09/2023] Open
Abstract
Cognitive dysfunction is an early clinical hallmark of Huntington's disease (HD) preceding the appearance of motor symptoms by several years. Neuronal dysfunction and altered corticostriatal connectivity have been postulated to be fundamental to explain these early disturbances. However, no treatments to attenuate cognitive changes have been successful: the reason may rely on the idea that the temporal sequence of pathological changes is as critical as the changes per se when new therapies are in development. To this aim, it becomes critical to use HD mouse models in which cognitive impairments appear prior to motor symptoms. In this study, we demonstrate procedural memory and motor learning deficits in two different HD mice and at ages preceding motor disturbances. These impairments are associated with altered corticostriatal long-term potentiation (LTP) and specific reduction of dendritic spine density and postsynaptic density (PSD)-95 and spinophilin-positive clusters in the cortex of HD mice. As a potential mechanism, we described an early decrease of Kalirin-7 (Kal7), a guanine-nucleotide exchange factor for Rho-like small GTPases critical to maintain excitatory synapse, in the cortex of HD mice. Supporting a role for Kal7 in HD synaptic deficits, exogenous expression of Kal7 restores the reduction of excitatory synapses in HD cortical cultures. Altogether, our results suggest that cortical dysfunction precedes striatal disturbances in HD and underlie early corticostriatal LTP and cognitive defects. Moreover, we identified diminished Kal7 as a key contributor to HD cortical alterations, placing Kal7 as a molecular target for future therapies aimed to restore corticostriatal function in HD.
Collapse
Affiliation(s)
- Mar Puigdellívol
- Departament de Biologia Cellular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain, CIBERNED, Madrid, Spain
| | - Marta Cherubini
- Departament de Biologia Cellular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain, CIBERNED, Madrid, Spain
| | - Verónica Brito
- Departament de Biologia Cellular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain, CIBERNED, Madrid, Spain
| | - Albert Giralt
- Departament de Biologia Cellular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain, CIBERNED, Madrid, Spain
| | - Núria Suelves
- Departament de Biologia Cellular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain, CIBERNED, Madrid, Spain
| | - Jesús Ballesteros
- Laboratory of Neurophysiology and Synaptic Plasticity, Albacete Science and Technology Park (PCYTA), Institute for Research in Neurological Disabilities (IDINE), University of Castilla-La Mancha, Albacete, Spain and
| | - Alfonsa Zamora-Moratalla
- Laboratory of Neurophysiology and Synaptic Plasticity, Albacete Science and Technology Park (PCYTA), Institute for Research in Neurological Disabilities (IDINE), University of Castilla-La Mancha, Albacete, Spain and
| | - Eduardo D Martín
- Laboratory of Neurophysiology and Synaptic Plasticity, Albacete Science and Technology Park (PCYTA), Institute for Research in Neurological Disabilities (IDINE), University of Castilla-La Mancha, Albacete, Spain and
| | - Betty A Eipper
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, USA
| | - Jordi Alberch
- Departament de Biologia Cellular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain, CIBERNED, Madrid, Spain
| | - Silvia Ginés
- Departament de Biologia Cellular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain, CIBERNED, Madrid, Spain,
| |
Collapse
|
23
|
Zhang K, Zhang J, Zhou Y, Chen C, Li W, Ma L, Zhang L, Zhao J, Gan W, Zhang L, Tang P. Remodeling the Dendritic Spines in the Hindlimb Representation of the Sensory Cortex after Spinal Cord Hemisection in Mice. PLoS One 2015; 10:e0132077. [PMID: 26132157 PMCID: PMC4489092 DOI: 10.1371/journal.pone.0132077] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 06/09/2015] [Indexed: 01/01/2023] Open
Abstract
Spinal cord injury (SCI) can induce remodeling of multiple levels of the cerebral cortex system especially in the sensory cortex. The aim of this study was to assess, in vivo and bilaterally, the remodeling of dendritic spines in the hindlimb representation of the sensory cortex after spinal cord hemisection. Thy1-YFP transgenic mice were randomly divided into the control group and the SCI group, and the spinal vertebral plates (T11–T12) of all mice were excised. Next, the left hemisphere of the spinal cord (T12) was hemisected in the SCI group. The hindlimb representations of the sensory cortex in both groups were imaged bilaterally on the day before (0d), and three days (3d), two weeks (2w), and one month (1m) after the SCI. The rates of stable, newly formed, and eliminated spines were calculated by comparing images of individual dendritic spine in the same areas at different time points. In comparison to the control group, the rate of newly formed spines in the contralateral sensory cortex of the SCI group increased at three days and two weeks after injury. The rates of eliminated spines in the bilateral sensory cortices increased and the rate of stable spines in the bilateral cortices declined at two weeks and one month. From three days to two weeks, the stable rates of bilaterally stable spines in the SCI group decreased. In comparison to the control group and contralateral cortex in the SCI group, the re-emerging rate of eliminated spines in ipsilateral cortex of the SCI group decreased significantly. The stable rates of newly formed spines in bilateral cortices of the SCI group decreased from two weeks to one month. We found that the remodeling in the hindlimb representation of the sensory cortex after spinal cord hemisection occurred bilaterally. This remodeling included eliminating spines and forming new spines, as well as changing the reorganized regions of the brain cortex after the SCI over time. Soon after the SCI, the cortex was remodeled by increasing spine formation in the contralateral cortex. Then it was remodeled prominently by eliminating spines of bilateral cortices. Spinal cord hemisection also caused traditional stable spines to become unstable and led the eliminated spines even more hard to recur especially in the ipsilateral cortex of the SCI group. In addition, it also made the new formed spines unstable.
Collapse
Affiliation(s)
- Kexue Zhang
- Department of Orthopaedics, General Hospital of Chinese PLA, Beijing, 100853, People's Republic of China
| | - Jinhui Zhang
- Department of Orthopaedics, General Hospital of Chinese PLA, Beijing, 100853, People's Republic of China
| | - Yanmei Zhou
- Drug Discovery Center, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, People's Republic of China
| | - Chao Chen
- Department of Orthopaedics, General Hospital of Chinese PLA, Beijing, 100853, People's Republic of China
| | - Wei Li
- Drug Discovery Center, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, People's Republic of China
| | - Lei Ma
- Drug Discovery Center, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, People's Republic of China
| | - Licheng Zhang
- Department of Orthopaedics, General Hospital of Chinese PLA, Beijing, 100853, People's Republic of China
| | - Jingxin Zhao
- Department of Orthopaedics, General Hospital of Chinese PLA, Beijing, 100853, People's Republic of China
| | - Wenbiao Gan
- Department of Physiology and Neuroscience, New York University School of Medicine, New York, New York, 10016, United States of America
| | - Lihai Zhang
- Department of Orthopaedics, General Hospital of Chinese PLA, Beijing, 100853, People's Republic of China
| | - Peifu Tang
- Department of Orthopaedics, General Hospital of Chinese PLA, Beijing, 100853, People's Republic of China
| |
Collapse
|
24
|
Miller MB, Vishwanatha KS, Mains RE, Eipper BA. An N-terminal Amphipathic Helix Binds Phosphoinositides and Enhances Kalirin Sec14 Domain-mediated Membrane Interactions. J Biol Chem 2015; 290:13541-55. [PMID: 25861993 DOI: 10.1074/jbc.m115.636746] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Indexed: 11/06/2022] Open
Abstract
Previous studies revealed an essential role for the lipid-binding Sec14 domain of kalirin (KalSec14), but its mechanism of action is not well understood. Because alternative promoter usage appends unique N-terminal peptides to the KalSec14 domain, we used biophysical, biochemical, and cell biological approaches to examine the two major products, bKalSec14 and cKalSec14. Promoter B encodes a charged, unstructured peptide, whereas promoter C encodes an amphipathic helix (Kal-C-helix). Both bKalSec14 and cKalSec14 interacted with lipids in PIP strip and liposome flotation assays, with significantly greater binding by cKalSec14 in both assays. Disruption of the hydrophobic face of the Kal-C-helix in cKalSec14KKED eliminated its increased liposome binding. Although cKalSec14 showed significantly reduced binding to liposomes lacking phosphatidylinositol phosphates or cholesterol, liposome binding by bKalSec14 and cKalSec14KKED was not affected. When expressed in AtT-20 cells, bKalSec14-GFP was diffusely localized, whereas cKalSec14-GFP localized to the trans-Golgi network and secretory granules. The amphipathic C-helix was sufficient for this localization. When AtT-20 cells were treated with a cell-permeant derivative of the Kal-C-helix (Kal-C-helix-Arg9), we observed increased secretion of a product stored in mature secretory granules, with no effect on basal secretion; a cell-permeant control peptide (Kal-C-helixKKED-Arg9) did not have this effect. Through its ability to control expression of a novel, phosphoinositide-binding amphipathic helix, Kalrn promoter usage is expected to affect function.
Collapse
Affiliation(s)
| | | | | | - Betty A Eipper
- From the Departments of Neuroscience and Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, Connecticut 06030
| |
Collapse
|
25
|
Qiao H, An SC, Ren W, Ma XM. Progressive alterations of hippocampal CA3-CA1 synapses in an animal model of depression. Behav Brain Res 2014; 275:191-200. [PMID: 25192638 DOI: 10.1016/j.bbr.2014.08.040] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Revised: 08/08/2014] [Accepted: 08/20/2014] [Indexed: 12/11/2022]
Abstract
Major depressive disorder is the most prevalent psychiatric condition, but the cellular and molecular mechanisms underlying this disorder are largely unknown, although multiple hypotheses have been proposed. The aim of this study was to characterize the progressive alteration of neuronal plasticity in the male rat hippocampus during depression induced by chronic unpredictable mild stress (CUMS), an established animal model of depression. The data in the hippocampus were collected on days 7, 14 and 21 after the onset of three-week CUMS. When analyzed on day 21, three-week CUMS induced typically depressive-like behaviors, impaired LTP induction, and decreased basal synaptic transmission at hippocampal CA3-CA1 synapses recorded in vivo, which was accompanied by decreased density of dendritic spines in CA1 and CA3 pyramidal neurons. The levels of both Kalirin-7 and brain-derived neurotrophic factor (BDNF) in the hippocampus were decreased at the same time. On day 14 (middle phase), some depressive-like behaviors were observed, which was accompanied by depressed basal synaptic transmission and enhanced LTP induction at the CA3-CA1 synapses. However, BDNF expression was decreased without alteration of Kalirin7 expression in comparison with no-stress control. Depressed basal synaptic transmission occurred in the middle phase of CUMS may contribute to decreased expression of BDNF. On day 7, depressive-like behaviors were not observed, and LTP induction, spine density, Kalirin-7 and BDNF expression were not altered by CUMS in comparison with no-stress control. These results showed that the functional changes at CA3-CA1synapses occurred earlier than the structural alteration during three-week CUMS as a strategy of neural adaptation, and rats required three weeks to develop depressive-like behaviors during CUMS. Our results suggest an important role of Kalirin-7 in CUMS-mediated alterations in spine density, synaptic function and overall depressive-like behaviors on day 21.
Collapse
Affiliation(s)
- Hui Qiao
- College of Life Science, Shaanxi Normal University, Xi'an, Shaanxi Province 710062, PR China
| | - Shu-Cheng An
- College of Life Science, Shaanxi Normal University, Xi'an, Shaanxi Province 710062, PR China.
| | - Wei Ren
- College of Life Science, Shaanxi Normal University, Xi'an, Shaanxi Province 710062, PR China
| | - Xin-Ming Ma
- College of Life Science, Shaanxi Normal University, Xi'an, Shaanxi Province 710062, PR China; University of Connecticut Health Center, Department of Neuroscience, Farmington, CT 06030, USA
| |
Collapse
|
26
|
Cissé M, Checler F. Eph receptors: new players in Alzheimer's disease pathogenesis. Neurobiol Dis 2014; 73:137-49. [PMID: 25193466 DOI: 10.1016/j.nbd.2014.08.028] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 08/01/2014] [Accepted: 08/22/2014] [Indexed: 12/23/2022] Open
Abstract
Alzheimer's disease (AD) is devastating and leads to permanent losses of memory and other cognitive functions. Although recent genetic evidences strongly argue for a causative role of Aβ in AD onset and progression (Jonsson et al., 2012), its role in AD etiology remains a matter of debate. However, even if not the sole culprit or pathological trigger, genetic and anatomical evidences in conjunction with numerous pharmacological studies, suggest that Aβ peptides, at least contribute to the disease. How Aβ contributes to memory loss remains largely unknown. Soluble Aβ species referred to as Aβ oligomers have been shown to be neurotoxic and induce network failure and cognitive deficits in animal models of the disease. In recent years, several proteins were described as potential Aβ oligomers receptors, amongst which are the receptor tyrosine kinases of Eph family. These receptors together with their natural ligands referred to as ephrins have been involved in a plethora of physiological and pathological processes, including embryonic neurogenesis, learning and memory, diabetes, cancers and anxiety. Here we review recent discoveries on Eph receptors-mediated protection against Aβ oligomers neurotoxicity as well as their potential as therapeutic targets in AD pathogenesis.
Collapse
Affiliation(s)
- Moustapha Cissé
- Institut de Pharmacologie Moléculaire et Cellulaire, UMR7275 CNRS/UNS, "Labex Distalz", 660 route des Lucioles, 06560, Sophia-Antipolis, Valbonne, France..
| | - Frédéric Checler
- Institut de Pharmacologie Moléculaire et Cellulaire, UMR7275 CNRS/UNS, "Labex Distalz", 660 route des Lucioles, 06560, Sophia-Antipolis, Valbonne, France..
| |
Collapse
|
27
|
Mandela P, Yan Y, LaRese T, Eipper BA, Mains RE. Elimination of Kalrn expression in POMC cells reduces anxiety-like behavior and contextual fear learning. Horm Behav 2014; 66:430-8. [PMID: 25014196 PMCID: PMC4127147 DOI: 10.1016/j.yhbeh.2014.07.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 06/27/2014] [Accepted: 07/01/2014] [Indexed: 11/17/2022]
Abstract
Kalirin, a Rho GDP/GTP exchange factor for Rac1 and RhoG, is known to play an essential role in the formation and maintenance of excitatory synapses and in the secretion of neuropeptides. Mice unable to express any of the isoforms of Kalrn in cells that produce POMC at any time during development (POMC cells) exhibited reduced anxiety-like behavior and reduced acquisition of passive avoidance behavior, along with sex-specific alteration in the corticosterone response to restraint stress. Strikingly, lack of Kalrn expression in POMC cells closely mimicked the effects of global Kalrn knockout on anxiety-like behavior and passive avoidance conditioning without causing the other deficits noted in Kalrn knockout mice. Our data suggest that deficits in excitatory inputs onto POMC neurons are responsible for the behavioral phenotypes observed.
Collapse
Affiliation(s)
- Prashant Mandela
- Department of Neuroscience, University of Connecticut Health Center, 263 Farmington Ave., Farmington, CT 06030-3401, United States
| | - Yan Yan
- Department of Neuroscience, University of Connecticut Health Center, 263 Farmington Ave., Farmington, CT 06030-3401, United States
| | - Taylor LaRese
- Department of Neuroscience, University of Connecticut Health Center, 263 Farmington Ave., Farmington, CT 06030-3401, United States
| | - Betty A Eipper
- Department of Neuroscience, University of Connecticut Health Center, 263 Farmington Ave., Farmington, CT 06030-3401, United States
| | - Richard E Mains
- Department of Neuroscience, University of Connecticut Health Center, 263 Farmington Ave., Farmington, CT 06030-3401, United States.
| |
Collapse
|
28
|
Ma XM, Miller MB, Vishwanatha KS, Gross MJ, Wang Y, Abbott T, Lam TT, Mains RE, Eipper BA. Nonenzymatic domains of Kalirin7 contribute to spine morphogenesis through interactions with phosphoinositides and Abl. Mol Biol Cell 2014; 25:1458-71. [PMID: 24600045 PMCID: PMC4004595 DOI: 10.1091/mbc.e13-04-0215] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Like several Rho GDP/GTP exchange factors (GEFs), Kalirin7 (Kal7) contains an N-terminal Sec14 domain and multiple spectrin repeats. A natural splice variant of Kalrn lacking the Sec14 domain and four spectrin repeats is unable to increase spine formation; our goal was to understand the function of the Sec14 and spectrin repeat domains. Kal7 lacking its Sec14 domain still increased spine formation, but the spines were short. Strikingly, Kal7 truncation mutants containing only the Sec14 domain and several spectrin repeats increased spine formation. The Sec14 domain bound phosphoinositides, a minor but crucial component of cellular membranes, and binding was increased by a phosphomimetic mutation. Expression of KalSec14-GFP in nonneuronal cells impaired receptor-mediated endocytosis, linking Kal7 to membrane trafficking. Consistent with genetic studies placing Abl, a non-receptor tyrosine kinase, and the Drosophila orthologue of Kalrn into the same signaling pathway, Abl1 phosphorylated two sites in the fourth spectrin repeat of Kalirin, increasing its sensitivity to calpain-mediated degradation. Treating cortical neurons of the wild-type mouse, but not the Kal7(KO) mouse, with an Abl inhibitor caused an increase in linear spine density. Phosphorylation of multiple sites in the N-terminal Sec14/spectrin region of Kal7 may allow coordination of the many signaling pathways contributing to spine morphogenesis.
Collapse
Affiliation(s)
- Xin-Ming Ma
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT 06030 WM Keck Foundation Biotechnology Resource Laboratory, Yale/NIDA Neuroproteomics Center, Yale University, New Haven, CT 06511
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Kiraly DD, Nemirovsky NE, LaRese TP, Tomek SE, Yahn SL, Olive MF, Eipper BA, Mains RE. Constitutive knockout of kalirin-7 leads to increased rates of cocaine self-administration. Mol Pharmacol 2013; 84:582-90. [PMID: 23894151 PMCID: PMC3781382 DOI: 10.1124/mol.113.087106] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 07/26/2013] [Indexed: 01/01/2023] Open
Abstract
Kalirin-7 (Kal7) is a Rho-guanine nucleotide exchange factor that is localized in neuronal postsynaptic densities. Kal7 interacts with the NR2B subunit of the NMDA receptor and regulates aspects of dendritic spine dynamics both in vitro and in vivo. Chronic treatment with cocaine increases dendritic spine density in the nucleus accumbens (NAc) of rodents and primates. Kal7 mRNA and protein are upregulated in the NAc following cocaine treatment, and the presence of Kal7 is necessary for the normal proliferation of dendritic spines following cocaine use. Mice that constitutively lack Kal7 [Kalirin-7 knockout mice (Kal7(KO))] demonstrate increased locomotor sensitization to cocaine and a decreased place preference for cocaine. Here, using an intravenous cocaine self-administration paradigm, Kal7(KO) mice exhibit increased administration of cocaine at lower doses as compared with wild-type (Wt) mice. Analyses of mRNA transcript levels from the NAc of mice that self-administered saline or cocaine reveal that larger splice variants of the Kalrn gene are increased by cocaine more dramatically in Kal7(KO) mice than in Wt mice. Additionally, transcripts encoding the NR2B subunit of the NMDA receptor increased in Wt mice that self-administered cocaine but were unchanged in similarly experienced Kal7(KO) mice. These findings suggest that Kal7 participates in the reinforcing effects of cocaine, and that Kal7 and cocaine interact to alter the expression of genes related to critical glutamatergic signaling pathways in the NAc.
Collapse
Affiliation(s)
- Drew D Kiraly
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut (D.D.K., T.P.L., B.A.E., R.E.M.); and Department of Psychology, Program in Behavioral Neuroscience (N.E.N., S.E.T., S.L.Y., M.F.O.) and Interdisciplinary Graduate Program in Neuroscience (M.F.O.), Arizona State University, Tempe, Arizona
| | | | | | | | | | | | | | | |
Collapse
|
30
|
RasGRF2 Rac-GEF activity couples NMDA receptor calcium flux to enhanced synaptic transmission. Proc Natl Acad Sci U S A 2013; 110:14462-7. [PMID: 23940355 DOI: 10.1073/pnas.1304340110] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Dendritic spines are the primary sites of excitatory synaptic transmission in the vertebrate brain, and the morphology of these actin-rich structures correlates with synaptic function. Here we demonstrate a unique method for inducing spine enlargement and synaptic potentiation in dispersed hippocampal neurons, and use this technique to identify a coordinator of these processes; Ras-specific guanine nucleotide releasing factor 2 (RasGRF2). RasGRF2 is a dual Ras/Rac guanine nucleotide exchange factor (GEF) that is known to be necessary for long-term potentiation in situ. Contrary to the prevailing assumption, we find RasGRF2's Rac-GEF activity to be essential for synaptic potentiation by using a molecular replacement strategy designed to dissociate Rac- from Ras-GEF activities. Furthermore, we demonstrate that Rac1 activity itself is sufficient to rapidly modulate postsynaptic strength by using a photoactivatable derivative of this small GTPase. Because Rac1 is a major actin regulator, our results support a model where the initial phase of long-term potentiation is driven by the cytoskeleton.
Collapse
|
31
|
Cho IH, Lee MJ, Kim DH, Kim B, Bae J, Choi KY, Kim SM, Huh YH, Lee KH, Kim CH, Song WK. SPIN90 dephosphorylation is required for cofilin-mediated actin depolymerization in NMDA-stimulated hippocampal neurons. Cell Mol Life Sci 2013; 70:4369-83. [PMID: 23765104 PMCID: PMC3825632 DOI: 10.1007/s00018-013-1391-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 05/11/2013] [Accepted: 05/29/2013] [Indexed: 11/30/2022]
Abstract
Actin plays a fundamental role in the regulation of spine morphology (both shrinkage and enlargement) upon synaptic activation. In particular, actin depolymerization is crucial for the spine shrinkage in NMDAR-mediated synaptic depression. Here, we define the role of SPIN90 phosphorylation/dephosphorylation in regulating actin depolymerization via modulation of cofilin activity. When neurons were treated with NMDA, SPIN90 was dephosphorylated by STEP61 (striatal-enriched protein tyrosine phosphatase) and translocated from the spines to the dendritic shafts. In addition, phosphorylated SPIN90 bound cofilin and then inhibited cofilin activity, suggesting that SPIN90 dephosphorylation is a prerequisite step for releasing cofilin so that cofilin can adequately sever actin filaments into monomeric form. We found that SPIN90 YE, a phosphomimetic mutant, remained in the spines after NMDAR activation where it bound cofilin, thereby effectively preventing actin depolymerization. This led to inhibition of the activity-dependent redistribution of cortactin and drebrin A, as well as of the morphological changes in the spines that underlie synaptic plasticity. These findings indicate that NMDA-induced SPIN90 dephosphorylation and translocation initiates cofilin-mediated actin dynamics and spine shrinkage within dendritic spines, thereby modulating synaptic activity.
Collapse
Affiliation(s)
- In Ha Cho
- Bio Imaging and Cell Dynamics Research Center, Gwangju Institute of Science and Technology, 261 Cheomdan-gwagiro, Buk-Gu, Gwangju, 500-712, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Spinal serum-inducible and glucocorticoid-inducible kinase 1 mediates neuropathic pain via kalirin and downstream PSD-95-dependent NR2B phosphorylation in rats. J Neurosci 2013; 33:5227-40. [PMID: 23516288 DOI: 10.1523/jneurosci.4452-12.2013] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The coupling of the spinal postsynaptic density-95 (PSD-95) with the glutamatergic N-methyl-d-aspartate receptor NR2B subunit and the subsequent NR2B phosphorylation contribute to pain-related plasticity. Increasing evidence reveals that kalirin, a Rho-guanine nucleotide exchange factor, modulates PSD-95-NR2B-dependent neuroplasticity. Our laboratory recently demonstrated that serum-inducible and glucocorticoid-inducible kinase 1 (SGK1) participates in inflammation-associated pain hypersensitivity by modulating spinal glutamatergic neurotransmission. Because kalirin is one of the proteins in PSD that is highly phosphorylated by various kinases, we tested whether kalirin could be a downstream target of spinal SGK1 that participates in neuropathic pain development via regulation of the PSD-95-NR2B coupling-dependent phosphorylation of NR2B. We observed that spinal nerve ligation (SNL, L5) in male Sprague Dawley rats resulted in behavioral allodynia, which was associated with phosphorylated SGK1 (pSGK1), kalirin, and phosphorylated NR2B (pNR2B) expression and an increase in pSGK1-kalirin-PSD-95-pNR2B coprecipitation in the ipsilateral dorsal horn (L4-L5). SNL-enhanced kalirin immunofluorescence was coincident with pSGK1, PSD-95, and pNR2B immunoreactivity. Small-interfering RNA (siRNA) that targeted spinal kalirin mRNA expression (10 μg, 10 μl; i.t.) reduced SNL-induced allodynia, kalirin and pNR2B expression, as well as kalirin-PSD-95 and PSD-95-pNR2B coupling and costaining without affecting SGK1 phosphorylation. Daily administration of GSK-650394 (an SGK1 antagonist; 100 nm, 10 μl, i.t.) not only exhibited effects similar to the kalirin mRNA-targeting siRNA but also attenuated pSGK1-kalirin costaining and SGK1-kalirin coupling. We suggest that nerve injury could induce spinal SGK1 phosphorylation that subsequently interacts with and upregulates kalirin to participate in neuropathic pain development via PSD-95-NR2B coupling-dependent NR2B phosphorylation.
Collapse
|
33
|
Gao C, Tronson NC, Radulovic J. Modulation of behavior by scaffolding proteins of the post-synaptic density. Neurobiol Learn Mem 2013; 105:3-12. [PMID: 23701866 DOI: 10.1016/j.nlm.2013.04.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 04/05/2013] [Accepted: 04/09/2013] [Indexed: 12/23/2022]
Abstract
Scaffolding proteins of the neuronal post-synaptic density (PSD) are principal organizers of glutamatergic neurotransmission that bring together glutamate receptors and signaling molecules at discrete synaptic locations. Genetic alterations of individual PSD scaffolds therefore disrupt the function of entire multiprotein modules rather than a single glutamatergic mechanism, and thus induce a range of molecular and structural abnormalities in affected neurons. Despite such broad molecular consequences, knockout, knockdown, or knockin of glutamate receptor scaffolds typically affect a subset of specific behaviors and thereby mold and specialize the actions of the ubiquitous glutamatergic neurotransmitter system. Approaches designed to control the function of neuronal scaffolds may therefore have high potential to restore behavioral morbidities and comorbidities in patients with psychiatric disorders. Here we summarize a series of experiments with genetically modified mice revealing the roles of main N-methyl-d-aspartate (NMDA) and group I metabotropic glutamate (mGluR1/5) receptor scaffolds in behavior, discuss the clinical implications of the findings, and propose future research directions.
Collapse
Affiliation(s)
- Can Gao
- Jiangsu Key Laboratory of Anesthesiology, Xuzhou Medical College, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China.
| | | | | |
Collapse
|
34
|
Miller MB, Yan Y, Eipper BA, Mains RE. Neuronal Rho GEFs in synaptic physiology and behavior. Neuroscientist 2013; 19:255-73. [PMID: 23401188 DOI: 10.1177/1073858413475486] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the mammalian brain, the majority of excitatory synapses are housed in micron-sized dendritic protrusions called spines, which can undergo rapid changes in shape and number in response to increased or decreased synaptic activity. These dynamic alterations in dendritic spines require precise control of the actin cytoskeleton. Within spines, multidomain Rho guanine nucleotide exchange factors (Rho GEFs) coordinate activation of their target Rho GTPases by a variety of pathways. In this review, we focus on the handful of disease-related Rho GEFs (Kalirin; Trio; Tiam1; P-Rex1,2; RasGRF1,2; Collybistin) localized at synapses and known to affect electrophysiology, spine morphology, and animal behavior. The goal is to integrate structure/function studies with measurements of synaptic function and behavioral phenotypes in animal models.
Collapse
Affiliation(s)
- Megan B Miller
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT 06030-3401, USA
| | | | | | | |
Collapse
|
35
|
Mandela P, Yankova M, Conti LH, Ma XM, Grady J, Eipper BA, Mains RE. Kalrn plays key roles within and outside of the nervous system. BMC Neurosci 2012; 13:136. [PMID: 23116210 PMCID: PMC3541206 DOI: 10.1186/1471-2202-13-136] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 10/22/2012] [Indexed: 11/23/2022] Open
Abstract
Background The human KALRN gene, which encodes a complex, multifunctional Rho GDP/GTP exchange factor, has been linked to cardiovascular disease, psychiatric disorders and neurodegeneration. Examination of existing Kalrn knockout mouse models has focused only on neuronal phenotypes. However, Kalirin was first identified through its interaction with an enzyme involved in the synthesis and secretion of multiple bioactive peptides, and studies in C.elegans revealed roles for its orthologue in neurosecretion. Results We used a broad array of tests to evaluate the effects of ablating a single exon in the spectrin repeat region of Kalrn (KalSRKO/KO); transcripts encoding Kalrn isoforms containing only the second GEF domain can still be produced from the single remaining functional Kalrn promoter. As expected, KalSRKO/KO mice showed a decrease in anxiety-like behavior and a passive avoidance deficit. No changes were observed in prepulse inhibition of acoustic startle or tests of depression-like behavior. Growth rate, parturition and pituitary secretion of growth hormone and prolactin were deficient in the KalSRKO/KO mice. Based on the fact that a subset of Kalrn isoforms is expressed in mouse skeletal muscle and the observation that muscle function in C.elegans requires its Kalrn orthologue, KalSRKO/KO mice were evaluated in the rotarod and wire hang tests. KalSRKO/KO mice showed a profound decrease in neuromuscular function, with deficits apparent in KalSR+/KO mice; these deficits were not as marked when loss of Kalrn expression was restricted to the nervous system. Pre- and postsynaptic deficits in the neuromuscular junction were observed, along with alterations in sarcomere length. Conclusions Many of the widespread and diverse deficits observed both within and outside of the nervous system when expression of Kalrn is eliminated may reflect its role in secretory granule function and its expression outside of the nervous system.
Collapse
Affiliation(s)
- Prashant Mandela
- Department of Neuroscience, University of Connecticut Health Science Center, Farmington, CT 06030-3401, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Scaffolding proteins of the post-synaptic density contribute to synaptic plasticity by regulating receptor localization and distribution: relevance for neuropsychiatric diseases. Neurochem Res 2012; 38:1-22. [PMID: 22991141 DOI: 10.1007/s11064-012-0886-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 08/16/2012] [Accepted: 09/10/2012] [Indexed: 10/27/2022]
Abstract
Synaptic plasticity represents the long lasting activity-related strengthening or weakening of synaptic transmission, whose well-characterized types are the long term potentiation and depression. Despite this classical definition, however, the molecular mechanisms by which synaptic plasticity may occur appear to be extremely complex and various. The post-synaptic density (PSD) of glutamatergic synapses is a major site for synaptic plasticity processes and alterations of PSD members have been recently implicated in neuropsychiatric diseases where an impairment of synaptic plasticity has also been reported. Among PSD members, scaffolding proteins have been demonstrated to bridge surface receptors with their intracellular effectors and to regulate receptors distribution and localization both at surface membranes and within the PSD. This review will focus on the molecular physiology and pathophysiology of synaptic plasticity processes, which are tuned by scaffolding PSD proteins and their close related partners, through the modulation of receptor localization and distribution at post-synaptic sites. We suggest that, by regulating both the compartmentalization of receptors along surface membrane and their degradation as well as by modulating receptor trafficking into the PSD, postsynaptic scaffolding proteins may contribute to form distinct signaling micro-domains, whose efficacy in transmitting synaptic signals depends on the dynamic stability of the scaffold, which in turn is provided by relative amounts and post-translational modifications of scaffolding members. The putative relevance for neuropsychiatric diseases and possible pathophysiological mechanisms are discussed in the last part of this work.
Collapse
|
37
|
Ma XM, Huang JP, Xin X, Yan Y, Mains RE, Eipper BA. A role for kalirin in the response of rat medium spiny neurons to cocaine. Mol Pharmacol 2012; 82:738-45. [PMID: 22828798 DOI: 10.1124/mol.112.080044] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Kalirin-7 (Kal7), the major kalirin isoform in adult brain, plays a key role in the formation of dendritic spines in hippocampal/cortical neurons. Its role in the GABAergic medium spiny neurons (MSNs) of the nucleus accumbens (NAc) and striatum, the areas known to play a key role in the common reward pathway, is not as well understood. Although Kal7 expression in mouse NAc increased in response to cocaine, MSN dendritic spine density did not differ from that for the wild type in Kal7-null mice. Unlike wild-type mice, Kal7-null mice did not respond to cocaine with an increase in MSN dendritic spine density. To explore further the role of Kal7 in cocaine-induced alterations in MSN morphology, we turned to the rat. Based on immunostaining, both Kal7 and Kal12 are expressed at moderate levels in the MSNs of the NAc and striatum. Expression of Kal7 and Kal12 in MSNs of both areas increases after repeated cocaine treatments. Overexpression of Kal7 in cultured MSN neurons increases dendritic spine density, as observed in rats after long-term cocaine administration. Reducing endogenous expression of all major kalirin isoforms in cultured MSN neurons causes a decrease in total dendritic length and dendritic spine density. These data suggest that kalirin is essential for maintaining spine density in NAc MSNs under normal conditions and that Kal7 is an obligatory intermediate in the response of MSNs to repeated exposure to cocaine.
Collapse
Affiliation(s)
- Xin-Ming Ma
- Department of Neuroscience, University of Connecticut Health Center, 263 Farmington Ave., MC-3401, Farmington, CT, USA.
| | | | | | | | | | | |
Collapse
|