1
|
Kalkan AE, BinMowyna MN, Raposo A, Ahmad MF, Ahmed F, Otayf AY, Carrascosa C, Saraiva A, Karav S. Beyond the Gut: Unveiling Butyrate's Global Health Impact Through Gut Health and Dysbiosis-Related Conditions: A Narrative Review. Nutrients 2025; 17:1305. [PMID: 40284169 PMCID: PMC12029953 DOI: 10.3390/nu17081305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 04/03/2025] [Accepted: 04/07/2025] [Indexed: 04/29/2025] Open
Abstract
Short-chain fatty acids (SCFAs), mainly produced by gut microbiota through the fermentation process of dietary fibers and proteins, are crucial to human health, with butyrate, a famous four-carbon SCFA, standing out for its inevitably regulatory impact on both gut and immune functions. Within this narrative review, the vital physiological functions of SCFAs were examined, with emphasis on butyrate's role as an energy source for colonocytes and its ability to enhance the gut barrier while exhibiting anti-inflammatory effects. Knowledge of butyrate synthesis, primarily generated by Firmicutes bacteria, can be influenced by diets with specifically high contents of resistant starches and fiber. Butyrate can inhibit histone deacetylase, modulate gene expression, influence immune functionality, and regulate tight junction integrity, supporting the idea of its role in gut barrier preservation. Butyrate possesses systemic anti-inflammatory properties, particularly, its capacity to reduce pro-inflammatory cytokines and maintain immune homeostasis, highlighting its therapeutic potential in managing dysbiosis and inflammatory diseases. Although butyrate absorption into circulation is typically minimal, its broader health implications are substantial, especially regarding obesity and type 2 diabetes through its influence on metabolic regulation and inflammation. Furthermore, this narrative review thoroughly examines butyrate's growing recognition as a modulator of neurological health via its interaction with the gut-brain axis. Additionally, butyrate's neuroprotective effects are mediated through activation of specific G-protein-coupled receptors, such as FFAR3 and GPR109a, and inhibition of histone deacetylases (HDACs). Research indicates that butyrate can alleviate neurological disorders, including Alzheimer's, Parkinson's, autism spectrum disorder, and Huntington's disease, by reducing neuroinflammation, enhancing neurotransmitter modulation, and improving histone acetylation. This focus will help unlock its full therapeutic potential for metabolic and neurological health, rather than exclusively on its well-known benefits for gut health, as these are often interconnected.
Collapse
Affiliation(s)
- Arda Erkan Kalkan
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Turkey;
| | - Mona N. BinMowyna
- College of Education, Shaqra University, Shaqra 11911, Saudi Arabia;
| | - António Raposo
- CBIOS (Research Center for Biosciences and Health Technologies), Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Md Faruque Ahmad
- Department of Clinical Nutrition, College of Nursing and Health Sciences, Jazan University, Jazan 45142, Saudi Arabia; (M.F.A.); (A.Y.O.)
| | - Faiyaz Ahmed
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, P.O. Box 6666, Buraydah 51452, Saudi Arabia;
| | - Abdullah Y. Otayf
- Department of Clinical Nutrition, College of Nursing and Health Sciences, Jazan University, Jazan 45142, Saudi Arabia; (M.F.A.); (A.Y.O.)
| | - Conrado Carrascosa
- Department of Animal Pathology and Production, Bromatology and Food Technology, Faculty of Veterinary, Universidad de Las Palmas de Gran Canaria, Trasmontaña s/n, 35413 Arucas, Spain;
| | - Ariana Saraiva
- Research in Veterinary Medicine (I-MVET), Faculty of Veterinary Medicine, Lisbon University Centre, Lusófona University, Campo Grande 376, 1749-024 Lisboa, Portugal;
- Veterinary and Animal Research Centre (CECAV), Faculty of Veterinary Medicine, Lisbon University Centre, Lusófona University, Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Turkey;
| |
Collapse
|
2
|
Khedpande N, Barve K. Role of gut dysbiosis in drug-resistant epilepsy: Pathogenesis and available therapeutic strategies. Brain Res 2025; 1850:149385. [PMID: 39643107 DOI: 10.1016/j.brainres.2024.149385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
Over 70 million people worldwide suffer from epilepsy, a persistent brain disorder. Although there are more than 20 antiseizure drugs available for the symptomatic treatment of epilepsy, about one-third of patients with epilepsy experience seizures that show resistance to pharmacotherapy. Since patients with drug-resistant epilepsy are more prone to physical injuries, psychosocial dysfunction, early death, and deteriorated life quality, the development of safer and more effective treatments is a crucial clinical need. The gut-brain axis and microbiome research advances have provided new insights into the pathophysiology of epilepsy, the resistance to anti-seizure medicine, and potential treatment targets. Inflammation, disturbance of the blood-brain barrier, and altered neurotransmitters are key pathways linked to gut dysbiosis. The characterization of microbial species and functional pathways has advanced thanks to metagenomic sequencing and high-throughput analysis. In this review, we elaborate on the gut-mediated molecular pathways involved in drug-resistant epilepsy, the gut- modulatory therapeutic options, and their combination with antiseizure medications for drug-resistant epilepsy.
Collapse
Affiliation(s)
- Nidhi Khedpande
- Department of Pharmacology, Shobhabne Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS) Deemed-to-University, Mumbai 400056, India
| | - Kalyani Barve
- Department of Pharmacology, Shobhabne Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS) Deemed-to-University, Mumbai 400056, India.
| |
Collapse
|
3
|
Jiang D, Li T, Guo C, Tang TS, Liu H. Small molecule modulators of chromatin remodeling: from neurodevelopment to neurodegeneration. Cell Biosci 2023; 13:10. [PMID: 36647159 PMCID: PMC9841685 DOI: 10.1186/s13578-023-00953-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 01/03/2023] [Indexed: 01/18/2023] Open
Abstract
The dynamic changes in chromatin conformation alter the organization and structure of the genome and further regulate gene transcription. Basically, the chromatin structure is controlled by reversible, enzyme-catalyzed covalent modifications to chromatin components and by noncovalent ATP-dependent modifications via chromatin remodeling complexes, including switch/sucrose nonfermentable (SWI/SNF), inositol-requiring 80 (INO80), imitation switch (ISWI) and chromodomain-helicase DNA-binding protein (CHD) complexes. Recent studies have shown that chromatin remodeling is essential in different stages of postnatal and adult neurogenesis. Chromatin deregulation, which leads to defects in epigenetic gene regulation and further pathological gene expression programs, often causes a wide range of pathologies. This review first gives an overview of the regulatory mechanisms of chromatin remodeling. We then focus mainly on discussing the physiological functions of chromatin remodeling, particularly histone and DNA modifications and the four classes of ATP-dependent chromatin-remodeling enzymes, in the central and peripheral nervous systems under healthy and pathological conditions, that is, in neurodegenerative disorders. Finally, we provide an update on the development of potent and selective small molecule modulators targeting various chromatin-modifying proteins commonly associated with neurodegenerative diseases and their potential clinical applications.
Collapse
Affiliation(s)
- Dongfang Jiang
- grid.458458.00000 0004 1792 6416State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China ,grid.410726.60000 0004 1797 8419Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, 100101 China
| | - Tingting Li
- grid.458458.00000 0004 1792 6416State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China ,grid.410726.60000 0004 1797 8419Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, 100101 China
| | - Caixia Guo
- grid.9227.e0000000119573309Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, 100101 China ,grid.410726.60000 0004 1797 8419Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, 100101 China
| | - Tie-Shan Tang
- grid.458458.00000 0004 1792 6416State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China ,grid.512959.3Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101 China ,grid.410726.60000 0004 1797 8419Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, 100101 China
| | - Hongmei Liu
- grid.458458.00000 0004 1792 6416State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China ,grid.512959.3Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101 China
| |
Collapse
|
4
|
Pouikli A, Tessarz P. Epigenetic alterations in stem cell ageing-a promising target for age-reversing interventions? Brief Funct Genomics 2022; 21:35-42. [PMID: 33738480 PMCID: PMC8789308 DOI: 10.1093/bfgp/elab010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Ageing is accompanied by loss of tissue integrity and organismal homeostasis partly due to decline in stem cell function. The age-associated decrease in stem cell abundance and activity is often referred to as stem cell exhaustion and is considered one major hallmark of ageing. Importantly, stem cell proliferation and differentiation potential are tightly coupled to the cellular epigenetic state. Thus, research during the last years has started to investigate how the epigenome regulates stem cell function upon ageing. Here, we summarize the role of epigenetic regulation in stem cell fate decisions and we review the impact of age-related changes of the epigenome on stem cell activity. Finally, we discuss how targeted interventions on the epigenetic landscape might delay ageing and extend health-span.
Collapse
Affiliation(s)
| | - Peter Tessarz
- Corresponding author: Peter Tessarz, Max Planck Research Group ``Chromatin and Ageing'', Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, 50931 Cologne, Germany. Tel: +4922137970680; Fax: +492213797088680; E-mail:
| |
Collapse
|
5
|
Poeta E, Petralla S, Babini G, Renzi B, Celauro L, Magnifico MC, Barile SN, Masotti M, De Chirico F, Massenzio F, Viggiano L, Palmieri L, Virgili M, Lasorsa FM, Monti B. Histone Acetylation Defects in Brain Precursor Cells: A Potential Pathogenic Mechanism Causing Proliferation and Differentiation Dysfunctions in Mitochondrial Aspartate-Glutamate Carrier Isoform 1 Deficiency. Front Cell Neurosci 2022; 15:773709. [PMID: 35095421 PMCID: PMC8790092 DOI: 10.3389/fncel.2021.773709] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/29/2021] [Indexed: 11/13/2022] Open
Abstract
Mitochondrial aspartate-glutamate carrier isoform 1 (AGC1) deficiency is an ultra-rare genetic disease characterized by global hypomyelination and brain atrophy, caused by mutations in the SLC25A12 gene leading to a reduction in AGC1 activity. In both neuronal precursor cells and oligodendrocytes precursor cells (NPCs and OPCs), the AGC1 determines reduced proliferation with an accelerated differentiation of OPCs, both associated with gene expression dysregulation. Epigenetic regulation of gene expression through histone acetylation plays a crucial role in the proliferation/differentiation of both NPCs and OPCs and is modulated by mitochondrial metabolism. In AGC1 deficiency models, both OPCs and NPCs show an altered expression of transcription factors involved in the proliferation/differentiation of brain precursor cells (BPCs) as well as a reduction in histone acetylation with a parallel alteration in the expression and activity of histone acetyltransferases (HATs) and histone deacetylases (HDACs). In this study, histone acetylation dysfunctions have been dissected in in vitro models of AGC1 deficiency OPCs (Oli-Neu cells) and NPCs (neurospheres), in physiological conditions and following pharmacological treatments. The inhibition of HATs by curcumin arrests the proliferation of OPCs leading to their differentiation, while the inhibition of HDACs by suberanilohydroxamic acid (SAHA) has only a limited effect on proliferation, but it significantly stimulates the differentiation of OPCs. In NPCs, both treatments determine an alteration in the commitment toward glial cells. These data contribute to clarifying the molecular and epigenetic mechanisms regulating the proliferation/differentiation of OPCs and NPCs. This will help to identify potential targets for new therapeutic approaches that are able to increase the OPCs pool and to sustain their differentiation toward oligodendrocytes and to myelination/remyelination processes in AGC1 deficiency, as well as in other white matter neuropathologies.
Collapse
Affiliation(s)
- Eleonora Poeta
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Sabrina Petralla
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Giorgia Babini
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Brunaldo Renzi
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Luigi Celauro
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Maria Chiara Magnifico
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | - Simona Nicole Barile
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Bari, Italy
| | - Martina Masotti
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | | | - Francesca Massenzio
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Luigi Viggiano
- Department of Biology, University of Bari Aldo Moro, Bari, Italy
| | - Luigi Palmieri
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy,CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Bari, Italy
| | - Marco Virgili
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Francesco Massimo Lasorsa
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy,CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Bari, Italy,*Correspondence: Francesco Massimo Lasorsa,
| | - Barbara Monti
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy,Barbara Monti,
| |
Collapse
|
6
|
Fauser M, Loewenbrück KF, Rangnick J, Brandt MD, Hermann A, Storch A. Adult Neural Stem Cells from Midbrain Periventricular Regions Show Limited Neurogenic Potential after Transplantation into the Hippocampal Neurogenic Niche. Cells 2021; 10:3021. [PMID: 34831242 PMCID: PMC8616334 DOI: 10.3390/cells10113021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 10/29/2021] [Indexed: 11/20/2022] Open
Abstract
The regulation of adult neural stem or progenitor cell (aNSC) proliferation and differentiation as an interplay of cell-intrinsic and local environmental cues remains in part unclear, impeding their role in putative regenerative therapies. aNSCs with all major properties of NSCs in vitro have been identified in a variety of brain regions beyond the classic neurogenic niches, including the caudal periventricular regions (PVRs) of the midbrain, though active neurogenesis is either limited or merely absent in these regions. To elucidate cell-intrinsic properties of aNSCs from various PVRs, we here examined the proliferation and early differentiation capacity of murine aNSCs from non-neurogenic midbrain PVRs (PVRMB) compared to aNSCs from the neurogenic ventricular-subventricular zone (PVRV-SVZ) 7 days after transplantation into the permissive pro-neurogenic niche of the dentate gyrus (DG) of the hippocampus in mice. An initial in vitro characterization of the transplants displayed very similar characteristics of both aNSC grafts after in vitro expansion with equal capacities of terminal differentiation into astrocytes and Tuj1+ neurons. Upon the allogenic transplantation of the respective aNSCs into the DG, PVRMB grafts showed a significantly lower graft survival and proliferative capacity compared to PVRV-SVZ transplants, whereby the latter are exclusively capable of generating new neurons. Although these differences might be-in part-related to the transplantation procedure and the short-term study design, our data strongly imply important cell-intrinsic differences between aNSCs from neurogenic compared to non-neurogenic PVRs with respect to their neurogenic potential and/or their sensitivity to neurogenic cues.
Collapse
Affiliation(s)
- Mareike Fauser
- Department of Neurology, University of Rostock, Gehlsheimer Straße 20, 18147 Rostock, Germany;
- Division of Neurodegenerative Diseases, Department of Neurology, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany; (K.F.L.); (J.R.); (M.D.B.); (A.H.)
| | - Kai F Loewenbrück
- Division of Neurodegenerative Diseases, Department of Neurology, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany; (K.F.L.); (J.R.); (M.D.B.); (A.H.)
- German Center for Neurodegenerative Diseases (DZNE), Tatzberg 41, 01307 Dresden, Germany
| | - Johannes Rangnick
- Division of Neurodegenerative Diseases, Department of Neurology, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany; (K.F.L.); (J.R.); (M.D.B.); (A.H.)
| | - Moritz D Brandt
- Division of Neurodegenerative Diseases, Department of Neurology, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany; (K.F.L.); (J.R.); (M.D.B.); (A.H.)
- German Center for Neurodegenerative Diseases (DZNE), Tatzberg 41, 01307 Dresden, Germany
| | - Andreas Hermann
- Division of Neurodegenerative Diseases, Department of Neurology, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany; (K.F.L.); (J.R.); (M.D.B.); (A.H.)
- Translational Neurodegeneration Section, “Albrecht-Kossel”, Department of Neurology, University of Rostock, Gehlsheimer Straße 20, 18147 Rostock, Germany
- German Centre for Neurodegenerative Diseases (DZNE) Rostock-Greifswald, Gehlsheimer Straße 20, 18147 Rostock, Germany
| | - Alexander Storch
- Department of Neurology, University of Rostock, Gehlsheimer Straße 20, 18147 Rostock, Germany;
- German Centre for Neurodegenerative Diseases (DZNE) Rostock-Greifswald, Gehlsheimer Straße 20, 18147 Rostock, Germany
| |
Collapse
|
7
|
Thomas SP, Denu JM. Short-chain fatty acids activate acetyltransferase p300. eLife 2021; 10:72171. [PMID: 34677127 PMCID: PMC8585482 DOI: 10.7554/elife.72171] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/19/2021] [Indexed: 02/06/2023] Open
Abstract
Short-chain fatty acids (SCFAs) acetate, propionate, and butyrate are produced in large quantities by the gut microbiome and contribute to a wide array of physiological processes. While the underlying mechanisms are largely unknown, many effects of SCFAs have been traced to changes in the cell's epigenetic state. Here, we systematically investigate how SCFAs alter the epigenome. Using quantitative proteomics of histone modification states, we identified rapid and sustained increases in histone acetylation after the addition of butyrate or propionate, but not acetate. While decades of prior observations would suggest that hyperacetylation induced by SCFAs are due to inhibition of histone deacetylases (HDACs), we found that propionate and butyrate instead activate the acetyltransferase p300. Propionate and butyrate are rapidly converted to the corresponding acyl-CoAs which are then used by p300 to catalyze auto-acylation of the autoinhibitory loop, activating the enzyme for histone/protein acetylation. This data challenges the long-held belief that SCFAs mainly regulate chromatin by inhibiting HDACs, and instead reveals a previously unknown mechanism of HAT activation that can explain how an influx of low levels of SCFAs alters global chromatin states.
Collapse
Affiliation(s)
- Sydney P Thomas
- Wisconsin Institute for Discovery, Madison, United States.,Department of Biomolecular Chemistry, University of Wisconsin - Madison, Madison, United States
| | - John M Denu
- Wisconsin Institute for Discovery, Madison, United States.,Department of Biomolecular Chemistry, University of Wisconsin - Madison, Madison, United States.,Morgridge Institute for Research, Madison, United States
| |
Collapse
|
8
|
Alves ALV, Gomes INF, Carloni AC, Rosa MN, da Silva LS, Evangelista AF, Reis RM, Silva VAO. Role of glioblastoma stem cells in cancer therapeutic resistance: a perspective on antineoplastic agents from natural sources and chemical derivatives. Stem Cell Res Ther 2021; 12:206. [PMID: 33762015 PMCID: PMC7992331 DOI: 10.1186/s13287-021-02231-x] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 02/15/2021] [Indexed: 12/21/2022] Open
Abstract
Glioblastoma (GBM) is the highest-grade form of glioma, as well as one of the most aggressive types of cancer, exhibiting rapid cellular growth and highly invasive behavior. Despite significant advances in diagnosis and therapy in recent decades, the outcomes for high-grade gliomas (WHO grades III-IV) remain unfavorable, with a median overall survival time of 15–18 months. The concept of cancer stem cells (CSCs) has emerged and provided new insight into GBM resistance and management. CSCs can self-renew and initiate tumor growth and are also responsible for tumor cell heterogeneity and the induction of systemic immunosuppression. The idea that GBM resistance could be dependent on innate differences in the sensitivity of clonogenic glial stem cells (GSCs) to chemotherapeutic drugs/radiation prompted the scientific community to rethink the understanding of GBM growth and therapies directed at eliminating these cells or modulating their stemness. This review aims to describe major intrinsic and extrinsic mechanisms that mediate chemoradioresistant GSCs and therapies based on antineoplastic agents from natural sources, derivatives, and synthetics used alone or in synergistic combination with conventional treatment. We will also address ongoing clinical trials focused on these promising targets. Although the development of effective therapy for GBM remains a major challenge in molecular oncology, GSC knowledge can offer new directions for a promising future.
Collapse
Affiliation(s)
- Ana Laura V Alves
- Molecular Oncology Research Center, Barretos Cancer Hospital, Rua Antenor Duarte Villela, 1331, CEP 14784 400, Barretos, São Paulo, Brazil
| | - Izabela N F Gomes
- Molecular Oncology Research Center, Barretos Cancer Hospital, Rua Antenor Duarte Villela, 1331, CEP 14784 400, Barretos, São Paulo, Brazil
| | - Adriana C Carloni
- Molecular Oncology Research Center, Barretos Cancer Hospital, Rua Antenor Duarte Villela, 1331, CEP 14784 400, Barretos, São Paulo, Brazil
| | - Marcela N Rosa
- Molecular Oncology Research Center, Barretos Cancer Hospital, Rua Antenor Duarte Villela, 1331, CEP 14784 400, Barretos, São Paulo, Brazil
| | - Luciane S da Silva
- Molecular Oncology Research Center, Barretos Cancer Hospital, Rua Antenor Duarte Villela, 1331, CEP 14784 400, Barretos, São Paulo, Brazil
| | - Adriane F Evangelista
- Molecular Oncology Research Center, Barretos Cancer Hospital, Rua Antenor Duarte Villela, 1331, CEP 14784 400, Barretos, São Paulo, Brazil
| | - Rui Manuel Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, Rua Antenor Duarte Villela, 1331, CEP 14784 400, Barretos, São Paulo, Brazil.,Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal.,ICVS/3B's PT Government Associate Laboratory, 4806-909, Braga, Portugal
| | - Viviane Aline O Silva
- Molecular Oncology Research Center, Barretos Cancer Hospital, Rua Antenor Duarte Villela, 1331, CEP 14784 400, Barretos, São Paulo, Brazil.
| |
Collapse
|
9
|
Chiou HY, Bai CH, Lien LM, Hu CJ, Jeng JS, Tang SC, Lin HJ, Hsieh YC. Interactive Effects of a Combination of the HDAC3 and HDAC9 Genes with Diabetes Mellitus on the Risk of Ischemic Stroke. Thromb Haemost 2020; 121:396-404. [PMID: 32961570 DOI: 10.1055/s-0040-1717116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND AND AIM Previous studies indicated that the HDAC3 and HDAC9 genes play critical roles in atherosclerosis and ischemic stroke (IS). The purpose of this study was to investigate the association of combined single-nucleotide polymorphisms in the HDAC3 and HDAC9 genes with the susceptibility to IS. METHODS A case-control study was conducted including 863 IS patients and 863 age- and gender-matched healthy participants. A polygenic score was developed to estimate the contribution of a combination of the HDAC3 and HDAC9 genes to the risk of IS. The interactive effects of traditional risk factors of stroke and the polygenic score on the risk of IS were explored. Additionally, the association between the polygenic score and the progression of atherosclerosis, a potential risk factor of IS, was examined in our healthy controls. RESULTS Subjects with a higher polygenic score had an increased risk of IS (odds ratio: 1.83; 95% confidence interval: 1.38-2.43) after adjusting for covariates compared with individuals with a lower polygenic score. An interactive effect of diabetes mellitus and the polygenic score on the risk of IS was observed. A significant positive correlation between the polygenic score and a change in the plaque score (standardized β = 0.42, p = 0.0235) in healthy controls with diabetes mellitus was found. CONCLUSION Our results suggested that the combination of the HDAC3 and HDAC9 genes with a history of diabetes mellitus could exacerbate the deterioration of atherosclerosis, thereby increasing the risk of IS. Further studies are warranted to explore our results in other populations.
Collapse
Affiliation(s)
- Hung-Yi Chiou
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan.,Master Program in Applied Molecular Epidemiology, College of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Chyi-Huey Bai
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Li-Ming Lien
- School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Neurology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Chaur-Jong Hu
- School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Stroke Center, Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Jiann-Shing Jeng
- Stroke Center and Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Sung-Chun Tang
- Stroke Center and Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Huey-Juan Lin
- Department of Emergency Medicine, Chi-Mei Medical Center, Tainan, Taiwan.,Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan, Taiwan
| | - Yi-Chen Hsieh
- Master Program in Applied Molecular Epidemiology, College of Public Health, Taipei Medical University, Taipei, Taiwan.,PhD Program of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,PhD Program in Biotechnology Research and Development, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
10
|
Satapathy S, Dabbs RA, Wilson MR. Rapid high-yield expression and purification of fully post-translationally modified recombinant clusterin and mutants. Sci Rep 2020; 10:14243. [PMID: 32859921 PMCID: PMC7455699 DOI: 10.1038/s41598-020-70990-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 07/30/2020] [Indexed: 11/17/2022] Open
Abstract
The first described and best known mammalian secreted chaperone, abundant in human blood, is clusterin. Recent independent studies are now exploring the potential use of clusterin as a therapeutic in a variety of disease contexts. In the past, the extensive post-translational processing of clusterin, coupled with its potent binding to essentially any misfolded protein, have meant that its expression as a fully functional recombinant protein has been very difficult. We report here the first rapid and high-yield system for the expression and purification of fully post-translationally modified and chaperone-active clusterin. Only 5–6 days is required from initial transfection to harvest of the protein-free culture medium containing the recombinant product. Purification to near-homogeneity can then be accomplished in a single affinity purification step and the yield for wild type human clusterin is of the order of 30–40 mg per litre of culture. We have also shown that this system can be used to quickly express and purify custom-designed clusterin mutants. These advances dramatically increase the feasibility of detailed structure–function analysis of the clusterin molecule and will facilitate identification of those specific regions responsible for the interactions of clusterin with receptors and other molecules.
Collapse
Affiliation(s)
- Sandeep Satapathy
- Illawarra Health and Medical Research Institute, School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, 2522, Australia.,Molecular Horizons Research Institute, University of Wollongong, Rm 313, Building 42 (Molecular Horizons), Northfields Avenue, Wollongong, NSW, 2522, Australia
| | - Rebecca A Dabbs
- Burnett Institute, 85 Commercial Road, Melbourne, VIC, 3004, Australia
| | - Mark R Wilson
- Illawarra Health and Medical Research Institute, School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, 2522, Australia. .,Molecular Horizons Research Institute, University of Wollongong, Rm 313, Building 42 (Molecular Horizons), Northfields Avenue, Wollongong, NSW, 2522, Australia.
| |
Collapse
|
11
|
Kido M, Idogaki H, Nishikawa K, Omasa T. Low-concentration staurosporine improves recombinant antibody productivity in Chinese hamster ovary cells without inducing cell death. J Biosci Bioeng 2020; 130:525-532. [PMID: 32800439 DOI: 10.1016/j.jbiosc.2020.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/23/2020] [Accepted: 07/09/2020] [Indexed: 12/12/2022]
Abstract
Chinese hamster ovary (CHO) cells are used as host cells for biopharmaceutical production, including monoclonal antibodies (mAbs). Arresting the cell cycle with chemical compounds is an effective approach to improve biopharmaceutical productivity. In a previous study, potential new cell cycle-arresting compounds were screened from marine-derived microorganism culture extracts, and it was suggested that staurosporine might improve mAb productivity in CHO cells via cell cycle arrest. The purpose of this study was to demonstrate the effectiveness of staurosporine as a cell-cycle arresting compound to improve mAb productivity. The optimal staurosporine concentration range was initially investigated using batch cultures. Thereafter, the effects on the culture profile and mAb productivity were evaluated using fed-batch cultures. Staurosporine at concentrations ≥10 nM induced cell death, but at concentrations ≤5 nM did not. In the range of 2-4 nM, cell growth was inhibited, whereas the specific production rate (Qp) and cell longevity were improved in a dose-dependent manner. The Qp and maximum mAb concentration with 4 nM staurosporine improved by 36.3 and 5.2%, respectively, compared to those with control conditions. Cell viability post-culture without staurosporine was 40.0 ± 0.3%, whereas with 4 nM staurosporine, it was 90.1 ± 1.0%. Flow cytometric analysis indicated cell-cycle arrest at the G1/G0 phase with 4 nM staurosporine addition. The present study highlighted the efficacy of staurosporine in improving mAb production by causing cell-cycle arrest. Further research into staurosporine analogs and how to use them will lead to development of more effective industrial production technologies of biopharmaceuticals.
Collapse
Affiliation(s)
- Masahide Kido
- Research and Development Division, OSAKA SODA Co., Ltd., Amagasaki, Hyogo 660-0842, Japan; Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Hideaki Idogaki
- Research and Development Division, OSAKA SODA Co., Ltd., Amagasaki, Hyogo 660-0842, Japan
| | - Kouji Nishikawa
- Research and Development Division, OSAKA SODA Co., Ltd., Amagasaki, Hyogo 660-0842, Japan
| | - Takeshi Omasa
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
12
|
Shukla S, Tekwani BL. Histone Deacetylases Inhibitors in Neurodegenerative Diseases, Neuroprotection and Neuronal Differentiation. Front Pharmacol 2020; 11:537. [PMID: 32390854 PMCID: PMC7194116 DOI: 10.3389/fphar.2020.00537] [Citation(s) in RCA: 184] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 04/06/2020] [Indexed: 12/13/2022] Open
Abstract
Histone deacetylases (HADC) are the enzymes that remove acetyl group from lysine residue of histones and non-histone proteins and regulate the process of transcription by binding to transcription factors and regulating fundamental cellular process such as cellular proliferation, differentiation and development. In neurodegenerative diseases, the histone acetylation homeostasis is greatly impaired, shifting towards a state of hypoacetylation. The histone hyperacetylation produced by direct inhibition of HDACs leads to neuroprotective actions. This review attempts to elaborate on role of small molecule inhibitors of HDACs on neuronal differentiation and throws light on the potential of HDAC inhibitors as therapeutic agents for treatment of neurodegenerative diseases. The role of HDACs in neuronal cellular and disease models and their modulation with HDAC inhibitors are also discussed. Significance of these HDAC inhibitors has been reviewed on the process of neuronal differentiation, neurite outgrowth and neuroprotection regarding their potential therapeutic application for treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Surabhi Shukla
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin University, Miami, FL, United States
| | - Babu L Tekwani
- Division of Drug Discovery, Department of Infectious Diseases, Southern Research, Birmingham, AL, United States
| |
Collapse
|
13
|
Reddy RG, Surineni G, Bhattacharya D, Marvadi SK, Sagar A, Kalle AM, Kumar A, Kantevari S, Chakravarty S. Crafting Carbazole-Based Vorinostat and Tubastatin-A-like Histone Deacetylase (HDAC) Inhibitors with Potent in Vitro and in Vivo Neuroactive Functions. ACS OMEGA 2019; 4:17279-17294. [PMID: 31656902 PMCID: PMC6811854 DOI: 10.1021/acsomega.9b01950] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/23/2019] [Indexed: 06/10/2023]
Abstract
Small-molecule inhibitors of HDACs (HDACi) induce hyperacetylation of histone and nonhistone proteins and have emerged as potential therapeutic agents in most animal models tested. The established HDACi vorinostat and tubastatin-A alleviate neurodegenerative and behavioral conditions in animal models of neuropsychiatric disorders restoring the neurotrophic milieu. In spite of the neuroactive pharmacological role of HDACi (vorinostat and tubastatin-A), they are limited by efficacy and toxicity. Considering these limitations and concern, we have designed novel compounds 3-11 as potential HDACi based on the strategic crafting of the key pharmacophoric elements of vorinostat and tubastatin-A into architecting a single molecule. The molecules 3-11 were synthesized through a multistep reaction sequence starting from carbazole and were fully characterized by NMR and mass spectral analysis. The novel molecules 3-11 showed remarkable pan HDAC inhibition and the potential to increase the levels of acetyl H3 and acetyl tubulin. In addition, few novel HDAC inhibitors 4-8, 10, and 11 exhibited significant neurite outgrowth-promoting activity with no observable cytotoxic effects, and interestingly, compound 5 has shown comparably more neurite growth than the parent compounds vorinostat and tubastatin-A. Also, compound 5 was evaluated for possible mood-elevating effects in a chronic unpredictable stress model of Zebrafish. It showed potent anxiolytic and antidepressant-like effects in the novel tank test and social interaction test, respectively. Furthermore, the potent in vitro and in vivo neuroactive compound 5 has shown selectivity for class II over class I HDACs. Our results suggest that the novel carbazole-based HDAC inhibitors, crafted with vorinostat and tubastatin-A pharmacophoric moieties, have potent neurite outgrowth activity and potential to be developed as therapeutics to treat depression and related psychiatric disorders.
Collapse
Affiliation(s)
- R. Gajendra Reddy
- Applied
Biology Division and Fluoro and Agrochemical Division, CSIR-Indian
Institute of Chemical Technology, Tarnaka, Uppal Road, Hyderabad 500007, Telangana, India
- Academy
of Scientific and Innovative Research (AcSIR), Chennai 600113, India
| | - Goverdhan Surineni
- Applied
Biology Division and Fluoro and Agrochemical Division, CSIR-Indian
Institute of Chemical Technology, Tarnaka, Uppal Road, Hyderabad 500007, Telangana, India
| | - Dwaipayan Bhattacharya
- Applied
Biology Division and Fluoro and Agrochemical Division, CSIR-Indian
Institute of Chemical Technology, Tarnaka, Uppal Road, Hyderabad 500007, Telangana, India
| | - Sandeep Kumar Marvadi
- Applied
Biology Division and Fluoro and Agrochemical Division, CSIR-Indian
Institute of Chemical Technology, Tarnaka, Uppal Road, Hyderabad 500007, Telangana, India
| | - Arpita Sagar
- Department
of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Arunasree M. Kalle
- Department
of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Arvind Kumar
- CSIR-Centre
for Cellular and Molecular Biology, Habsiguda, Uppal Road, Hyderabad 500007, Telangana, India
- Academy
of Scientific and Innovative Research (AcSIR), Chennai 600113, India
| | - Srinivas Kantevari
- Applied
Biology Division and Fluoro and Agrochemical Division, CSIR-Indian
Institute of Chemical Technology, Tarnaka, Uppal Road, Hyderabad 500007, Telangana, India
- Academy
of Scientific and Innovative Research (AcSIR), Chennai 600113, India
| | - Sumana Chakravarty
- Applied
Biology Division and Fluoro and Agrochemical Division, CSIR-Indian
Institute of Chemical Technology, Tarnaka, Uppal Road, Hyderabad 500007, Telangana, India
- Academy
of Scientific and Innovative Research (AcSIR), Chennai 600113, India
| |
Collapse
|
14
|
Gómez-Pinedo U, Duran-Moreno M, Sirerol-Piquer S, Matias-Guiu J. Myelin changes in Alexander disease. NEUROLOGÍA (ENGLISH EDITION) 2018. [DOI: 10.1016/j.nrleng.2017.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
15
|
Wu J, Jiang H, Yang X, Zheng H. ING5-mediated antineuroblastoma effects of suberoylanilide hydroxamic acid. Cancer Med 2018; 7:4554-4569. [PMID: 30091530 PMCID: PMC6144157 DOI: 10.1002/cam4.1634] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 06/03/2018] [Accepted: 06/04/2018] [Indexed: 12/21/2022] Open
Abstract
Neuroblastoma is the most common extracranial solid neuroendocrine cancer and is one of the leading causes of death in children. To improve clinical outcomes and prognosis, discovering new promising drugs and targeted medicine is essential. We found that applying Suberoylanilide hydroxamic acid (SAHA; Vorinostat, a histone deacetylase inhibitor) and MG132 (a proteasome inhibitor) to SH-SY5Y cells synergistically suppressed proliferation, glucose metabolism, migration, and invasion and induced apoptosis and cell cycle arrest. These effects occurred both concentration and time dependently and were associated with the effects observed with inhibitor of growth 5 (ING5) overexpression. SAHA and MG132 treatment increased the expression levels of ING5, PTEN, p53, Caspase-3, Bax, p21, and p27 but decreased the expression levels of 14-3-3, MMP-2, MMP-9, ADFP, Nanog, c-myc, CyclinD1, CyclinB1, and Cdc25c concentration dependently, similar to ING5. SAHA may downregulate miR-543 and miR-196-b expression to enhance the translation of ING5 protein, which promotes acetylation of histones H3 and H4. All three proteins (ING5 and acetylated histones H3 and H4) were recruited to the promoters of c-myc, Nanog, CyclinD1, p21, and p27 for complex formation, thereby regulating the mRNA expression of downstream genes. ING5 overexpression and SAHA and/or MG132 administration inhibited tumor growth in SH-SY5Y cells by suppressing proliferation and inducing apoptosis. The expression of acetylated histones H3 and ING5 may be closely linked to the tumor size of neuroblastomas. In summary, SAHA and/or MG132 can synergistically suppress the malignant phenotypes of neuroblastoma cells through the miRNA-ING5-histone acetylation axis and via proteasomal degradation, respectively. Therefore, the two drugs may serve as potential treatments for neuroblastoma.
Collapse
Affiliation(s)
- Ji‐cheng Wu
- Tumor Basic and Translational LaboratoryThe First Affiliated Hospital of Jinzhou Medical UniversityJinzhouChina
| | - Hua‐mao Jiang
- Tumor Basic and Translational LaboratoryThe First Affiliated Hospital of Jinzhou Medical UniversityJinzhouChina
| | - Xiang‐hong Yang
- Department of PathologyShengjing Hospital of China Medical UniversityShenyangChina
| | - Hua‐chuan Zheng
- Tumor Basic and Translational LaboratoryThe First Affiliated Hospital of Jinzhou Medical UniversityJinzhouChina
| |
Collapse
|
16
|
Yang XF, Zhao ZJ, Liu JJ, Yang XH, Gao Y, Zhao S, Shi S, Huang KQ, Zheng HC. SAHA and/or MG132 reverse the aggressive phenotypes of glioma cells: An in vitro and vivo study. Oncotarget 2018; 8:3156-3169. [PMID: 27911270 PMCID: PMC5356872 DOI: 10.18632/oncotarget.13680] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 11/15/2016] [Indexed: 11/30/2022] Open
Abstract
To elucidate the anti-tumor effects and molecular mechanisms of SAHA (a histone deacetylase inhibitor) and MG132 (a proteasome inhibitor) on the aggressive phenotypes of glioma cells, we treated U87 and U251 cells with SAHA or/and MG132, and detected phenotypes’ assays with phenotype-related molecules examined. It was found that SAHA or/and MG132 treatment suppressed proliferation in both concentration- and time-dependent manners, inhibited energy metabolism, migration, invasion and lamellipodia formation, and induced G2 arrest and apoptosis in the glioma cells. The treatment with SAHA increased the expression of acetyl-histones 3 and 4, which were recruited to the promoters of p21, p27, Cyclin D1, c-myc and Nanog to down-regulate their transcriptional levels. Expression of acetyl-histones 3 and 4 was higher in gliomas than normal brain tissues. Both drugs’ exposure suppressed tumor growth in nude mice by inducing apoptosis and inhibiting proliferation, but increased serum aminotransferase and creatinine. These results indicated that SAHA and/or MG132 may suppress the aggressive phenotypes of glioma cells. They might be employed to treat the glioma if both hepatic and renal injuries are prevented.
Collapse
Affiliation(s)
- Xue-Feng Yang
- Cancer Center, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, China
| | - Zhi-Juan Zhao
- Cancer Center, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, China
| | - Jia-Jie Liu
- Cancer Center, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, China
| | - Xiang-Hong Yang
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Yang Gao
- Cancer Center, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, China
| | - Shuang Zhao
- Cancer Center, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, China
| | - Shuai Shi
- Cancer Center, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, China
| | - Ke-Qiang Huang
- Department of Stomatology, The Second Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, China
| | - Hua-Chuan Zheng
- Cancer Center, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, China.,Life Science Institute of Jinzhou Medical University, Jinzhou 121001, China
| |
Collapse
|
17
|
Ho CFY, Bon CPE, Ng YK, Herr DR, Wu JS, Lin TN, Ong WY. Expression of DHA-Metabolizing Enzyme Alox15 is Regulated by Selective Histone Acetylation in Neuroblastoma Cells. Neurochem Res 2017; 43:540-555. [PMID: 29235036 PMCID: PMC5842265 DOI: 10.1007/s11064-017-2448-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 11/28/2017] [Accepted: 12/03/2017] [Indexed: 12/31/2022]
Abstract
The omega-3 polyunsaturated fatty acid, docosahexaenoic acid (DHA) is enriched in neural membranes of the CNS, and recent studies have shown a role of DHA metabolism by 15-lipoxygenase-1 (Alox15) in prefrontal cortex resolvin D1 formation, hippocampo-prefrontal cortical long-term-potentiation, spatial working memory, and anti-nociception/anxiety. In this study, we elucidated epigenetic regulation of Alox15 via histone modifications in neuron-like cells. Treatment of undifferentiated SH-SY5Y human neuroblastoma cells with the histone deacetylase (HDAC) inhibitors trichostatin A (TSA) and sodium butyrate significantly increased Alox15 mRNA expression. Moreover, Alox15 expression was markedly upregulated by Class I HDAC inhibitors, MS-275 and depsipeptide. Co-treatment of undifferentiated SH-SY5Y cells with the p300 histone acetyltransferase (HAT) inhibitor C646 and TSA or sodium butyrate showed that p300 HAT inhibition modulated TSA or sodium butyrate-induced Alox15 upregulation. Differentiation of SH-SY5Y cells with retinoic acid resulted in increased neurite outgrowth and Alox15 mRNA expression, while co-treatment with the p300 HAT inhibitor C646 and retinoic acid modulated the increases, indicating a role of p300 HAT in differentiation-associated Alox15 upregulation. Increasing Alox15 expression was found in primary murine cortical neurons during development from 3 to 10 days-in-vitro, reaching high levels of expression by 10 days-in-vitro—when Alox15 was not further upregulated by HDAC inhibition. Together, results indicate regulation of Alox15 mRNA expression in neuroblastoma cells by histone modifications, and increasing Alox15 expression in differentiating neurons. It is possible that one of the environmental influences on the immature brain that can affect cognition and memory, may take the form of epigenetic effects on Alox15 and metabolites of DHA.
Collapse
Affiliation(s)
| | - Claire Poh-Ee Bon
- Department of Anatomy, National University of Singapore, Singapore, 119260, Singapore
| | - Yee-Kong Ng
- Department of Anatomy, National University of Singapore, Singapore, 119260, Singapore
| | - Deron R Herr
- Department of Pharmacology, National University of Singapore, Singapore, 119260, Singapore
| | - Jui-Sheng Wu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Teng-Nan Lin
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Wei-Yi Ong
- Department of Anatomy, National University of Singapore, Singapore, 119260, Singapore. .,Neurobiology and Ageing Research Programme, National University of Singapore, Singapore, 117456, Singapore.
| |
Collapse
|
18
|
Salimi V, Shahsavari Z, Safizadeh B, Hosseini A, Khademian N, Tavakoli-Yaraki M. Sodium butyrate promotes apoptosis in breast cancer cells through reactive oxygen species (ROS) formation and mitochondrial impairment. Lipids Health Dis 2017; 16:208. [PMID: 29096636 PMCID: PMC5669027 DOI: 10.1186/s12944-017-0593-4] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 10/11/2017] [Indexed: 01/05/2023] Open
Abstract
Background Sodium butyrate (NaBu) is a short-chain fatty acid which serves as a histon deacetylase inhibitor and has received considerable interest as a possible regulator of cancer cell death. The regulatory effect of NaBu on cancer cell growth or death has yet to be illustrated in many cancers including breast cancer. This study is aimed to elucidate the possible effect of NaBu on regulation of breast cancer growth and apoptosis. Methods The cytotoxic effect of NaBu on the growth of breast cancer cells (MCF-7 and MDA-MB-468) and normal breast cells (MCF-10A) was determined using MTT assay. Annexin-V-FITC staining and PI staining were performed to detect apoptosis and cell cycle distribution using Flow cytometry, the level of mitochondrial membrane potential (Δψm), Reactive oxygen species (ROS)formation and caspase activity were determined accordingly. Results Based on our data, NaBu induced a dose and time-dependent cell toxicity in breast cancer cells which was related to the cell cycle arrest and induction of apoptosis. The impact of NaBu on MCF-10A cell toxicity, cell cycle distribution and apoptosis was inconsiderable. NaBu-elicited apoptosis was accompanied by the elevated level of ROS, increased caspase activity and reduced mitochondrial membrane potential (Δψm) in MCF-7 and MDA-MB-468 cells and with no effect on the above mentioned factors in MCF-10A cells. Conclusions Our study provided insight in to the role of NaBu on the regulation of breast cancer cell growth and lighten up the pro-apoptotic activity of NaBu.
Collapse
Affiliation(s)
- Vahid Salimi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Shahsavari
- Department of Laboratory Medicine, Faculty of Paramedical Sciences, Shaheed Beheshti University of Medical Sciences, Tehran, Iran
| | - Banafsheh Safizadeh
- Department of Biochemistry, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Ameinh Hosseini
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Narges Khademian
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Tavakoli-Yaraki
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
19
|
Tabeshmehr P, Husnain HK, Salmannejad M, Sani M, Hosseini SM, Khorraminejad Shirazi MH. Nicorandil potentiates sodium butyrate induced preconditioning of neurons and enhances their survival upon subsequent treatment with H 2O 2. Transl Neurodegener 2017; 6:29. [PMID: 29093814 PMCID: PMC5662071 DOI: 10.1186/s40035-017-0097-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 10/02/2017] [Indexed: 12/27/2022] Open
Abstract
Background Extensive loss of donor neural stem cell (NSCs) due to ischemic stress and low rate of differentiation at the site of cell graft are two of the major issues that hamper optimal outcome in NSCs transplantation studies. Given that histone deacetylases (HDACs) modulate various cellular processes by deacetylating histones and non-histone proteins, we hypothesized that combined treatment with small molecules, sodium butyrate (NaB; a known HDAC inhibitor) and nicorandil, will enhance the rate neuronal differentiation of NSCs besides their preconditioning to resist oxidative stress. Methods NSCs derived from 14-day old Sprague Dawley rat ganglion eminence were characterized for tri-lineage differentiation. Treatment with 1 mM NaB significantly changed their culture characteristics while continuous treatment for 10 days enhanced their neural differentiation. NaB treatment also preconditioned the cells for their resistance to oxidative stress. Results The highest rate of neural differentiation and preconditioning effect was achieved when the NSCs were treated concomitantly with NaB and nicorandil. Cell proliferation assay showed that concomitant treatment with NaB and nicorandil retarded their rate of proliferation. Conclusion These data conclude that preconditioning of NSCs with NaB and nicorandil effectively enhances their differentiation capacity besides preconditioning the cells to support their survival under ischemic conditions. Electronic supplementary material The online version of this article (10.1186/s40035-017-0097-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Parisa Tabeshmehr
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran.,Cell & Molecular Medicine Student Research Group, Medical Faculty, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Mahin Salmannejad
- Stem Cell Laboratory, Department of Anatomy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahsa Sani
- Stem Cell Laboratory, Department of Anatomy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Mojtaba Hosseini
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran.,Cell & Molecular Medicine Student Research Group, Medical Faculty, Shiraz University of Medical Sciences, Shiraz, Iran.,Stem Cell Laboratory, Department of Anatomy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Hossein Khorraminejad Shirazi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran.,Cell & Molecular Medicine Student Research Group, Medical Faculty, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
20
|
Toress-Collado AX, Nazarian R, Jazirehi AR. Rescue of cell cycle progression in BRAF V600E inhibitor-resistant human melanoma by a chromatin modifier. Tumour Biol 2017; 39:1010428317721620. [PMID: 28936920 DOI: 10.1177/1010428317721620] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The BRAFV600E-specific inhibitor vemurafenib blocks mitogen-activated protein kinase pathway and induces cell cycle arrest at G0/G1 phase leading to apoptosis of melanomas. To gain an understanding of the dynamics of cell cycle regulation during vemurafenib therapy, we analyzed several vemurafenib-resistant human melanoma sublines derived from BRAFV600E harboring vemurafenib-sensitive parental lines. Vemurafenib provoked G0/G1 phase arrest in parental but not in vemurafenib-resistant sublines. We hypothesized that refractoriness of vemurafenib-resistant sublines to vemurafenib-mediated cell cycle inhibition can be partially rescued by the chromatin modifier suberoylanilide hydroxamic acid. Suberoylanilide hydroxamic acid promoted G2/M arrest at expense of S phase irrespective of vemurafenib sensitivity. In parental lines, combination of suberoylanilide hydroxamic acid and vemurafenib induced both G0/G1 arrest and apoptosis, whereas in vemurafenib-resistant sublines combination induced G0/G1 as well as G2/M arrest resulting in dramatic cytostasis. Vemurafenib-resistant sublines exhibited extracellular signal-regulated protein kinases 1 and 2 but not AKT and hyperphosphorylation. Gene expression profiling revealed mitogen-activated protein kinase hyperactivation and deregulations of cyclins and cyclin-dependent kinases in vemurafenib-resistant sublines, all of which were reversed by suberoylanilide hydroxamic acid; changes that may explain the cytostatic effects of suberoylanilide hydroxamic acid. These results suggest that unresponsiveness of vemurafenib-resistant sublines to the biological effects of vemurafenib may be amenable by suberoylanilide hydroxamic acid. These in vitro results, while require further investigation, may provide rational biological basis for combination therapy in the management of vemurafenib-resistant melanoma.
Collapse
Affiliation(s)
- Antoni X Toress-Collado
- 1 Division of Surgical Oncology, Department of Surgery, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ramin Nazarian
- 2 Division of Hematology/Oncology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.,3 Jonsson Comprehensive Cancer Center (JCCC), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ali R Jazirehi
- 1 Division of Surgical Oncology, Department of Surgery, University of California, Los Angeles, Los Angeles, CA, USA.,3 Jonsson Comprehensive Cancer Center (JCCC), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
21
|
HDAC inhibitors: A new promising drug class in anti-aging research. Mech Ageing Dev 2017; 166:6-15. [DOI: 10.1016/j.mad.2017.08.008] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 07/29/2017] [Accepted: 08/14/2017] [Indexed: 12/20/2022]
|
22
|
Label-free protein quantification of sodium butyrate treated CHO cells by ESI-UHR-TOF-MS. J Biotechnol 2017; 257:87-98. [DOI: 10.1016/j.jbiotec.2017.03.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 03/27/2017] [Accepted: 03/27/2017] [Indexed: 11/18/2022]
|
23
|
Transplanted Adult Neural Stem Cells Express Sonic Hedgehog In Vivo and Suppress White Matter Neuroinflammation after Experimental Traumatic Brain Injury. Stem Cells Int 2017; 2017:9342534. [PMID: 29081811 PMCID: PMC5610817 DOI: 10.1155/2017/9342534] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 04/19/2017] [Accepted: 06/05/2017] [Indexed: 01/05/2023] Open
Abstract
Neural stem cells (NSCs) delivered intraventricularly may be therapeutic for diffuse white matter pathology after traumatic brain injury (TBI). To test this concept, NSCs isolated from adult mouse subventricular zone (SVZ) were transplanted into the lateral ventricle of adult mice at two weeks post-TBI followed by analysis at four weeks post-TBI. We examined sonic hedgehog (Shh) signaling as a candidate mechanism by which transplanted NSCs may regulate neuroregeneration and/or neuroinflammation responses of endogenous cells. Mouse fluorescent reporter lines were generated to enable in vivo genetic labeling of cells actively transcribing Shh or Gli1 after transplantation and/or TBI. Gli1 transcription is an effective readout for canonical Shh signaling. In ShhCreERT2;R26tdTomato mice, Shh was primarily expressed in neurons and was not upregulated in reactive astrocytes or microglia after TBI. Corroborating results in Gli1CreERT2;R26tdTomato mice demonstrated that Shh signaling was not upregulated in the corpus callosum, even after TBI or NSC transplantation. Transplanted NSCs expressed Shh in vivo but did not increase Gli1 labeling of host SVZ cells. Importantly, NSC transplantation significantly reduced reactive astrogliosis and microglial/macrophage activation in the corpus callosum after TBI. Therefore, intraventricular NSC transplantation after TBI significantly attenuated neuroinflammation, but did not activate host Shh signaling via Gli1 transcription.
Collapse
|
24
|
Liu N, Li S, Wu N, Cho KS. Acetylation and deacetylation in cancer stem-like cells. Oncotarget 2017; 8:89315-89325. [PMID: 29179522 PMCID: PMC5687692 DOI: 10.18632/oncotarget.19167] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 06/27/2017] [Indexed: 12/21/2022] Open
Abstract
Cancer stem-like cell (CSC) model has been established to investigate the underlying mechanisms of tumor initiation and progression. The imbalance between acetylation and deacetylation of histone or non-histone proteins, one of the important epigenetic modification processes, is closely associated with a wide variety of diseases including cancer. Acetylation and deacetylation are involved in various stemness-related signal pathways and drive the regulation of self-renewal and differentiation in normal developmental processes. Therefore, it is critical to explore their role in the maintenance of cancer stem-like cell traits. Here, we will review the extensive dysregulations of acetylation found in cancers and summarize their functional roles in sustaining CSC-like properties. Additionally, the use of deacetyltransferase inhibitors as an effective therapeutic strategy against CSCs is also discussed.
Collapse
Affiliation(s)
- Na Liu
- Department of Ophthalmology, Southwest Eye Hospital, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Shiqi Li
- Center of biotherapy, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Nan Wu
- Department of Ophthalmology, Southwest Eye Hospital, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Kin-Sang Cho
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
25
|
Hossain MS, Oomura Y, Katafuchi T. Glucose Can Epigenetically Alter the Gene Expression of Neurotrophic Factors in the Murine Brain Cells. Mol Neurobiol 2017; 55:3408-3425. [DOI: 10.1007/s12035-017-0578-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 04/26/2017] [Indexed: 11/24/2022]
|
26
|
Avello V, Tapia B, Vergara M, Acevedo C, Berrios J, Reyes JG, Altamirano C. Impact of sodium butyrate and mild hypothermia on metabolic and physiological behaviour of CHO TF 70R cells. ELECTRON J BIOTECHN 2017. [DOI: 10.1016/j.ejbt.2017.03.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
27
|
Gómez-Pinedo U, Duran-Moreno M, Sirerol-Piquer S, Matias-Guiu J. Myelin changes in Alexander disease. Neurologia 2017; 33:526-533. [PMID: 28342553 DOI: 10.1016/j.nrl.2017.01.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 01/26/2017] [Indexed: 12/30/2022] Open
Abstract
INTRODUCTION Alexander disease (AxD) is a type of leukodystrophy. Its pathological basis, along with myelin loss, is the appearance of Rosenthal bodies, which are cytoplasmic inclusions in astrocytes. Mutations in the gene coding for GFAP have been identified as a genetic basis for AxD. However, the mechanism by which these variants produce the disease is not understood. DEVELOPMENT The most widespread hypothesis is that AxD develops when a gain of function mutation causes an increase in GFAP. However, this mechanism does not explain myelin loss, given that experimental models in which GFAP expression is normal or mutated do not exhibit myelin disorders. This review analyses other possibilities that may explain this alteration, such as epigenetic or inflammatory alterations, presence of NG2 (+) - GFAP (+) cells, or post-translational modifications in GFAP that are unrelated to increased expression. CONCLUSIONS The different hypotheses analysed here may explain the myelin alteration affecting these patients, and multiple mechanisms may coexist. These theories raise the possibility of designing therapies based on these mechanisms.
Collapse
Affiliation(s)
- U Gómez-Pinedo
- Laboratorio de Neurobiología, Servicio de Neurología, Instituto de Neurociencias, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, España.
| | - M Duran-Moreno
- Laboratorio de Neurobiología Comparada, Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universidad de Valencia, Valencia, España
| | - S Sirerol-Piquer
- Laboratorio de Neurobiología Comparada, Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universidad de Valencia, Valencia, España
| | - J Matias-Guiu
- Laboratorio de Neurobiología, Servicio de Neurología, Instituto de Neurociencias, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, España
| |
Collapse
|
28
|
Podobinska M, Szablowska-Gadomska I, Augustyniak J, Sandvig I, Sandvig A, Buzanska L. Epigenetic Modulation of Stem Cells in Neurodevelopment: The Role of Methylation and Acetylation. Front Cell Neurosci 2017; 11:23. [PMID: 28223921 PMCID: PMC5293809 DOI: 10.3389/fncel.2017.00023] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 01/23/2017] [Indexed: 12/11/2022] Open
Abstract
The coordinated development of the nervous system requires fidelity in the expression of specific genes determining the different neural cell phenotypes. Stem cell fate decisions during neurodevelopment are strictly correlated with their epigenetic status. The epigenetic regulatory processes, such as DNA methylation and histone modifications discussed in this review article, may impact both neural stem cell (NSC) self-renewal and differentiation and thus play an important role in neurodevelopment. At the same time, stem cell decisions regarding fate commitment and differentiation are highly dependent on the temporospatial expression of specific genes contingent on the developmental stage of the nervous system. An interplay between the above, as well as basic cell processes, such as transcription regulation, DNA replication, cell cycle regulation and DNA repair therefore determine the accuracy and function of neuronal connections. This may significantly impact embryonic health and development as well as cognitive processes such as neuroplasticity and memory formation later in the adult.
Collapse
Affiliation(s)
- Martyna Podobinska
- Stem Cell Bioengineering Unit, Mossakowski Medical Research Centre, Polish Academy of Sciences Warsaw, Poland
| | | | - Justyna Augustyniak
- Stem Cell Bioengineering Unit, Mossakowski Medical Research Centre, Polish Academy of Sciences Warsaw, Poland
| | - Ioanna Sandvig
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU) Trondheim, Norway
| | - Axel Sandvig
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU) Trondheim, Norway
| | - Leonora Buzanska
- Stem Cell Bioengineering Unit, Mossakowski Medical Research Centre, Polish Academy of Sciences Warsaw, Poland
| |
Collapse
|
29
|
Jin X, Wu N, Dai J, Li Q, Xiao X. TXNIP mediates the differential responses of A549 cells to sodium butyrate and sodium 4-phenylbutyrate treatment. Cancer Med 2016; 6:424-438. [PMID: 28033672 PMCID: PMC5313639 DOI: 10.1002/cam4.977] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 09/15/2016] [Accepted: 10/25/2016] [Indexed: 11/09/2022] Open
Abstract
Sodium butyrate (NaBu) and sodium 4-phenylbutyrate (4PBA) have promising futures in cancer treatment; however, their underlying molecular mechanisms are not clearly understood. Here, we show A549 cell death induced by NaBu and 4PBA are not the same. NaBu treatment induces a significantly higher level of A549 cell death than 4PBA. A gene expression microarray identified more than 5000 transcripts that were altered (>1.5-fold) in NaBu-treated A549 cells, but fewer than 2000 transcripts that were altered in 4PBA. Moreover, more than 100 cell cycle-associated genes were greatly repressed by NaBu, but slightly repressed by 4PBA; few genes were significantly upregulated only in 4PBA-treated cells. Gene expression was further validated by other experiments. Additionally, A549 cells that were treated with these showed changes in glucose consumption, caspase 3/7 activation and histone modifications, as well as enhanced mitochondrial superoxide production. TXNIP was strongly induced by NaBu (30- to 40-fold mRNA) but was only slightly induced by 4PBA (two to fivefold) in A549 cells. TXNIP knockdown by shRNA in A549 cells significantly attenuated caspase 3/7 activation and restored cell viability, while TXNIP overexpression significantly increased caspase 3/7 activation and cell death only in NaBu-treated cells. Moreover, TXNIP also regulated NaBu- but not 4PBA-induced H4K5 acetylation and H3K4 trimethylation, possibly by increasing WDR5 expression. Finally, we demonstrated that 4PBA induced a mitochondrial superoxide-associated cell death, while NaBu did so mainly through a TXNIP-mediated pathway. The above data might benefit the future clinic application.
Collapse
Affiliation(s)
- Xuefang Jin
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Nana Wu
- The Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, China
| | - Juji Dai
- Department of General Surgery, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, China
| | - Qiuxia Li
- The Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, China
| | - XiaoQiang Xiao
- The Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, China.,Joint Shantou International Eye Center, Shantou University & the Chinese University of Hong Kong, Shantou, China
| |
Collapse
|
30
|
Genetics, Mucosal Inflammation and the Environment in Post-Infectious Chronic Gut Syndromes. ACTA ACUST UNITED AC 2016. [DOI: 10.1038/ajgsup.2016.14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
31
|
Lim DA, Alvarez-Buylla A. The Adult Ventricular-Subventricular Zone (V-SVZ) and Olfactory Bulb (OB) Neurogenesis. Cold Spring Harb Perspect Biol 2016; 8:cshperspect.a018820. [PMID: 27048191 DOI: 10.1101/cshperspect.a018820] [Citation(s) in RCA: 439] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A large population of neural stem/precursor cells (NSCs) persists in the ventricular-subventricular zone (V-SVZ) located in the walls of the lateral brain ventricles. V-SVZ NSCs produce large numbers of neuroblasts that migrate a long distance into the olfactory bulb (OB) where they differentiate into local circuit interneurons. Here, we review a broad range of discoveries that have emerged from studies of postnatal V-SVZ neurogenesis: the identification of NSCs as a subpopulation of astroglial cells, the neurogenic lineage, new mechanisms of neuronal migration, and molecular regulators of precursor cell proliferation and migration. It has also become evident that V-SVZ NSCs are regionally heterogeneous, with NSCs located in different regions of the ventricle wall generating distinct OB interneuron subtypes. Insights into the developmental origins and molecular mechanisms that underlie the regional specification of V-SVZ NSCs have also begun to emerge. Other recent studies have revealed new cell-intrinsic molecular mechanisms that enable lifelong neurogenesis in the V-SVZ. Finally, we discuss intriguing differences between the rodent V-SVZ and the corresponding human brain region. The rapidly expanding cellular and molecular knowledge of V-SVZ NSC biology provides key insights into postnatal neural development, the origin of brain tumors, and may inform the development regenerative therapies from cultured and endogenous human neural precursors.
Collapse
Affiliation(s)
- Daniel A Lim
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research at UCSF, Department of Neurological Surgery, University of California, San Francisco, California 94143
| | - Arturo Alvarez-Buylla
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research at UCSF, Department of Neurological Surgery, University of California, San Francisco, California 94143
| |
Collapse
|
32
|
Role of Epigenetics in Stem Cell Proliferation and Differentiation: Implications for Treating Neurodegenerative Diseases. Int J Mol Sci 2016; 17:ijms17020199. [PMID: 26848657 PMCID: PMC4783933 DOI: 10.3390/ijms17020199] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 01/17/2016] [Accepted: 01/27/2016] [Indexed: 12/15/2022] Open
Abstract
The main objectives of this review are to survey the current literature on the role of epigenetics in determining the fate of stem cells and to assess how this information can be used to enhance the treatment strategies for some neurodegenerative disorders, like Huntington’s disease, Parkinson’s disease and Alzheimer’s disease. Some of these epigenetic mechanisms include DNA methylation and histone modifications, which have a direct impact on the way that genes are expressed in stem cells and how they drive these cells into a mature lineage. Understanding how the stem cells are behaving and giving rise to mature cells can be used to inform researchers on effective ways to design stem cell-based treatments. In this review article, the way in which the basic understanding of how manipulating this process can be utilized to treat certain neurological diseases will be presented. Different genetic factors and their epigenetic changes during reprogramming of stem cells into induced pluripotent stem cells (iPSCs) have significant potential for enhancing the efficacy of cell replacement therapies.
Collapse
|
33
|
Mitrousis N, Tropepe V, Hermanson O. Post-Translational Modifications of Histones in Vertebrate Neurogenesis. Front Neurosci 2015; 9:483. [PMID: 26733796 PMCID: PMC4689847 DOI: 10.3389/fnins.2015.00483] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 12/04/2015] [Indexed: 11/13/2022] Open
Abstract
The process of neurogenesis, through which the entire nervous system of an organism is formed, has attracted immense scientific attention for decades. How can a single neural stem cell give rise to astrocytes, oligodendrocytes, and neurons? Furthermore, how is a neuron led to choose between the hundreds of different neuronal subtypes that the vertebrate CNS contains? Traditionally, niche signals and transcription factors have been on the spotlight. Recent research is increasingly demonstrating that the answer may partially lie in epigenetic regulation of gene expression. In this article, we comprehensively review the role of post-translational histone modifications in neurogenesis in both the embryonic and adult CNS.
Collapse
Affiliation(s)
- Nikolaos Mitrousis
- Institute of Biomaterials and Biomedical Engineering, University of Toronto Toronto, ON, Canada
| | - Vincent Tropepe
- Department of Cell and Systems Biology, Centre for the Analysis of Genome Evolution and Function, University of Toronto Toronto, ON, Canada
| | - Ola Hermanson
- Department of Neuroscience, Karolinska Institutet Stockholm, Sweden
| |
Collapse
|
34
|
Lin MY, de Zoete MR, van Putten JPM, Strijbis K. Redirection of Epithelial Immune Responses by Short-Chain Fatty Acids through Inhibition of Histone Deacetylases. Front Immunol 2015; 6:554. [PMID: 26579129 PMCID: PMC4630660 DOI: 10.3389/fimmu.2015.00554] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 10/16/2015] [Indexed: 01/17/2023] Open
Abstract
Short-chain fatty acids (SCFAs) are products of microbial fermentation that are important for intestinal epithelial health. Here, we describe that SCFAs have rapid and reversible effects on toll-like receptor (TLR) responses in epithelial cells. Incubation of HEK293 or HeLa epithelial cells with the SCFAs butyrate or propionate at physiological concentrations enhanced NF-κB activation induced by TLR5, TLR2/1, TLR4, and TLR9 agonists. NF-κB activation in response to tumor necrosis factor α (TNFα) was also increased by SCFAs. Comparative transcript analysis of HT-29 colon epithelial cells revealed that SCFAs enhanced TLR5-induced transcription of TNFα but dampened or even abolished the TLR5-mediated induction of IL-8 and monocyte chemotactic protein 1. SCFAs are known inhibitors of histone deacetylases (HDACs). Butyrate or propionate caused a rapid increase in histone acetylation in epithelial cells, similar to the small molecule HDAC inhibitor trichostatin A (TSA). TSA also mimicked the effects of SCFAs on TLR–NF-κB responses. This study shows that bacterial SCFAs rapidly alter the epigenetic state of host cells resulting in redirection of the innate immune response and selective reprograming of cytokine/chemokine expression.
Collapse
Affiliation(s)
- May Young Lin
- Department of Infectious Diseases and Immunology, Utrecht University , Utrecht , Netherlands
| | - Marcel R de Zoete
- Department of Infectious Diseases and Immunology, Utrecht University , Utrecht , Netherlands
| | - Jos P M van Putten
- Department of Infectious Diseases and Immunology, Utrecht University , Utrecht , Netherlands
| | - Karin Strijbis
- Department of Infectious Diseases and Immunology, Utrecht University , Utrecht , Netherlands
| |
Collapse
|
35
|
Kusaczuk M, Krętowski R, Bartoszewicz M, Cechowska-Pasko M. Phenylbutyrate-a pan-HDAC inhibitor-suppresses proliferation of glioblastoma LN-229 cell line. Tumour Biol 2015; 37:931-42. [PMID: 26260271 PMCID: PMC4841856 DOI: 10.1007/s13277-015-3781-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 07/08/2015] [Indexed: 12/19/2022] Open
Abstract
Phenylbutyrate (PBA) is a histone deacetylase inhibitor known for inducing differentiation, cell cycle arrest, and apoptosis in various cancer cells. However, the effects of PBA seem to be very cell-type-specific and sometimes limited exclusively to a particular cell line. Here, we provided novel information concerning cellular effects of PBA in LN-229 and LN-18 glioblastoma cell lines which have not been previously evaluated in context of PBA exposure. We found that LN-18 cells were PBA-insensitive even at high concentrations of PBA. In contrary, in LN-229 cells, 5 and 15 mmol/L PBA inhibited cell growth and proliferation mainly by causing prominent changes in cell morphology and promoting S- and G2/M-dependent cell cycle arrest. Moreover, we observed nearly a 3-fold increase in apoptosis of LN-229 cells treated with 15 mmol/L PBA, in comparison to control. Furthermore, PBA was found to up-regulate the expression of p21 whereas p53 expression level remained unchanged. We also showed that PBA down-regulated the expression of the anti-apoptotic genes Bcl-2/Bcl-XL, however without affecting the expression of pro-apoptotic Bax and Bim. Taken together, our results suggest that PBA might potentially be considered as an agent slowing-down the progress of glioblastoma; however, further analyses are still needed to comprehensively resolve the nature of its activity in this type of cancer.
Collapse
Affiliation(s)
- Magdalena Kusaczuk
- Department of Pharmaceutical Biochemistry, Medical University of Białystok, Mickiewicza 2A, 15-222, Białystok, Poland.
| | - Rafał Krętowski
- Department of Pharmaceutical Biochemistry, Medical University of Białystok, Mickiewicza 2A, 15-222, Białystok, Poland
| | - Marek Bartoszewicz
- Department of Microbiology, Institute of Biology, University of Białystok, Białystok, Poland
| | - Marzanna Cechowska-Pasko
- Department of Pharmaceutical Biochemistry, Medical University of Białystok, Mickiewicza 2A, 15-222, Białystok, Poland
| |
Collapse
|
36
|
Leone L, Podda MV, Grassi C. Impact of electromagnetic fields on stem cells: common mechanisms at the crossroad between adult neurogenesis and osteogenesis. Front Cell Neurosci 2015; 9:228. [PMID: 26124705 PMCID: PMC4466452 DOI: 10.3389/fncel.2015.00228] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 05/31/2015] [Indexed: 12/18/2022] Open
Abstract
In the recent years adult neural and mesenchymal stem cells have been intensively investigated as effective resources for repair therapies. In vivo and in vitro studies have provided insights on the molecular mechanisms underlying the neurogenic and osteogenic processes in adulthood. This knowledge appears fundamental for the development of targeted strategies to manipulate stem cells. Here we review recent literature dealing with the effects of electromagnetic fields on stem cell biology that lends support to their use as a promising tool to positively influence the different steps of neurogenic and osteogenic processes. We will focus on recent studies revealing that extremely-low frequency electromagnetic fields enhance adult hippocampal neurogenesis by inducing epigenetic modifications on the regulatory sequences of genes responsible for neural stem cell proliferation and neuronal differentiation. In light of the emerging critical role played by chromatin modifications in maintaining the stemness as well as in regulating stem cell differentiation, we will also attempt to exploit epigenetic changes that can represent common targets for electromagnetic field effects on neurogenic and osteogenic processes.
Collapse
Affiliation(s)
- Lucia Leone
- Institute of Human Physiology, Medical School, Università Cattolica del Sacro Cuore Rome, Italy
| | - Maria Vittoria Podda
- Institute of Human Physiology, Medical School, Università Cattolica del Sacro Cuore Rome, Italy
| | - Claudio Grassi
- Institute of Human Physiology, Medical School, Università Cattolica del Sacro Cuore Rome, Italy
| |
Collapse
|
37
|
Histone Deacetylases Inhibitors in the Treatment of Retinal Degenerative Diseases: Overview and Perspectives. J Ophthalmol 2015; 2015:250812. [PMID: 26137316 PMCID: PMC4468288 DOI: 10.1155/2015/250812] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 09/09/2014] [Indexed: 01/08/2023] Open
Abstract
Retinal degenerative diseases are one of the important refractory ophthalmic diseases, featured with apoptosis of photoreceptor cells. Histone acetylation and deacetylation can regulate chromosome assembly, gene transcription, and posttranslational modification, which are regulated by histone acetyltransferases (HATs) and histone deacetylases (HDACs), respectively. The histone deacetylase inhibitors (HDACis) have the ability to cause hyperacetylation of histone and nonhistone proteins, resulting in a variety of effects on cell proliferation, differentiation, anti-inflammation, and anti-apoptosis. Several HDACis have been approved for clinical trials to treat cancer. Studies have shown that HDACis have neuroprotective effects in nervous system damage. In this paper, we will summarize the neuroprotective effects of common HDACis in retinal degenerative diseases and make a prospect to the applications of HDACis in the treatment of retinal degenerative diseases in the future.
Collapse
|
38
|
Soriano‐Cantón R, Perez‐Villalba A, Morante‐Redolat JM, Marqués‐Torrejón MÁ, Pallás M, Pérez‐Sánchez F, Fariñas I. Regulation of the p19(Arf)/p53 pathway by histone acetylation underlies neural stem cell behavior in senescence-prone SAMP8 mice. Aging Cell 2015; 14:453-62. [PMID: 25728253 PMCID: PMC4406674 DOI: 10.1111/acel.12328] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2015] [Indexed: 01/24/2023] Open
Abstract
Brain aging is associated with increased neurodegeneration and reduced neurogenesis. B1/neural stem cells (B1-NSCs) of the mouse subependymal zone (SEZ) support the ongoing production of olfactory bulb interneurons, but their neurogenic potential is progressively reduced as mice age. Although age-related changes in B1-NSCs may result from increased expression of tumor suppressor proteins, accumulation of DNA damage, metabolic alterations, and microenvironmental or systemic changes, the ultimate causes remain unclear. Senescence-accelerated-prone mice (SAMP8) relative to senescence-accelerated-resistant mice (SAMR1) exhibit signs of hastened senescence and can be used as a model for the study of aging. We have found that the B1-NSC compartment is transiently expanded in young SAMP8 relative to SAMR1 mice, resulting in disturbed cytoarchitecture of the SEZ, B1-NSC hyperproliferation, and higher yields of primary neurospheres. These unusual features are, however, accompanied by premature loss of B1-NSCs. Moreover, SAMP8 neurospheres lack self-renewal and enter p53-dependent senescence after only two passages. Interestingly, in vitro senescence of SAMP8 cells could be prevented by inhibition of histone acetyltransferases and mimicked in SAMR1 cells by inhibition of histone deacetylases (HDAC). Our data indicate that expression of the tumor suppressor p19, but not of p16, is increased in SAMP8 neurospheres, as well as in SAMR1 neurospheres upon HDAC inhibition, and suggest that the SAMP8 phenotype may, at least in part, be due to changes in chromatin status. Interestingly, acute HDAC inhibition in vivo resulted in changes in the SEZ of SAMR1 mice that resembled those found in young SAMP8 mice.
Collapse
Affiliation(s)
- Raúl Soriano‐Cantón
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED) Universidad de Valencia Burjassot 46100 Spain
- Departamento de Biología Celular Universidad de Valencia Burjassot 46100Spain
| | - Ana Perez‐Villalba
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED) Universidad de Valencia Burjassot 46100 Spain
- Departamento de Biología Celular Universidad de Valencia Burjassot 46100Spain
| | - José Manuel Morante‐Redolat
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED) Universidad de Valencia Burjassot 46100 Spain
- Departamento de Biología Celular Universidad de Valencia Burjassot 46100Spain
| | - María Ángeles Marqués‐Torrejón
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED) Universidad de Valencia Burjassot 46100 Spain
- Departamento de Biología Celular Universidad de Valencia Burjassot 46100Spain
| | - Mercé Pallás
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED) Universidad de Valencia Burjassot 46100 Spain
- Departamento de Farmacología y Química Terapéutica Instituto de Biomedicina de la Universidad de Barcelona Barcelona 08028Spain
| | - Francisco Pérez‐Sánchez
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED) Universidad de Valencia Burjassot 46100 Spain
- Departamento de Biología Celular Universidad de Valencia Burjassot 46100Spain
| | - Isabel Fariñas
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED) Universidad de Valencia Burjassot 46100 Spain
- Departamento de Biología Celular Universidad de Valencia Burjassot 46100Spain
| |
Collapse
|
39
|
Alquézar C, Barrio E, Esteras N, de la Encarnación A, Bartolomé F, Molina JA, Martín-Requero Á. Targeting cyclin D3/CDK6 activity for treatment of Parkinson's disease. J Neurochem 2015; 133:886-97. [PMID: 25689470 DOI: 10.1111/jnc.13070] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 02/10/2015] [Accepted: 02/10/2015] [Indexed: 01/11/2023]
Abstract
At present, treatment for Parkinson's disease (PD) is only symptomatic; therefore, it is important to identify new targets tackling the molecular causes of the disease. We previously found that lymphoblasts from sporadic PD patients display increased activity of the cyclin D3/CDK6/pRb pathway and higher proliferation than control cells. These features were considered systemic manifestations of the disease, as aberrant activation of the cell cycle is involved in neuronal apoptosis. The main goal of this work was to elucidate whether the inhibition of cyclin D3/CDK6-associated kinase activity could be useful in PD treatment. For this purpose, we investigated the effects of two histone deacetylase (HDAC) inhibitors, suberoylanilide hydroxamic (SAHA) acid and sodium butyrate (NaB), and the m-TOR inhibitor rapamycin on cell viability and cyclin D3/CDK6 activity. Moreover, the potential neuroprotective action of these drugs was evaluated in 6-hydroxy-dopamine (6-OHDA) treated dopaminergic SH-SY5Y cells and primary rat mesencephalic cultures. Here, we report that both compounds normalized the proliferative activity of PD lymphoblasts and reduced the 6-OHDA-induced cell death in neuronal cells by preventing the over-activation of the cyclin D3/CDK6/pRb cascade. Considering that these drugs are already used in clinic for treatment of other diseases with good tolerance, it is plausible that they may serve as novel therapeutic drugs for PD. We report here that peripheral cells from Parkinson's disease (PD) patients show an enhanced proliferative activity due to the activation of cyclin D3/CDK6-mediated phosphorylation of retinoblastoma protein (pRb). Treatment of PD lymphoblasts with inhibitors of histone deacetylases like suberoylanilide hydroxamic acid (SAHA) and sodium butyrate (NaB), or with rapamycin, inhibitor of mechanistic target of rapamycin (mTOR) normalized the proliferation of PD lymphoblasts by preventing the over-activation of the cyclin D3/CDK6/pRb cascade. These drugs were shown to have neuroprotective effects in both human neuroblastoma SH-SY5Y cells and primary rat mid-brain dopaminergic neuronal cultures toxicity induced by 6-hidroxydopamine. Considering that these drugs are already used in clinic for treatment of other diseases with good tolerance, it seems reasonable to believe that the repositioning of these drugs toward PD holds promise as a novel therapeutic strategy.
Collapse
Affiliation(s)
- Carolina Alquézar
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Estíbaliz Barrio
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
| | - Noemí Esteras
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
| | - Ana de la Encarnación
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
| | - Fernando Bartolomé
- Neuroscience Laboratory, Research Institute, Hospital Doce de Octubre, Madrid, Spain
| | - José A Molina
- Department of Neurology, Hospital Doce de Octubre, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Ángeles Martín-Requero
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| |
Collapse
|
40
|
Swaminathan A, Kumar M, Halder Sinha S, Schneider-Anthony A, Boutillier AL, Kundu TK. Modulation of neurogenesis by targeting epigenetic enzymes using small molecules: an overview. ACS Chem Neurosci 2014; 5:1164-77. [PMID: 25250644 DOI: 10.1021/cn500117a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Neurogenesis consists of a plethora of complex cellular processes including neural stem cell (NSC) proliferation, migration, maturation or differentiation to neurons, and finally integration into the pre-existing neural circuits in the brain, which are temporally regulated and coordinated sequentially. Mammalian neurogenesis begins during embryonic development and continues in postnatal brain (adult neurogenesis). It is now evident that adult neurogenesis is driven by extracellular and intracellular signaling pathways, where epigenetic modifications like reversible histone acetylation, methylation, as well as DNA methylation play a vital role. Epigenetic regulation of gene expression during neural development is governed mainly by histone acetyltransferases (HATs), histone methyltransferase (HMTs), DNA methyltransferases (DNMTs), and also the enzymes for reversal, like histone deacetylases (HDACs), and many of these have also been shown to be involved in the regulation of adult neurogenesis. The contribution of these epigenetic marks to neurogenesis is increasingly being recognized, through knockout studies and small molecule modulator based studies. These small molecules are directly involved in regeneration and repair of neurons, and not only have applications from a therapeutic point of view, but also provide a tool to study the process of neurogenesis itself. In the present Review, we will focus on small molecules that act predominantly on epigenetic enzymes to enhance neurogenesis and neuroprotection and discuss the mechanism and recent advancements in their synthesis, targeting, and biology.
Collapse
Affiliation(s)
- Amrutha Swaminathan
- Transcription and
Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O, Bangalore-560064, India
| | - Manoj Kumar
- Transcription and
Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O, Bangalore-560064, India
| | - Sarmistha Halder Sinha
- Transcription and
Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O, Bangalore-560064, India
| | - Anne Schneider-Anthony
- Laboratoire de Neurosciences
Cognitives et Adaptatives (LNCA), UMR7364, Université de Strasbourg-CNRS,
GDR CNRS 2905, Faculté de Psychologie, 12 rue Goethe, 67000 Strasbourg, France
| | - Anne-Laurence Boutillier
- Laboratoire de Neurosciences
Cognitives et Adaptatives (LNCA), UMR7364, Université de Strasbourg-CNRS,
GDR CNRS 2905, Faculté de Psychologie, 12 rue Goethe, 67000 Strasbourg, France
| | - Tapas K Kundu
- Transcription and
Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O, Bangalore-560064, India
| |
Collapse
|
41
|
Arking R. Independent chemical regulation of health and senescent spans in Drosophila. INVERTEBR REPROD DEV 2014; 59:28-32. [PMID: 26136617 PMCID: PMC4463769 DOI: 10.1080/07924259.2014.978028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 09/04/2014] [Indexed: 11/16/2022]
Abstract
Curcumin feeding of Drosophila larvae or young adults inhibits TOR and other known longevity genes and induces an extended health span in a normal-lived Ra strain adult. Combining larval curcumin feeding with an adult dietary restriction (DR) diet does not yield an additive effect. The age-specific mortality rate is decreased and is comparable with that of genetically selected long-lived La animals. Feeding Ra adults with the drug their whole life, or only during the senescent span, results in a weak negative effect on median longevity with no increase in maximum lifespan. The La strain shows no response to this DR mimetic. Thus, curcumin acts in a life stage-specific manner to extend the health span. Histone deacetylase inhibitors decrease the longevity of Ra animals if administered over the health span only or over the entire adult lifespan, but these inhibitors increase longevity when administered in the transition or senescent spans. Their major effect is a reduction in the mortality rate of older flies, raising the possibility of reducing frailty in older organisms. Their life stage-specific effects are complementary to that of curcumin. Use of stage-specific drugs may enable targeted increases in health or senescent spans, and thus selectively increase the quality of life.
Collapse
Affiliation(s)
- Robert Arking
- Department of Biological Sciences, Wayne State University , Detroit , MI 48202 , USA
| |
Collapse
|
42
|
Fitzsimons CP, van Bodegraven E, Schouten M, Lardenoije R, Kompotis K, Kenis G, van den Hurk M, Boks MP, Biojone C, Joca S, Steinbusch HWM, Lunnon K, Mastroeni DF, Mill J, Lucassen PJ, Coleman PD, van den Hove DLA, Rutten BPF. Epigenetic regulation of adult neural stem cells: implications for Alzheimer's disease. Mol Neurodegener 2014; 9:25. [PMID: 24964731 PMCID: PMC4080757 DOI: 10.1186/1750-1326-9-25] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Accepted: 06/06/2014] [Indexed: 01/27/2023] Open
Abstract
Experimental evidence has demonstrated that several aspects of adult neural stem cells (NSCs), including their quiescence, proliferation, fate specification and differentiation, are regulated by epigenetic mechanisms. These control the expression of specific sets of genes, often including those encoding for small non-coding RNAs, indicating a complex interplay between various epigenetic factors and cellular functions.Previous studies had indicated that in addition to the neuropathology in Alzheimer's disease (AD), plasticity-related changes are observed in brain areas with ongoing neurogenesis, like the hippocampus and subventricular zone. Given the role of stem cells e.g. in hippocampal functions like cognition, and given their potential for brain repair, we here review the epigenetic mechanisms relevant for NSCs and AD etiology. Understanding the molecular mechanisms involved in the epigenetic regulation of adult NSCs will advance our knowledge on the role of adult neurogenesis in degeneration and possibly regeneration in the AD brain.
Collapse
Affiliation(s)
- Carlos P Fitzsimons
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, SciencePark 904, 1098XH Amsterdam, The Netherlands
| | - Emma van Bodegraven
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, SciencePark 904, 1098XH Amsterdam, The Netherlands
| | - Marijn Schouten
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, SciencePark 904, 1098XH Amsterdam, The Netherlands
| | - Roy Lardenoije
- Department of Translational Neuroscience, School of Mental Health and Neuroscience (MHENS), Maastricht University, Maastricht, the Netherlands
| | - Konstantinos Kompotis
- Department of Translational Neuroscience, School of Mental Health and Neuroscience (MHENS), Maastricht University, Maastricht, the Netherlands
| | - Gunter Kenis
- Department of Translational Neuroscience, School of Mental Health and Neuroscience (MHENS), Maastricht University, Maastricht, the Netherlands
| | - Mark van den Hurk
- Department of Translational Neuroscience, School of Mental Health and Neuroscience (MHENS), Maastricht University, Maastricht, the Netherlands
| | - Marco P Boks
- Department Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Caroline Biojone
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Samia Joca
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Harry WM Steinbusch
- Department of Translational Neuroscience, School of Mental Health and Neuroscience (MHENS), Maastricht University, Maastricht, the Netherlands
| | - Katie Lunnon
- University of Exeter Medical School, RILD Level 4, Barrack Road, University of Exeter, Devon, UK
| | - Diego F Mastroeni
- University of Exeter Medical School, RILD Level 4, Barrack Road, University of Exeter, Devon, UK
| | - Jonathan Mill
- University of Exeter Medical School, RILD Level 4, Barrack Road, University of Exeter, Devon, UK
| | - Paul J Lucassen
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, SciencePark 904, 1098XH Amsterdam, The Netherlands
| | - Paul D Coleman
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, SciencePark 904, 1098XH Amsterdam, The Netherlands
| | - Daniel LA van den Hove
- Department of Translational Neuroscience, School of Mental Health and Neuroscience (MHENS), Maastricht University, Maastricht, the Netherlands
| | - Bart PF Rutten
- Department of Translational Neuroscience, School of Mental Health and Neuroscience (MHENS), Maastricht University, Maastricht, the Netherlands
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University Medical Centre, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| |
Collapse
|
43
|
Pérez Estrada C, Covacu R, Sankavaram SR, Svensson M, Brundin L. Oxidative stress increases neurogenesis and oligodendrogenesis in adult neural progenitor cells. Stem Cells Dev 2014; 23:2311-27. [PMID: 24773127 DOI: 10.1089/scd.2013.0452] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Hydrogen peroxide (H2O2) is a reactive oxygen species that is involved in immunity and neuroinflammation. Here, we investigated whether and how pathophysiological levels of H2O2 influenced the differentiation of neural progenitor cells (NPCs). H2O2 levels within the range measured at neuroinflammatory events were applied to rat primary NPC cultures during 24 h, and effects were assessed directly after exposure or in NPCs that were differentiated for 7 days after H2O2 removal. Exposed differentiated NPCs showed significantly increased numbers of neurons and oligodendrocytes compared with unexposed controls. To identify the possible origin of this differentiation result, we characterized the undifferentiated culture and found a significant increase in both OLIG2(+) cells and proliferative ASCL1(+) C cells that could contribute to both more neurons and oligodendrocytes. In addition, H2O2-induced neurogenesis was supported by western blot and paralleled by gene expression analyses, which revealed an increased expression of the proneural gene Ngn2 and the neuronally expressed gene β-III tubulin. To investigate potential mechanisms for the observed effects on NPC differentiation, we performed gene expression profile analyses for oxidative stress and antioxidant-related and chromatin modification genes where the expression of several important genes was affected by the exposure. Increased oligodendrocyte numbers correlated with increased expression of the chromatin modification enzyme Sirt2, suggesting the involvement of Sirt2 in oligodendrocyte differentiation. Our results suggest a modulatory effect on the differentiation potential of NPCs by H2O2. Our findings indicate that H2O2 exposure has significant effects on NPC proliferation, differentiation, and vulnerability. These results have implications for regeneration after any neuroinflammatory event.
Collapse
Affiliation(s)
- Cynthia Pérez Estrada
- 1 Neurology Unit, Department of Clinical Neuroscience, Karolinska Institutet, Karolinska University Hospital , Stockholm, Sweden
| | | | | | | | | |
Collapse
|
44
|
Ononye SN, Vanheyst MD, Giardina C, Wright DL, Anderson AC. Studies on the antiproliferative effects of tropolone derivatives in Jurkat T-lymphocyte cells. Bioorg Med Chem 2014; 22:2188-93. [PMID: 24613456 PMCID: PMC4011186 DOI: 10.1016/j.bmc.2014.02.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 02/13/2014] [Indexed: 01/09/2023]
Abstract
Thujaplicins are tropolone-derived natural products with antiproliferative properties. We recently reported that certain tropolones potently and selectively target histone deacetylases (HDAC) and inhibit the growth of hematological cell lines. Here, we investigated the mechanisms by which these compounds exert their antiproliferative activity in comparison with the pan-selective HDAC inhibitor, vorinostat, using Jurkat T-cell leukemia cells. The tropolones appear to work through a mechanism distinct from vorinostat. These studies suggest that tropolone derivatives may serve as selective epigenetic modulators of hematological cells with potential applications as anti-leukemic or anti-inflammatory agents.
Collapse
Affiliation(s)
- Sophia N Ononye
- Department of Pharmaceutical Sciences, University of Connecticut, 69 N. Eagleville Rd., Storrs, CT 06269, United States
| | - Michael D Vanheyst
- Department of Pharmaceutical Sciences, University of Connecticut, 69 N. Eagleville Rd., Storrs, CT 06269, United States
| | - Charles Giardina
- Department of Pharmaceutical Sciences, University of Connecticut, 69 N. Eagleville Rd., Storrs, CT 06269, United States
| | - Dennis L Wright
- Department of Pharmaceutical Sciences, University of Connecticut, 69 N. Eagleville Rd., Storrs, CT 06269, United States
| | - Amy C Anderson
- Department of Pharmaceutical Sciences, University of Connecticut, 69 N. Eagleville Rd., Storrs, CT 06269, United States.
| |
Collapse
|
45
|
Runx1t1 (Runt-related transcription factor 1; translocated to, 1) epigenetically regulates the proliferation and nitric oxide production of microglia. PLoS One 2014; 9:e89326. [PMID: 24586690 PMCID: PMC3929701 DOI: 10.1371/journal.pone.0089326] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 01/17/2014] [Indexed: 12/21/2022] Open
Abstract
Background Microglia, the resident immune cells of the brain, undergo rapid proliferation and produce several proinflammatory molecules and nitric oxide (NO) when activated in neuropathological conditions. Runx1t1 (Runt-related transcription factor 1, translocated to 1) has been implicated in recruiting histone deacetylases (HDACs) for transcriptional repression, thereby regulating cell proliferation. In the present study, Runx1t1 expression was shown to localize in amoeboid microglial cells of the postnatal rat brain, being hardly detectable in ramified microglia of the adult brain. Moreover, a marked expression of Runx1t1was induced and translocated to nuclei in activated microglia in vitro and in vivo. In view of these findings, it was hypothesized that Runx1t1 regulates microglial functions during development and in neuropathological conditions. Methods and Findings siRNA-mediated knockdown of Runx1t1 significantly decreased the expression level of cell cycle-related gene, cyclin-dependent kinase 4 (Cdk4) and proliferation index in activated BV2 microglia. It was also shown that HDAC inhibitor (HDACi) treatment mimics the effects of Runx1t1 knockdown on microglial proliferation, confirming that microglial proliferation is associated with Runx1t1 expression and HDACs activity. Further, Runx1t1 and HDACs were shown to promote neurotoxic effect of microglia by repressing expression of LAT2, L-aminoacid transporter-2 (cationic amino acid transporter, y+ system), which normally inhibits NO production. This was confirmed by chromatin immunoprecipitation (ChIP) assay, which revealed that Runx1t1 binds to the promoter region of LAT2 and this binding increased upon microglial activation. However, the enhanced binding of Runx1t1 to the LAT2 promoter could not repress the LAT2 expression when the BV2 microglia cells were treated with HDACi, indicating that Runx1t1 requires HDACs to transcriptionally repress the expression of LAT2. Conclusion/Interpretation In conclusion, it is suggested that Runx1t1 controls proliferation and the neurotoxic effect of microglia by epigenetically regulating Cdk4 and LAT2 via its interaction with HDACs.
Collapse
|
46
|
Kanski R, Sneeboer MAM, van Bodegraven EJ, Sluijs JA, Kropff W, Vermunt MW, Creyghton MP, De Filippis L, Vescovi A, Aronica E, van Tijn P, van Strien ME, Hol EM. Histone acetylation in astrocytes suppresses GFAP and stimulates a re-organization of the intermediate filament network. J Cell Sci 2014; 127:4368-80. [DOI: 10.1242/jcs.145912] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Glial Fibrillary Acidic Protein (GFAP) is the main intermediate filament in astrocytes and is regulated by epigenetic mechanisms during development. We demonstrate that histone acetylation controls GFAP expression also in mature astrocytes. Inhibition of histone deacetylases (HDACs) with Trichostatin-A or Sodium-butyrate reduced GFAP expression in primary human astrocytes and astrocytoma cells. Since splicing occurs co-transcriptional, we investigated whether histone acetylation changes the ratio between the canonical isoform GFAPα and the alternative GFAPδ splice-variant. We observed that decreased transcription of GFAP enhanced alternative isoform expression, as HDAC inhibition increased the GFAPδ/α ratio favouring GFAPδ. Expression of GFAPδ was dependent on the presence and binding of the splicing factors of the SR protein family. Inhibition of HDAC activity also resulted in aggregation of the GFAP network, reminiscent to our earlier findings of a GFAPδ-induced network collapse. Together, our data demonstrate that HDAC inhibition results in changes in transcription, splicing, and organization of GFAP. These data imply that a tight regulation of histone acetylation in astrocytes is essential, since dysregulation of gene expression causes aggregation of GFAP, a hallmark of human diseases like Alexander's disease.
Collapse
|
47
|
Establishment of a CpG island microarray for analyses of genome-wide DNA methylation in Chinese hamster ovary cells. Appl Microbiol Biotechnol 2013; 98:579-89. [PMID: 24146078 PMCID: PMC3890572 DOI: 10.1007/s00253-013-5282-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 09/12/2013] [Accepted: 09/19/2013] [Indexed: 01/08/2023]
Abstract
Optimizing productivity and growth rates of recombinant Chinese hamster ovary (CHO) cells requires insight into the regulation of cellular processes. In this regard, the elucidation of the epigenetic process of DNA methylation, known to influence transcription by a differential occurrence in CpG islands in promoter regions, is increasingly gaining importance. However, DNA methylation has not yet been investigated on a genomic scale in CHO cells and suitable tools have not existed until now. Based on the genomic and transcriptomic CHO data currently available, we developed a customized oligonucleotide microarray covering 19598 CpG islands (89 % of total bioinformatically identified CpG islands) in the CHO genome. We applied our CHO-specific CpG island microarray to investigate the effect of butyrate treatment on differential DNA methylation in CHO cultures in a time-dependent approach. Supplementation of butyrate is known to enhance cell specific productivities in CHO cells and leads to alterations of epigenetic silencing events. Gene ontology clusters regarding, e.g., chromatin modification or DNA repair, were significantly overrepresented 24 h after butyrate addition. Functional classifications furthermore indicated that several major signaling systems such as the Wnt/β-catenin pathway were affected by butyrate treatment. Our novel CHO-specific CpG island microarray will provide valuable information in future studies of cellular processes associated with productivity and product characteristics.
Collapse
|
48
|
Gonzales-Roybal G, Lim DA. Chromatin-based epigenetics of adult subventricular zone neural stem cells. Front Genet 2013; 4:194. [PMID: 24115953 PMCID: PMC3792351 DOI: 10.3389/fgene.2013.00194] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 09/12/2013] [Indexed: 01/30/2023] Open
Abstract
In specific regions of the adult mammalian brain, neural stem cells (NSCs) generate new neurons throughout life. Emerging evidence indicate that chromatin-based transcriptional regulation is a key epigenetic mechanism for the life-long function of adult NSCs. In the adult mouse brain, NSCs in the subventricular zone (SVZ) retain the ability to produce both neurons and glia for the life of the animal. In this review, we discuss the origin and function of SVZ NSCs as they relate to key epigenetic concepts of development and potential underlying mechanism of chromatin-based transcriptional regulation. A central point of discussion is how SVZ NSCs - which possess many characteristics of mature, non-neurogenic astrocytes - maintain a "youthful" ability to produce both neuronal and glial lineages. In addition to reviewing data regarding the function of chromatin-modifying factors in SVZ neurogenesis, we incorporate our growing understanding that long non-coding RNAs serve as an important element to chromatin-based transcriptional regulation, including that of SVZ NSCs. Discoveries regarding the epigenetic mechanisms of adult SVZ NSCs may provide key insights into fundamental principles of adult stem cell biology as well as the more complex and dynamic developmental environment of the embryonic brain.
Collapse
Affiliation(s)
- Gabriel Gonzales-Roybal
- Department of Neurological Surgery, University of California at San FranciscoSan Francisco, CA, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California at San FranciscoSan Francisco, CA, USA
| | - Daniel A. Lim
- Department of Neurological Surgery, University of California at San FranciscoSan Francisco, CA, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California at San FranciscoSan Francisco, CA, USA
- Veterans Affairs Medical Center, University of California at San FranciscoSan Francisco, CA, USA
| |
Collapse
|
49
|
Histone deacetylase inhibition downregulates collagen 3A1 in fibrotic lung fibroblasts. Int J Mol Sci 2013; 14:19605-17. [PMID: 24084714 PMCID: PMC3821575 DOI: 10.3390/ijms141019605] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 08/27/2013] [Accepted: 09/11/2013] [Indexed: 12/15/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a deadly disease characterized by chronic inflammation and excessive collagen accumulation in the lung. Myofibroblasts are the primary collagen-producing cells in pulmonary fibrosis. Histone deacetylase inhibitor (HDACi) can affect gene expression, and some, such as suberoylanilide hydroxamic acid (SAHA), are US FDA approved for cancer treatment. In this study, we investigated SAHA’s effects on the expression of collagen III alpha 1 (COL3A1) in primary human IPF fibroblasts and in a murine model of pulmonary fibrosis. We observed that increased COL3A1 expression in IPF fibroblasts can be substantially reduced by SAHA treatment at the level of transcription as detected by RT-PCR; collagen III protein level was also reduced, as detected by Western blots and immunofluorescence. The deacetylation inhibitor effect of SAHA was verified by observing higher acetylation levels of both histone H3 and H4 in treated IPF cells. Chromatin immunoprecipitation (ChIP) experiments demonstrated that the reduced expression of COL3A1 by SAHA is with increased association of the repressive chromatin marker, H3K27Me3, and decreased association of the active chromatin marker, H3K9Ac. In our murine model of bleomycin-induced pulmonary fibrosis, the SAHA treated group demonstrated significantly less collagen III, as detected by immunohistochemistry. Our data indicate that the HDACi SAHA alters the chromatin associated with COL3A1, resulting in its decreased expression.
Collapse
|
50
|
Combined treatment with low concentrations of decitabine and SAHA causes cell death in leukemic cell lines but not in normal peripheral blood lymphocytes. BIOMED RESEARCH INTERNATIONAL 2013; 2013:659254. [PMID: 24000324 PMCID: PMC3755446 DOI: 10.1155/2013/659254] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 06/28/2013] [Accepted: 07/13/2013] [Indexed: 12/15/2022]
Abstract
Epigenetic therapy reverting aberrant acetylation or methylation offers the possibility to target preferentially tumor cells and to preserve normal cells. Combination epigenetic therapy may further improve the effect of individual drugs. We investigated combined action of demethylating agent decitabine and histone deacetylase inhibitor SAHA (Vorinostat) on different leukemic cell lines in comparison with peripheral blood lymphocytes. Large decrease of viability, as well as huge p21WAF1 induction, reactive oxygen species formation, and apoptotic features due to combined decitabine and SAHA action were detected in leukemic cell lines irrespective of their p53 status, while essentially no effect was observed in response to the combined drug action in normal peripheral blood lymphocytes of healthy donors. p53-dependent apoptotic pathway was demonstrated to participate in the wtp53 CML-T1 leukemic cell line response, while significant influence of reactive oxygen species on viability decrease has been detected in p53-null HL-60 cell line.
Collapse
|