1
|
Paidlewar M, Kumari S, Dhapola R, Sharma P, HariKrishnaReddy D. Unveiling the role of astrogliosis in Alzheimer's disease Pathology: Insights into mechanisms and therapeutic approaches. Int Immunopharmacol 2024; 141:112940. [PMID: 39154532 DOI: 10.1016/j.intimp.2024.112940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/30/2024] [Accepted: 08/12/2024] [Indexed: 08/20/2024]
Abstract
Alzheimer's disease (AD) is one of the most debilitating age-related disorders that affect people globally. It impacts social and cognitive behavior of the individual and is characterized by phosphorylated tau and Aβ accumulation. Astrocytesmaintain a quiescent, anti-inflammatory state on anatomical level, expressing few cytokines and exhibit phagocytic activity to remove misfolded proteins. But in AD, in response to specific stimuli, astrocytes overstimulate their phagocytic character with overexpressing cytokine gene modules. Upon interaction with generated Aβ and neurofibrillary tangle, astrocytes that are continuously activated release a large number of inflammatory cytokines. This cytokine storm leads to neuroinflammation which is also one of the recognizable features of AD. Astrogliosis eventually promotes cholinergic dysfunction, calcium imbalance, oxidative stress and excitotoxicity. Furthermore, C5aR1, Lcn2/, BDNF/TrkB and PPARα/TFEB signaling dysregulation has a major impact on the disease progression. This review clarifies numerous ways that lead to astrogliosis, which is stimulated by a variety of processes that exacerbate AD pathology and make it a suitable target for AD treatment. Drugs under clinical and preclinical investigations that target several pathways managing astrogliosis and are efficacious in ameliorating the pathology of the disease are also included in this study. D-ALA2GIP, TRAM-34, Genistein, L-serine, MW150 and XPro1595 are examples of few drugs targeting astrogliosis. Therefore, this study may aid in the development of a potent therapeutic agent for ameliorating astrogliosis mediated AD progression.
Collapse
Affiliation(s)
- Mohit Paidlewar
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda-151401, Punjab, India
| | - Sneha Kumari
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda-151401, Punjab, India
| | - Rishika Dhapola
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda-151401, Punjab, India
| | - Prajjwal Sharma
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda-151401, Punjab, India
| | - Dibbanti HariKrishnaReddy
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda-151401, Punjab, India.
| |
Collapse
|
2
|
Vázquez Alicia S, Rivera-Moctezuma FG, Marrero Valentín JL, Pérez D, Tosado-Rodríguez EL, Roche Lima A, Ferchmin PA, Sabeva N. Neuroprotection by 4R-cembranoid against Gulf War Illness-related chemicals is mediated by ERK, PI3K, and CaMKII pathways. Neuropharmacology 2024:110199. [PMID: 39447735 DOI: 10.1016/j.neuropharm.2024.110199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/17/2024] [Accepted: 10/20/2024] [Indexed: 10/26/2024]
Abstract
Gulf War Illness (GWI) has been consistently linked to exposure to pyridostigmine (PB), N,N-Diethyl-meta-toluamide (DEET), permethrin (PER), and traces of sarin. In this study, diisopropylfluorophosphate (DFP, sarin surrogate) and the GWI-related chemicals were found to reduce the number of functionally active neurons in rat hippocampal slices. These findings confirm a link between GWI neurotoxicants and N-Methyl-D-Aspartate (NMDA)-mediated excitotoxicity, which was successfully reversed by Edelfosine (a phospholipase Cβ (PLCβ3) inhibitor) and Flupirtine (a KCNQ/M (Kv7) channel agonist). To test whether 4R-cembranoid (4R), a nicotinic α7 acetylcholinesterase receptor (α7AChR) modulator known for its neuroprotective properties, can restore hippocampal neurons from glutamate-induced neurotoxicity, we exposed rat hippocampal slices with DFP for 10 min followed by 60 min treatment with 4R. We investigated the 4R mechanisms of neuroprotection after preincubation with LY294002, PD98059, and KN-62. The inhibition of the phosphatidylinositol 3-kinase (PI3K), mitogen-activated protein kinase kinase (MEK1/2), and calcium/calmodulin-dependent protein kinase (CaMKII) abrogated the protective effect of 4R against DFP-induced neurotoxicity. In separate experiments, after incubation with DFP, followed by 4R for 1 hr., cellular extracts were prepared for Western blotting of phospho-Akt, phospho-GSK3β, phosphorylated extracellular signal-regulated kinase (ERK)1/2, CaMKII and cAMP response element-binding protein (CREB). Our results show that DFP induces neuronal dysfunction by dephosphorylation, while 4R restores the phosphorylation of Akt, GSK3, ERK1/2, CREB, and CaMKII. Moreover, our proteomics analysis supported the notion that 4R activates additional signaling pathways related to enhancing neuronal signaling, synaptic plasticity, and apoptotic inhibition to promote cell survival against DFP, offering biomarkers for developing treatment against GWI.
Collapse
Affiliation(s)
- Sorangely Vázquez Alicia
- Department of Neuroscience, Universidad Central del Caribe, Bayamón, PR 00956; University of Puerto Rico, School of Medicine, Medical Sciences Campus, San Juan PR 00935
| | - Félix G Rivera-Moctezuma
- Department of Neuroscience, Universidad Central del Caribe, Bayamón, PR 00956; Polytechnic University of Puerto Rico, San Juan - Hato Rey, PR, United States 00918
| | | | - Dinely Pérez
- Department of Biochemistry, Universidad Central del Caribe, Bayamon, PR 00956
| | - Eduardo L Tosado-Rodríguez
- Integrated Informatics, Research Capacity Core, Center for Collaborative Research in Health Disparities, University of Puerto Rico, Medical Sciences Campus, San Juan PR 00935
| | - Abiel Roche Lima
- Integrated Informatics, Research Capacity Core, Center for Collaborative Research in Health Disparities, University of Puerto Rico, Medical Sciences Campus, San Juan PR 00935
| | - Pedro A Ferchmin
- Department of Neuroscience, Universidad Central del Caribe, Bayamón, PR 00956
| | - Nadezhda Sabeva
- Department of Neuroscience, Universidad Central del Caribe, Bayamón, PR 00956.
| |
Collapse
|
3
|
Roberts CF, Cao Y, Im W, Nichols RA, Lukas RJ, George AA. Neuroprotective amyloid β N-terminal peptides differentially alter human α7- and α7β2-nicotinic acetylcholine (nACh) receptor single-channel properties. Br J Pharmacol 2024; 181:3172-3191. [PMID: 38720171 DOI: 10.1111/bph.16381] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 08/03/2024] Open
Abstract
BACKGROUND AND PURPOSE Oligomeric amyloid β 1-42 (oAβ1-42) exhibits agonist-like action at human α7- and α7β2-containing nicotinic receptors. The N-terminal amyloid β1-15 fragment (N-Aβ fragment) modulates presynaptic calcium and enhances hippocampal-based synaptic plasticity via α7-containing nicotinic receptors. Further, the N-Aβ fragment and its core sequence, the N-amyloid-beta core hexapeptide (N-Aβcore), protect against oAβ1-42-associated synapto- and neurotoxicity. Here, we investigated how oAβ1-42, the N-Aβ fragment, and the N-Aβcore regulate the single-channel properties of α7- and α7β2-nicotinic receptors. EXPERIMENTAL APPROACH Single-channel recordings measured the impact of acetylcholine, oAβ1-42, the N-Aβ fragment, and the N-Aβcore on the unitary properties of human α7- and α7β2-containing nicotinic receptors expressed in nicotinic-null SH-EP1 cells. Molecular dynamics simulations identified potential sites of interaction between the N-Aβ fragment and orthosteric α7+/α7- and α7+/β2- nicotinic receptor binding interfaces. KEY RESULTS The N-Aβ fragment and N-Aβcore induced α7- and α7β2-nicotinic receptor single-channel openings. Relative to acetylcholine, oAβ1-42 preferentially enhanced α7β2-nicotinic receptor single-channel open probability and open-dwell times. Co-application with the N-Aβcore neutralized these effects. Further, administration of the N-Aβ fragment alone, or in combination with acetylcholine or oAβ1-42, selectively enhanced α7-nicotinic receptor open probability and open-dwell times (compared to acetylcholine or oAβ1-42). CONCLUSIONS AND IMPLICATIONS Amyloid-beta peptides demonstrate functional diversity in regulating α7- and α7β2-nicotinic receptor function, with implications for a wide range of nicotinic receptor-mediated functions in Alzheimer's disease. The effects of these peptides on α7- and/or α7β2-nicotinic receptors revealed complex interactions with these subtypes, providing novel insights into the neuroprotective actions of amyloid β-derived fragments against the toxic effects of oAβ1-42.
Collapse
Affiliation(s)
- Catherine F Roberts
- Department of Life Sciences, University of Bath, Bath, UK
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Yiwei Cao
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, USA
| | - Wonpil Im
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, USA
| | - Robert A Nichols
- Department of Cell & Molecular Biology, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| | | | - Andrew A George
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
4
|
George AA, John SJ, Lucero LM, Eaton JB, Jaiswal E, Christensen SB, Gajewiak J, Watkins M, Cao Y, Olivera BM, Im W, McIntosh JM, Whiteaker P. Analogs of α-conotoxin PnIC selectively inhibit α7β2- over α7-only subtype nicotinic acetylcholine receptors via a novel allosteric mechanism. FASEB J 2024; 38:e23374. [PMID: 38161283 PMCID: PMC10782225 DOI: 10.1096/fj.202302079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/01/2023] [Indexed: 01/03/2024]
Abstract
This study was undertaken to identify and characterize the first ligands capable of selectively identifying nicotinic acetylcholine receptors containing α7 and β2 subunits (α7β2-nAChR subtype). Basal forebrain cholinergic neurons express α7β2-nAChR. Here, they appear to mediate neuronal dysfunction induced by the elevated levels of oligomeric amyloid-β associated with early Alzheimer's disease. Additional work indicates that α7β2-nAChR are expressed across several further critically important cholinergic and GABAergic neuronal circuits within the central nervous system. Further studies, however, are significantly hindered by the inability of currently available ligands to distinguish heteromeric α7β2-nAChR from the closely related and more widespread homomeric α7-only-nAChR subtype. Functional screening using two-electrode voltage-clamp electrophysiology identified a family of α7β2-nAChR-selective analogs of α-conotoxin PnIC (α-CtxPnIC). A combined electrophysiology, functional kinetics, site-directed mutagenesis, and molecular dynamics approach was used to further characterize the α7β2-nAChR selectivity and site of action of these α-CtxPnIC analogs. We determined that α7β2-nAChR selectivity of α-CtxPnIC analogs arises from interactions at a site distinct from the orthosteric agonist-binding site shared between α7β2- and α7-only-nAChR. As numerous previously identified α-Ctx ligands are competitive antagonists of orthosteric agonist-binding sites, this study profoundly expands the scope of use of α-Ctx ligands (which have already provided important nAChR research and translational breakthroughs). More immediately, analogs of α-CtxPnIC promise to enable, for the first time, both comprehensive mapping of the distribution of α7β2-nAChR and detailed investigations of their physiological roles.
Collapse
Affiliation(s)
- Andrew A. George
- Department of Pharmacology and Toxicology, School of MedicineVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Sabin J. John
- Department of Pharmacology and Toxicology, School of MedicineVirginia Commonwealth UniversityRichmondVirginiaUSA
- Department of Life SciencesUniversity of BathBathUK
| | - Linda M. Lucero
- Department of NeurobiologyBarrow Neurological InstitutePhoenixArizonaUSA
| | - J. Brek Eaton
- Department of NeurobiologyBarrow Neurological InstitutePhoenixArizonaUSA
| | - Ekta Jaiswal
- Department of NeurobiologyBarrow Neurological InstitutePhoenixArizonaUSA
| | | | - Joanna Gajewiak
- School of Biological SciencesUniversity of UtahSalt Lake CityUtahUSA
| | - Maren Watkins
- School of Biological SciencesUniversity of UtahSalt Lake CityUtahUSA
| | - Yiwei Cao
- Department of ChemistryLehigh UniversityBethlehemPennsylvaniaUSA
| | | | - Wonpil Im
- Department of ChemistryLehigh UniversityBethlehemPennsylvaniaUSA
| | - J. Michael McIntosh
- School of Biological SciencesUniversity of UtahSalt Lake CityUtahUSA
- George E. Wahlen Veterans Affairs Medical CenterSalt Lake CityUtahUSA
- Department of PsychiatryUniversity of UtahSalt Lake CityUtahUSA
| | - Paul Whiteaker
- Department of Pharmacology and Toxicology, School of MedicineVirginia Commonwealth UniversityRichmondVirginiaUSA
| |
Collapse
|
5
|
Singh K, Ngo A, Keerthisinghe OV, Patel KK, Liang C, Mukherjee J. Synthesis and Evaluation of Compound Targeting α7 and β2 Subunits in Nicotinic Acetylcholinergic Receptor. Molecules 2023; 28:8128. [PMID: 38138615 PMCID: PMC10745926 DOI: 10.3390/molecules28248128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/07/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Nicotinic acetylcholine receptors (nAChRs) are involved in various central nervous system functions and have also been implicated in several neurodegenerative disorders. The heteromeric α4β2* and homomeric α7 are two major nAChR subtypes which have been studied in the brain using positron emission tomography (PET). Our comparative autoradiographic studies of the two receptor types in the mouse and rat brains show major differences in the thalamus (α4β2* >> α7), hippocampus (α7 >> α4β2*), and subiculum (α4β2* >> α7). A relatively newer heteromeric α7β2 nAChR subtype has been identified in the brain which may have a greater role in neurodegeneration. We report the development of KS7 (3-(2-(S)-azetidinylmethoxy)-5-(1,4-diaza-bicyclo[3.2.2]nonane)pyridine) which incorporates structural features of Nifzetidine (high affinity for α4β2* nAChR) and ASEM (high affinity for α7 nAChR) in an effort to target α7 and β2 subunits in α7β2 nAChR. KS7 exhibited higher affinities (IC50 = 50 to 172 nM) for [3H]cytisine radiolabeled sites and weaker affinities (IC50 = 10 μM) for [125I]-α-bungarotoxin radiolabeled rat brain sites in several brain regions. The weaker affinity of KS7 to α7 nAChR may suggest lack of binding at the α7 subunit of α7β2 nAChR. A radiolabeled derivative of KS7 may be required to identify any specific binding to brain regions suggested to contain α7β2 nAChR.
Collapse
Affiliation(s)
| | | | | | | | | | - Jogeshwar Mukherjee
- Preclinical Imaging, Department of Radiological Sciences, University of California-Irvine, Irvine, CA 92697, USA; (K.S.); (A.N.); (O.V.K.); (K.K.P.); (C.L.)
| |
Collapse
|
6
|
Whiteaker P, George AA. Discoveries and future significance of research into amyloid-beta/α7-containing nicotinic acetylcholine receptor (nAChR) interactions. Pharmacol Res 2023; 191:106743. [PMID: 37084859 PMCID: PMC10228377 DOI: 10.1016/j.phrs.2023.106743] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/13/2023] [Accepted: 03/21/2023] [Indexed: 04/23/2023]
Abstract
Initiated by findings that Alzheimer's disease is associated with a profound loss of cholinergic markers in human brain, decades of studies have examined the interactions between specific subtypes of nicotinic acetylcholine receptors and amyloid-β [derived from the amyloid precursor protein (APP), which is cleaved to yield variable isoforms of amyloid-β]. We review the evolving understanding of amyloid-β's roles in Alzheimer's disease and pioneering studies that highlighted a role of nicotinic acetylcholine receptors in mediating important aspects of amyloid-β's effects. This review also surveys the current state of research into amyloid-β / nicotinic acetylcholine receptor interactions. The field has reached an exciting point in which common themes are emerging from the wide range of prior research and a range of accessible, relevant model systems are available to drive further progress. We highlight exciting new areas of inquiry and persistent challenges that need to be considered while conducting this research. Studies of amyloid-β and the nicotinic acetylcholine receptor populations that it interacts with provide opportunities for innovative basic and translational scientific breakthroughs related to nicotinic receptor biology, Alzheimer's disease, and cholinergic contributions to cognition more broadly.
Collapse
Affiliation(s)
- Paul Whiteaker
- Virginia Commonwealth University School of Medicine, Department of Pharmacology and Toxicology, VCU Health Sciences Research Building, Box 980613, Richmond, VA 23298-0613, USA
| | - Andrew A George
- Virginia Commonwealth University School of Medicine, Department of Pharmacology and Toxicology, VCU Health Sciences Research Building, Box 980613, Richmond, VA 23298-0613, USA.
| |
Collapse
|
7
|
Terry AV, Jones K, Bertrand D. Nicotinic acetylcholine receptors in neurological and psychiatric diseases. Pharmacol Res 2023; 191:106764. [PMID: 37044234 DOI: 10.1016/j.phrs.2023.106764] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/30/2023] [Accepted: 04/07/2023] [Indexed: 04/14/2023]
Abstract
Neuronal nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels that are widely distributed both pre- and post-synaptically in the mammalian brain. By modulating cation flux across cell membranes, neuronal nAChRs regulate neuronal excitability and the release of a variety of neurotransmitters to influence multiple physiologic and behavioral processes including synaptic plasticity, motor function, attention, learning and memory. Abnormalities of neuronal nAChRs have been implicated in the pathophysiology of neurologic disorders including Alzheimer's disease, Parkinson's disease, epilepsy, and Tourette´s syndrome, as well as psychiatric disorders including schizophrenia, depression, and anxiety. The potential role of nAChRs in a particular illness may be indicated by alterations in the expression of nAChRs in relevant brain regions, genetic variability in the genes encoding for nAChR subunit proteins, and/or clinical or preclinical observations where specific ligands showed a therapeutic effect. Over the past 25 years, extensive preclinical and some early clinical evidence suggested that ligands at nAChRs might have therapeutic potential for neurologic and psychiatric disorders. However, to date the only approved indications for nAChR ligands are smoking cessation and the treatment of dry eye disease. It has been argued that progress in nAChR drug discovery has been limited by translational gaps between the preclinical models and the human disease as well as unresolved questions regarding the pharmacological goal (i.e., agonism, antagonism or receptor desensitization) depending on the disease.
Collapse
Affiliation(s)
- Alvin V Terry
- Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, Georgia, 30912.
| | - Keri Jones
- Educational Innovation Institute, Medical College of Georgia at Augusta University, Augusta, Georgia, 30912
| | - Daniel Bertrand
- HiQScreen Sàrl, 6, rte de Compois, 1222 Vésenaz, Geneva, Switzerland
| |
Collapse
|
8
|
Becchetti A, Grandi LC, Cerina M, Amadeo A. Nicotinic acetylcholine receptors and epilepsy. Pharmacol Res 2023; 189:106698. [PMID: 36796465 DOI: 10.1016/j.phrs.2023.106698] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/04/2023] [Accepted: 02/13/2023] [Indexed: 02/16/2023]
Abstract
Despite recent advances in understanding the causes of epilepsy, especially the genetic, comprehending the biological mechanisms that lead to the epileptic phenotype remains difficult. A paradigmatic case is constituted by the epilepsies caused by altered neuronal nicotinic acetylcholine receptors (nAChRs), which exert complex physiological functions in mature as well as developing brain. The ascending cholinergic projections exert potent control of forebrain excitability, and wide evidence implicates nAChR dysregulation as both cause and effect of epileptiform activity. First, tonic-clonic seizures are triggered by administration of high doses of nicotinic agonists, whereas non-convulsive doses have kindling effects. Second, sleep-related epilepsy can be caused by mutations on genes encoding nAChR subunits widely expressed in the forebrain (CHRNA4, CHRNB2, CHRNA2). Third, in animal models of acquired epilepsy, complex time-dependent alterations in cholinergic innervation are observed following repeated seizures. Heteromeric nAChRs are central players in epileptogenesis. Evidence is wide for autosomal dominant sleep-related hypermotor epilepsy (ADSHE). Studies of ADSHE-linked nAChR subunits in expression systems suggest that the epileptogenic process is promoted by overactive receptors. Investigation in animal models of ADSHE indicates that expression of mutant nAChRs can lead to lifelong hyperexcitability by altering i) the function of GABAergic populations in the mature neocortex and thalamus, ii) synaptic architecture during synaptogenesis. Understanding the balance of the epileptogenic effects in adult and developing networks is essential to plan rational therapy at different ages. Combining this knowledge with a deeper understanding of the functional and pharmacological properties of individual mutations will advance precision and personalized medicine in nAChR-dependent epilepsy.
Collapse
Affiliation(s)
- Andrea Becchetti
- Department of Biotechnology and Biosciences, and NeuroMI (Milan Center of Neuroscience), University of Milano-Bicocca, Piazza della Scienza 2, Milano 20126, Italy.
| | - Laura Clara Grandi
- Department of Biotechnology and Biosciences, and NeuroMI (Milan Center of Neuroscience), University of Milano-Bicocca, Piazza della Scienza 2, Milano 20126, Italy.
| | - Marta Cerina
- Department of Biotechnology and Biosciences, and NeuroMI (Milan Center of Neuroscience), University of Milano-Bicocca, Piazza della Scienza 2, Milano 20126, Italy.
| | - Alida Amadeo
- Department of Biosciences, University of Milano, Via Celoria 26, Milano 20133, Italy.
| |
Collapse
|
9
|
Xie D, Deng T, Zhai Z, Sun T, Xu Y. The cellular model for Alzheimer's disease research: PC12 cells. Front Mol Neurosci 2023; 15:1016559. [PMID: 36683856 PMCID: PMC9846650 DOI: 10.3389/fnmol.2022.1016559] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 12/08/2022] [Indexed: 01/06/2023] Open
Abstract
Alzheimer's disease (AD) is a common age-related neurodegenerative disease characterized by progressive cognitive decline and irreversible memory impairment. Currently, several studies have failed to fully elucidate AD's cellular and molecular mechanisms. For this purpose, research on related cellular models may propose potential predictive models for the drug development of AD. Therefore, many cells characterized by neuronal properties are widely used to mimic the pathological process of AD, such as PC12, SH-SY5Y, and N2a, especially the PC12 pheochromocytoma cell line. Thus, this review covers the most systematic essay that used PC12 cells to study AD. We depict the cellular source, culture condition, differentiation methods, transfection methods, drugs inducing AD, general approaches (evaluation methods and metrics), and in vitro cellular models used in parallel with PC12 cells.
Collapse
Affiliation(s)
- Danni Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ting Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhenwei Zhai
- School of Medical Information Engineering, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tao Sun
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Medical Information Engineering, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ying Xu
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
10
|
Ferrer-Acosta Y, Rodriguez-Massó S, Pérez D, Eterovic VA, Ferchmin PA, Martins AH. Memantine has a nicotinic neuroprotective pathway in acute hippocampal slices after an NMDA insult. Toxicol In Vitro 2022; 84:105453. [PMID: 35944748 PMCID: PMC10026604 DOI: 10.1016/j.tiv.2022.105453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/14/2022] [Accepted: 08/03/2022] [Indexed: 10/15/2022]
Abstract
Memantine is a non-competitive antagonist with a moderate affinity to the N-methyl-d-Aspartate (NMDA) receptor. The present study assessed memantine's neuroprotective activity using electrophysiology of ex-vivo hippocampal slices. Interestingly, a nicotinic component was necessary for memantine's neuroprotection (NP). Memantine demonstrated a bell-shaped dose-response curve of NP against NMDA. Memantine was neuroprotective at concentrations below 3 μM, but the NP declined at higher concentrations (>3 μM) when memantine inhibits the NMDA receptor. Additional evidence that memantine NP is mediated by an alternate mechanism independent of the inhibition of the NMDA receptor is supported by its ability to protect neurons when applied before or after the NMDA insult and in the presence of D(-)-2-Amino-5-phosphonopentanoic acid (APV), the standard NMDA receptor inhibitor. We found several similarities between the memantine NP mechanism and the neuroprotective nicotinic drug, the 4R cembranoid. Memantine's NP requires the release of acetylcholine, the activation of α4β2, and is independent of MEK/MAPK signaling. Both 4R and memantine require the activation of PI3K/AKT for NP against NMDA-mediated excitotoxicity, although at different concentrations. In conclusion, our studies show memantine is neuroprotective through a nicotinic pathway, similar to the nicotinic drug 4R. This information leads to a better understanding of memantine's mechanisms of action and explains its dose-dependent effectiveness in Alzheimer's and other neurological disorders.
Collapse
Affiliation(s)
- Yancy Ferrer-Acosta
- Department of Neuroscience, Universidad Central del Caribe, Laurel Avenue 2U6, Lomas Verdes, Bayamón 00956, Puerto Rico.
| | - Sergio Rodriguez-Massó
- Department of Pharmacology and Toxicology, University of Puerto Rico, Medical Sciences Campus, Los Paseos Avenue, Guillermo Arbona Building, San Juan 00935, Puerto Rico.
| | - Dinely Pérez
- Department of Biochemistry, Universidad Central del Caribe Laurel Avenue, #100, Santa Juanita, Bayamón 00956, Puerto Rico
| | - Vesna A Eterovic
- Neuroprotection for Life, 480 E Village Dr., Carmel, IN 46032, USA
| | - P A Ferchmin
- Neuroprotection for Life, 480 E Village Dr., Carmel, IN 46032, USA
| | - Antonio Henrique Martins
- Department of Pharmacology and Toxicology, University of Puerto Rico, Medical Sciences Campus, Los Paseos Avenue, Guillermo Arbona Building, San Juan 00935, Puerto Rico.
| |
Collapse
|
11
|
Zhong C, Akmentin W, Role LW, Talmage DA. Axonal α7* nicotinic acetylcholine receptors modulate glutamatergic signaling and synaptic vesicle organization in ventral hippocampal projections. Front Neural Circuits 2022; 16:978837. [PMID: 36213206 PMCID: PMC9537472 DOI: 10.3389/fncir.2022.978837] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 09/01/2022] [Indexed: 11/13/2022] Open
Abstract
Modulation of the release of glutamate by activation of presynaptic nicotinic acetylcholine receptors (nAChRs) is one of the most prevalent mechanism of nicotinic facilitation of glutamatergic transmission in cortico-limbic circuits. By imaging gene chimeric co-cultures from mouse, we examined the role of α7* nAChRs mediated cholinergic modulation of glutamate release and synaptic vesicle organization in ventral hippocampal projections. We directly visualized exogenous and endogenous cholinergic facilitation of glutamate release in this specialized preparation of circuits in vitro. Disrupting α7* nAChRs mediated cholinergic signaling genetically or pharmacologically diminished cholinergic facilitation of glutamate release at presynaptic terminals. Alteration of α7* nAChRs mediated cholinergic signaling along glutamatergic axons also decreased functional synaptic vesicle clustering to presynaptic terminals. These findings suggest that presynaptic α7* nAChRs contribute to cholinergic modulation of glutamate release and synaptic vesicle organization.
Collapse
Affiliation(s)
- Chongbo Zhong
- National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Wendy Akmentin
- Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY, United States
| | - Lorna W. Role
- National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD, United States
| | - David A. Talmage
- National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
12
|
Asogwa NC, Toji N, He Z, Shao C, Shibata Y, Tatsumoto S, Ishikawa H, Go Y, Wada K. Nicotinic acetylcholine receptors in a songbird brain. J Comp Neurol 2022; 530:1966-1991. [PMID: 35344610 DOI: 10.1002/cne.25314] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 11/07/2022]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels that mediate fast synaptic transmission and cell signaling, which contribute to learning, memory, and the execution of motor skills. Birdsong is a complex learned motor skill in songbirds. Although the existence of 15 nAChR subunits has been predicted in the avian genome, their expression patterns and potential contributions to song learning and production have not been comprehensively investigated. Here, we cloned all the 15 nAChR subunits (ChrnA1-10, B2-4, D, and G) from the zebra finch brain and investigated the mRNA expression patterns in the neural pathways responsible for the learning and production of birdsong during a critical period of song learning. Although there were no detectable hybridization signals for ChrnA1, A6, A9, and A10, the other 11 nAChR subunits were uniquely expressed in one or more major subdivisions in the song nuclei of the songbird brain. Of these 11 subunits, ChrnA3-5, A7, and B2 were differentially regulated in the song nuclei compared with the surrounding anatomically related regions. ChrnA5 was upregulated during the critical period of song learning in the lateral magnocellular nucleus of the anterior nidopallium. Furthermore, single-cell RNA sequencing revealed ChrnA7 and B2 to be the major subunits expressed in neurons of the vocal motor nuclei HVC and robust nucleus of the arcopallium, indicating the potential existence of ChrnA7-homomeric and ChrnB2-heteromeric nAChRs in limited cell populations. These results suggest that relatively limited types of nAChR subunits provide functional contributions to song learning and production in songbirds.
Collapse
Affiliation(s)
| | - Noriyuki Toji
- Faculty of Science, Hokkaido University, Sapporo, Japan
| | - Ziwei He
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Chengru Shao
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Yukino Shibata
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Shoji Tatsumoto
- Cognitive Genomics Research Group, Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Japan
| | - Hiroe Ishikawa
- Cognitive Genomics Research Group, Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Japan
| | - Yasuhiro Go
- Cognitive Genomics Research Group, Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Japan
- School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan
- Department of Physiological Sciences, National Institute for Physiological Sciences, Okazaki, Japan
| | - Kazuhiro Wada
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
- Faculty of Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
13
|
Duarte Y, Rojas M, Canan J, Pérez EG, González-Nilo F, García-Colunga J. Different Classes of Antidepressants Inhibit the Rat α7 Nicotinic Acetylcholine Receptor by Interacting within the Ion Channel: A Functional and Structural Study. Molecules 2021; 26:molecules26040998. [PMID: 33668529 PMCID: PMC7918632 DOI: 10.3390/molecules26040998] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/05/2021] [Accepted: 02/11/2021] [Indexed: 12/21/2022] Open
Abstract
Several antidepressants inhibit nicotinic acetylcholine receptors (nAChRs) in a non-competitive and voltage-dependent fashion. Here, we asked whether antidepressants with a different structure and pharmacological profile modulate the rat α7 nAChR through a similar mechanism by interacting within the ion-channel. We applied electrophysiological (recording of the ion current elicited by choline, ICh, which activates α7 nAChRs from rat CA1 hippocampal interneurons) and in silico approaches (homology modeling of the rat α7 nAChR, molecular docking, molecular dynamics simulations, and binding free energy calculations). The antidepressants inhibited ICh with the order: norfluoxetine ~ mirtazapine ~ imipramine < bupropion ~ fluoxetine ~ venlafaxine ~ escitalopram. The constructed homology model of the rat α7 nAChR resulted in the extracellular vestibule and the channel pore is highly negatively charged, which facilitates the permeation of cations and the entrance of the protonated form of antidepressants. Molecular docking and molecular dynamics simulations were carried out within the ion−channel of the α7 nAChR, revealing that the antidepressants adopt poses along the receptor channel, with slightly different binding-free energy values. Furthermore, the inhibition of ICh and free energy values for each antidepressant-receptor complex were highly correlated. Thus, the α7 nAChR is negatively modulated by a variety of antidepressants interacting in the ion−channel.
Collapse
Affiliation(s)
- Yorley Duarte
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Av. República 330, Santiago 8370146, Chile; (Y.D.); (M.R.); (J.C.); (F.G.-N.)
- Interdisciplinary Centre for Neuroscience of Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2381850, Chile
| | - Maximiliano Rojas
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Av. República 330, Santiago 8370146, Chile; (Y.D.); (M.R.); (J.C.); (F.G.-N.)
| | - Jonathan Canan
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Av. República 330, Santiago 8370146, Chile; (Y.D.); (M.R.); (J.C.); (F.G.-N.)
| | - Edwin G. Pérez
- Department of Organic Chemistry, Faculty of Chemistry and Pharmacy, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile;
| | - Fernando González-Nilo
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Av. República 330, Santiago 8370146, Chile; (Y.D.); (M.R.); (J.C.); (F.G.-N.)
- Interdisciplinary Centre for Neuroscience of Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2381850, Chile
| | - Jesús García-Colunga
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Boulevard Juriquilla 3001, Juriquilla, Querétaro 76230, Mexico
- Correspondence: ; Tel.: +52-442-238-1063
| |
Collapse
|
14
|
Bekdash RA. The Cholinergic System, the Adrenergic System and the Neuropathology of Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms22031273. [PMID: 33525357 PMCID: PMC7865740 DOI: 10.3390/ijms22031273] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/23/2021] [Accepted: 01/25/2021] [Indexed: 12/16/2022] Open
Abstract
Neurodegenerative diseases are a major public health problem worldwide with a wide spectrum of symptoms and physiological effects. It has been long reported that the dysregulation of the cholinergic system and the adrenergic system are linked to the etiology of Alzheimer’s disease. Cholinergic neurons are widely distributed in brain regions that play a role in cognitive functions and normal cholinergic signaling related to learning and memory is dependent on acetylcholine. The Locus Coeruleus norepinephrine (LC-NE) is the main noradrenergic nucleus that projects and supplies norepinephrine to different brain regions. Norepinephrine has been shown to be neuroprotective against neurodegeneration and plays a role in behavior and cognition. Cholinergic and adrenergic signaling are dysregulated in Alzheimer’s disease. The degeneration of cholinergic neurons in nucleus basalis of Meynert in the basal forebrain and the degeneration of LC-NE neurons were reported in Alzheimer’s disease. The aim of this review is to describe current literature on the role of the cholinergic system and the adrenergic system (LC-NE) in the pathology of Alzheimer’s disease and potential therapeutic implications.
Collapse
Affiliation(s)
- Rola A Bekdash
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA
| |
Collapse
|
15
|
Roberts JP, Stokoe SA, Sathler MF, Nichols RA, Kim S. Selective coactivation of α7- and α4β2-nicotinic acetylcholine receptors reverses beta-amyloid-induced synaptic dysfunction. J Biol Chem 2021; 296:100402. [PMID: 33571523 PMCID: PMC7961090 DOI: 10.1016/j.jbc.2021.100402] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/02/2021] [Accepted: 02/07/2021] [Indexed: 01/04/2023] Open
Abstract
Beta-amyloid (Aβ) has been recognized as an early trigger in the pathogenesis of Alzheimer's disease (AD) leading to synaptic and cognitive impairments. Aβ can alter neuronal signaling through interactions with nicotinic acetylcholine receptors (nAChRs), contributing to synaptic dysfunction in AD. The three major nAChR subtypes in the hippocampus are composed of α7-, α4β2-, and α3β4-nAChRs. Aβ selectively affects α7- and α4β2-nAChRs, but not α3β4-nAChRs in hippocampal neurons, resulting in neuronal hyperexcitation. However, how nAChR subtype selectivity for Aβ affects synaptic function in AD is not completely understood. Here, we showed that Aβ associated with α7- and α4β2-nAChRs but not α3β4-nAChRs. Computational modeling suggested that two amino acids in α7-nAChRs, arginine 208 and glutamate 211, were important for the interaction between Aβ and α7-containing nAChRs. These residues are conserved only in the α7 and α4 subunits. We therefore mutated these amino acids in α7-containing nAChRs to mimic the α3 subunit and found that mutant α7-containing receptors were unable to interact with Aβ. In addition, mutant α3-containing nAChRs mimicking the α7 subunit interact with Aβ. This provides direct molecular evidence for how Aβ selectively interacted with α7- and α4β2-nAChRs, but not α3β4-nAChRs. Selective coactivation of α7- and α4β2-nAChRs also sufficiently reversed Aβ-induced AMPA receptor dysfunction, including Aβ-induced reduction of AMPA receptor phosphorylation and surface expression in hippocampal neurons. Moreover, costimulation of α7- and α4β2-nAChRs reversed the Aβ-induced disruption of long-term potentiation. These findings support a novel mechanism for Aβ's impact on synaptic function in AD, namely, the differential regulation of nAChR subtypes.
Collapse
Affiliation(s)
- Jessica P Roberts
- Molecular, Cellular and Integrative Neurosciences Program, Colorado State University, Fort Collins, Colorado, USA; Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Sarah A Stokoe
- Molecular, Cellular and Integrative Neurosciences Program, Colorado State University, Fort Collins, Colorado, USA; Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Matheus F Sathler
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Robert A Nichols
- Department of Cell and Molecular Biology, University of Hawai'i at Manoa, Honolulu, Hawaii, USA
| | - Seonil Kim
- Molecular, Cellular and Integrative Neurosciences Program, Colorado State University, Fort Collins, Colorado, USA; Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA.
| |
Collapse
|
16
|
Implications of Oligomeric Amyloid-Beta (oAβ 42) Signaling through α7β2-Nicotinic Acetylcholine Receptors (nAChRs) on Basal Forebrain Cholinergic Neuronal Intrinsic Excitability and Cognitive Decline. J Neurosci 2020; 41:555-575. [PMID: 33239400 DOI: 10.1523/jneurosci.0876-20.2020] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 11/03/2020] [Accepted: 11/15/2020] [Indexed: 01/08/2023] Open
Abstract
Neuronal and network-level hyperexcitability is commonly associated with increased levels of amyloid-β (Aβ) and contribute to cognitive deficits associated with Alzheimer's disease (AD). However, the mechanistic complexity underlying the selective loss of basal forebrain cholinergic neurons (BFCNs), a well-recognized characteristic of AD, remains poorly understood. In this study, we tested the hypothesis that the oligomeric form of amyloid-β (oAβ42), interacting with α7-containing nicotinic acetylcholine receptor (nAChR) subtypes, leads to subnucleus-specific alterations in BFCN excitability and impaired cognition. We used single-channel electrophysiology to show that oAβ42 activates both homomeric α7- and heteromeric α7β2-nAChR subtypes while preferentially enhancing α7β2-nAChR open-dwell times. Organotypic slice cultures were prepared from male and female ChAT-EGFP mice, and current-clamp recordings obtained from BFCNs chronically exposed to pathophysiologically relevant level of oAβ42 showed enhanced neuronal intrinsic excitability and action potential firing rates. These resulted from a reduction in action potential afterhyperpolarization and alterations in the maximal rates of voltage change during spike depolarization and repolarization. These effects were observed in BFCNs from the medial septum diagonal band and horizontal diagonal band, but not the nucleus basalis. Last, aged male and female APP/PS1 transgenic mice, genetically null for the β2 nAChR subunit gene, showed improved spatial reference memory compared with APP/PS1 aged-matched littermates. Combined, these data provide a molecular mechanism supporting a role for α7β2-nAChR in mediating the effects of oAβ42 on excitability of specific populations of cholinergic neurons and provide a framework for understanding the role of α7β2-nAChR in oAβ42-induced cognitive decline.
Collapse
|
17
|
Nicotinic Receptor Subunit Distribution in Auditory Cortex: Impact of Aging on Receptor Number and Function. J Neurosci 2020; 40:5724-5739. [PMID: 32541068 DOI: 10.1523/jneurosci.0093-20.2020] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 05/11/2020] [Accepted: 05/27/2020] [Indexed: 01/08/2023] Open
Abstract
The presence of novel or degraded communication sounds likely results in activation of basal forebrain cholinergic neurons increasing release of ACh onto presynaptic and postsynaptic nAChRs in primary auditory cortex (A1). nAChR subtypes include high-affinity heteromeric nAChRs commonly composed of α4 and β2 subunits and low-affinity homomeric nAChRs composed of α7 subunits. In young male FBN rats, we detail the following: (1) the distribution/expression of nAChR subunit transcripts in excitatory (VGluT1) and inhibitory (VGAT) neurons across A1 layers; (2) heteromeric nAChR binding across A1 layers; and (3) nAChR excitability in A1 layer (L) 5 cells. In aged rats, we detailed the impact of aging on A1 nAChR subunit expression across layers, heteromeric nAChR receptor binding, and nAChR excitability of A1 L5 cells. A majority of A1 cells coexpressed transcripts for β2 and α4 with or without α7, while dispersed subpopulations expressed β2 and α7 or α7 alone. nAChR subunit transcripts were expressed in young excitatory and inhibitory neurons across L2-L6. Transcript abundance varied across layers, and was highest for β2 and α4. Significant age-related decreases in nAChR subunit transcript expression (message) and receptor binding (protein) were observed in L2-6, most pronounced in infragranular layers. In vitro patch-clamp recordings from L5B pyramidal output neurons showed age-related nAChR subunit-selective reductions in postsynaptic responses to ACh. Age-related losses of nAChR subunits likely impact ways in which A1 neurons respond to ACh release. While the elderly require additional resources to disambiguate degraded speech codes, resources mediated by nAChRs may be compromised with aging.SIGNIFICANCE STATEMENT When attention is required, cholinergic basal forebrain neurons may trigger increased release of ACh onto auditory neurons in primary auditory cortex (A1). Laminar and phenotypic differences in neuronal nAChR expression determine ways in which A1 neurons respond to release of ACh in challenging acoustic environments. This study detailed the distribution and expression of nAChR subunit transcript and protein across A1 layers in young and aged rats. Results showed a differential distribution of nAChR subunits across A1 layers. Age-related decreases in transcript/protein expression were reflected in age-related subunit specific functional loss of nAChR signaling to ACh application in A1 layer 5. Together, these findings could reflect the age-related decline in selective attention observed in the elderly.
Collapse
|
18
|
Mussina K, Toktarkhanova D, Filchakova O. Nicotinic Acetylcholine Receptors of PC12 Cells. Cell Mol Neurobiol 2020; 41:17-29. [PMID: 32335772 DOI: 10.1007/s10571-020-00846-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 04/09/2020] [Indexed: 12/18/2022]
Abstract
Nicotinic acetylcholine receptors (nAChRs) have gained much attention in the scientific community since they play a significant role in multiple physiological and pathophysiological processes. Multiple approaches to study the receptors exist, with characterization of the receptors' functionality at a single cellular level using cell culturing being one of them. Derived from an adrenal medulla tumor, PC12 cells express nicotinic receptor subunits and form functional nicotinic receptors. Thus, the cells offer a convenient environment to address questions related to the functionality of the receptors. The review summarizes the findings on nicotinic receptors' expression and functions which were conducted using PC12 cells. Specific focus is given to α3-containing receptors as well as α7 receptor. Critical evaluation of findings is provided alongside insights into what can still be learned about nAChRs, using PC12 cells.
Collapse
Affiliation(s)
- Kamilla Mussina
- Biology Department, School of Sciences and Humanities, Nazarbayev University, NurSultan, Republic of Kazakhstan
| | - Dana Toktarkhanova
- Biology Department, School of Sciences and Humanities, Nazarbayev University, NurSultan, Republic of Kazakhstan
| | - Olena Filchakova
- Biology Department, School of Sciences and Humanities, Nazarbayev University, NurSultan, Republic of Kazakhstan.
| |
Collapse
|
19
|
Oliveros-Matus P, Perez-Urrutia N, Alvarez-Ricartes N, Echeverria F, Barreto GE, Elliott J, Iarkov A, Echeverria V. Cotinine Enhances Fear Extinction and Astrocyte Survival by Mechanisms Involving the Nicotinic Acetylcholine Receptors Signaling. Front Pharmacol 2020; 11:303. [PMID: 32300297 PMCID: PMC7142247 DOI: 10.3389/fphar.2020.00303] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 02/28/2020] [Indexed: 01/03/2023] Open
Abstract
Fear memory extinction (FE) is an important therapeutic goal for Posttraumatic stress disorder (PTSD). Cotinine facilitates FE in rodents, in part due to its inhibitory effect on the amygdala by the glutamatergic projections from the medial prefrontal cortex (mPFC). The cellular and behavioral effects of infusing cotinine into the mPFC on FE, astroglia survival, and the expression of bone morphogenetic proteins (BMP) 2 and 8, were assessed in C57BL/6 conditioned male mice. The role of the α4β2- and α7 nicotinic acetylcholine receptors (nAChRs) on cotinine’s actions were also investigated. Cotinine infused into the mPFC enhanced contextual FE and decreased BMP8 expression by a mechanism dependent on the α7nAChRs. In addition, cotinine increased BMP2 expression and prevented the loss of GFAP + astrocytes in a form independent on the α7nAChRs but dependent on the α4β2 nAChRs. This evidence suggests that cotinine exerts its effect on FE by modulating nAChRs signaling in the brain.
Collapse
Affiliation(s)
- Patricia Oliveros-Matus
- Laboratorio de Neurobiología, Facultad de Ciencias de la Salud, Universidad San Sebastián, Concepción, Chile
| | - Nelson Perez-Urrutia
- Laboratorio de Neurobiología, Facultad de Ciencias de la Salud, Universidad San Sebastián, Concepción, Chile
| | - Nathalie Alvarez-Ricartes
- Laboratorio de Neurobiología, Facultad de Ciencias de la Salud, Universidad San Sebastián, Concepción, Chile
| | - Florencia Echeverria
- Laboratorio de Neurobiología, Facultad de Ciencias de la Salud, Universidad San Sebastián, Concepción, Chile
| | - George E Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland.,Health Research Institute, University of Limerick, Limerick, Ireland
| | - James Elliott
- Northern Sydney Local Health District, The Kolling Research Institute and Faculty of Health Sciences, The University of Sydney, St. Leonards, NSW, Australia.,Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Alexandre Iarkov
- Laboratorio de Neurobiología, Facultad de Ciencias de la Salud, Universidad San Sebastián, Concepción, Chile
| | - Valentina Echeverria
- Laboratorio de Neurobiología, Facultad de Ciencias de la Salud, Universidad San Sebastián, Concepción, Chile.,Research and Development Department, Bay Pines VA Healthcare System, Bay Pines, FL, United States
| |
Collapse
|
20
|
Donat CK, Hansen HH, Hansen HD, Mease RC, Horti AG, Pomper MG, L’Estrade ET, Herth MM, Peters D, Knudsen GM, Mikkelsen JD. In Vitro and In Vivo Characterization of Dibenzothiophene Derivatives [ 125I]Iodo-ASEM and [ 18F]ASEM as Radiotracers of Homo- and Heteromeric α7 Nicotinic Acetylcholine Receptors. Molecules 2020; 25:molecules25061425. [PMID: 32245032 PMCID: PMC7144377 DOI: 10.3390/molecules25061425] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/25/2020] [Accepted: 02/27/2020] [Indexed: 12/18/2022] Open
Abstract
The α7 nicotinic acetylcholine receptor (α7 nAChR) is involved in several cognitive and physiologic processes; its expression levels and patterns change in neurologic and psychiatric diseases, such as schizophrenia and Alzheimer’s disease, which makes it a relevant drug target. Development of selective radioligands is important for defining binding properties and occupancy of novel molecules targeting the receptor. We tested the in vitro binding properties of [125I]Iodo-ASEM [(3-(1,4-diazabycyclo[3.2.2]nonan-4-yl)-6-(125I-iododibenzo[b,d]thiopentene 5,5-dioxide)] in the mouse, rat and pig brain using autoradiography. The in vivo binding properties of [18F]ASEM were investigated using positron emission tomography (PET) in the pig brain. [125I]Iodo-ASEM showed specific and displaceable high affinity (~1 nM) binding in mouse, rat, and pig brain. Binding pattern overlapped with [125I]α-bungarotoxin, specific binding was absent in α7 nAChR gene-deficient mice and binding was blocked by a range of α7 nAChR orthosteric modulators in an affinity-dependent order in the pig brain. Interestingly, relative to the wild-type, binding in β2 nAChR gene-deficient mice was lower for [125I]Iodo-ASEM (58% ± 2.7%) than [125I]α-bungarotoxin (23% ± 0.2%), potentially indicating different binding properties to heteromeric α7β2 nAChR. [18F]ASEM PET in the pig showed high brain uptake and reversible tracer kinetics with a similar spatial distribution as previously reported for α7 nAChR. Blocking with SSR-180,711 resulted in a significant decrease in [18F]ASEM binding. Our findings indicate that [125I]Iodo-ASEM allows sensitive and selective imaging of α7 nAChR in vitro, with better signal-to-noise ratio than previous tracers. Preliminary data of [18F]ASEM in the pig brain demonstrated principal suitable kinetic properties for in vivo quantification of α7 nAChR, comparable to previously published data.
Collapse
Affiliation(s)
- Cornelius K. Donat
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, DK-2100 Copenhagen, Denmark; (H.H.H.); (H.D.H.); (E.T.L.); (G.M.K.)
- Department of Brain Sciences, Imperial College London, London W12 0 LS, UK
- Correspondence: (C.K.D.); (J.D.M.); Tel.: +45-40205378 (J.D.M)
| | - Henrik H. Hansen
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, DK-2100 Copenhagen, Denmark; (H.H.H.); (H.D.H.); (E.T.L.); (G.M.K.)
| | - Hanne D. Hansen
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, DK-2100 Copenhagen, Denmark; (H.H.H.); (H.D.H.); (E.T.L.); (G.M.K.)
| | - Ronnie C. Mease
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (R.C.M.); (A.G.H.); (M.G.P.)
| | - Andrew G. Horti
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (R.C.M.); (A.G.H.); (M.G.P.)
| | - Martin G. Pomper
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (R.C.M.); (A.G.H.); (M.G.P.)
| | - Elina T. L’Estrade
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, DK-2100 Copenhagen, Denmark; (H.H.H.); (H.D.H.); (E.T.L.); (G.M.K.)
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 162, 2100 Copenhagen, Denmark;
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Matthias M. Herth
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 162, 2100 Copenhagen, Denmark;
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | | | - Gitte M. Knudsen
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, DK-2100 Copenhagen, Denmark; (H.H.H.); (H.D.H.); (E.T.L.); (G.M.K.)
| | - Jens D. Mikkelsen
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, DK-2100 Copenhagen, Denmark; (H.H.H.); (H.D.H.); (E.T.L.); (G.M.K.)
- Correspondence: (C.K.D.); (J.D.M.); Tel.: +45-40205378 (J.D.M)
| |
Collapse
|
21
|
Sun JL, Stokoe SA, Roberts JP, Sathler MF, Nip KA, Shou J, Ko K, Tsunoda S, Kim S. Co-activation of selective nicotinic acetylcholine receptors is required to reverse beta amyloid-induced Ca 2+ hyperexcitation. Neurobiol Aging 2019; 84:166-177. [PMID: 31629115 DOI: 10.1016/j.neurobiolaging.2019.09.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 08/27/2019] [Accepted: 09/13/2019] [Indexed: 12/20/2022]
Abstract
Beta-amyloid (Aβ) peptide accumulation has long been implicated in the pathogenesis of Alzheimer's disease (AD). Hippocampal network hyperexcitability in the early stages of the disease leads to increased epileptiform activity and eventually cognitive decline. We found that acute application of 250 nM soluble Aβ42 oligomers increased Ca2+ activity in hippocampal neurons in parallel with a significant decrease in activity in Aβ42-treated interneurons. A potential target of Aβ42 is the nicotinic acetylcholine receptor (nAChR). Three major subtypes of nAChRs (α7, α4β2, and α3β4) have been reported in the human hippocampus. Simultaneous inhibition of both α7 and α4β2 nAChRs mimicked the Aβ42 effects on both excitatory and inhibitory neurons. However, inhibition of all 3 subtypes showed the opposite effect. Importantly, simultaneous activation of α7 and α4β2 nAChRs was required to reverse Aβ42-induced neuronal hyperexcitation. We suggest co-activation of α7 and α4β2 nAChRs is required to reverse Aβ42-induced Ca2+ hyperexcitation.
Collapse
Affiliation(s)
- Julianna L Sun
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA; Molecular, Cellular and Integrative Neurosciences Program, Fort Collins, CO, USA
| | - Sarah A Stokoe
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA; Molecular, Cellular and Integrative Neurosciences Program, Fort Collins, CO, USA
| | - Jessica P Roberts
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA; Molecular, Cellular and Integrative Neurosciences Program, Fort Collins, CO, USA
| | - Matheus F Sathler
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Kaila A Nip
- Cellular and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO, USA
| | - Jiayi Shou
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Kaitlyn Ko
- Poudre High School, Fort Collins, CO, USA
| | - Susan Tsunoda
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA; Molecular, Cellular and Integrative Neurosciences Program, Fort Collins, CO, USA
| | - Seonil Kim
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA; Molecular, Cellular and Integrative Neurosciences Program, Fort Collins, CO, USA; Cellular and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
22
|
Rodríguez-Soacha DA, Scheiner M, Decker M. Multi-target-directed-ligands acting as enzyme inhibitors and receptor ligands. Eur J Med Chem 2019; 180:690-706. [PMID: 31401465 DOI: 10.1016/j.ejmech.2019.07.040] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/04/2019] [Accepted: 07/11/2019] [Indexed: 12/20/2022]
Abstract
In this review, we present the latest advances in the field of multi-target-directed ligand (MTDL) design for the treatment of various complex pathologies of multifactorial origin. In particular, latest findings in the field of MTDL design targeting both an enzyme and a receptor are presented for different diseases such as Alzheimer's disease (AD), depression, addiction, glaucoma, non-alcoholic steatohepatitis and pain and inflammation. The ethology of the diseases is briefly described, with special emphasis on how the MTDL can evolve into novel therapies that replace the classic pharmacological dogma "one target one disease". Considering the current needs for therapy adherence improvement, it is exposed as from the medicinal chemistry, different molecular scaffolds are studied. With the use of structure activity relationship studies and molecular optimization, new hybrid molecules are generated with improved biological properties acting at two biologically very distinct targets.
Collapse
Affiliation(s)
- Diego Alejandro Rodríguez-Soacha
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Julius Maximilian University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Matthias Scheiner
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Julius Maximilian University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Michael Decker
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Julius Maximilian University of Würzburg, Am Hubland, 97074, Würzburg, Germany.
| |
Collapse
|
23
|
Almasi A, Zarei M, Raoufi S, Sarihi A, Salehi I, Komaki A, Hashemi-Firouzi N, Shahidi S. Influence of hippocampal GABA B receptor inhibition on memory in rats with acute β-amyloid toxicity. Metab Brain Dis 2018; 33:1859-1867. [PMID: 30039187 DOI: 10.1007/s11011-018-0292-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 07/16/2018] [Indexed: 01/28/2023]
Abstract
The neurotransmitter γ-aminobutyric acid (GABA) is involved in the process of memory. It has been reported that the inhibition of GABAB receptors has beneficial effects on cognition. The aim of this study was to investigate the role of CGP35348 (a GABAB receptor antagonist) on dentate gyrus GABAB receptor inhibition and its effects on learning and memory impairments that had been induced in adult male rats by microinjection of β-amyloid (Aβ). Seventy Wistar male rats were randomly divided into seven groups: control, sham (receiving the Aβ vehicle only), Aβ, Aβ + CGP35348 (1, 10, and 100 μg/μL), and CGP35348 alone (10 μg/μL). Memory impairment was induced by unilateral interventricular microinjection of Aβ (6 μg/6 μL). Rats were cannulated bilaterally in the dentate gyrus, and then, they were treated for 20 consecutive days. Learning and memory were assessed using the novel object recognition and passive avoidance learning tests. The discrimination index and the step-through latency were significantly increased in the Aβ + CGP35348 group in comparison to the Aβ only group (P < 0.05 and P < 0.01, respectively). Data showed that the discrimination index was decreased in the Aβ + CGP35348 group in comparison with the control group (P < 0.05) and sham group (P < 0.01). Moreover, the step-through latency was significantly decreased in the Aβ + CGP35348 group in comparison to the control and sham groups (P < 0.01). Data from this study indicated that intra-hippocampal microinjection of the GABAB receptor antagonist counteracts the learning, memory, and cognitive impairments induced by Aβ. It can be concluded that the GABAB receptor antagonist is a possible therapeutic agent against the progression of acute Aβ toxicity-induced memory impairment.
Collapse
Affiliation(s)
- Azam Almasi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Zarei
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Safoura Raoufi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Abdolrahman Sarihi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Iraj Salehi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | - Siamak Shahidi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
24
|
López JJ, García-Colunga J, Pérez EG, Fierro A. Methylpiperidinium Iodides as Novel Antagonists for α7 Nicotinic Acetylcholine Receptors. Front Pharmacol 2018; 9:744. [PMID: 30042682 PMCID: PMC6048275 DOI: 10.3389/fphar.2018.00744] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 06/19/2018] [Indexed: 11/17/2022] Open
Abstract
The α7 nicotinic acetylcholine receptor (nAChR) is expressed in neuronal and non-neuronal cells and is involved in several physiopathological processes, and is thus an important drug target. We have designed and synthesized novel piperidine derivatives as α7 nAChR antagonists. Thus, we describe here a new series of 1-[2-(4-alkoxy-phenoxy-ethyl)]piperidines and 1-[2-(4-alkyloxy-phenoxy-ethyl)]-1-methylpiperidinium iodides (compounds 11a-11c and 12a-12c), and their actions on α7 nAChRs. The pharmacological activity of these compounds was studied in rat CA1 hippocampal interneurons by using the whole-cell voltage-clamp technique. Inhibition of the choline-induced current was less for 11a-11c than for the methylpiperidinium iodides 12a-12c and depended on the length of the aliphatic chain. Those compounds showing strong effects were studied further using molecular docking and molecular dynamics simulations. The strongest and non-voltage dependent antagonism was shown by 12a, which could establish cation–π interactions with the principal (+)-side and van der Waals interactions with the complementary (-)-side in the α7 nAChRs. Furthermore, compound 11a forms hydrogen bonds with residue Q115 of the complementary (-)-side through water molecules without forming cation–π interactions. Our findings have led to the establishment of a new family of antagonists that interact with the agonist binding cavity of the α7 nAChR, which represent a promising new class of compounds for the treatment of pathologies where these receptors need to be negatively modulated, including neuropsychiatric disorders as well as different types of cancer.
Collapse
Affiliation(s)
- Jhon J López
- Department of Chemistry, Faculty of Sciences, University of Chile, Santiago, Chile
| | - Jesús García-Colunga
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Edwin G Pérez
- Department of Organic Chemistry, Faculty of Chemistry, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Angélica Fierro
- Department of Organic Chemistry, Faculty of Chemistry, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
25
|
Nielsen BE, Minguez T, Bermudez I, Bouzat C. Molecular function of the novel α7β2 nicotinic receptor. Cell Mol Life Sci 2018; 75:2457-2471. [PMID: 29313059 PMCID: PMC11105712 DOI: 10.1007/s00018-017-2741-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 11/30/2017] [Accepted: 12/27/2017] [Indexed: 01/03/2023]
Abstract
The α7 nicotinic receptor is a promising drug target for neurological and inflammatory disorders. Although it is the homomeric member of the family, a novel α7β2 heteromeric receptor has been discovered. To decipher the functional contribution of the β2 subunit, we generated heteromeric receptors with fixed stoichiometry by two different approaches comprising concatenated and unlinked subunits. Receptors containing up to three β2 subunits are functional. As the number of β2 subunits increases in the pentameric arrangement, the durations of channel openings and activation episodes increase progressively probably due to decreased desensitization. The prolonged activation episodes conform the kinetic signature of α7β2 and may have an impact on neuronal excitability. For activation of α7β2 receptors, an α7/α7 binding-site interface is required, thus indicating that the three β2 subunits are located consecutively in the pentameric arrangement. α7-positive allosteric modulators (PAMs) are emerging as novel therapeutic drugs. The presence of β2 in the pentamer affects neither type II PAM potentiation nor activation by an allosteric agonist whereas it impairs type I PAM potentiation. This first single-channel study provides fundamental basis required to decipher the role and function of the novel α7β2 receptor and opens doors to develop selective therapeutic drugs.
Collapse
Affiliation(s)
- Beatriz E Nielsen
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (UNS-CONICET), 8000, Bahía Blanca, Argentina
| | - Teresa Minguez
- Department of Medical and Biological Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Isabel Bermudez
- Department of Medical and Biological Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Cecilia Bouzat
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (UNS-CONICET), 8000, Bahía Blanca, Argentina.
| |
Collapse
|
26
|
Arias HR, Vázquez-Gómez E, Hernández-Abrego A, Gallino S, Feuerbach D, Ortells MO, Elgoyhen AB, García-Colunga J. Tricyclic antidepressants inhibit hippocampal α7* and α9α10 nicotinic acetylcholine receptors by different mechanisms. Int J Biochem Cell Biol 2018; 100:1-10. [PMID: 29704625 DOI: 10.1016/j.biocel.2018.04.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/19/2018] [Accepted: 04/20/2018] [Indexed: 12/31/2022]
Abstract
The activity of tricyclic antidepressants (TCAs) at α7 and α9α10 nicotinic acetylcholine receptors (AChRs) as well as at hippocampal α7-containing (i.e., α7*) AChRs is determined by using Ca2+ influx and electrophysiological recordings. To determine the inhibitory mechanisms, additional functional tests and molecular docking experiments are performed. The results established that TCAs (a) inhibit Ca2+ influx in GH3-α7 cells with the following potency (IC50 in μM) rank: amitriptyline (2.7 ± 0.3) > doxepin (5.9 ± 1.1) ∼ imipramine (6.6 ± 1.0). Interestingly, imipramine inhibits hippocampal α7* AChRs (42.2 ± 8.5 μM) in a noncompetitive and voltage-dependent manner, whereas it inhibits α9α10 AChRs (0.53 ± 0.05 μM) in a competitive and voltage-independent manner, and (b) inhibit [3H]imipramine binding to resting α7 AChRs with the following affinity rank (IC50 in μM): imipramine (1.6 ± 0.2) > amitriptyline (2.4 ± 0.3) > doxepin (4.9 ± 0.6), whereas imipramine's affinity was no significantly different to that for the desensitized state. The molecular docking and functional results support the notion that imipramine noncompetitively inhibits α7 AChRs by interacting with two overlapping luminal sites, whereas it competitively inhibits α9α10 AChRs by interacting with the orthosteric sites. Collectively our data indicate that TCAs inhibit α7, α9α10, and hippocampal α7* AChRs at clinically relevant concentrations and by different mechanisms of action.
Collapse
Affiliation(s)
- Hugo R Arias
- Department of Basic Sciences, California Northstate University College of Medicine, Elk Grove, CA, USA.
| | - Elizabeth Vázquez-Gómez
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Andy Hernández-Abrego
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Sofía Gallino
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Héctor N. Torres, CONICET, Facultad de Medicina, Universidad de Buenos Aires, Argentina
| | | | - Marcelo O Ortells
- Facultad de Medicina, Universidad de Morón, Morón, CONICET, Argentina
| | - Ana Belén Elgoyhen
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Héctor N. Torres, CONICET, Facultad de Medicina, Universidad de Buenos Aires, Argentina; Instituto de Farmacología, Facultad de Medicina, Universidad de Buenos Aires, Argentina
| | - Jesús García-Colunga
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| |
Collapse
|
27
|
Designing selective modulators for the nicotinic receptor subtypes: challenges and opportunities. Future Med Chem 2018; 10:433-459. [PMID: 29451400 DOI: 10.4155/fmc-2017-0169] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Nicotinic receptors are membrane proteins involved in several physiological processes. They are considered suitable drug targets for various CNS disorders or conditions, as shown by the large number of compounds which have entered clinical trials. In recent years, nonconventional agonists have been discovered: positive allosteric modulators, allosteric agonists, site-specific agonists and silent desensitizers are compounds able to modulate the receptor interacting at sites different from the orthodox one, or to desensitize the receptor without prior opening. While these new findings can further complicate the pharmacology of these proteins and the design and optimization of ligands, they undoubtedly offer new opportunities to find drugs for the many therapeutic indications involving nicotinic receptors.
Collapse
|
28
|
Hernández-Abrego A, Vázquez-Gómez E, García-Colunga J. Effects of the antidepressant mirtazapine and zinc on nicotinic acetylcholine receptors. Neurosci Lett 2017; 665:246-251. [PMID: 29225093 DOI: 10.1016/j.neulet.2017.12.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 11/29/2017] [Accepted: 12/06/2017] [Indexed: 12/23/2022]
Abstract
Nicotinic acetylcholine receptors (nAChRs) and zinc are associated with regulation of mood and related disorders. In addition, several antidepressants inhibit muscle and neuronal nAChRs and zinc potentiates inhibitory actions of them. Moreover, mirtazapine (a noradrenergic, serotonergic and histaminergic antidepressant) inhibits muscarinic AChRs and its effects on nAChRs are unknown. Therefore, we studied the modulation of muscle α1β1γd nAChRs expressed in oocytes and native α7-containing nAChRs in hippocampal interneurons by mirtazapine and/or zinc, using voltage-clamp techniques. The currents elicited by ACh in oocytes (at -60 mV) were similarly inhibited by mirtazapine in the absence and presence of 100 μM zinc (IC50 ∼15 μM); however, the ACh-induced currents were stronger inhibited with 20 and 50 μM mirtazapine in the presence of zinc. Furthermore, the potentiation of ACh-induced current by zinc in the presence of 5 μM mirtazapine was 1.48 ± 0.06, and with 50 μM mirtazapine zinc potentiation did not occur. Interestingly, in stratum radiatum interneurons (at -70 mV), 20 μM mirtazapine showed less inhibition of the current elicited by choline (Ch) than at 10 μM (0.81 ± 0.02 and 0.74 ± 0.02 of the Ch-induced current, respectively). Finally, the inhibitory effects of mirtazapine depended on membrane potential: 0.81 ± 0.02 and 0.56 ± 0.05 of the control Ch-induced current at -70 and -20 mV, respectively. These results indicate that mirtazapine interacts with muscle and neuronal nAChRs, possibly into the ion channel; that zinc may increase the sensitivity of nAChRs to mirtazapine; and that mirtazapine decreases the sensitivity of nAChRs to zinc.
Collapse
Affiliation(s)
- Andy Hernández-Abrego
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Boulevard Juriquilla 3001, Juriquilla, Querétaro 76230, México
| | - Elizabeth Vázquez-Gómez
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Boulevard Juriquilla 3001, Juriquilla, Querétaro 76230, México
| | - Jesús García-Colunga
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Boulevard Juriquilla 3001, Juriquilla, Querétaro 76230, México.
| |
Collapse
|
29
|
α-Conotoxins to explore the molecular, physiological and pathophysiological functions of neuronal nicotinic acetylcholine receptors. Neurosci Lett 2017; 679:24-34. [PMID: 29199094 DOI: 10.1016/j.neulet.2017.11.063] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/28/2017] [Accepted: 11/29/2017] [Indexed: 12/22/2022]
Abstract
The vast diversity of neuronal nicotinic acetylcholine subunits expressed in the central and peripheral nervous systems, as well as in non-neuronal tissues, constitutes a formidable challenge for researchers and clinicians to decipher the role of particular subtypes, including complex subunit associations, in physiological and pathophysiological functions. Many natural products target the nAChRs, but there is no richer source of nicotinic ligands than the venom of predatory gastropods known as cone snails. Indeed, every single species of cone snail was shown to produce at least one type of such α-conotoxins. These tiny peptides (10-25 amino acids), constrained by disulfide bridges, proved to be unvaluable tools to investigate the structure and function of nAChRs, some of them having also therapeutic potential. In this review, we provide a recent update on the pharmacology and subtype specificity of several major α-conotoxins.
Collapse
|
30
|
Meng LS, Li B, Li DN, Wang YH, Lin Y, Meng XJ, Sun XY, Liu N. Cyanidin-3-O-glucoside attenuates amyloid-beta (1–40)-induced oxidative stress and apoptosis in SH-SY5Y cells through a Nrf2 mechanism. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.09.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
31
|
Hone AJ, McIntosh JM. Nicotinic acetylcholine receptors in neuropathic and inflammatory pain. FEBS Lett 2017; 592:1045-1062. [PMID: 29030971 DOI: 10.1002/1873-3468.12884] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 09/22/2017] [Accepted: 10/05/2017] [Indexed: 01/11/2023]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are actively being investigated as therapeutic targets for the treatment of pain and inflammation, but despite more than 30 years of research, there are currently no FDA-approved analgesics that are specific for these receptors. Much of the initial research effort focused on the α4β2 nAChR subtype, but more recently, additional subtypes have been identified as promising new leads and include α6β4, α7, and α9-containing nAChRs. This Review will focus on the distribution of these nAChRs in the cell types involved in neuropathic pain and inflammation and the activity of currently available nicotinic ligands.
Collapse
Affiliation(s)
- Arik J Hone
- Department of Biology, University of Utah, Salt Lake City, UT, USA
| | - J Michael McIntosh
- Department of Biology, University of Utah, Salt Lake City, UT, USA.,Department of Psychiatry, University of Utah, Salt Lake City, UT, USA.,George E. Whalen Veterans Affairs Medical Center, Salt Lake City, UT, USA
| |
Collapse
|
32
|
Callahan PM, Bertrand D, Bertrand S, Plagenhoef MR, Terry AV. Tropisetron sensitizes α7 containing nicotinic receptors to low levels of acetylcholine in vitro and improves memory-related task performance in young and aged animals. Neuropharmacology 2017; 117:422-433. [PMID: 28259598 DOI: 10.1016/j.neuropharm.2017.02.025] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 02/06/2017] [Accepted: 02/25/2017] [Indexed: 01/02/2023]
Abstract
Tropisetron, a 5-HT3 receptor antagonist commonly prescribed for chemotherapy-induced nausea and vomiting also exhibits high affinity, partial agonist activity at α7 nicotinic acetylcholine receptors (α7 nAChRs). α7 nAChRs are considered viable therapeutic targets for neuropsychiatric disorders such as Alzheimer's disease (AD). Here we further explored the nAChR pharmacology of tropisetron to include the homomeric α7 nAChR and recently characterized heteromeric α7β2 nAChR (1:10 ratio) and we evaluated its cognitive effects in young and aged animals. Electrophysiological studies on human nAChRs expressed in Xenopus oocytes confirmed the partial agonist activity of tropisetron at α7 nAChRs (EC50 ∼2.4 μM) with a similar effect at α7β2 nAChRs (EC50 ∼1.5 μM). Moreover, currents evoked by irregular pulses of acetylcholine (40 μM) at α7 and α7β2 nAChRs were enhanced during sustained exposure to low concentrations of tropisetron (10 and 30 nM) indicative of a "priming" or co-agonist effect. Tropisetron (0.1-10 mg/kg) improved novel object recognition performance in young Sprague-Dawley rats and in aged Fischer rats. In aged male and female rhesus monkeys, tropisetron (0.03-1 mg/kg) produced a 17% increase from baseline levels in delayed match to sample long delay accuracy while combination of non-effective doses of donepezil (0.1 mg/kg) and tropisetron (0.03 and 0.1 mg/kg) produced a 24% change in accuracy. Collectively, these animal experiments indicate that tropisetron enhances cognition and has the ability to improve the effective dose range of currently prescribed AD therapy (donepezil). Moreover, these effects may be explained by tropisetron's ability to sensitize α7 containing nAChRs to low levels of acetylcholine.
Collapse
Affiliation(s)
- Patrick M Callahan
- Department of Pharmacology and Toxicology, Augusta University, Augusta, GA 30912, United States.
| | - Daniel Bertrand
- HiQScreen Sàrl, 6, rte de Compois, 1222 Vésenaz, Geneva, Switzerland
| | - Sonia Bertrand
- HiQScreen Sàrl, 6, rte de Compois, 1222 Vésenaz, Geneva, Switzerland
| | - Marc R Plagenhoef
- Department of Pharmacology and Toxicology, Augusta University, Augusta, GA 30912, United States
| | - Alvin V Terry
- Department of Pharmacology and Toxicology, Augusta University, Augusta, GA 30912, United States
| |
Collapse
|
33
|
Lombardo S, Catteau J, Besson M, Maskos U. A role for β2* nicotinic receptors in a model of local amyloid pathology induced in dentate gyrus. Neurobiol Aging 2016; 46:221-34. [DOI: 10.1016/j.neurobiolaging.2016.06.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 05/22/2016] [Accepted: 06/09/2016] [Indexed: 12/22/2022]
|
34
|
Ahmad W, Ebert PR. Metformin Attenuates Aβ Pathology Mediated Through Levamisole Sensitive Nicotinic Acetylcholine Receptors in a C. elegans Model of Alzheimer's Disease. Mol Neurobiol 2016; 54:5427-5439. [PMID: 27596506 DOI: 10.1007/s12035-016-0085-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 08/24/2016] [Indexed: 12/22/2022]
Abstract
The metabolic disease, type 2 diabetes mellitus (T2DM), is a major risk factor for Alzheimer's disease (AD). This suggests that drugs such as metformin that are used to treat T2DM may also be therapeutic toward AD and indicates an interaction between AD and energy metabolism. In this study, we have investigated the effects of metformin and another T2DM drug, 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) in C. elegans expressing human Aβ42. We found that Aβ expressed in muscle inhibited levamisole sensitive nicotinic acetylcholine receptors and that metformin delayed Aβ-linked paralysis and improved acetylcholine neurotransmission in these animals. Metformin also moderated the effect of neuronal expression of Aβ: decreasing hypersensitivity to serotonin, restoring normal chemotaxis, and improving fecundity. Metformin was unable to overcome the small effect of neuronal Aβ on egg viability. The protective effects of metformin were associated with a decrease in the amount of toxic, oligomeric Aβ. AICAR has a similar protective effect against Aβ toxicity. This work supports the notion that anti-diabetes drugs and metabolic modulators may be effective against AD and that the worm model can be used to identify the specific interactions between Aβ and cellular proteins.
Collapse
Affiliation(s)
- Waqar Ahmad
- School of Biological Sciences, The University of Queensland, Brisbane, 4072, Australia
| | - Paul R Ebert
- School of Biological Sciences, The University of Queensland, Brisbane, 4072, Australia.
| |
Collapse
|
35
|
Chung BYT, Bignell W, Jacklin DL, Winters BD, Bailey CDC. Postsynaptic nicotinic acetylcholine receptors facilitate excitation of developing CA1 pyramidal neurons. J Neurophysiol 2016; 116:2043-2055. [PMID: 27489367 DOI: 10.1152/jn.00370.2016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 08/01/2016] [Indexed: 11/22/2022] Open
Abstract
The hippocampus plays a key role in learning and memory. The normal development and mature function of hippocampal networks supporting these cognitive functions depends on afferent cholinergic neurotransmission mediated by nicotinic acetylcholine receptors. Whereas it is well-established that nicotinic receptors are present on GABAergic interneurons and on glutamatergic presynaptic terminals within the hippocampus, the ability of these receptors to mediate postsynaptic signaling in pyramidal neurons is not well understood. We use whole cell electrophysiology to show that heteromeric nicotinic receptors mediate direct inward currents, depolarization from rest and enhanced excitability in hippocampus CA1 pyramidal neurons of male mice. Measurements made throughout postnatal development provide a thorough developmental profile for these heteromeric nicotinic responses, which are greatest during the first 2 wk of postnatal life and decrease to low adult levels shortly thereafter. Pharmacological experiments show that responses are blocked by a competitive antagonist of α4β2* nicotinic receptors and augmented by a positive allosteric modulator of α5 subunit-containing receptors, which is consistent with expression studies suggesting the presence of α4β2 and α4β2α5 nicotinic receptors within the developing CA1 pyramidal cell layer. These findings demonstrate that functional heteromeric nicotinic receptors are present on CA1 pyramidal neurons during a period of major hippocampal development, placing these receptors in a prime position to play an important role in the establishment of hippocampal cognitive networks.
Collapse
Affiliation(s)
- Beryl Y T Chung
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada; and
| | - Warren Bignell
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada; and
| | - Derek L Jacklin
- Department of Psychology, College of Social and Applied Human Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Boyer D Winters
- Department of Psychology, College of Social and Applied Human Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Craig D C Bailey
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada; and
| |
Collapse
|
36
|
Kalkman HO, Feuerbach D. Modulatory effects of α7 nAChRs on the immune system and its relevance for CNS disorders. Cell Mol Life Sci 2016; 73:2511-30. [PMID: 26979166 PMCID: PMC4894934 DOI: 10.1007/s00018-016-2175-4] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 02/25/2016] [Accepted: 03/01/2016] [Indexed: 02/08/2023]
Abstract
The clinical development of selective alpha-7 nicotinic acetylcholine receptor (α7 nAChR) agonists has hitherto been focused on disorders characterized by cognitive deficits (e.g., Alzheimer's disease, schizophrenia). However, α7 nAChRs are also widely expressed by cells of the immune system and by cells with a secondary role in pathogen defense. Activation of α7 nAChRs leads to an anti-inflammatory effect. Since sterile inflammation is a frequently observed phenomenon in both psychiatric disorders (e.g., schizophrenia, melancholic and bipolar depression) and neurological disorders (e.g., Alzheimer's disease, Parkinson's disease, and multiple sclerosis), α7 nAChR agonists might show beneficial effects in these central nervous system disorders. In the current review, we summarize information on receptor expression, the intracellular signaling pathways they modulate and reasons for receptor dysfunction. Information from tobacco smoking, vagus nerve stimulation, and cholinesterase inhibition is used to evaluate the therapeutic potential of selective α7 nAChR agonists in these inflammation-related disorders.
Collapse
Affiliation(s)
- Hans O Kalkman
- Neuroscience Research, NIBR, Fabrikstrasse 22-3.001.02, 4002, Basel, Switzerland.
- , Gänsbühlgartenweg 7, 4132, Muttenz, Switzerland.
| | - Dominik Feuerbach
- Neuroscience Research, NIBR, Fabrikstrasse 22-3.001.02, 4002, Basel, Switzerland
| |
Collapse
|
37
|
Yan R, Fan Q, Zhou J, Vassar R. Inhibiting BACE1 to reverse synaptic dysfunctions in Alzheimer's disease. Neurosci Biobehav Rev 2016; 65:326-40. [PMID: 27044452 PMCID: PMC4856578 DOI: 10.1016/j.neubiorev.2016.03.025] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 03/25/2016] [Accepted: 03/29/2016] [Indexed: 12/21/2022]
Abstract
Over the past two decades, many studies have identified significant contributions of toxic β-amyloid peptides (Aβ) to the etiology of Alzheimer's disease (AD), which is the most common age-dependent neurodegenerative disease. AD is also recognized as a disease of synaptic failure. Aβ, generated by sequential proteolytic cleavages of amyloid precursor protein (APP) by BACE1 and γ-secretase, is one of major culprits that cause this failure. In this review, we summarize current findings on how BACE1-cleaved APP products impact learning and memory through proteins localized on glutamatergic, GABAergic, and dopaminergic synapses. Considering the broad effects of Aβ on all three types of synapses, BACE1 inhibition emerges as a practical approach for ameliorating Aβ-mediated synaptic dysfunctions. Since BACE1 inhibitory drugs are currently in clinical trials, this review also discusses potential complications arising from BACE1 inhibition. We emphasize that the benefits of BACE1 inhibitory drugs will outweigh the concerns.
Collapse
Affiliation(s)
- Riqiang Yan
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| | - Qingyuan Fan
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - John Zhou
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Robert Vassar
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| |
Collapse
|
38
|
Wu J, Liu Q, Tang P, Mikkelsen JD, Shen J, Whiteaker P, Yakel JL. Heteromeric α7β2 Nicotinic Acetylcholine Receptors in the Brain. Trends Pharmacol Sci 2016; 37:562-574. [PMID: 27179601 DOI: 10.1016/j.tips.2016.03.005] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 03/27/2016] [Accepted: 03/30/2016] [Indexed: 10/21/2022]
Abstract
The α7 nicotinic acetylcholine receptor (α7 nAChR) is highly expressed in the brain, where it maintains various neuronal functions including (but not limited to) learning and memory. In addition, the protein expression levels of α7 nAChRs are altered in various brain disorders. The classic rule governing α7 nAChR assembly in the mammalian brain was that it was assembled from five α7 subunits to form a homomeric receptor pentamer. However, emerging evidence demonstrates the presence of heteromeric α7 nAChRs in heterologously expressed systems and naturally in brain neurons, where α7 subunits are co-assembled with β2 subunits to form a novel type of α7β2 nAChR. Interestingly, the α7β2 nAChR exhibits distinctive function and pharmacology from traditional homomeric α7 nAChRs. We review recent advances in probing the distribution, function, pharmacology, pathophysiology, and stoichiometry of the heteromeric α7β2 nAChR, which have provided new insights into the understanding of a novel target of cholinergic signaling.
Collapse
Affiliation(s)
- Jie Wu
- Department of Physiology, Shantou University Medicine College, Shantou, Guangdong, China; Divisions of Neurology and Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ 85013-4496, USA.
| | - Qiang Liu
- Divisions of Neurology and Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ 85013-4496, USA
| | - Pei Tang
- Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Jens D Mikkelsen
- Neurobiology Research Unit, University Hospital Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Jianxin Shen
- Department of Physiology, Shantou University Medicine College, Shantou, Guangdong, China
| | - Paul Whiteaker
- Divisions of Neurology and Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ 85013-4496, USA
| | - Jerrel L Yakel
- Neurobiology Laboratory, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH)/DHHS, Research Triangle Park, North Carolina 27709, USA
| |
Collapse
|
39
|
Corradi J, Bouzat C. Understanding the Bases of Function and Modulation of α7 Nicotinic Receptors: Implications for Drug Discovery. Mol Pharmacol 2016; 90:288-99. [PMID: 27190210 DOI: 10.1124/mol.116.104240] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 05/05/2016] [Indexed: 01/01/2023] Open
Abstract
The nicotinic acetylcholine receptor (nAChR) belongs to a superfamily of pentameric ligand-gated ion channels involved in many physiologic and pathologic processes. Among nAChRs, receptors comprising the α7 subunit are unique because of their high Ca(2+) permeability and fast desensitization. nAChR agonists elicit a transient ion flux response that is further sustained by the release of calcium from intracellular sources. Owing to the dual ionotropic/metabotropic nature of α7 receptors, signaling pathways are activated. The α7 subunit is highly expressed in the nervous system, mostly in regions implicated in cognition and memory and has therefore attracted attention as a novel drug target. Additionally, its dysfunction is associated with several neuropsychiatric and neurologic disorders, such as schizophrenia and Alzheimer's disease. α7 is also expressed in non-neuronal cells, particularly immune cells, where it plays a role in immunity, inflammation, and neuroprotection. Thus, α7 potentiation has emerged as a therapeutic strategy for several neurologic and inflammatory disorders. With unique activation properties, the receptor is a sensitive drug target carrying different potential binding sites for chemical modulators, particularly agonists and positive allosteric modulators. Although macroscopic and single-channel recordings have provided significant information about the underlying molecular mechanisms and binding sites of modulatory compounds, we know just the tip of the iceberg. Further concerted efforts are necessary to effectively exploit α7 as a drug target for each pathologic situation. In this article, we focus mainly on the molecular basis of activation and drug modulation of α7, key pillars for rational drug design.
Collapse
Affiliation(s)
- Jeremías Corradi
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Universidad Nacional del Sur, CONICET/UNS, Bahía Blanca, Argentina
| | - Cecilia Bouzat
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Universidad Nacional del Sur, CONICET/UNS, Bahía Blanca, Argentina
| |
Collapse
|
40
|
Freund RK, Gibson ES, Potter H, Dell'Acqua ML. Inhibition of the Motor Protein Eg5/Kinesin-5 in Amyloid β-Mediated Impairment of Hippocampal Long-Term Potentiation and Dendritic Spine Loss. Mol Pharmacol 2016; 89:552-9. [PMID: 26957206 DOI: 10.1124/mol.115.103085] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 03/07/2016] [Indexed: 01/09/2023] Open
Abstract
Alzheimer's disease (AD) is characterized by neurofibrillary tangles, amyloid plaques, and neurodegeneration. However, this pathology is preceded by increased soluble amyloid beta (Aβ) 1-42 oligomers that interfere with the glutamatergic synaptic plasticity required for learning and memory, includingN-methyl-d-aspartate receptor (NMDAR)-dependent long-term potentiation (LTP). In particular, soluble Aβ(1-42) acutely inhibits LTP and chronically causes synapse loss. Many mechanisms have been proposed for Aβ-induced synaptic dysfunction, but we recently found that Aβ(1-42) inhibits the microtubule motor protein Eg5/kinesin-5. Here we compared the impacts of Aβ(1-42) and monastrol, a small-molecule Eg5 inhibitor, on LTP in hippocampal slices and synapse loss in neuronal cultures. Acute (20-minute) treatment with monastrol, like Aβ, completely inhibited LTP at doses >100 nM. In addition, 1 nM Aβ(1-42) or 50 nM monastrol inhibited LTP #x223c;50%, and when applied together caused complete LTP inhibition. At concentrations that impaired LTP, neither Aβ(1-42) nor monastrol inhibited NMDAR synaptic responses until #x223c;60 minutes, when only #x223c;25% inhibition was seen for monastrol, indicating that NMDAR inhibition was not responsible for LTP inhibition by either agent when applied for only 20 minutes. Finally, 48 hours of treatment with either 0.5-1.0μM Aβ(1-42) or 1-5μM monastrol reduced the dendritic spine/synapse density in hippocampal cultures up to a maximum of #x223c;40%, and when applied together at maximal concentrations, no additional spine loss resulted. Thus, monastrol can mimic and in some cases occlude the impact of Aβon LTP and synapse loss, suggesting that Aβinduces acute and chronic synaptic dysfunction in part through inhibiting Eg5.
Collapse
Affiliation(s)
- Ronald K Freund
- Department of Pharmacology (R.K.F., E.S.G., M.L.D.'A.), and Department Neurology (H.P.), School of Medicine, and Linda Crnic Institute for Down Syndrome (M.L.D.'A., H.P.), Anschutz Medical Campus, University of Colorado, Aurora, Colorado
| | - Emily S Gibson
- Department of Pharmacology (R.K.F., E.S.G., M.L.D.'A.), and Department Neurology (H.P.), School of Medicine, and Linda Crnic Institute for Down Syndrome (M.L.D.'A., H.P.), Anschutz Medical Campus, University of Colorado, Aurora, Colorado
| | - Huntington Potter
- Department of Pharmacology (R.K.F., E.S.G., M.L.D.'A.), and Department Neurology (H.P.), School of Medicine, and Linda Crnic Institute for Down Syndrome (M.L.D.'A., H.P.), Anschutz Medical Campus, University of Colorado, Aurora, Colorado
| | - Mark L Dell'Acqua
- Department of Pharmacology (R.K.F., E.S.G., M.L.D.'A.), and Department Neurology (H.P.), School of Medicine, and Linda Crnic Institute for Down Syndrome (M.L.D.'A., H.P.), Anschutz Medical Campus, University of Colorado, Aurora, Colorado
| |
Collapse
|
41
|
Shahsavar A, Gajhede M, Kastrup JS, Balle T. Structural Studies of Nicotinic Acetylcholine Receptors: Using Acetylcholine-Binding Protein as a Structural Surrogate. Basic Clin Pharmacol Toxicol 2016; 118:399-407. [DOI: 10.1111/bcpt.12528] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 11/02/2015] [Indexed: 01/09/2023]
Affiliation(s)
- Azadeh Shahsavar
- Department of Molecular Biology and Genetics; Danish Research Institute of Translational Neuroscience - DANDRITE; Aarhus University; Aarhus Denmark
- Department of Drug Design and Pharmacology; Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
| | - Michael Gajhede
- Department of Drug Design and Pharmacology; Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
| | - Jette S. Kastrup
- Department of Drug Design and Pharmacology; Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
| | - Thomas Balle
- Faculty of Pharmacy; The University of Sydney; Sydney NSW Australia
| |
Collapse
|
42
|
López JJ, Pérez EG, García-Colunga J. Dual effects of a 2-benzylquinuclidinium derivative on α7-containing nicotinic acetylcholine receptors in rat hippocampal interneurons. Neurosci Lett 2015; 607:35-39. [PMID: 26384784 DOI: 10.1016/j.neulet.2015.09.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 09/09/2015] [Accepted: 09/14/2015] [Indexed: 11/18/2022]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are widely distributed in the brain. Particularly α7-containing nAChRs, associated with several physiological roles and pathologies, are one of the most abundant. Here, we studied 2-(4-hexyloxybenzyl)-1-methylquinuclidin-1-ium iodide (designated as 8d), on ion currents elicited by choline, ICh, (Ch, a selective agonist for α7-containing nAChRs), recorded in interneurons from the stratum radiatum of the rat hippocampal CA1 region by using the whole-cell voltage-clamp technique. The 8d-concentration/Ch-response relationship exhibited high and low inhibitory affinities for α7-containing nAChRs, with IC50 values of 0.59 and 6.80 μM, respectively. Interestingly, 8d in a range of 3-10 μM exerted opposite effects: a short early potentiation and a long late inhibition of the ICh; and 8d alone elicited a non-decaying inward current. Furthermore, potentiation and inhibition of the ICh by 8d depended on the membrane potential, both being stronger at -20 than at -70 mV; indicating that 8d interacts with at least two sites into the ion channel/receptor complex: one for potentiating and another for inhibiting the α7-containing nAChRs. These results suggest that 8d may act as agonist, antagonist and positive modulator of α7-containing nAChRs in hippocampal interneurons.
Collapse
Affiliation(s)
- Jhon J López
- Department of Organic Chemistry, Faculty of Chemistry, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Casilla 306, Correo 22, Santiago, Chile
| | - Edwin G Pérez
- Department of Organic Chemistry, Faculty of Chemistry, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Casilla 306, Correo 22, Santiago, Chile.
| | - Jesús García-Colunga
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Boulevard Juriquilla 3001, Querétaro 76230, Mexico.
| |
Collapse
|
43
|
Bertrand D, Lee CHL, Flood D, Marger F, Donnelly-Roberts D. Therapeutic Potential of α7 Nicotinic Acetylcholine Receptors. Pharmacol Rev 2015; 67:1025-73. [DOI: 10.1124/pr.113.008581] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
44
|
Abe H, Tanaka T, Kimura M, Mizukami S, Saito F, Imatanaka N, Akahori Y, Yoshida T, Shibutani M. Cuprizone decreases intermediate and late-stage progenitor cells in hippocampal neurogenesis of rats in a framework of 28-day oral dose toxicity study. Toxicol Appl Pharmacol 2015; 287:210-21. [DOI: 10.1016/j.taap.2015.06.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 05/31/2015] [Accepted: 06/04/2015] [Indexed: 12/20/2022]
|
45
|
Hone AJ, McIntosh JM, Azam L, Lindstrom J, Lucero L, Whiteaker P, Passas J, Blázquez J, Albillos A. α-Conotoxins Identify the α3β4* Subtype as the Predominant Nicotinic Acetylcholine Receptor Expressed in Human Adrenal Chromaffin Cells. Mol Pharmacol 2015; 88:881-93. [PMID: 26330550 DOI: 10.1124/mol.115.100982] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 08/31/2015] [Indexed: 01/17/2023] Open
Abstract
Ligands that selectively inhibit human α3β2 and α6β2 nicotinic acetylcholine receptor (nAChRs) and not the closely related α3β4 and α6β4 subtypes are lacking. Current α-conotoxins (α-Ctxs) that discriminate among these nAChR subtypes in rat fail to discriminate among the human receptor homologs. In this study, we describe the development of α-Ctx LvIA(N9R,V10A) that is 3000-fold more potent on oocyte-expressed human α3β2 than α3β4 and 165-fold more potent on human α6/α3β2β3 than α6/α3β4 nAChRs. This analog was used in conjuction with three other α-Ctx analogs and patch-clamp electrophysiology to characterize the nAChR subtypes expressed by human adrenal chromaffin cells. LvIA(N9R,V10A) showed little effect on the acetylcholine-evoked currents in these cells at concentrations expected to inhibit nAChRs with β2 ligand-binding sites. In contrast, the β4-selective α-Ctx BuIA(T5A,P6O) inhibited >98% of the acetylcholine-evoked current, indicating that most of the heteromeric receptors contained β4 ligand-binding sites. Additional studies using the α6-selective α-Ctx PeIA(A7V,S9H,V10A,N11R,E14A) indicated that the predominant heteromeric nAChR expressed by human adrenal chromaffin cells is the α3β4* subtype (asterisk indicates the possible presence of additional subunits). This conclusion was supported by polymerase chain reaction experiments of human adrenal medulla gland and of cultured human adrenal chromaffin cells that demonstrated prominent expression of RNAs for α3, α5, α7, β2, and β4 subunits and a low abundance of RNAs for α2, α4, α6, and α10 subunits.
Collapse
Affiliation(s)
- Arik J Hone
- Departamento de Farmacología y Terapéutica, Universidad Autónoma de Madrid, Madrid, Spain (A.J.H., A.A.); Departments of Biology and Psychiatry, University of Utah, Salt Lake City, Utah (J.M.M., L.A.); George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah (J.M.M.); Department of Neuroscience, University of Pennsylvania Medical School, Philadelphia, Pennsylvania (J.L.); Division of Neurobiology, Barrow Neurological Institute, Phoenix, Arizona (L.L., P.W.); Hospital Doce de Octubre, Madrid, Spain (J.P.); and Hospital Clínico San Carlos Madrid, Spain (J.B.)
| | - J Michael McIntosh
- Departamento de Farmacología y Terapéutica, Universidad Autónoma de Madrid, Madrid, Spain (A.J.H., A.A.); Departments of Biology and Psychiatry, University of Utah, Salt Lake City, Utah (J.M.M., L.A.); George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah (J.M.M.); Department of Neuroscience, University of Pennsylvania Medical School, Philadelphia, Pennsylvania (J.L.); Division of Neurobiology, Barrow Neurological Institute, Phoenix, Arizona (L.L., P.W.); Hospital Doce de Octubre, Madrid, Spain (J.P.); and Hospital Clínico San Carlos Madrid, Spain (J.B.)
| | - Layla Azam
- Departamento de Farmacología y Terapéutica, Universidad Autónoma de Madrid, Madrid, Spain (A.J.H., A.A.); Departments of Biology and Psychiatry, University of Utah, Salt Lake City, Utah (J.M.M., L.A.); George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah (J.M.M.); Department of Neuroscience, University of Pennsylvania Medical School, Philadelphia, Pennsylvania (J.L.); Division of Neurobiology, Barrow Neurological Institute, Phoenix, Arizona (L.L., P.W.); Hospital Doce de Octubre, Madrid, Spain (J.P.); and Hospital Clínico San Carlos Madrid, Spain (J.B.)
| | - Jon Lindstrom
- Departamento de Farmacología y Terapéutica, Universidad Autónoma de Madrid, Madrid, Spain (A.J.H., A.A.); Departments of Biology and Psychiatry, University of Utah, Salt Lake City, Utah (J.M.M., L.A.); George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah (J.M.M.); Department of Neuroscience, University of Pennsylvania Medical School, Philadelphia, Pennsylvania (J.L.); Division of Neurobiology, Barrow Neurological Institute, Phoenix, Arizona (L.L., P.W.); Hospital Doce de Octubre, Madrid, Spain (J.P.); and Hospital Clínico San Carlos Madrid, Spain (J.B.)
| | - Linda Lucero
- Departamento de Farmacología y Terapéutica, Universidad Autónoma de Madrid, Madrid, Spain (A.J.H., A.A.); Departments of Biology and Psychiatry, University of Utah, Salt Lake City, Utah (J.M.M., L.A.); George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah (J.M.M.); Department of Neuroscience, University of Pennsylvania Medical School, Philadelphia, Pennsylvania (J.L.); Division of Neurobiology, Barrow Neurological Institute, Phoenix, Arizona (L.L., P.W.); Hospital Doce de Octubre, Madrid, Spain (J.P.); and Hospital Clínico San Carlos Madrid, Spain (J.B.)
| | - Paul Whiteaker
- Departamento de Farmacología y Terapéutica, Universidad Autónoma de Madrid, Madrid, Spain (A.J.H., A.A.); Departments of Biology and Psychiatry, University of Utah, Salt Lake City, Utah (J.M.M., L.A.); George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah (J.M.M.); Department of Neuroscience, University of Pennsylvania Medical School, Philadelphia, Pennsylvania (J.L.); Division of Neurobiology, Barrow Neurological Institute, Phoenix, Arizona (L.L., P.W.); Hospital Doce de Octubre, Madrid, Spain (J.P.); and Hospital Clínico San Carlos Madrid, Spain (J.B.)
| | - Juan Passas
- Departamento de Farmacología y Terapéutica, Universidad Autónoma de Madrid, Madrid, Spain (A.J.H., A.A.); Departments of Biology and Psychiatry, University of Utah, Salt Lake City, Utah (J.M.M., L.A.); George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah (J.M.M.); Department of Neuroscience, University of Pennsylvania Medical School, Philadelphia, Pennsylvania (J.L.); Division of Neurobiology, Barrow Neurological Institute, Phoenix, Arizona (L.L., P.W.); Hospital Doce de Octubre, Madrid, Spain (J.P.); and Hospital Clínico San Carlos Madrid, Spain (J.B.)
| | - Jesús Blázquez
- Departamento de Farmacología y Terapéutica, Universidad Autónoma de Madrid, Madrid, Spain (A.J.H., A.A.); Departments of Biology and Psychiatry, University of Utah, Salt Lake City, Utah (J.M.M., L.A.); George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah (J.M.M.); Department of Neuroscience, University of Pennsylvania Medical School, Philadelphia, Pennsylvania (J.L.); Division of Neurobiology, Barrow Neurological Institute, Phoenix, Arizona (L.L., P.W.); Hospital Doce de Octubre, Madrid, Spain (J.P.); and Hospital Clínico San Carlos Madrid, Spain (J.B.)
| | - Almudena Albillos
- Departamento de Farmacología y Terapéutica, Universidad Autónoma de Madrid, Madrid, Spain (A.J.H., A.A.); Departments of Biology and Psychiatry, University of Utah, Salt Lake City, Utah (J.M.M., L.A.); George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah (J.M.M.); Department of Neuroscience, University of Pennsylvania Medical School, Philadelphia, Pennsylvania (J.L.); Division of Neurobiology, Barrow Neurological Institute, Phoenix, Arizona (L.L., P.W.); Hospital Doce de Octubre, Madrid, Spain (J.P.); and Hospital Clínico San Carlos Madrid, Spain (J.B.)
| |
Collapse
|
46
|
Thomsen MS, Zwart R, Ursu D, Jensen MM, Pinborg LH, Gilmour G, Wu J, Sher E, Mikkelsen JD. α7 and β2 Nicotinic Acetylcholine Receptor Subunits Form Heteromeric Receptor Complexes that Are Expressed in the Human Cortex and Display Distinct Pharmacological Properties. PLoS One 2015; 10:e0130572. [PMID: 26086615 PMCID: PMC4472343 DOI: 10.1371/journal.pone.0130572] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 05/21/2015] [Indexed: 12/03/2022] Open
Abstract
The existence of α7β2 nicotinic acetylcholine receptors (nAChRs) has recently been demonstrated in both the rodent and human brain. Since α7-containing nAChRs are promising drug targets for schizophrenia and Alzheimer’s disease, it is critical to determine whether α7β2 nAChRs are present in the human brain, in which brain areas, and whether they differ functionally from α7 nAChR homomers. We used α-bungarotoxin to affinity purify α7-containing nAChRs from surgically excised human temporal cortex, and found that α7 subunits co-purify with β2 subunits, indicating the presence of α7β2 nAChRs in the human brain. We validated these results by demonstrating co-purification of β2 from wild-type, but not α7 or β2 knock-out mice. The pharmacology and kinetics of human α7β2 nAChRs differed significantly from that of α7 homomers in response to nAChR agonists when expressed in Xenopus oocytes and HEK293 cells. Notably, α7β2 heteromers expressed in HEK293 cells display markedly slower rise and decay phases. These results demonstrate that α7 subunits in the human brain form heteromeric complexes with β2 subunits, and that human α7β2 nAChR heteromers respond to nAChR agonists with a unique pharmacology and kinetic profile. α7β2 nAChRs thus represent an alternative mechanism for the reported clinical efficacy of α7 nAChR ligands.
Collapse
Affiliation(s)
- Morten Skøtt Thomsen
- Neurobiology Research Unit, University Hospital Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Ruud Zwart
- Lilly Research Centre, Eli Lilly and Company Limited, Erl Wood Manor, United Kingdom
| | - Daniel Ursu
- Lilly Research Centre, Eli Lilly and Company Limited, Erl Wood Manor, United Kingdom
| | - Majbrit Myrup Jensen
- Neurobiology Research Unit, University Hospital Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Lars Hageman Pinborg
- Neurobiology Research Unit, University Hospital Copenhagen, Rigshospitalet, Copenhagen, Denmark
- Epilepsy Clinic, University Hospital Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Gary Gilmour
- Lilly Research Centre, Eli Lilly and Company Limited, Erl Wood Manor, United Kingdom
| | - Jie Wu
- Divisions of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, United States of America
| | - Emanuele Sher
- Lilly Research Centre, Eli Lilly and Company Limited, Erl Wood Manor, United Kingdom
| | - Jens Damsgaard Mikkelsen
- Neurobiology Research Unit, University Hospital Copenhagen, Rigshospitalet, Copenhagen, Denmark
- * E-mail:
| |
Collapse
|
47
|
Abe H, Tanaka T, Kimura M, Mizukami S, Imatanaka N, Akahori Y, Yoshida T, Shibutani M. Developmental exposure to cuprizone reduces intermediate-stage progenitor cells and cholinergic signals in the hippocampal neurogenesis in rat offspring. Toxicol Lett 2015; 234:180-93. [DOI: 10.1016/j.toxlet.2015.01.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Revised: 01/11/2015] [Accepted: 01/29/2015] [Indexed: 11/28/2022]
|
48
|
Lykhmus O, Voytenko L, Koval L, Mykhalskiy S, Kholin V, Peschana K, Zouridakis M, Tzartos S, Komisarenko S, Skok M. α7 Nicotinic acetylcholine receptor-specific antibody induces inflammation and amyloid β42 accumulation in the mouse brain to impair memory. PLoS One 2015; 10:e0122706. [PMID: 25816313 PMCID: PMC4376778 DOI: 10.1371/journal.pone.0122706] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 02/13/2015] [Indexed: 12/11/2022] Open
Abstract
Nicotinic acetylcholine receptors (nAChRs) expressed in the brain are involved in regulating cognitive functions, as well as inflammatory reactions. Their density is decreased upon Alzheimer disease accompanied by accumulation of β-amyloid (Aβ42), memory deficit and neuroinflammation. Previously we found that α7 nAChR-specific antibody induced pro-inflammatory interleukin-6 production in U373 glioblastoma cells and that such antibodies were present in the blood of humans. We raised a hypothesis that α7 nAChR-specific antibody can cause neuroinflammation when penetrating the brain. To test this, C57Bl/6 mice were either immunized with extracellular domain of α7 nAChR subunit α7(1-208) or injected with bacterial lipopolysaccharide (LPS) for 5 months. We studied their behavior and the presence of α3, α4, α7, β2 and β4 nAChR subunits, Aβ40 and Aβ42 and activated astrocytes in the brain by sandwich ELISA and confocal microscopy. It was found that either LPS injections or immunizations with α7(1-208) resulted in region-specific decrease of α7 and α4β2 and increase of α3β4 nAChRs, accumulation of Aβ42 and activated astrocytes in the brain of mice and worsening of their episodic memory. Intravenously transferred α7 nAChR-specific-antibodies penetrated the brain parenchyma of mice pre-injected with LPS. Our data demonstrate that (1) neuroinflammation is sufficient to provoke the decrease of α7 and α4β2 nAChRs, Aβ42 accumulation and memory impairment in mice and (2) α7(1-208) nAChR-specific antibodies can cause inflammation within the brain resulting in the symptoms typical for Alzheimer disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Maryna Skok
- Palladin Institute of Biochemistry, Kyiv, Ukraine
| |
Collapse
|
49
|
Lombardo S, Maskos U. Role of the nicotinic acetylcholine receptor in Alzheimer's disease pathology and treatment. Neuropharmacology 2014; 96:255-62. [PMID: 25514383 DOI: 10.1016/j.neuropharm.2014.11.018] [Citation(s) in RCA: 174] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 11/11/2014] [Accepted: 11/24/2014] [Indexed: 11/26/2022]
Abstract
Alzheimer's Disease (AD) is the major form of senile dementia, characterized by neuronal loss, extracellular deposits, and neurofibrillary tangles. It is accompanied by a loss of cholinergic tone, and acetylcholine (ACh) levels in the brain, which were hypothesized to be responsible for the cognitive decline observed in AD. Current medication is restricted to enhancing cholinergic signalling for symptomatic treatment of AD patients. The nicotinic acetylcholine receptor family (nAChR) and the muscarinic acetylcholine receptor family (mAChR) are the target of ACh in the brain. Both families of receptors are affected in AD. It was demonstrated that amyloid beta (Aβ) interacts with nAChRs. Here we discuss how Aβ activates or inhibits nAChRs, and how this interaction contributes to AD pathology. We will discuss the potential role of nAChRs as therapeutic targets. This article is part of the Special Issue entitled 'The Nicotinic Acetylcholine Receptor: From Molecular Biology to Cognition'.
Collapse
Affiliation(s)
- Sylvia Lombardo
- Département de Neuroscience, Institut Pasteur, Unité Neurobiologie Intégrative des Systèmes Cholinergiques, Paris Cedex 15, France; CNRS, UMR 3571, Paris, France.
| | - Uwe Maskos
- Département de Neuroscience, Institut Pasteur, Unité Neurobiologie Intégrative des Systèmes Cholinergiques, Paris Cedex 15, France; CNRS, UMR 3571, Paris, France
| |
Collapse
|
50
|
Moretti M, Zoli M, George AA, Lukas RJ, Pistillo F, Maskos U, Whiteaker P, Gotti C. The novel α7β2-nicotinic acetylcholine receptor subtype is expressed in mouse and human basal forebrain: biochemical and pharmacological characterization. Mol Pharmacol 2014; 86:306-17. [PMID: 25002271 DOI: 10.1124/mol.114.093377] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We examined α7β2-nicotinic acetylcholine receptor (α7β2-nAChR) expression in mammalian brain and compared pharmacological profiles of homomeric α7-nAChRs and α7β2-nAChRs. α-Bungarotoxin affinity purification or immunoprecipitation with anti-α7 subunit antibodies (Abs) was used to isolate nAChRs containing α7 subunits from mouse or human brain samples. α7β2-nAChRs were detected in forebrain, but not other tested regions, from both species, based on Western blot analysis of isolates using β2 subunit-specific Abs. Ab specificity was confirmed in control studies using subunit-null mutant mice or cell lines heterologously expressing specific human nAChR subtypes and subunits. Functional expression in Xenopus oocytes of concatenated pentameric (α7)5-, (α7)4(β2)1-, and (α7)3(β2)2-nAChRs was confirmed using two-electrode voltage clamp recording of responses to nicotinic ligands. Importantly, pharmacological profiles were indistinguishable for concatenated (α7)5-nAChRs or for homomeric α7-nAChRs constituted from unlinked α7 subunits. Pharmacological profiles were similar for (α7)5-, (α7)4(β2)1-, and (α7)3(β2)2-nAChRs except for diminished efficacy of nicotine (normalized to acetylcholine efficacy) at α7β2- versus α7-nAChRs. This study represents the first direct confirmation of α7β2-nAChR expression in human and mouse forebrain, supporting previous mouse studies that suggested relevance of α7β2-nAChRs in Alzheimer disease etiopathogenesis. These data also indicate that α7β2-nAChR subunit isoforms with different α7/β2 subunit ratios have similar pharmacological profiles to each other and to α7 homopentameric nAChRs. This supports the hypothesis that α7β2-nAChR agonist activation predominantly or entirely reflects binding to α7/α7 subunit interface sites.
Collapse
Affiliation(s)
- Milena Moretti
- CNR Institute of Neuroscience, Biometra University of Milan, Milan, Italy (M.M., F.P., C.G.); Section of Physiology and Neurosciences, Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy (M.Z.); Division of Neurobiology, Barrow Neurologic Institute, Phoenix, Arizona (A.A.G., R.J.L., P.W.); and Centre National de la Recherche Scientifique, Unité Neurobiologie Intégrative des Systèmes Cholinergiques, Institut Pasteur, Paris, France (U.M.)
| | - Michele Zoli
- CNR Institute of Neuroscience, Biometra University of Milan, Milan, Italy (M.M., F.P., C.G.); Section of Physiology and Neurosciences, Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy (M.Z.); Division of Neurobiology, Barrow Neurologic Institute, Phoenix, Arizona (A.A.G., R.J.L., P.W.); and Centre National de la Recherche Scientifique, Unité Neurobiologie Intégrative des Systèmes Cholinergiques, Institut Pasteur, Paris, France (U.M.)
| | - Andrew A George
- CNR Institute of Neuroscience, Biometra University of Milan, Milan, Italy (M.M., F.P., C.G.); Section of Physiology and Neurosciences, Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy (M.Z.); Division of Neurobiology, Barrow Neurologic Institute, Phoenix, Arizona (A.A.G., R.J.L., P.W.); and Centre National de la Recherche Scientifique, Unité Neurobiologie Intégrative des Systèmes Cholinergiques, Institut Pasteur, Paris, France (U.M.)
| | - Ronald J Lukas
- CNR Institute of Neuroscience, Biometra University of Milan, Milan, Italy (M.M., F.P., C.G.); Section of Physiology and Neurosciences, Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy (M.Z.); Division of Neurobiology, Barrow Neurologic Institute, Phoenix, Arizona (A.A.G., R.J.L., P.W.); and Centre National de la Recherche Scientifique, Unité Neurobiologie Intégrative des Systèmes Cholinergiques, Institut Pasteur, Paris, France (U.M.)
| | - Francesco Pistillo
- CNR Institute of Neuroscience, Biometra University of Milan, Milan, Italy (M.M., F.P., C.G.); Section of Physiology and Neurosciences, Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy (M.Z.); Division of Neurobiology, Barrow Neurologic Institute, Phoenix, Arizona (A.A.G., R.J.L., P.W.); and Centre National de la Recherche Scientifique, Unité Neurobiologie Intégrative des Systèmes Cholinergiques, Institut Pasteur, Paris, France (U.M.)
| | - Uwe Maskos
- CNR Institute of Neuroscience, Biometra University of Milan, Milan, Italy (M.M., F.P., C.G.); Section of Physiology and Neurosciences, Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy (M.Z.); Division of Neurobiology, Barrow Neurologic Institute, Phoenix, Arizona (A.A.G., R.J.L., P.W.); and Centre National de la Recherche Scientifique, Unité Neurobiologie Intégrative des Systèmes Cholinergiques, Institut Pasteur, Paris, France (U.M.)
| | - Paul Whiteaker
- CNR Institute of Neuroscience, Biometra University of Milan, Milan, Italy (M.M., F.P., C.G.); Section of Physiology and Neurosciences, Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy (M.Z.); Division of Neurobiology, Barrow Neurologic Institute, Phoenix, Arizona (A.A.G., R.J.L., P.W.); and Centre National de la Recherche Scientifique, Unité Neurobiologie Intégrative des Systèmes Cholinergiques, Institut Pasteur, Paris, France (U.M.)
| | - Cecilia Gotti
- CNR Institute of Neuroscience, Biometra University of Milan, Milan, Italy (M.M., F.P., C.G.); Section of Physiology and Neurosciences, Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy (M.Z.); Division of Neurobiology, Barrow Neurologic Institute, Phoenix, Arizona (A.A.G., R.J.L., P.W.); and Centre National de la Recherche Scientifique, Unité Neurobiologie Intégrative des Systèmes Cholinergiques, Institut Pasteur, Paris, France (U.M.)
| |
Collapse
|