1
|
De Strooper B, Karran E. New precision medicine avenues to the prevention of Alzheimer's disease from insights into the structure and function of γ-secretases. EMBO J 2024; 43:887-903. [PMID: 38396302 PMCID: PMC10943082 DOI: 10.1038/s44318-024-00057-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/20/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Two phase-III clinical trials with anti-amyloid peptide antibodies have met their primary goal, i.e. slowing of Alzheimer's disease (AD) progression. However, antibody therapy may not be the optimal therapeutic modality for AD prevention, as we will discuss in the context of the earlier small molecules described as "γ-secretase modulators" (GSM). We review here the structure, function, and pathobiology of γ-secretases, with a focus on how mutations in presenilin genes result in early-onset AD. Significant progress has been made in generating compounds that act in a manner opposite to pathogenic presenilin mutations: they stabilize the proteinase-substrate complex, thereby increasing the processivity of substrate cleavage and altering the size spectrum of Aβ peptides produced. We propose the term "γ-secretase allosteric stabilizers" (GSAS) to distinguish these compounds from the rather heterogenous class of GSM. The GSAS represent, in theory, a precision medicine approach to the prevention of amyloid deposition, as they specifically target a discrete aspect in a complex cell biological signalling mechanism that initiates the pathological processes leading to Alzheimer's disease.
Collapse
Affiliation(s)
- Bart De Strooper
- Dementia Research Institute, Institute of Neurology, University College London, at the Francis Crick Institute, London, NW1 AT, UK.
- Laboratory for the Research of Neurodegenerative Diseases, VIB Center for Brain & Disease Research, and Leuven Brain Institute, KU Leuven, Leuven, 3000, Belgium.
| | - Eric Karran
- Cambridge Research Center, AbbVie, Inc., Cambridge, MA, USA
| |
Collapse
|
2
|
Choi SW, Abitbol JM, Cheng AG. Hair Cell Regeneration: From Animals to Humans. Clin Exp Otorhinolaryngol 2024; 17:1-14. [PMID: 38271988 PMCID: PMC10933805 DOI: 10.21053/ceo.2023.01382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/07/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
Cochlear hair cells convert sound into electrical signals that are relayed via the spiral ganglion neurons to the central auditory pathway. Hair cells are vulnerable to damage caused by excessive noise, aging, and ototoxic agents. Non-mammals can regenerate lost hair cells by mitotic regeneration and direct transdifferentiation of surrounding supporting cells. However, in mature mammals, damaged hair cells are not replaced, resulting in permanent hearing loss. Recent studies have uncovered mechanisms by which sensory organs in non-mammals and the neonatal mammalian cochlea regenerate hair cells, and outlined possible mechanisms why this ability declines rapidly with age in mammals. Here, we review similarities and differences between avian, zebrafish, and mammalian hair cell regeneration. Moreover, we discuss advances and limitations of hair cell regeneration in the mature cochlea and their potential applications to human hearing loss.
Collapse
Affiliation(s)
- Sung-Won Choi
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Department of Otorhinolaryngology-Head and Neck Surgery and Biomedical Research Institute, Pusan National University Hospital, Busan, Korea
- Department of Otorhinolaryngology-Head and Neck Surgery, Pusan National University School of Medicine, Busan, Korea
| | - Julia M. Abitbol
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Alan G. Cheng
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
3
|
Lai R, Fang Q, Wu F, Pan S, Haque K, Sha SH. Prevention of noise-induced hearing loss by calpain inhibitor MDL-28170 is associated with upregulation of PI3K/Akt survival signaling pathway. Front Cell Neurosci 2023; 17:1199656. [PMID: 37484825 PMCID: PMC10359991 DOI: 10.3389/fncel.2023.1199656] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/14/2023] [Indexed: 07/25/2023] Open
Abstract
Introduction Noise-induced calcium overload in sensory hair cells has been well documented as an early step in the pathogenesis of noise-induced hearing loss (NIHL). Alterations in cellular calcium homeostasis mediate a series of cellular events, including activation of calcium-dependent protein kinases and phosphatases. Using cell-membrane- and blood-brain-barrier-permeable calpain-1 (μ-calpain) and calpain-2 (m-calpain) inhibitor MDL-28170, we tested the involvement of calpains, a family of calcium-dependent cysteine proteases, and the potential of MDL-28170 in preventing NIHL. Methods CBA/J mice at the age of 12 weeks were exposed to broadband noise with a frequency spectrum from 2-20 kHz for 2 h at 101 dB sound pressure level to induce permanent hearing loss as measured by auditory brainstem response and distortion product otoacoustic emissions. Morphological damage was assessed by quantification of remaining sensory hair cells and inner hair cell synapses 2 weeks after the exposure. Results MDL-28170 treatment by intraperitoneal injection significantly attenuated noise-induced functional deficits and cochlear pathologies. MDL-28170 treatment also prevented noise-induced cleavage of alpha-fodrin, a substrate for calpain-1. Furthermore, MDL-28170 treatment prevented reduction of PI3K/Akt signaling after exposure to noise and upregulated p85α and p-Akt (S473) in outer hair cells. Discussion These results indicate that noise-induced calpain activation negatively regulates PI3K/Akt downstream signaling, and that prevention of NIHL by treatment with MDL-28170 is associated with upregulation of PI3K/Akt survival signaling pathways.
Collapse
Affiliation(s)
- Ruosha Lai
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
- Department of Otolaryngology, Head and Neck Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Qiaojun Fang
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Fan Wu
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Song Pan
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Khujista Haque
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Su-Hua Sha
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
4
|
Serneels L, Narlawar R, Benito LP, Municoy M, Guallar V, T'Syen D, Dewilde M, Bischoff F, Fraiponts E, Tresadern G, Roevens PWM, Gijsen HJM, De Strooper B. Selective inhibitors of the PSEN1-gamma-secretase complex. J Biol Chem 2023:104794. [PMID: 37164155 DOI: 10.1016/j.jbc.2023.104794] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 05/12/2023] Open
Abstract
Clinical development of γ-secretases, a family of intramembrane cleaving proteases, as therapeutic targets for a variety of disorders including cancer and Alzheimer's disease, was aborted because of serious mechanism based side effects in phase III trials of unselective inhibitors. Selective inhibition of specific γ-secretase complexes, containing either PSEN1 or PSEN2 as catalytic subunit and APH1A or APH1B as supporting subunits, do provide a feasible therapeutic window in preclinical models of these disorders. We explore here the pharmacophoric features required for PSEN1 versus PSEN2 selective inhibition. We synthesized a series of brain penetrant 2-azabicyclo[2,2,2]octane sulfonamides and identified a compound with low nanomolar potency and high selectivity (>250-fold) towards the PSEN1-APH1B sub-complex versus PSEN2 sub-complexes. We used modelling and site directed mutagenesis to identify critical amino acids along the entry part of this inhibitor into the catalytic site of PSEN1. Specific targeting one of the different γ-secretase complexes might provide safer drugs in the future.
Collapse
Affiliation(s)
- Lutgarde Serneels
- VIB Center for Brain and Disease Research and KU Leuven, Department of Neurosciences, Leuven, Belgium
| | - Rajeshwar Narlawar
- VIB Center for Brain and Disease Research and KU Leuven, Department of Neurosciences, Leuven, Belgium; Discovery Chemistry, Janssen Research & Development, Janssen Pharmaceutica NV, Turnhoutseweg 30, B-2340, Beerse, Belgium
| | - Laura Perez Benito
- Computational Chemistry, Janssen Research & Development, Janssen Pharmaceutica NV, Turnhoutseweg 30, B-2340, Beerse, Belgium
| | - Marti Municoy
- Nostrum Biodiscovery, Jordi Girona 29, Nexus II D128, 08034, Barcelona, Spain
| | - Victor Guallar
- Barcelona Supercomputing Center, Jordi Girona 29, E-08034 Barcelona, Spain; ICREA, Passeig Lluís Companys 23, E-08010 Barcelona, Spain
| | - Dries T'Syen
- VIB Center for Brain and Disease Research and KU Leuven, Department of Neurosciences, Leuven, Belgium
| | - Maarten Dewilde
- VIB Center for Brain and Disease Research and KU Leuven, Department of Neurosciences, Leuven, Belgium
| | - François Bischoff
- Discovery Chemistry, Janssen Research & Development, Janssen Pharmaceutica NV, Turnhoutseweg 30, B-2340, Beerse, Belgium
| | - Erwin Fraiponts
- Charles River Laboratories, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Gary Tresadern
- Computational Chemistry, Janssen Research & Development, Janssen Pharmaceutica NV, Turnhoutseweg 30, B-2340, Beerse, Belgium
| | - Peter W M Roevens
- Campus Strategy & Partnerships, Janssen Pharmaceutica NV, Turnhoutseweg 30, B-2340, Beerse, Belgium
| | - Harrie J M Gijsen
- Discovery Chemistry, Janssen Research & Development, Janssen Pharmaceutica NV, Turnhoutseweg 30, B-2340, Beerse, Belgium
| | - Bart De Strooper
- VIB Center for Brain and Disease Research and KU Leuven, Department of Neurosciences, Leuven, Belgium; Dementia Research Institute, University College London, London, UK.
| |
Collapse
|
5
|
Future Pharmacotherapy for Sensorineural Hearing Loss by Protection and Regeneration of Auditory Hair Cells. Pharmaceutics 2023; 15:pharmaceutics15030777. [PMID: 36986638 PMCID: PMC10054686 DOI: 10.3390/pharmaceutics15030777] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/14/2023] [Accepted: 02/24/2023] [Indexed: 03/03/2023] Open
Abstract
Sensorineural hearing loss has been a global burden of diseases for decades. However, according to recent progress in experimental studies on hair cell regeneration and protection, clinical trials of pharmacotherapy for sensorineural hearing loss have rapidly progressed. In this review, we focus on recent clinical trials for hair cell protection and regeneration and outline mechanisms based on associated experimental studies. Outcomes of recent clinical trials provided valuable data regarding the safety and tolerability of intra-cochlear and intra-tympanic applications as drug delivery methods. Recent findings in molecular mechanisms of hair cell regeneration suggested the realization of regenerative medicine for sensorineural hearing loss in the near future.
Collapse
|
6
|
Yu Y, Liu J, Antisdel J, Liu C, Sappington J, Wang X, Gao Y, Peng Y, Wang H, Lin Z, Ruan H, Wang R, Lin S, Zhang M. The relationship between round window and ear canal Cochlear microphonic. Laryngoscope Investig Otolaryngol 2022; 7:2076-2083. [PMID: 36544938 PMCID: PMC9764817 DOI: 10.1002/lio2.964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 04/13/2022] [Accepted: 05/24/2022] [Indexed: 11/27/2022] Open
Abstract
Hypothesis Cochlear microphonic recorded at ear canal (CM-EC) can be a substitute for the one recorded at round window (CM-RW). Background Almost all clinics do not measure tone-burst evoked CM due to technical difficulty although it can provide more information than click evoked CM. Moreover, clinicians like the CM-EC more than that measured at CM-RW because CM-EC is non-invasive. There is difference between CM-RW and CM-EC, for example, CM-EC is less prominent than CM-RW, therefore, studying tone-burst evoked CM-EC and its relationship with CM-RW are highly significant and can promote the clinical application of CM-EC. Method Nine guinea pigs were randomly allocated into three groups, group 1 was not exposed to noise, called normal control. group 2 and group 3 were exposed to the low- (0.5-2 kHz) and high-frequency band-noise (6-8 kHz) at 120 dB SPL for 1 h, respectively. It was difficulty to record low-frequency CM due to severe environmental interruption, in current study the recording technology of tone-burst evoked CM was optimized so that tone-burst evoked CM was measured across full speech frequency (0.5-8 kHz) in the presence of normal hearing and noise induced hearing loss (NIHL). Results CM-RW and CM-EC were successfully recorded across speech frequency. Significant reduction in CM amplitude was observed at 0.5 and 2 kHz in group 2, at 6 and 8 kHz in group 3 as compared to group 1, p < .05, indicating that CM amplitude was sensitive to band-noise exposure. Significant correlation between CM-RW and CM-EC was also verified, p < .05. Conclusion CM-EC is a useful objective test for evaluation of hearing function; the result of current study supports the clinical application of non-invasive CM-EC.
Collapse
Affiliation(s)
- Yongqiang Yu
- Department of Otolaryngology – Head and Neck SurgeryMindong Hospital, The Affiliated Mindong Hospital of Fujian Medical UniversityFujianChina
- Department of Otolaryngology – Head and Neck SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
- Department of Otolaryngology – Head and Neck SurgerySaint Louis UniversitySt. LouisMissouriUSA
- Department of Speech Pathology and Audiology (Communication Sciences and Disorders), Faculty of Rehabilitation MedicineUniversity of AlbertaEdmontonAlbertaCanada
| | - Junping Liu
- Department of Otolaryngology – Head and Neck SurgeryMindong Hospital, The Affiliated Mindong Hospital of Fujian Medical UniversityFujianChina
| | - Jastin Antisdel
- Department of Otolaryngology – Head and Neck SurgerySaint Louis UniversitySt. LouisMissouriUSA
| | - Changming Liu
- Department of Otolaryngology – Head and Neck SurgeryMindong Hospital, The Affiliated Mindong Hospital of Fujian Medical UniversityFujianChina
| | - Joshua Sappington
- Department of Otolaryngology – Head and Neck SurgerySaint Louis UniversitySt. LouisMissouriUSA
| | | | - Yunge Gao
- Strategic Support Force Medical CenterBeijingChina
| | - Yanguo Peng
- Department of Otolaryngology – Head and Neck SurgeryMindong Hospital, The Affiliated Mindong Hospital of Fujian Medical UniversityFujianChina
| | - Hui Wang
- Department of Otolaryngology – Head and Neck SurgeryMindong Hospital, The Affiliated Mindong Hospital of Fujian Medical UniversityFujianChina
| | - Zhonghao Lin
- Department of Otolaryngology – Head and Neck SurgeryMindong Hospital, The Affiliated Mindong Hospital of Fujian Medical UniversityFujianChina
| | - Hongguang Ruan
- Department of Otolaryngology – Head and Neck SurgeryMindong Hospital, The Affiliated Mindong Hospital of Fujian Medical UniversityFujianChina
| | - Ruiying Wang
- Department of MedicineThe First Affiliated Hospital of China Medical UniversityShenyangChina
| | - Shuwu Lin
- Department of MedicineThe Second Affiliated Hospital of Shenyang Medical CollegeShenyangLiaoning ProvinceChina
| | - Ming Zhang
- Department of Speech Pathology and Audiology (Communication Sciences and Disorders), Faculty of Rehabilitation MedicineUniversity of AlbertaEdmontonAlbertaCanada
- Department of Otolaryngology Head Neck Surgery, Faculty of MedicineUniversity of Alberta HospitalEdmontonAlbertaCanada
- Department of Communication DisordersLouisiana State University Health Sciences Center New OrleansNew OrleansLouisianaUSA
| |
Collapse
|
7
|
Hinton AS, Yang-Hood A, Schrader AD, Loose C, Ohlemiller KK, McLean WJ. Approaches to Treat Sensorineural Hearing Loss by Hair-Cell Regeneration: The Current State of Therapeutic Developments and Their Potential Impact on Audiological Clinical Practice. J Am Acad Audiol 2022; 32:661-669. [PMID: 35609593 PMCID: PMC9129918 DOI: 10.1055/s-0042-1750281] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Sensorineural hearing loss (SNHL) is typically a permanent and often progressive condition that is commonly attributed to sensory cell loss. All vertebrates except mammals can regenerate lost sensory cells. Thus, SNHL is currently only treated with hearing aids or cochlear implants. There has been extensive research to understand how regeneration occurs in nonmammals, how hair cells form during development, and what limits regeneration in maturing mammals. These studies motivated efforts to identify therapeutic interventions to regenerate hair cells as a treatment for hearing loss, with a focus on targeting supporting cells to form new sensory hair cells. The approaches include gene therapy and small molecule delivery to the inner ear. At the time of this publication, early-stage clinical trials have been conducted to test targets that have shown evidence of regenerating sensory hair cells in preclinical models. As these potential treatments move closer to a clinical reality, it will be important to understand which therapeutic option is most appropriate for a given population. It is also important to consider which audiological tests should be administered to identify hearing improvement while considering the pharmacokinetics and mechanism of a given approach. Some impacts on audiological practice could include implementing less common audiological measures as standard procedure. As devices are not capable of repairing the damaged underlying biology, hair-cell regeneration treatments could allow patients to benefit more from their devices, move from a cochlear implant candidate to a hearing aid candidate, or move a subject to not needing an assistive device. Here, we describe the background, current state, and future implications of hair-cell regeneration research.
Collapse
Affiliation(s)
| | - Aizhen Yang-Hood
- Department of Otolaryngology, Central Institute for the Deaf, Fay and Carl Simons Center for Hearing and Deafness, Washington University School of Medicine, Saint Louis, Missouri
| | - Angela D Schrader
- Department of Otolaryngology, Central Institute for the Deaf, Fay and Carl Simons Center for Hearing and Deafness, Washington University School of Medicine, Saint Louis, Missouri
| | | | - Kevin K Ohlemiller
- Department of Otolaryngology, Central Institute for the Deaf, Fay and Carl Simons Center for Hearing and Deafness, Washington University School of Medicine, Saint Louis, Missouri
| | - Will J McLean
- Frequency Therapeutics, Lexington, Massachusetts.,Department of Surgery, University of Connecticut School of Medicine, Farmington, Connecticut
| |
Collapse
|
8
|
Wang B, Wan L, Sun P, Zhang L, Han L, Zhang H, Zhang J, Pu Y, Zhu B. Associations of genetic variation in E3 SUMO-protein ligase CBX4 with noise-induced hearing loss. Hum Mol Genet 2022; 31:2109-2120. [PMID: 35038734 DOI: 10.1093/hmg/ddac006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 01/02/2022] [Accepted: 01/06/2022] [Indexed: 11/14/2022] Open
Abstract
Noise-induced hearing loss (NIHL) is a multifactorial disease caused by environmental, genetic, and epigenetic variables. SUMOylation is a post-translational modification that regulates biological processes. The objective of this study was to determine the link between genetic variation in the CBX4 and the risk of NIHL. This study applied a case-control design with 588 cases and 582 controls, and the sample was predominantly male (93.76%). The T allele of CBX4 rs1285250 was found to be significantly linked with NIHL (p = 0.002) and showed strong associations in both the codominant and recessive models (TT vs CC, p = 0.005; TT/TC vs CC, p = 0.009). By constructing a mouse model of hearing loss due to noise exposure, changes in hearing thresholds were observed in noise-exposed mice, along with a decrease in the number of cochlear hair cells. Furthermore, noise promotes cochlear hair cell apoptosis by inducing SP1/CBX4 pathway activation. Further functional studies demonstrated that SP1 has an influence on the promoter activity of the CBX4 rs1285250 intron, with the promoter activity of the T allele being higher than that of the C allele. Knockdown of transcription factor SP1 reduced the expression of CBX4 expression and simultaneously reduced apoptosis in HEI-OC1 cells. Together, our findings have shown that CBX4 genetic polymorphism rs1285250 T-allele was associated with increased risk of NIHL and might be used as biomarkers for male workers exposed to noise. Furthermore, we speculate that the CBX4 of rs1285250 T-allele leads to a stronger potential enhancer activity from a predicted gain of stronger SP1 binding.
Collapse
Affiliation(s)
- Boshen Wang
- Department of Prevention and Control for Occupational Disease, Jiangsu Provincial Center for Disease Prevention and Control, Nanjing 210009, Jiangsu, China
- Department of Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China
| | - Liu Wan
- Department of Prevention and Control for Occupational Disease, Jiangsu Provincial Center for Disease Prevention and Control, Nanjing 210009, Jiangsu, China
- Department of Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China
| | - Peng Sun
- Department of Prevention and Control for Occupational Disease, Jiangsu Provincial Center for Disease Prevention and Control, Nanjing 210009, Jiangsu, China
- Department of Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China
| | - Ludi Zhang
- Department of Prevention and Control for Occupational Disease, Jiangsu Provincial Center for Disease Prevention and Control, Nanjing 210009, Jiangsu, China
- Department of Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China
| | - Lei Han
- Department of Prevention and Control for Occupational Disease, Jiangsu Provincial Center for Disease Prevention and Control, Nanjing 210009, Jiangsu, China
- Jiangsu Preventive Medicine Association, Nanjing 210009, Jiangsu, China
| | - Hengdong Zhang
- Department of Prevention and Control for Occupational Disease, Jiangsu Provincial Center for Disease Prevention and Control, Nanjing 210009, Jiangsu, China
- Jiangsu Preventive Medicine Association, Nanjing 210009, Jiangsu, China
| | - Juan Zhang
- Department of Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China
| | - Yuepu Pu
- Department of Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China
| | - Baoli Zhu
- Department of Prevention and Control for Occupational Disease, Jiangsu Provincial Center for Disease Prevention and Control, Nanjing 210009, Jiangsu, China
- Jiangsu Preventive Medicine Association, Nanjing 210009, Jiangsu, China
- Department of Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 210000, Jiangsu, China
| |
Collapse
|
9
|
Erni ST, Gill JC, Palaferri C, Fernandes G, Buri M, Lazarides K, Grandgirard D, Edge ASB, Leib SL, Roccio M. Hair Cell Generation in Cochlear Culture Models Mediated by Novel γ-Secretase Inhibitors. Front Cell Dev Biol 2021; 9:710159. [PMID: 34485296 PMCID: PMC8414802 DOI: 10.3389/fcell.2021.710159] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 07/26/2021] [Indexed: 12/30/2022] Open
Abstract
Sensorineural hearing loss is prevalent within society affecting the quality of life of 460 million worldwide. In the majority of cases, this is due to insult or degeneration of mechanosensory hair cells in the cochlea. In adult mammals, hair cell loss is irreversible as sensory cells are not replaced spontaneously. Genetic inhibition of Notch signaling had been shown to induce hair cell formation by transdifferentiation of supporting cells in young postnatal rodents and provided an impetus for targeting Notch pathway with small molecule inhibitors for hearing restoration. Here, the oto-regenerative potential of different γ-secretase inhibitors (GSIs) was evaluated in complementary assay models, including cell lines, organotypic cultures of the organ of Corti and cochlear organoids to characterize two novel GSIs (CPD3 and CPD8). GSI-treatment induced hair cell gene expression in all these models and was effective in increasing hair cell numbers, in particular outer hair cells, both in baseline conditions and in response to ototoxic damage. Hair cells were generated from transdifferentiation of supporting cells. Similar findings were obtained in cochlear organoid cultures, used for the first time to probe regeneration following sisomicin-induced damage. Finally, effective absorption of a novel GSI through the round window membrane and hair cell induction was attained in a whole cochlea culture model and in vivo pharmacokinetic comparisons of transtympanic delivery of GSIs and different vehicle formulations were successfully conducted in guinea pigs. This preclinical evaluation of targeting Notch signaling with novel GSIs illustrates methods of characterization for hearing restoration molecules, enabling translation to more complex animal studies and clinical research.
Collapse
Affiliation(s)
- Silvia T Erni
- Neuroinfection Laboratory, Institute for Infectious Diseases, University of Bern, Bern, Switzerland.,Cluster for Regenerative Neuroscience, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland.,Laboratory of Inner Ear Research, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - John C Gill
- Audion Therapeutics B.V., Amsterdam, Netherlands
| | - Carlotta Palaferri
- Neuroinfection Laboratory, Institute for Infectious Diseases, University of Bern, Bern, Switzerland.,Cluster for Regenerative Neuroscience, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland.,Laboratory of Inner Ear Research, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Gabriella Fernandes
- Neuroinfection Laboratory, Institute for Infectious Diseases, University of Bern, Bern, Switzerland.,Cluster for Regenerative Neuroscience, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland.,Laboratory of Inner Ear Research, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Michelle Buri
- Neuroinfection Laboratory, Institute for Infectious Diseases, University of Bern, Bern, Switzerland.,Cluster for Regenerative Neuroscience, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland.,Laboratory of Inner Ear Research, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | | | - Denis Grandgirard
- Neuroinfection Laboratory, Institute for Infectious Diseases, University of Bern, Bern, Switzerland.,Cluster for Regenerative Neuroscience, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Albert S B Edge
- Massachusetts Eye and Ear, Boston, MA, United States.,Harvard Medical School, Boston, MA, United States.,Harvard Stem Cell Institute, Cambridge, MA, United States
| | - Stephen L Leib
- Neuroinfection Laboratory, Institute for Infectious Diseases, University of Bern, Bern, Switzerland.,Cluster for Regenerative Neuroscience, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Marta Roccio
- Cluster for Regenerative Neuroscience, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland.,Laboratory of Inner Ear Research, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland.,Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Zurich, Zurich, Switzerland.,Department of Otorhinolaryngology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
10
|
Key Signaling Pathways Regulate the Development and Survival of Auditory Hair Cells. Neural Plast 2021; 2021:5522717. [PMID: 34194486 PMCID: PMC8214483 DOI: 10.1155/2021/5522717] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/01/2021] [Accepted: 05/31/2021] [Indexed: 01/16/2023] Open
Abstract
The loss of auditory sensory hair cells (HCs) is the most common cause of sensorineural hearing loss (SNHL). As the main sound transmission structure in the cochlea, it is necessary to maintain the normal shape and survival of HCs. In this review, we described and summarized the signaling pathways that regulate the development and survival of auditory HCs in SNHL. The role of the mitogen-activated protein kinase (MAPK), phosphoinositide-3 kinase/protein kinase B (PI3K/Akt), Notch/Wnt/Atoh1, calcium channels, and oxidative stress/reactive oxygen species (ROS) signaling pathways are the most relevant. The molecular interactions of these signaling pathways play an important role in the survival of HCs, which may provide a theoretical basis and possible therapeutic interventions for the treatment of hearing loss.
Collapse
|
11
|
Gao J, Fan L, Zhao L, Su Y. The interaction of Notch and Wnt signaling pathways in vertebrate regeneration. CELL REGENERATION (LONDON, ENGLAND) 2021; 10:11. [PMID: 33791915 PMCID: PMC8012441 DOI: 10.1186/s13619-020-00072-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 12/14/2020] [Indexed: 12/21/2022]
Abstract
Regeneration is an evolutionarily conserved process in animal kingdoms, however, the regenerative capacities differ from species and organ/tissues. Mammals possess very limited regenerative potential to replace damaged organs, whereas non-mammalian species usually have impressive abilities to regenerate organs. The regeneration process requires proper spatiotemporal regulation from key signaling pathways. The canonical Notch and Wnt signaling pathways, two fundamental signals guiding animal development, have been demonstrated to play significant roles in the regeneration of vertebrates. In recent years, increasing evidence has implicated the cross-talking between Notch and Wnt signals during organ regeneration. In this review, we summarize the roles of Notch signaling and Wnt signaling during several representative organ regenerative events, emphasizing the functions and molecular bases of their interplay in these processes, shedding light on utilizing these two signaling pathways to enhance regeneration in mammals and design legitimate therapeutic strategies.
Collapse
Affiliation(s)
- Junying Gao
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, Shandong, China.,College of Fisheries, Ocean University of China, Qingdao, 266003, Shandong, China
| | - Lixia Fan
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, Shandong, China.,College of Fisheries, Ocean University of China, Qingdao, 266003, Shandong, China
| | - Long Zhao
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, Shandong, China. .,College of Fisheries, Ocean University of China, Qingdao, 266003, Shandong, China.
| | - Ying Su
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, Shandong, China. .,College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, Shandong, China.
| |
Collapse
|
12
|
Zhao Z, Han Z, Naveena K, Lei G, Qiu S, Li X, Li T, Shi X, Zhuang W, Li Y, Qiao Y, Liu H. ROS-Responsive Nanoparticle as a Berberine Carrier for OHC-Targeted Therapy of Noise-Induced Hearing Loss. ACS APPLIED MATERIALS & INTERFACES 2021; 13:7102-7114. [PMID: 33528239 DOI: 10.1021/acsami.0c21151] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Overproduction of reactive oxygen species (ROS) and inflammation are two key pathogeneses of noise-induced hearing loss (NIHL), which leads to outer hair cell (OHC) damage and hearing loss. In this work, we successfully developed ROS-responsive nanoparticles as berberine (BBR) carriers (PL-PPS/BBR) for OHC-targeted therapy of NIHL: Prestin-targeting peptide 2 (PrTP2)-modified nanoparticles (PL-PPS/BBR), which effectively accumulated in OHC areas, and poly(propylene sulfide)120 (PPS120), which scavenged ROS and converted to poly(propylene sulfoxide)120 in a ROS environment to disintegrate and provoke the rapid release of BBR with anti-inflammatory and antioxidant effects. In this study, satisfactory anti-inflammatory and antioxidant effects of PL-PPS/BBR were confirmed. Immunofluorescence and scanning electron microscopy (SEM) images showed that PL-PPS/BBR effectively accumulated in OHCs and protected the morphological integrity of OHCs. The auditory brainstem response (ABR) results demonstrated that PL-PPS/BBR significantly improved hearing in NIHL guinea pigs after noise exposure. This work suggested that PL-PPS/BBR may be a new potential treatment for noise-associated injury with clinical application.
Collapse
Affiliation(s)
- Zeqi Zhao
- Institute of Audiology and Balance Science, Xuzhou Medical University, Xuzhou 221002, PR China
- Department of Otorhinolaryngology-Head and Neck Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, PR China
- Artificial Auditory Laboratory of Jiangsu Province, Xuzhou Medical University, Xuzhou 221002, PR China
| | | | - Konduru Naveena
- Institute of Audiology and Balance Science, Xuzhou Medical University, Xuzhou 221002, PR China
| | - Guanxiong Lei
- Key Laboratory of Medical Imaging and Artifical Intelligence of Hunan Province, Xiangnan University, Chenzhou 423000, PR China
- Clinical College, Xiangnan University, Chenzhou 423000, PR China
| | - Shiwei Qiu
- Institute of Audiology and Balance Science, Xuzhou Medical University, Xuzhou 221002, PR China
| | - Xuanyi Li
- Department of Otorhinolaryngology-Head and Neck Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, PR China
| | - Ting Li
- Institute of Audiology and Balance Science, Xuzhou Medical University, Xuzhou 221002, PR China
| | - Xi Shi
- Institute of Audiology and Balance Science, Xuzhou Medical University, Xuzhou 221002, PR China
| | - Wei Zhuang
- Institute of Audiology and Balance Science, Xuzhou Medical University, Xuzhou 221002, PR China
| | - Yalan Li
- Institute of Audiology and Balance Science, Xuzhou Medical University, Xuzhou 221002, PR China
| | - Yuehua Qiao
- Institute of Audiology and Balance Science, Xuzhou Medical University, Xuzhou 221002, PR China
- Department of Otorhinolaryngology-Head and Neck Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, PR China
- Artificial Auditory Laboratory of Jiangsu Province, Xuzhou Medical University, Xuzhou 221002, PR China
| | - Hongmei Liu
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou 221002, PR China
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, PR China
| |
Collapse
|
13
|
Bai H, Yang S, Xi C, Wang X, Xu J, Weng M, Zhao R, Jiang L, Gao X, Bing J, Zhang M, Zhang X, Han Z, Zeng S. Signaling pathways (Notch, Wnt, Bmp and Fgf) have additive effects on hair cell regeneration in the chick basilar papilla after streptomycin injury in vitro: Additive effects of signaling pathways on hair cell regeneration. Hear Res 2020; 401:108161. [PMID: 33422722 DOI: 10.1016/j.heares.2020.108161] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 11/12/2020] [Accepted: 12/27/2020] [Indexed: 01/07/2023]
Abstract
Hair cells can be regenerated after damage by transdifferentiation in which a supporting cell directly differentiates into a hair cell without mitosis. However, such regeneration is at the cost of exhausting the support cells in the mammalian mature cochlea. Thus, more effective methods should be found to promote mitotic regeneration but partially preserve support cells after damage. To address the issue, we first injured hair cells in the chick basilar papillae (BP) by treatment with streptomycin in vitro. We then compared the mitotic regeneration on the neural side in the middle part of BP after treatment with a pharmacological inhibitor or agonist of the Notch (DAPT), Wnt (LiCl), Bmp (Noggin) or Fgf (SU5402) signaling pathway, with that after treatment with combinations of two or three inhibitors or agonist of these pathways. Our results indicate that treatments with a single inhibitor or agonist of the Notch, Wnt, Bmp or Fgf signaling pathway could significantly increase mitotic regeneration as well as direct transdifferentiation. The results also show that hair cells (Myosin 7a+), support cells (Sox2+) and mitotically regenerated hair cells (Myosin 7a+/Sox2+/BrdU+) increased significantly on the neural side in the middle part of BP after two or three combinations of the inhibition of Notch, Bmp or Fgf signaling pathway or the activation of Wnt signaling pathway, besides the reported coregulatory effects of Notch and Wnt signaling. The study of the effects of systematic combinations of pathway modulators provided more insight into hair cell regeneration from mitosis.
Collapse
Affiliation(s)
- Huanju Bai
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, 100875 China
| | - Siyuan Yang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou, 571158 China; Hainan Instistute of Science and Technology, Haikou, 571126 China
| | - Chao Xi
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, 100875 China
| | - Xi Wang
- Department of Otorhinolaryngolgoy, The General Hospital of the PLA Rocket Force, Beijing, 100088 China
| | - Jincao Xu
- Department of Otorhinolaryngolgoy, The General Hospital of the PLA Rocket Force, Beijing, 100088 China
| | - Menglu Weng
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, 100875 China
| | - Ruxia Zhao
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, 100875 China
| | - Lingling Jiang
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, 100875 China
| | - Xue Gao
- Department of Otorhinolaryngolgoy, The General Hospital of the PLA Rocket Force, Beijing, 100088 China
| | - Jie Bing
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, 100875 China
| | - Meiguang Zhang
- Department of Otorhinolaryngolgoy, The General Hospital of the PLA Rocket Force, Beijing, 100088 China
| | - Xinwen Zhang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou, 571158 China
| | - Zhongming Han
- Department of Otorhinolaryngolgoy, The General Hospital of the PLA Rocket Force, Beijing, 100088 China; Department of Otorhinolaryngolgoy, He Bei YanDa Hospital, Hebei Medical University, Hebei, China 065201.
| | - Shaoju Zeng
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, 100875 China.
| |
Collapse
|
14
|
Matsunaga M, Kita T, Yamamoto R, Yamamoto N, Okano T, Omori K, Sakamoto S, Nakagawa T. Initiation of Supporting Cell Activation for Hair Cell Regeneration in the Avian Auditory Epithelium: An Explant Culture Model. Front Cell Neurosci 2020; 14:583994. [PMID: 33281558 PMCID: PMC7688741 DOI: 10.3389/fncel.2020.583994] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/14/2020] [Indexed: 01/08/2023] Open
Abstract
Sensorineural hearing loss is a common disability often caused by the loss of sensory hair cells in the cochlea. Hair cell (HCs) regeneration has long been the main target for the development of novel therapeutics for sensorineural hearing loss. In the mammalian cochlea, hair cell regeneration is limited, but the auditory epithelia of non-mammalian organisms retain the capacity for hair cell regeneration. In the avian basilar papilla (BP), supporting cells (SCs), which give rise to regenerated hair cells, are usually quiescent. Hair cell loss induces both direct transdifferentiation and mitotic division of supporting cells. Here, we established an explant culture model for hair cell regeneration in chick basilar papillae and validated it for investigating the initial phase of hair cell regeneration. The histological assessment demonstrated hair cell regeneration via direct transdifferentiation of supporting cells. Labeling with 5-ethynyl-2′-deoxyuridine (EdU) revealed the occurrence of mitotic division in the supporting cells at specific locations in the basilar papillae, while no EdU labeling was observed in newly generated hair cells. RNA sequencing indicated alterations in known signaling pathways associated with hair cell regeneration, consistent with previous findings. Also, unbiased analyses of RNA sequencing data revealed novel genes and signaling pathways that may be related to the induction of supporting cell activation in the chick basilar papillae. These results indicate the advantages of our explant culture model of the chick basilar papillae for exploring the molecular mechanisms of hair cell regeneration.
Collapse
Affiliation(s)
- Mami Matsunaga
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tomoko Kita
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ryosuke Yamamoto
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Norio Yamamoto
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takayuki Okano
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Koichi Omori
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | - Takayuki Nakagawa
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
15
|
White PM. Perspectives on Human Hearing Loss, Cochlear Regeneration, and the Potential for Hearing Restoration Therapies. Brain Sci 2020; 10:E756. [PMID: 33092183 PMCID: PMC7589617 DOI: 10.3390/brainsci10100756] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/13/2020] [Accepted: 10/16/2020] [Indexed: 12/23/2022] Open
Abstract
Most adults who acquire hearing loss find it to be a disability that is poorly corrected by current prosthetics. This gap drives current research in cochlear mechanosensory hair cell regeneration and in hearing restoration. Birds and fish can spontaneously regenerate lost hair cells through a process that has become better defined in the last few years. Findings from these studies have informed new research on hair cell regeneration in the mammalian cochlea. Hair cell regeneration is one part of the greater problem of hearing restoration, as hearing loss can stem from a myriad of causes. This review discusses these issues and recent findings, and places them in the greater social context of need and community.
Collapse
Affiliation(s)
- Patricia M White
- Department of Neuroscience, Ernest J. Del Monte Institute for Neuroscience, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY 14642, USA
| |
Collapse
|
16
|
Song Q, Wang J. Effects of the lignan compound (+)-Guaiacin on hair cell survival by activating Wnt/β-Catenin signaling in mouse cochlea. Tissue Cell 2020; 66:101393. [PMID: 32933716 DOI: 10.1016/j.tice.2020.101393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/19/2020] [Accepted: 05/31/2020] [Indexed: 01/25/2023]
Abstract
Wnt/β-Catenin signaling is required for the development and differentiation of cochlear hair cells. Total of 80 natural compounds derived from the FDA-approved Drug Library of Selleck were screened by T-cell factor Reporter Plasmid (TOP)-Flash assay to identify the activation of Wnt/β-Catenin signaling. The mouse cochlear hair cells (HEI-OC1) were treated with cisplatin with or without Guaiacin, and the relative expression of β-Catenin and TRIM33 were detected by qRT-PCR and Western blots. The viability of HEI-OC1 was assayed by MTT method, and mouse cochlear cultures were utilized to detect the Ex vivo survival of cochlear hair cells. Guaiacin was testified to have the most vigorous ability to promote Wnt/β-Catenin signaling among 80 compounds detected, and it can also improve the β-Catenin signaling in mouse cochlear hair cells with up-regulated β-Catenin protein expression, unchanged β-Catenin mRNA expression, and down-regulated TRIM33 expression. Guaiacin increased the viability of HEI-OC1 cells cultured with or without cisplatin, and such a protective effect was also testified in mouse cochlear cultures. Our data indicate that Guaiacin could increase Wnt/β-Catenin signaling by regulating TRIM33/β-Catenin axis, which contributes to the improved survival of cochlear hair cells.
Collapse
Affiliation(s)
- Quanfa Song
- Department of Otolaryngology, Weifang City Hanting District People's Hospital, Weifang, 261100, Shandong, China
| | - Junming Wang
- Department of Otolaryngology, Weifang City Hanting District People's Hospital, Weifang, 261100, Shandong, China.
| |
Collapse
|
17
|
Reprogramming and transdifferentiation - two key processes for regenerative medicine. Eur J Pharmacol 2020; 882:173202. [PMID: 32562801 DOI: 10.1016/j.ejphar.2020.173202] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 04/22/2020] [Accepted: 05/13/2020] [Indexed: 12/11/2022]
Abstract
Regenerative medicine based on transplants obtained from donors or foetal and new-born mesenchymal stem cells, encounter important obstacles such as limited availability of organs, ethical issues and immune rejection. The growing demand for therapeutic methods for patients being treated after serious accidents, severe organ dysfunction and an increasing number of cancer surgeries, exceeds the possibilities of the therapies that are currently available. Reprogramming and transdifferentiation provide powerful bioengineering tools. Both procedures are based on the somatic differentiated cells, which are easily and unlimitedly available, like for example: fibroblasts. During the reprogramming procedure mature cells are converted into pluripotent cells - which are capable to differentiate into almost any kind of desired cells. Transdifferentiation directly converts differentiated cells of one type into another differentiated cells type. Both procedures allow to obtained patient's dedicated cells for therapeutic purpose in regenerative medicine. In combination with biomaterials, it is possible to obtain even whole anatomical structures. Those patient's dedicated structures may serve for them upon serious accidents with massive tissue damage but also upon cancer surgeries as a replacement of damaged organ. Detailed information about reprogramming and transdifferentiation procedures as well as the current state of the art are presented in our review.
Collapse
|
18
|
Naert G, Pasdelou MP, Le Prell CG. Use of the guinea pig in studies on the development and prevention of acquired sensorineural hearing loss, with an emphasis on noise. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 146:3743. [PMID: 31795705 PMCID: PMC7195866 DOI: 10.1121/1.5132711] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/30/2019] [Accepted: 08/12/2019] [Indexed: 05/10/2023]
Abstract
Guinea pigs have been used in diverse studies to better understand acquired hearing loss induced by noise and ototoxic drugs. The guinea pig has its best hearing at slightly higher frequencies relative to humans, but its hearing is more similar to humans than the rat or mouse. Like other rodents, it is more vulnerable to noise injury than the human or nonhuman primate models. There is a wealth of information on auditory function and vulnerability of the inner ear to diverse insults in the guinea pig. With respect to the assessment of potential otoprotective agents, guinea pigs are also docile animals that are relatively easy to dose via systemic injections or gavage. Of interest, the cochlea and the round window are easily accessible, notably for direct cochlear therapy, as in the chinchilla, making the guinea pig a most relevant and suitable model for hearing. This article reviews the use of the guinea pig in basic auditory research, provides detailed discussion of its use in studies on noise injury and other injuries leading to acquired sensorineural hearing loss, and lists some therapeutics assessed in these laboratory animal models to prevent acquired sensorineural hearing loss.
Collapse
Affiliation(s)
| | | | - Colleen G Le Prell
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, Texas 75080, USA
| |
Collapse
|
19
|
Roccio M, Edge ASB. Inner ear organoids: new tools to understand neurosensory cell development, degeneration and regeneration. Development 2019; 146:146/17/dev177188. [PMID: 31477580 DOI: 10.1242/dev.177188] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The development of therapeutic interventions for hearing loss requires fundamental knowledge about the signaling pathways controlling tissue development as well as the establishment of human cell-based assays to validate therapeutic strategies ex vivo Recent advances in the field of stem cell biology and organoid culture systems allow the expansion and differentiation of tissue-specific progenitors and pluripotent stem cells in vitro into functional hair cells and otic-like neurons. We discuss how inner ear organoids have been developed and how they offer for the first time the opportunity to validate drug-based therapies, gene-targeting approaches and cell replacement strategies.
Collapse
Affiliation(s)
- Marta Roccio
- Inner Ear Research Laboratory, Department of Biomedical Research (DBMR), University of Bern, Bern 3008, Switzerland .,Department of Otorhinolaryngology, Head & Neck Surgery, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland
| | - Albert S B Edge
- Department of Otolaryngology, Harvard Medical School, Boston, MA 02115, USA.,Eaton-Peabody Laboratory, Massachusetts Eye and Ear, Boston, MA 02114, USA.,Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| |
Collapse
|
20
|
Bahaloo M, Rezvani ME, Farashahi Yazd E, Davari MH, Mehrparvar AH. Effect of Myricetin on the Prevention of Noise-Induced Hearing Loss-An Animal Model. IRANIAN JOURNAL OF OTORHINOLARYNGOLOGY 2019; 31:273-279. [PMID: 31598494 PMCID: PMC6764812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
INTRODUCTION Exposure to hazardous noise induces one of the forms of acquired and preventable hearing loss that is noise-induced hearing loss (NIHL). Considering oxidative stress as the main mechanism of NIHL, it is possible that myricetin can protect NIHL by its antioxidant effect. Therefore, the present study aimed to investigate the preventive effect of myricetin on NIHL. MATERIALS AND METHODS A total of 21 Wistar rats were randomly divided into five groups, namely (1) noise exposure only as control group, (2) noise exposure with the vehicle of myricetin as solvent group, (3) noise exposure with myricetin 5 mg/kg as myricetin 5 mg group, (4) noise exposure with myricetin 10 mg/kg as myricetin 10 mg group, (5) and non-exposed as sham group. The hearing status of each animal was assessed by Distortion Product Otoacoustic Emissions. RESULTS The levels of response amplitude decreased after the exposure to noise in all groups and returned to a higher level after 14 days of noise abstinence at most frequencies; however, the difference was not significant in the myricetin-receiving or control groups. CONCLUSION The results of this study showed that two doses of myricetin (5 and 10 mg/kg) administered intraperitoneally could not significantly decrease transient or permanent threshold shifts in rats exposed to loud noise.
Collapse
Affiliation(s)
- Maryam Bahaloo
- Industrial Diseases Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | | | - Ehsan Farashahi Yazd
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | - Mohammad Hossein Davari
- Department of Occupational Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | - Amir Houshang Mehrparvar
- Industrial Diseases Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran. ,Corresponding Author: Occupational Medicine Clinic, Shahid Rahnemoun Hospital, Farrokhi ave., Yazd, Iran. Tel: 00983536229193, E-mail:
| |
Collapse
|
21
|
Habets RA, de Bock CE, Serneels L, Lodewijckx I, Verbeke D, Nittner D, Narlawar R, Demeyer S, Dooley J, Liston A, Taghon T, Cools J, de Strooper B. Safe targeting of T cell acute lymphoblastic leukemia by pathology-specific NOTCH inhibition. Sci Transl Med 2019; 11:11/494/eaau6246. [DOI: 10.1126/scitranslmed.aau6246] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 01/18/2019] [Accepted: 04/29/2019] [Indexed: 12/15/2022]
Abstract
Given the high frequency of activating NOTCH1 mutations in T cell acute lymphoblastic leukemia (T-ALL), inhibition of the γ-secretase complex remains an attractive target to prevent ligand-independent release of the cytoplasmic tail and oncogenic NOTCH1 signaling. However, four different γ-secretase complexes exist, and available inhibitors block all complexes equally. As a result, these cause severe “on-target” gastrointestinal tract, skin, and thymus toxicity, limiting their therapeutic application. Here, we demonstrate that genetic deletion or pharmacologic inhibition of the presenilin-1 (PSEN1) subclass of γ-secretase complexes is highly effective in decreasing leukemia while avoiding dose-limiting toxicities. Clinically, T-ALL samples were found to selectively express only PSEN1-containing γ-secretase complexes. The conditional knockout of Psen1 in developing T cells attenuated the development of a mutant NOTCH1-driven leukemia in mice in vivo but did not abrogate normal T cell development. Treatment of T-ALL cell lines with the selective PSEN1 inhibitor MRK-560 effectively decreased mutant NOTCH1 processing and led to cell cycle arrest. These observations were extended to T-ALL patient-derived xenografts in vivo, demonstrating that MRK-560 treatment decreases leukemia burden and increased overall survival without any associated gut toxicity. Therefore, PSEN1-selective compounds provide a potential therapeutic strategy for safe and effective targeting of T-ALL and possibly also for other diseases in which NOTCH signaling plays a role.
Collapse
|
22
|
Abstract
Hearing loss is present in millions of people worldwide. Current treatment for patients with severe to profound hearing loss consists of cochlear implantation. Providing the cochlear nerve is intact, patients generally benefit greatly from this intervention, frequently achieving significant improvements in speech comprehension. There are, however, some cases where current technology does not provide patients with adequate benefit. Ongoing research in cell transplantation and gene therapy promises to lead to new developments that will improve the function of cochlear implants. Translation of these experimental approaches is presently at an early stage. This review focuses on the application of biological therapies in severe hearing loss and discusses some of the barriers to translating basic scientific research into clinical reality. We emphasize the application of these novel therapies to cochlear implantation.
Collapse
Affiliation(s)
- A Roemer
- Klinik für Hals-Nasen-Ohren-Heilkunde OE 6500, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| | - H Staecker
- Department of Otolaryngology - Head and Neck Surgery, University of Kansas School of Medicine, Kansas City, KS, USA
| | - S Sasse
- Klinik für Hals-Nasen-Ohren-Heilkunde OE 6500, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - T Lenarz
- Klinik für Hals-Nasen-Ohren-Heilkunde OE 6500, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - A Warnecke
- Klinik für Hals-Nasen-Ohren-Heilkunde OE 6500, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| |
Collapse
|
23
|
Zhong C, Fu Y, Pan W, Yu J, Wang J. Atoh1 and other related key regulators in the development of auditory sensory epithelium in the mammalian inner ear: function and interplay. Dev Biol 2019; 446:133-141. [DOI: 10.1016/j.ydbio.2018.12.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/30/2018] [Accepted: 12/30/2018] [Indexed: 01/08/2023]
|
24
|
Zhang J, Sun H, Salvi R, Ding D. Paraquat initially damages cochlear support cells leading to anoikis-like hair cell death. Hear Res 2018; 364:129-141. [PMID: 29563067 PMCID: PMC5984146 DOI: 10.1016/j.heares.2018.03.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 02/20/2018] [Accepted: 03/09/2018] [Indexed: 12/11/2022]
Abstract
Paraquat (PQ), one of the most widely used herbicides, is extremely dangerous because it generates the highly toxic superoxide radical. When paraquat was applied to cochlear organotypic cultures, it not only damaged the outer hair cells (OHCs) and inner hair cells (IHCs), but also caused dislocation of the hair cell rows. We hypothesized that the dislocation arose from damage to the support cells (SCs) that anchors hair cells within the epithelium. To test this hypothesis, rat postnatal cochlear cultures were treated with PQ. Shortly after PQ treatment, the rows of OHCs separated from one another and migrated radially away from IHCs suggesting loss of cell-cell adhesion that hold the hair cells in proper alignment. Hair cells dislocation was associated with extensive loss of SCs in the organ of Corti, loss of tympanic border cells (TBCs) beneath the basilar membrane, the early appearance of superoxide staining and caspase-8 labeling in SCs below the OHCs and disintegration of E-cadherin and β-catenin in the organ of Corti. Damage to the TBCs and SCs occurred prior to loss of OHC or IHC loss suggesting a form of detachment-induced apoptosis referred to as anoikis.
Collapse
Affiliation(s)
- Jianhui Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, China; Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, 14214, USA
| | - Hong Sun
- Department of Otorhinolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, China; Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, 14214, USA
| | - Richard Salvi
- Department of Otorhinolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, China; Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, 14214, USA; Department of Audiology and Speech-Language Pathology, Asia University, Taichung, Taiwan, ROC
| | - Dalian Ding
- Department of Otorhinolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, China; Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, 14214, USA.
| |
Collapse
|
25
|
Regeneration of Cochlear Hair Cells and Hearing Recovery through Hes1 Modulation with siRNA Nanoparticles in Adult Guinea Pigs. Mol Ther 2018; 26:1313-1326. [PMID: 29680697 DOI: 10.1016/j.ymthe.2018.03.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 03/06/2018] [Accepted: 03/06/2018] [Indexed: 12/17/2022] Open
Abstract
Deafness is commonly caused by the irreversible loss of mammalian cochlear hair cells (HCs) due to noise trauma, toxins, or infections. We previously demonstrated that small interfering RNAs (siRNAs) directed against the Notch pathway gene, hairy and enhancer of split 1 (Hes1), encapsulated within biocompatible poly(lactic-co-glycolic acid) nanoparticles (PLGA NPs) could regenerate HCs within ototoxin-ablated murine organotypic cultures. In the present study, we delivered this sustained-release formulation of Hes1 siRNA (siHes1) into the cochleae of noise-injured adult guinea pigs. Auditory functional recovery was measured by serial auditory brainstem responses over a nine-week follow-up period, and HC regeneration was evaluated by immunohistological evaluations and scanning electron microscopy. Significant HC restoration and hearing recovery were observed across a broad tonotopic range in ears treated with siHes1 NPs, beginning at three weeks and extending out to nine weeks post-treatment. Moreover, both ectopic and immature HCs were uniquely observed in noise-injured cochleae treated with siHes1 NPs, consistent with de novo HC production. Our results indicate that durable cochlear HCs were regenerated and promoted significant hearing recovery in adult guinea pigs through reversible modulation of Hes1 expression. Therefore, PLGA-NP-mediated delivery of siHes1 to the cochlea represents a promising pharmacologic approach to regenerate functional and sustainable mammalian HCs in vivo.
Collapse
|
26
|
Roemer A, Staecker H, Sasse S, Lenarz T, Warnecke A. [Biological therapies in otology. German version]. HNO 2017; 65:571-585. [PMID: 28204850 DOI: 10.1007/s00106-016-0304-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Millions of people worldwide suffer from hearing loss. Current treatment for patients with severe to profound hearing loss consists of cochlear implants. Providing the cochlear nerve is intact, patients generally benefit enormously from this intervention, frequently achieving significant improvements in speech comprehension. There are, however, some cases where current technology does not provide patients with adequate benefit. New therapeutic concepts based on cell transplantation and gene therapy are developing rapidly, at least in the research sector. Compared to the wealth of basic research available in this area, translation of these new experimental approaches into clinical application is presently at a very early stage. The current review focuses on translatable treatment concepts and discusses the barriers that need to be overcome in order to translate basic scientific research into clinical reality. Furthermore, the first examples of clinical application of biological therapies in severe hearing loss are presented, particularly in connection with cochlear implants.
Collapse
Affiliation(s)
- A Roemer
- Klinik für Hals-Nasen-Ohren-Heilkunde OE 6500 Hannover Medical School, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625, Hannover, Deutschland.
| | - H Staecker
- Department of Otolaryngology - Head and Neck Surgery, University of Kansas School of Medicine, Kansas City, KS, USA
| | - S Sasse
- Klinik für Hals-Nasen-Ohren-Heilkunde OE 6500 Hannover Medical School, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625, Hannover, Deutschland
| | - T Lenarz
- Klinik für Hals-Nasen-Ohren-Heilkunde OE 6500 Hannover Medical School, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625, Hannover, Deutschland
| | - A Warnecke
- Klinik für Hals-Nasen-Ohren-Heilkunde OE 6500 Hannover Medical School, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625, Hannover, Deutschland
| |
Collapse
|
27
|
Lee S, Jeong HS, Cho HH. Atoh1 as a Coordinator of Sensory Hair Cell Development and Regeneration in the Cochlea. Chonnam Med J 2017; 53:37-46. [PMID: 28184337 PMCID: PMC5299128 DOI: 10.4068/cmj.2017.53.1.37] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 09/22/2016] [Accepted: 09/23/2016] [Indexed: 12/18/2022] Open
Abstract
Cochlear sensory hair cells (HCs) are crucial for hearing as mechanoreceptors of the auditory systems. Clarification of transcriptional regulation for the cochlear sensory HC development is crucial for the improvement of cell replacement therapies for hearing loss. Transcription factor Atoh1 is the key player during HC development and regeneration. In this review, we will focus on Atoh1 and its related signaling pathways (Notch, fibroblast growth factor, and Wnt/β-catenin signaling) involved in the development of cochlear sensory HCs. We will also discuss the potential applicability of these signals for the induction of HC regeneration.
Collapse
Affiliation(s)
- Sungsu Lee
- Department of Otolaryngology-Head and Neck Surgery, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, Korea.; Research Institute of Medical Sciences, Chonnam National University, Gwangju, Korea
| | - Han-Seong Jeong
- Research Institute of Medical Sciences, Chonnam National University, Gwangju, Korea.; Department of Physiology, Chonnam National University Medical School, Gwangju, Korea
| | - Hyong-Ho Cho
- Department of Otolaryngology-Head and Neck Surgery, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, Korea.; Research Institute of Medical Sciences, Chonnam National University, Gwangju, Korea
| |
Collapse
|
28
|
Franco B, Malgrange B. Concise Review: Regeneration in Mammalian Cochlea Hair Cells: Help from Supporting Cells Transdifferentiation. Stem Cells 2017; 35:551-556. [PMID: 28102558 DOI: 10.1002/stem.2554] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/16/2016] [Accepted: 11/27/2016] [Indexed: 12/28/2022]
Abstract
It is commonly assumed that mammalian cochlear cells do not regenerate. Therefore, if hair cells are lost following an injury, no recovery could occur. However, during the first postnatal week, mice harbor some progenitor cells that retain the ability to give rise to new hair cells. These progenitor cells are in fact supporting cells. Upon hair cells loss, those cells are able to generate new hair cells both by direct transdifferentiation or following cell cycle re-entry and differentiation. However, this property of supporting cells is progressively lost after birth. Here, we review the molecular mechanisms that are involved in mammalian hair cell development and regeneration. Manipulating pathways used during development constitute good candidates for inducing hair cell regeneration after injury. Despite these promising studies, there is still no evidence for a recovery following hair cells loss in adult mammals. Stem Cells 2017;35:551-556.
Collapse
Affiliation(s)
- Bénédicte Franco
- Developmental Neurobiology Unit - GIGA-Neurosciences, University of Liège, Quartier Hôpital (CHU), B-4000, Liège, Belgium
| | - Brigitte Malgrange
- Developmental Neurobiology Unit - GIGA-Neurosciences, University of Liège, Quartier Hôpital (CHU), B-4000, Liège, Belgium
| |
Collapse
|
29
|
Mammalian Cochlear Hair Cell Regeneration and Ribbon Synapse Reformation. Neural Plast 2016; 2016:2523458. [PMID: 28119785 PMCID: PMC5227174 DOI: 10.1155/2016/2523458] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 11/29/2016] [Accepted: 12/01/2016] [Indexed: 01/29/2023] Open
Abstract
Hair cells (HCs) are the sensory preceptor cells in the inner ear, which play an important role in hearing and balance. The HCs of organ of Corti are susceptible to noise, ototoxic drugs, and infections, thus resulting in permanent hearing loss. Recent approaches of HCs regeneration provide new directions for finding the treatment of sensor neural deafness. To have normal hearing function, the regenerated HCs must be reinnervated by nerve fibers and reform ribbon synapse with the dendrite of spiral ganglion neuron through nerve regeneration. In this review, we discuss the research progress in HC regeneration, the synaptic plasticity, and the reinnervation of new regenerated HCs in mammalian inner ear.
Collapse
|
30
|
Zheng F, Zuo J. Cochlear hair cell regeneration after noise-induced hearing loss: Does regeneration follow development? Hear Res 2016; 349:182-196. [PMID: 28034617 DOI: 10.1016/j.heares.2016.12.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 11/22/2016] [Accepted: 12/20/2016] [Indexed: 12/14/2022]
Abstract
Noise-induced hearing loss (NIHL) affects a large number of military personnel and civilians. Regenerating inner-ear cochlear hair cells (HCs) is a promising strategy to restore hearing after NIHL. In this review, we first summarize recent transcriptome profile analysis of zebrafish lateral lines and chick utricles where spontaneous HC regeneration occurs after HC damage. We then discuss recent studies in other mammalian regenerative systems such as pancreas, heart and central nervous system. Both spontaneous and forced HC regeneration occurs in mammalian cochleae in vivo involving proliferation and direct lineage conversion. However, both processes are inefficient and incomplete, and decline with age. For direct lineage conversion in vivo in cochleae and in other systems, further improvement requires multiple factors, including transcription, epigenetic and trophic factors, with appropriate stoichiometry in appropriate architectural niche. Increasing evidence from other systems indicates that the molecular paths of direct lineage conversion may be different from those of normal developmental lineages. We therefore hypothesize that HC regeneration does not have to follow HC development and that epigenetic memory of supporting cells influences the HC regeneration, which may be a key to successful cochlear HC regeneration. Finally, we discuss recent efforts in viral gene therapy and drug discovery for HC regeneration. We hope that combination therapy targeting multiple factors and epigenetic signaling pathways will provide promising avenues for HC regeneration in humans with NIHL and other types of hearing loss.
Collapse
Affiliation(s)
- Fei Zheng
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS 322, Memphis, TN 38105, United States.
| | - Jian Zuo
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS 322, Memphis, TN 38105, United States.
| |
Collapse
|
31
|
Role of Wnt and Notch signaling in regulating hair cell regeneration in the cochlea. Front Med 2016; 10:237-49. [PMID: 27527363 DOI: 10.1007/s11684-016-0464-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 06/12/2016] [Indexed: 01/22/2023]
Abstract
Sensory hair cells in the inner ear are responsible for sound recognition. Damage to hair cells in adult mammals causes permanent hearing impairment because these cells cannot regenerate. By contrast, newborn mammals possess limited regenerative capacity because of the active participation of various signaling pathways, including Wnt and Notch signaling. The Wnt and Notch pathways are highly sophisticated and conserved signaling pathways that control multiple cellular events necessary for the formation of sensory hair cells. Both signaling pathways allow resident supporting cells to regenerate hair cells in the neonatal cochlea. In this regard, Wnt and Notch signaling has gained increased research attention in hair cell regeneration. This review presents the current understanding of the Wnt and Notch signaling pathways in the auditory portion of the inner ear and discusses the possibilities of controlling these pathways with the hair cell fate determiner Atoh1 to regulate hair cell regeneration in the mammalian cochlea.
Collapse
|
32
|
Taura A, Taura K, Koyama Y, Yamamoto N, Nakagawa T, Ito J, Ryan AF. Hair cell stereociliary bundle regeneration by espin gene transduction after aminoglycoside damage and hair cell induction by Notch inhibition. Gene Ther 2016; 23:415-23. [PMID: 26886463 PMCID: PMC4860107 DOI: 10.1038/gt.2016.12] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 09/27/2015] [Accepted: 10/23/2015] [Indexed: 12/20/2022]
Abstract
Once inner ear hair cells (HCs) are damaged by drugs, noise or aging, their apical structures including the stereociliary arrays are frequently the first cellular feature to be lost. Although this can be followed by progressive loss of HC somata, a significant number of HC bodies often remain even after stereociliary loss. However, in the absence of stereocilia they are nonfunctional. HCs can sometimes be regenerated by Atoh1 transduction or Notch inhibition, but they also may lack stereociliary bundles. It is therefore important to develop methods for the regeneration of stereocilia, in order to achieve HC functional recovery. Espin is an actin-bundling protein known to participate in sterociliary elongation during development. We evaluated stereociliary array regeneration in damaged vestibular sensory epithelia in tissue culture, using viral vector transduction of two espin isoforms. Utricular HCs were damaged with aminoglycosides. The utricles were then treated with a γ-secretase inhibitor, followed by espin or control transduction and histochemistry. Although γ-secretase inhibition increased the number of HCs, few had stereociliary arrays. In contrast, 46 h after espin1 transduction, a significant increase in hair-bundle-like structures was observed. These were confirmed to be immature stereociliary arrays by scanning electron microscopy. Increased uptake of FM1-43 uptake provided evidence of stereociliary function. Espin4 transduction had no effect. The results demonstrate that espin1 gene therapy can restore stereocilia on damaged or regenerated HCs.
Collapse
Affiliation(s)
- A Taura
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - K Taura
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Y Koyama
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - N Yamamoto
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - T Nakagawa
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - J Ito
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - A F Ryan
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Divison of Otolaryngology, Department of Surgery, UCSD School of Medicine, La Jolla, CA, USA.,VA Medical Center, San Diego, CA, USA.,Department of Neurosciences, UCSD School of Medicine, La Jolla, CA, USA
| |
Collapse
|
33
|
Yamahara K, Yamamoto N, Nakagawa T, Ito J. Insulin-like growth factor 1: A novel treatment for the protection or regeneration of cochlear hair cells. Hear Res 2015; 330:2-9. [DOI: 10.1016/j.heares.2015.04.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 04/19/2015] [Accepted: 04/24/2015] [Indexed: 11/15/2022]
|
34
|
Żak M, Klis SFL, Grolman W. The Wnt and Notch signalling pathways in the developing cochlea: Formation of hair cells and induction of regenerative potential. Int J Dev Neurosci 2015; 47:247-58. [PMID: 26471908 DOI: 10.1016/j.ijdevneu.2015.09.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 09/25/2015] [Accepted: 09/26/2015] [Indexed: 12/21/2022] Open
Abstract
The Wnt and Notch signalling pathways control proliferation, specification, and cell fate choices during embryonic development and in adult life. Hence, there is much interest in both signalling pathways in the context of stem cell biology and tissue regeneration. In the developing ear, the Wnt and Notch signalling pathways specify otic cells and refine the ventral boundary of the otic placode. Since both signalling pathways control events essential for the formation of sensory cells, such as proliferation and hair cell differentiation, these pathways could hold promise for the regeneration of hair cells in adult mammalian cochlea. Indeed, modulating either the Wnt or Notch pathways can trigger the regenerative potential of supporting cells. In the neonatal mouse cochlea, Notch-mediated regeneration of hair cells partially depends on Wnt signalling, which implies an interaction between the pathways. This review presents how the Wnt and Notch signalling pathways regulate the formation of sensory hair cells and how modulating their activity induces regenerative potential in the mammalian cochlea.
Collapse
Affiliation(s)
- Magdalena Żak
- Department of Otorhinolaryngology and Head & Neck Surgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Room G.02.531, P.O. Box 85500, 3508 GA, Utrecht, The Netherlands.
| | - Sjaak F L Klis
- Department of Otorhinolaryngology and Head & Neck Surgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Room G.02.531, P.O. Box 85500, 3508 GA, Utrecht, The Netherlands
| | - Wilko Grolman
- Department of Otorhinolaryngology and Head & Neck Surgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Room G.02.531, P.O. Box 85500, 3508 GA, Utrecht, The Netherlands
| |
Collapse
|
35
|
Abernathy MM, Gauvin DV, Tapp RL, Yoder JD, Baird TJ. Utility of the auditory brainstem response evaluation in non-clinical drug safety evaluations. J Pharmacol Toxicol Methods 2015; 75:111-7. [DOI: 10.1016/j.vascn.2015.05.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Revised: 04/24/2015] [Accepted: 05/07/2015] [Indexed: 01/15/2023]
|
36
|
Atkinson PJ, Huarcaya Najarro E, Sayyid ZN, Cheng AG. Sensory hair cell development and regeneration: similarities and differences. Development 2015; 142:1561-71. [PMID: 25922522 DOI: 10.1242/dev.114926] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Sensory hair cells are mechanoreceptors of the auditory and vestibular systems and are crucial for hearing and balance. In adult mammals, auditory hair cells are unable to regenerate, and damage to these cells results in permanent hearing loss. By contrast, hair cells in the chick cochlea and the zebrafish lateral line are able to regenerate, prompting studies into the signaling pathways, morphogen gradients and transcription factors that regulate hair cell development and regeneration in various species. Here, we review these findings and discuss how various signaling pathways and factors function to modulate sensory hair cell development and regeneration. By comparing and contrasting development and regeneration, we also highlight the utility and limitations of using defined developmental cues to drive mammalian hair cell regeneration.
Collapse
Affiliation(s)
- Patrick J Atkinson
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Elvis Huarcaya Najarro
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Zahra N Sayyid
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Alan G Cheng
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
37
|
Whitfield TT. Development of the inner ear. Curr Opin Genet Dev 2015; 32:112-8. [DOI: 10.1016/j.gde.2015.02.006] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 02/11/2015] [Accepted: 02/13/2015] [Indexed: 02/04/2023]
|
38
|
Maass JC, Gu R, Basch ML, Waldhaus J, Lopez EM, Xia A, Oghalai JS, Heller S, Groves AK. Changes in the regulation of the Notch signaling pathway are temporally correlated with regenerative failure in the mouse cochlea. Front Cell Neurosci 2015; 9:110. [PMID: 25873862 PMCID: PMC4379755 DOI: 10.3389/fncel.2015.00110] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 03/10/2015] [Indexed: 12/20/2022] Open
Abstract
Sensorineural hearing loss is most commonly caused by the death of hair cells in the organ of Corti, and once lost, mammalian hair cells do not regenerate. In contrast, other vertebrates such as birds can regenerate hair cells by stimulating division and differentiation of neighboring supporting cells. We currently know little of the genetic networks which become active in supporting cells when hair cells die and that are activated in experimental models of hair cell regeneration. Several studies have shown that neonatal mammalian cochlear supporting cells are able to trans-differentiate into hair cells when cultured in conditions in which the Notch signaling pathway is blocked. We now show that the ability of cochlear supporting cells to trans-differentiate declines precipitously after birth, such that supporting cells from six-day-old mouse cochlea are entirely unresponsive to a blockade of the Notch pathway. We show that this trend is seen regardless of whether the Notch pathway is blocked with gamma secretase inhibitors, or by antibodies against the Notch1 receptor, suggesting that the action of gamma secretase inhibitors on neonatal supporting cells is likely to be by inhibiting Notch receptor cleavage. The loss of responsiveness to inhibition of the Notch pathway in the first postnatal week is due in part to a down-regulation of Notch receptors and ligands, and we show that this down-regulation persists in the adult animal, even under conditions of noise damage. Our data suggest that the Notch pathway is used to establish the repeating pattern of hair cells and supporting cells in the organ of Corti, but is not required to maintain this cellular mosaic once the production of hair cells and supporting cells is completed. Our results have implications for the proposed used of Notch pathway inhibitors in hearing restoration therapies.
Collapse
Affiliation(s)
- Juan C Maass
- Department of Neuroscience, Baylor College of Medicine Houston, TX, USA ; Department of Otolaryngology, Hospital Clínico Universidad de Chile Santiago, Chile ; Interdisciplinary Program of Physiology and Biophysics, ICBM Universidad de Chile Santiago, Chile ; Department of Otolaryngology, Clínica Alemana de Santiago, Facultad de Medicina Clínica Alemana-Universidad del Desarrollo Santiago, Chile
| | - Rende Gu
- Department of Neuroscience, Baylor College of Medicine Houston, TX, USA
| | - Martin L Basch
- Department of Neuroscience, Baylor College of Medicine Houston, TX, USA
| | - Joerg Waldhaus
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine Palo Alto, CA, USA
| | | | - Anping Xia
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine Palo Alto, CA, USA
| | - John S Oghalai
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine Palo Alto, CA, USA
| | - Stefan Heller
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine Palo Alto, CA, USA
| | - Andrew K Groves
- Department of Neuroscience, Baylor College of Medicine Houston, TX, USA ; Department of Molecular and Human Genetics, Baylor College of Medicine Houston, TX, USA ; Program in Developmental Biology, Baylor College of Medicine Houston, TX, USA
| |
Collapse
|
39
|
Fujioka M, Okano H, Edge ASB. Manipulating cell fate in the cochlea: a feasible therapy for hearing loss. Trends Neurosci 2015; 38:139-44. [PMID: 25593106 DOI: 10.1016/j.tins.2014.12.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 11/23/2014] [Accepted: 12/02/2014] [Indexed: 02/06/2023]
Abstract
Mammalian auditory hair cells do not spontaneously regenerate, unlike hair cells in lower vertebrates, including fish and birds. In mammals, hearing loss due to the loss of hair cells is permanent and intractable. Recent studies in the mouse have demonstrated spontaneous hair cell regeneration during a short postnatal period, but this regenerative capacity is lost in the adult cochlea. Reduced regeneration coincides with a transition that results in a decreased pool of progenitor cells in the cochlear sensory epithelium. Here, we review the signaling cascades involved in hair cell formation and morphogenesis of the organ of Corti in developing mammals, the changing status of progenitor cells in the cochlea, and the regeneration of auditory hair cells in adult mammals.
Collapse
Affiliation(s)
- Masato Fujioka
- Department of Otorhinolaryngology, Head and Neck Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Albert S B Edge
- Eaton-Peabody Laboratory, Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, MA, USA; Department of Otology and Laryngology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
40
|
Nakagawa T. Strategies for developing novel therapeutics for sensorineural hearing loss. Front Pharmacol 2014; 5:206. [PMID: 25278894 PMCID: PMC4165348 DOI: 10.3389/fphar.2014.00206] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 08/20/2014] [Indexed: 01/01/2023] Open
Abstract
Sensorineural hearing loss (SNHL) is a common disability in the world; however, at present, options for the pharmacological treatment of SNHL are very limited. Previous studies involving human temporal bone analyses have revealed that the degeneration of the cochlea is a common mechanism of SNHL. A major problem for the development of novel pharmacotherapy for SNHL has been the limited regeneration capacity in mammalian cochlear cells. However, recent progress in basic studies has led to several effective strategies for the induction of regeneration in the mammalian cochlea, in accordance with the stage of degeneration. In addition, recent advances in the identification of human deafness genes and their characterization in mouse models have elucidated cellular and/or molecular mechanisms of SNHL, which will contribute to clarify molecular targets of pharmacotherapy for treatment of SNHL.
Collapse
Affiliation(s)
- Takayuki Nakagawa
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Kyoto University Kyoto, Japan
| |
Collapse
|