1
|
Suzuki K, Shibato J, Rakwal R, Takaura M, Hotta R, Masuo Y. Biomarkers in the Rat Hippocampus and Peripheral Blood for an Early Stage of Mental Disorders Induced by Water Immersion Stress. Int J Mol Sci 2023; 24:ijms24043153. [PMID: 36834565 PMCID: PMC9960135 DOI: 10.3390/ijms24043153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023] Open
Abstract
It is difficult to evaluate the pre-symptomatic state of mental disorders and prevent its onset. Since stress could be a trigger of mental disorders, it may be helpful to identify stress-responsive biomarkers (stress markers) for the evaluation of stress levels. We have so far performed omics analyses of the rat brain and peripheral blood after various kinds of stress and have found numerous factors that respond to stress. In this study, we investigated the effects of relatively moderate stress on these factors in the rat to identify stress marker candidates. Adult male Wistar rats underwent water immersion stress for 12 h, 24 h, or 48 h. Stress caused weight loss and elevated serum corticosterone levels, and alterations regarded as anxiety and/or fear-like behaviors. Reverse-transcription PCR and Western blot analyses revealed significant alterations in the expressions of hippocampal genes and proteins by the stress for no longer than 24 h, such as mitogen-activated protein kinase phosphatase 1 (MKP-1), CCAAT/enhancer-binding protein delta (CEBPD), small ubiquitin-like modifier proteins 1/sentrin-specific peptidase 5 (SENP5), matrix metalloproteinase-8 (MMP-8), kinase suppressor of Ras 1 (KSR1), and MKP-1, MMP-8, nerve growth factor receptor (NGFR). Similar alterations were observed in three genes (MKP-1, CEBPD, MMP-8) in the peripheral blood. The present results strongly suggest that these factors may serve as stress markers. The correlation of these factors in the blood and brain may enable the evaluation of stress-induced changes in the brain by blood analysis, which will contribute to preventing the onset of mental disorders.
Collapse
Affiliation(s)
- Keisuke Suzuki
- Laboratory of Neuroscience, Department of Biology, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi 274-8510, Japan
| | - Junko Shibato
- Department of Functional Morphology, Shonan University of Medical Sciences, 16-48 Kamishinano, Totsuka-ku, Yokohama 244-0806, Japan
| | - Randeep Rakwal
- Institute of Health and Sport Sciences and Tsukuba International Academy for Sport Studies (TIAS2.0), University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8574, Japan
| | - Masahiko Takaura
- Laboratory of Neuroscience, Department of Biology, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi 274-8510, Japan
| | - Ryotaro Hotta
- Laboratory of Neuroscience, Department of Biology, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi 274-8510, Japan
| | - Yoshinori Masuo
- Laboratory of Neuroscience, Department of Biology, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi 274-8510, Japan
- Correspondence:
| |
Collapse
|
2
|
Shibuya Y, Kumar KK, Mader MMD, Yoo Y, Ayala LA, Zhou M, Mohr MA, Neumayer G, Kumar I, Yamamoto R, Marcoux P, Liou B, Bennett FC, Nakauchi H, Sun Y, Chen X, Heppner FL, Wyss-Coray T, Südhof TC, Wernig M. Treatment of a genetic brain disease by CNS-wide microglia replacement. Sci Transl Med 2022; 14:eabl9945. [PMID: 35294256 PMCID: PMC9618306 DOI: 10.1126/scitranslmed.abl9945] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Hematopoietic cell transplantation after myeloablative conditioning has been used to treat various genetic metabolic syndromes but is largely ineffective in diseases affecting the brain presumably due to poor and variable myeloid cell incorporation into the central nervous system. Here, we developed and characterized a near-complete and homogeneous replacement of microglia with bone marrow cells in mice without the need for genetic manipulation of donor or host. The high chimerism resulted from a competitive advantage of scarce donor cells during microglia repopulation rather than enhanced recruitment from the periphery. Hematopoietic stem cells, but not immediate myeloid or monocyte progenitor cells, contained full microglia replacement potency equivalent to whole bone marrow. To explore its therapeutic potential, we applied microglia replacement to a mouse model for Prosaposin deficiency, which is characterized by a progressive neurodegeneration phenotype. We found a reduction of cerebellar neurodegeneration and gliosis in treated brains, improvement of motor and balance impairment, and life span extension even with treatment started in young adulthood. This proof-of-concept study suggests that efficient microglia replacement may have therapeutic efficacy for a variety of neurological diseases.
Collapse
Affiliation(s)
- Yohei Shibuya
- Institute for Stem Cell Biology and Regenerative Medicine and Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA,Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kevin K Kumar
- Institute for Stem Cell Biology and Regenerative Medicine and Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA,Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA,These authors contributed equally
| | - Marius Marc-Daniel Mader
- Institute for Stem Cell Biology and Regenerative Medicine and Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA,Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA,These authors contributed equally
| | - Yongjin Yoo
- Institute for Stem Cell Biology and Regenerative Medicine and Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA,Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA,These authors contributed equally
| | - Luis Angel Ayala
- Institute for Stem Cell Biology and Regenerative Medicine and Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA,Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Mu Zhou
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | - Gernot Neumayer
- Institute for Stem Cell Biology and Regenerative Medicine and Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA,Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ishan Kumar
- Institute for Stem Cell Biology and Regenerative Medicine and Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA,Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ryo Yamamoto
- Institute for Stem Cell Biology and Regenerative Medicine and Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA,Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Paul Marcoux
- Institute for Stem Cell Biology and Regenerative Medicine and Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA,Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Benjamin Liou
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - F Chris Bennett
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hiromitsu Nakauchi
- Institute for Stem Cell Biology and Regenerative Medicine and Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA,Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA,Division of Stem Cell Therapy, Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Ying Sun
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Xiaoke Chen
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Frank L. Heppner
- Department of Neuropathology, Cluster of Excellence, NeuroCure, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany,Department of Neuropathology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany,Cluster of Excellence, NeuroCure, Charitéplatz 1, 10117 Berlin, Germany,Berlin Institute of Health (BIH), 10117 Berlin, Germany,German Center for Neurodegenerative Diseases (DZNE) Berlin, 10117 Berlin, Germany
| | - Tony Wyss-Coray
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA,Veterans Administration Palo Alto Healthcare System, Palo Alto, CA 94304, USA
| | - Thomas C. Südhof
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA,Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Marius Wernig
- Institute for Stem Cell Biology and Regenerative Medicine and Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA,Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA,Lead Contact,Correspondence:
| |
Collapse
|
3
|
Yin S, Liao Q, Wang Y, Shi Q, Xia P, Yi M, Huang J. Ccdc134 deficiency impairs cerebellar development and motor coordination. GENES, BRAIN, AND BEHAVIOR 2021; 20:e12763. [PMID: 34382738 DOI: 10.1111/gbb.12763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 07/21/2021] [Accepted: 07/30/2021] [Indexed: 11/28/2022]
Abstract
Coiled-coil domain containing 134 (CCDC134) has been shown to serve as an immune cytokine to exert antitumor effects and to act as a novel regulator of hADA2a to affect PCAF acetyltransferase activity. While Ccdc134 loss causes abnormal brain development in mice, the significance of CCDC134 in neuronal development in vivo is controversial. Here, we report that CCDC134 is highly expressed in Purkinje cells (PCs) at all developmental stages and regulates mammalian cerebellar development in a cell type-specific manner. Selective deletion of Ccdc134 in mouse neural stem cells (NSCs) caused defects in cerebellar morphogenesis, including a decrease in the number of PCs and impairment of PC dendritic growth, as well as abnormal granule cell development. Moreover, loss of Ccdc134 caused progressive motor dysfunction with deficits in motor coordination and motor learning. Finally, Ccdc134 deficiency inhibited Wnt signaling but increased Ataxin1 levels. Our findings provide evidence that CCDC134 plays an important role in cerebellar development, possibly through regulating Wnt signaling and Ataxin1 expression levels, and in controlling cerebellar function for motor coordination and motor learning, ultimately making it a potential contributor to cerebellar pathogenesis.
Collapse
Affiliation(s)
- Sha Yin
- Department of Immunology, School of Basic Medical Sciences, Peking University, and NHC Key Laboratory of Medical Immunology (Peking University), Beijing, China
- Key Laboratory of Molecular Immunology, Chinese Academy of Medical Sciences, Beijing, China
| | - Qinyuan Liao
- Department of Immunology, Guilin Medical University, Guilin, Guangxi province, China
| | - Yida Wang
- Department of Immunology, School of Basic Medical Sciences, Peking University, and NHC Key Laboratory of Medical Immunology (Peking University), Beijing, China
- Key Laboratory of Molecular Immunology, Chinese Academy of Medical Sciences, Beijing, China
| | - Qianwen Shi
- Department of Immunology, School of Basic Medical Sciences, Peking University, and NHC Key Laboratory of Medical Immunology (Peking University), Beijing, China
- Key Laboratory of Molecular Immunology, Chinese Academy of Medical Sciences, Beijing, China
| | - Peng Xia
- Department of Immunology, School of Basic Medical Sciences, Peking University, and NHC Key Laboratory of Medical Immunology (Peking University), Beijing, China
- Key Laboratory of Molecular Immunology, Chinese Academy of Medical Sciences, Beijing, China
| | - Ming Yi
- Neuroscience Research Institute and Key Laboratory for Neuroscience, Ministry of Education/National Health Commission of China, Peking University, Beijing, China
| | - Jing Huang
- Department of Immunology, School of Basic Medical Sciences, Peking University, and NHC Key Laboratory of Medical Immunology (Peking University), Beijing, China
- Key Laboratory of Molecular Immunology, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
4
|
Principal Component Analysis-Based Unsupervised Feature Extraction Applied to Single-Cell Gene Expression Analysis. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/978-3-319-95933-7_90] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
5
|
Dasgupta N, Xu YH, Li R, Peng Y, Pandey MK, Tinch SL, Liou B, Inskeep V, Zhang W, Setchell KDR, Keddache M, Grabowski GA, Sun Y. Neuronopathic Gaucher disease: dysregulated mRNAs and miRNAs in brain pathogenesis and effects of pharmacologic chaperone treatment in a mouse model. Hum Mol Genet 2015; 24:7031-48. [PMID: 26420838 DOI: 10.1093/hmg/ddv404] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 09/21/2015] [Indexed: 01/10/2023] Open
Abstract
Defective lysosomal acid β-glucosidase (GCase) in Gaucher disease causes accumulation of glucosylceramide (GC) and glucosylsphingosine (GS) that distress cellular functions. To study novel pathological mechanisms in neuronopathic Gaucher disease (nGD), a mouse model (4L;C*), an analogue to subacute human nGD, was investigated for global profiles of differentially expressed brain mRNAs (DEGs) and miRNAs (DEmiRs). 4L;C* mice displayed accumulation of GC and GS, activated microglial cells, reduced number of neurons and aberrant mitochondrial function in the brain followed by deterioration in motor function. DEGs and DEmiRs were characterized from sequencing of mRNA and miRNA from cerebral cortex, brain stem, midbrain and cerebellum of 4L;C* mice. Gene ontology enrichment and pathway analysis showed preferential mitochondrial dysfunction in midbrain and uniform inflammatory response and identified novel pathways, axonal guidance signaling, synaptic transmission, eIF2 and mammalian target of rapamycin (mTOR) signaling potentially involved in nGD. Similar analyses were performed with mice treated with isofagomine (IFG), a pharmacologic chaperone for GCase. IFG treatment did not alter the GS and GC accumulation significantly but attenuated the progression of the disease and altered numerous DEmiRs and target DEGs to their respective normal levels in inflammation, mitochondrial function and axonal guidance pathways, suggesting its regulation on miRNA and the associated mRNA that underlie the neurodegeneration in nGD. These analyses demonstrate that the neurodegenerative phenotype in 4L;C* mice was associated with dysregulation of brain mRNAs and miRNAs in axonal guidance, synaptic plasticity, mitochondria function, eIF2 and mTOR signaling and inflammation and provides new insights for the nGD pathological mechanism.
Collapse
Affiliation(s)
- Nupur Dasgupta
- Division of Human Genetics, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA
| | - You-Hai Xu
- Division of Human Genetics, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA
| | - Ronghua Li
- Division of Human Genetics, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Yanyan Peng
- Division of Human Genetics, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA
| | - Manoj K Pandey
- Division of Human Genetics, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Stuart L Tinch
- Division of Human Genetics, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA
| | - Benjamin Liou
- Division of Human Genetics, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA
| | - Venette Inskeep
- Division of Human Genetics, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA
| | - Wujuan Zhang
- Division of Pathology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA and
| | - Kenneth D R Setchell
- Division of Pathology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Mehdi Keddache
- Division of Human Genetics, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA
| | - Gregory A Grabowski
- Division of Human Genetics, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA
| | - Ying Sun
- Division of Human Genetics, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| |
Collapse
|
6
|
Lutzenberger M, Burwinkel M, Riemer C, Bode V, Baier M. Ablation of CCAAT/Enhancer-Binding Protein Delta (C/EBPD): Increased Plaque Burden in a Murine Alzheimer's Disease Model. PLoS One 2015; 10:e0134228. [PMID: 26230261 PMCID: PMC4521790 DOI: 10.1371/journal.pone.0134228] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 07/07/2015] [Indexed: 11/18/2022] Open
Abstract
Alzheimer's disease (AD) and prion diseases carry a significant inflammatory component. The astrocytic overexpression of CCAAT/enhancer-binding protein delta (C/EBPD) in prion- and AD-affected brain tissue prompted us to study the role of this transcription factor in murine model systems of these diseases. Ablation of C/EBPD had neither in the AD model (APP/PS1double transgenic mice) nor in the prion model (scrapie-infected C57BL/6 mice) an influence on overt clinical symptoms. Moreover, the absence of C/EBPD did not affect the extent of the disease-related gliosis. However, C/EBPD-deficient APP/PS1 double transgenic mice displayed significantly increased amyloid beta (Abeta) plaque burdens while amyloid precursor protein (APP) expression and expression of genes involved in beta amyloid transport and turnover remained unchanged. Gene expression analysis in mixed glia cultures demonstrated a strong dependency of complement component C3 on the presence of C/EBPD. Accordingly, C3 mRNA levels were significantly lower in brain tissue of C/EBPD-deficient mice. Vice versa, C3 expression in U-373 MG cells increased upon transfection with a C/EBPD expression vector. Taken together, our data indicate that a C/EBPD-deficiency leads to increased Abeta plaque burden in AD model mice. Furthermore, as shown in vivo and in vitro, C/EBPD is an important driver of the expression of acute phase response genes like C3 in the amyloid-affected CNS.
Collapse
Affiliation(s)
- Manuel Lutzenberger
- Research Group Proteinopathies/Neurodegenerative Diseases, Centre for Biological Threats and Special Pathogens (ZBS6), Robert Koch-Institut, Berlin, Germany
| | - Michael Burwinkel
- Research Group Proteinopathies/Neurodegenerative Diseases, Centre for Biological Threats and Special Pathogens (ZBS6), Robert Koch-Institut, Berlin, Germany
- * E-mail:
| | - Constanze Riemer
- Research Group Proteinopathies/Neurodegenerative Diseases, Centre for Biological Threats and Special Pathogens (ZBS6), Robert Koch-Institut, Berlin, Germany
| | - Victoria Bode
- Research Group Proteinopathies/Neurodegenerative Diseases, Centre for Biological Threats and Special Pathogens (ZBS6), Robert Koch-Institut, Berlin, Germany
| | - Michael Baier
- Research Group Proteinopathies/Neurodegenerative Diseases, Centre for Biological Threats and Special Pathogens (ZBS6), Robert Koch-Institut, Berlin, Germany
| |
Collapse
|
7
|
Pulido-Salgado M, Vidal-Taboada JM, Saura J. C/EBPβ and C/EBPδ transcription factors: Basic biology and roles in the CNS. Prog Neurobiol 2015; 132:1-33. [PMID: 26143335 DOI: 10.1016/j.pneurobio.2015.06.003] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 05/08/2015] [Accepted: 06/16/2015] [Indexed: 02/01/2023]
Abstract
CCAAT/enhancer binding protein (C/EBP) β and C/EBPδ are transcription factors of the basic-leucine zipper class which share phylogenetic, structural and functional features. In this review we first describe in depth their basic molecular biology which includes fascinating aspects such as the regulated use of alternative initiation codons in the C/EBPβ mRNA. The physical interactions with multiple transcription factors which greatly opens the number of potentially regulated genes or the presence of at least five different types of post-translational modifications are also remarkable molecular mechanisms that modulate C/EBPβ and C/EBPδ function. In the second part, we review the present knowledge on the localization, expression changes and physiological roles of C/EBPβ and C/EBPδ in neurons, astrocytes and microglia. We conclude that C/EBPβ and C/EBPδ share two unique features related to their role in the CNS: whereas in neurons they participate in memory formation and synaptic plasticity, in glial cells they regulate the pro-inflammatory program. Because of their role in neuroinflammation, C/EBPβ and C/EBPδ in microglia are potential targets for treatment of neurodegenerative disorders. Any strategy to reduce C/EBPβ and C/EBPδ activity in neuroinflammation needs to take into account its potential side-effects in neurons. Therefore, cell-specific treatments will be required for the successful application of this strategy.
Collapse
Affiliation(s)
- Marta Pulido-Salgado
- Biochemistry and Molecular Biology Unit, School of Medicine, University of Barcelona, IDIBAPS, Casanova 143, planta 3, 08036 Barcelona, Spain
| | - Jose M Vidal-Taboada
- Biochemistry and Molecular Biology Unit, School of Medicine, University of Barcelona, IDIBAPS, Casanova 143, planta 3, 08036 Barcelona, Spain
| | - Josep Saura
- Biochemistry and Molecular Biology Unit, School of Medicine, University of Barcelona, IDIBAPS, Casanova 143, planta 3, 08036 Barcelona, Spain.
| |
Collapse
|
8
|
Meyer RC, Giddens MM, Coleman BM, Hall RA. The protective role of prosaposin and its receptors in the nervous system. Brain Res 2014; 1585:1-12. [PMID: 25130661 DOI: 10.1016/j.brainres.2014.08.022] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 07/18/2014] [Accepted: 08/10/2014] [Indexed: 12/12/2022]
Abstract
Prosaposin (also known as SGP-1) is an intriguing multifunctional protein that plays roles both intracellularly, as a regulator of lysosomal enzyme function, and extracellularly, as a secreted factor with neuroprotective and glioprotective effects. Following secretion, prosaposin can undergo endocytosis via an interaction with the low-density lipoprotein-related receptor 1 (LRP1). The ability of secreted prosaposin to promote protective effects in the nervous system is known to involve activation of G proteins, and the orphan G protein-coupled receptors GPR37 and GPR37L1 have recently been shown to mediate signaling induced by both prosaposin and a fragment of prosaposin known as prosaptide. In this review, we describe recent advances in our understanding of prosaposin, its receptors and their importance in the nervous system.
Collapse
Affiliation(s)
- Rebecca C Meyer
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - Michelle M Giddens
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - Brilee M Coleman
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - Randy A Hall
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322, United States.
| |
Collapse
|
9
|
Harrington AM, Brierley SM, Isaacs NJ, Young RL, Blackshaw LA. Identifying spinal sensory pathways activated by noxious esophageal acid. Neurogastroenterol Motil 2013; 25:e660-8. [PMID: 23848546 DOI: 10.1111/nmo.12180] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 05/17/2013] [Accepted: 06/11/2013] [Indexed: 12/11/2022]
Abstract
BACKGROUND The transient receptor potential vanilloid 1 (TRPV1) channel is critical for spinal afferent signaling of burning pain throughout the body. Such pain frequently originates from the esophagus, following acid reflux. The contribution of TRPV1 to spinal nociceptor signaling from the esophagus remains unclear. We aimed to identify the spinal afferent pathways that convey nociceptive signaling from the esophagus, specifically those sensitive to acid, and the extent to which TRPV1 contributes. METHODS Acid/pepsin (150 mM HCl/1 mg mL(-1) pepsin) or saline/pepsin was perfused into the esophageal lumen of anesthetized wild-type and TRPV1 null mice over 20 min, followed by atraumatic perfuse fixation and removal of the cervical and thoracic spinal cord and dorsal root ganglia (DRG). To identify neurons responsive to esophageal perfusate, immunolabeling for neuronal activation marker phosphorylated extracellular receptor-regulated kinase (pERK) was used. Labeling for calcitonin gene-related peptide (CGRP) and isolectin B4 (IB4) was then used to characterize responsive neurons. KEY RESULTS Esophageal acid/pepsin perfusion significantly increased the number of pERK-immunoreactive (IR) neurons in the DRG and the cervical and thoracic spinal cord dorsal horn (DH) relative to saline/pepsin (DRG P < 0.01; cervical DH P < 0.05 and thoracic DH P < 0.005). The number of pERK-IR neurons following acid perfusion was significantly attenuated in TRPV1 -/- mice (DH P < 0.05 and DRG P < 0.05). CONCLUSIONS & INFERENCES This study has identified populations of spinal afferent DRG neurons and DH neurons involved in signaling of noxious acid from the esophagus. There is a major contribution of TRPV1 to signaling within these pathways.
Collapse
Affiliation(s)
- A M Harrington
- Nerve-Gut Research Laboratory, Discipline of Medicine, Faculty of Health Sciences, The University of Adelaide, Adelaide, South Australia, Australia; Department of Gastroenterology and Hepatology, Hanson Institute, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | | | | | | | | |
Collapse
|
10
|
Maor G, Filocamo M, Horowitz M. ITCH regulates degradation of mutant glucocerebrosidase: implications to Gaucher disease. Hum Mol Genet 2012; 22:1316-27. [PMID: 23255161 DOI: 10.1093/hmg/dds535] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Inability to properly degrade unfolded or misfolded proteins in the endoplasmic reticulum (ER) leads to ER stress and unfolded protein response. This is particularly important in cases of diseases in which the mutant proteins undergo ER-associated degradation (ERAD), as in Gaucher disease (GD). GD is a genetic, autosomal recessive disease that results from mutations in the GBA1 gene, encoding the lysosomal enzyme acid β-glucocerebrosidase (GCase). We have shown that mutant GCase variants undergo ERAD, the degree of which is a major determinant of disease severity. Most ERAD substrates undergo polyubiquitination and proteasomal degradation. Therefore, one expects that mutant GCase variants are substrates for several E3 ubiquitin ligases in different cells. We tested the possibility that ITCH, a known E3 ubiquitin ligase, with a pivotal role in proliferation and differentiation of the skin, recognizes mutant GCase variants and mediates their polyubiquitination and degradation. Our results strongly suggest that ITCH interacts with mutant GCase variants and mediates their lysine 48 polyubiquitination and degradation.
Collapse
Affiliation(s)
- Gali Maor
- Department of Cell Research and Immunology, Tel Aviv University, Ramat Aviv, Israel
| | | | | |
Collapse
|
11
|
Harrington AM, Brierley SM, Isaacs N, Hughes PA, Castro J, Blackshaw LA. Sprouting of colonic afferent central terminals and increased spinal mitogen-activated protein kinase expression in a mouse model of chronic visceral hypersensitivity. J Comp Neurol 2012; 520:2241-55. [PMID: 22237807 DOI: 10.1002/cne.23042] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Visceral pain following infection or inflammation is a major clinical problem. Although we have knowledge of how peripheral endings of colonic afferents change in disease, their central projections have been overlooked. With neuroanatomical tracing and colorectal distension (CRD), we sought to identify colonic afferent central terminals (CACTs), the dorsal horn (DH) neurons activated by colonic stimuli in the thoracolumbar (T10-L1) DH, and determine how they are altered by postinflammatory chronic colonic mechanical hypersensitivity. Retrograde tracing from the colon identified CACTs in the DH, whereas immunohistochemistry for phosphorylated MAP kinase ERK 1/2 (pERK) identified DH neurons activated by CRD (80 mmHg). In healthy mice, CACTs were located primarily in DH laminae I (LI) and V (LV) and projected down middle and lateral DH collateral pathways. CRD evoked pERK immunoreactivity in DH neurons, the majority of which were located in LI and LV, the same regions as CACTs. In postinflammatory mice, CACTs were significantly increased in T12-L1 compared with healthy mice. Although CACTs remained abundant in LI, they were more widespread and were now present in deeper laminae. After CRD, significantly more DH neurons were pERK-IR postinflammation (T12-L1), with abundant expression in LI and deeper laminae. In both healthy and postinflammatory mice, many pERK neurons were in close apposition to CACTs, suggesting that colonic afferents can stimulate specific DH neurons in response to noxious CRD. Overall, we demonstrate that CACT density and the number of responsive DH neurons in the spinal cord increase postinflammation, which may facilitate aberrant central representation of colonic nociceptive signaling following chronic peripheral hypersensitivity.
Collapse
Affiliation(s)
- Andrea M Harrington
- Nerve-Gut Research Laboratory, Discipline of Medicine, The University of Adelaide, Adelaide, South Australia, Australia 5000.
| | | | | | | | | | | |
Collapse
|
12
|
Ron I, Rapaport D, Horowitz M. Interaction between parkin and mutant glucocerebrosidase variants: a possible link between Parkinson disease and Gaucher disease. Hum Mol Genet 2010; 19:3771-81. [PMID: 20643691 DOI: 10.1093/hmg/ddq292] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Gaucher disease (GD), a sphingolipidosis characterized by impaired activity of the lysosomal enzyme glucocerebrosidase (GCase), results from mutations in the GCase-encoding gene, GBA. We have shown that mutant GCase variants present variable degrees of endoplasmic reticulum (ER) retention and undergo ER-associated degradation (ERAD) in the proteasome. Furthermore, the degree of ERAD of mutant GCase variants correlates with and is one of the factors that determine GD severity. An association between GD and Parkinson disease (PD) has been demonstrated by the concurrence of PD in GD patients and the identification of GCase mutations in probands with sporadic PD. One of the genes involved in PD is PARK2, encoding the E3 ubiquitin ligase parkin. Parkin functions in the ERAD of misfolded ER proteins, and it is upregulated by unfolded protein response. Loss of parkin function leads to the accumulation of its substrates, which is deleterious to dopaminergic neurons in PD. We, therefore, tested the possibility that the association between GD and PD reflects the fact that parkin acts as an E3 ligase of mutant GCase variants. Our results showed that mutant GCase variants associate with parkin. Normal parkin, but not its RING finger mutants, affects the stability of mutant GCase variants. Parkin also promotes the accumulation of mutant GCase in aggresome-like structures and is involved in K48-mediated polyubiquitination of GCase mutants, indicating its function as its E3 ligase. We suggest that involvement of parkin in the degradation of mutant GCase explains the concurrence of GD and PD.
Collapse
Affiliation(s)
- Idit Ron
- Department of Cell Research and Immunology, Tel Aviv University, Ramat Aviv 69978, Israel
| | | | | |
Collapse
|
13
|
Nakamura A, Fujiwara S, Ishijima T, Okada S, Nakai Y, Matsumoto I, Misaka T, Abe K. Neuron differentiation-related genes are up-regulated in the hypothalamus of odorant-inhaling rats subjected to acute restraint stress. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:7922-7929. [PMID: 20536181 DOI: 10.1021/jf101200p] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
To elucidate some physiopsychological effects of a pleasant odor, we analyzed gene expression profiles in the hypothalamus of rats which, under a restraint-stressed condition, inhaled (R)-(-)-linalool. Consequently, 697 probe sets showed significant expression changes in the odorant-inhaling rats subjected to 2 h of restraint stress (false discovery rate < 0.05). We observed up-regulation of 594 among them, including genes related to neuron differentiation and transcriptional regulatory factors. Another important result was that inhalation of (R)-(-)-linalool returned the expression of 49 restraint-regulated genes to a normal condition. In contrast, the inhalation also further up-regulated the expression of 16 restraint-up-regulated genes that included those encoding heat shock proteins as factors to induce some biological responses against stresses. In the present study we thus found the substantial example that, in the hypothalamus involved in feeding behaviors, an inhaled pleasant odor acts to regulate the gene expression related to the functions of neuronal developments to cope with stresses.
Collapse
Affiliation(s)
- Akio Nakamura
- Technical Research Institute R&D Center, T. Hasegawa Company, Ltd., 29-7 Kariyado, Nakahara-ku, Kawasaki-shi 211-0022, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Ejarque-Ortiz A, Gresa-Arribas N, Straccia M, Mancera P, Solà C, Tusell JM, Serratosa J, Saura J. CCAAT/enhancer binding protein delta in microglial activation. J Neurosci Res 2010; 88:1113-23. [PMID: 19908286 DOI: 10.1002/jnr.22272] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The transcription factor CCAAT/enhancer binding protein delta (C/EBP delta) regulates transcription of genes that play important roles in glial activation. Previous studies have shown the astroglial expression of C/EBP delta but the microglial expression of C/EBP delta remains virtually unexplored, with the exception of two microarray studies. In this report, using murine primary cultures and BV2 cells we clearly demonstrate that C/EBP delta is expressed by microglia and it is upregulated in microglial activation. Lipopolysaccharide upregulates C/EBP delta both in microglia and in astrocytes. This effect is time-dependent, with a maximum effect at 3 hr at mRNA level and at 4-8 hr at protein level, and concentration-dependent, with a maximum effect at 100 ng/mL. The lipopolysaccharide-induced C/EBP delta upregulation in BV2 microglia is mimicked by agonists of the toll-like receptors 2, 3 and 9 and can be prevented by an inhibitor of extracellular signal-regulated kinase activation. C/EBP delta from activated BV2 microglia binds to the cyclooxygenase-2 promoter and forms complexes with C/EBP beta isoforms. These results point to C/EBP delta as a putative key regulator of proinflammatory gene expression in microglial activation.
Collapse
Affiliation(s)
- Aroa Ejarque-Ortiz
- Department of Cerebral Ischaemia and Neurodegeneration, IIBB, CSIC, IDIBAPS, Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Xu YH, Barnes S, Sun Y, Grabowski GA. Multi-system disorders of glycosphingolipid and ganglioside metabolism. J Lipid Res 2010; 51:1643-75. [PMID: 20211931 DOI: 10.1194/jlr.r003996] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Glycosphingolipids (GSLs) and gangliosides are a group of bioactive glycolipids that include cerebrosides, globosides, and gangliosides. These lipids play major roles in signal transduction, cell adhesion, modulating growth factor/hormone receptor, antigen recognition, and protein trafficking. Specific genetic defects in lysosomal hydrolases disrupt normal GSL and ganglioside metabolism leading to their excess accumulation in cellular compartments, particularly in the lysosome, i.e., lysosomal storage diseases (LSDs). The storage diseases of GSLs and gangliosides affect all organ systems, but the central nervous system (CNS) is primarily involved in many. Current treatments can attenuate the visceral disease, but the management of CNS involvement remains an unmet medical need. Early interventions that alter the CNS disease have shown promise in delaying neurologic involvement in several CNS LSDs. Consequently, effective treatment for such devastating inherited diseases requires an understanding of the early developmental and pathological mechanisms of GSL and ganglioside flux (synthesis and degradation) that underlie the CNS diseases. These are the focus of this review.
Collapse
Affiliation(s)
- You-Hai Xu
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center and the Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229-3039, USA
| | | | | | | |
Collapse
|
16
|
Sun Y, Ran H, Zamzow M, Kitatani K, Skelton MR, Williams MT, Vorhees CV, Witte DP, Hannun YA, Grabowski GA. Specific saposin C deficiency: CNS impairment and acid beta-glucosidase effects in the mouse. Hum Mol Genet 2009; 19:634-47. [PMID: 20015957 PMCID: PMC2807372 DOI: 10.1093/hmg/ddp531] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Saposins A, B, C and D are derived from a common precursor, prosaposin (psap). The few patients with saposin C deficiency develop a Gaucher disease-like central nervous system (CNS) phenotype attributed to diminished glucosylceramide (GC) cleavage activity by acid β-glucosidase (GCase). The in vivo effects of saposin C were examined by creating mice with selective absence of saposin C (C−/−) using a knock-in point mutation (cysteine-to-proline) in exon 11 of the psap gene. In C−/− mice, prosaposin and saposins A, B and D proteins were present at near wild-type levels, but the saposin C protein was absent. By 1 year, the C−/− mice exhibited weakness of the hind limbs and progressive ataxia. Decreased neuromotor activity and impaired hippocampal long-term potentiation were evident. Foamy storage cells were observed in dorsal root ganglion and there was progressive loss of cerebellar Purkinje cells and atrophy of cerebellar granule cells. Ultrastructural analyses revealed inclusions in axonal processes in the spinal cord, sciatic nerve and brain, but no excess of multivesicular bodies. Activated microglial cells and astrocytes were present in thalamus, brain stem, cerebellum and spinal cord, indicating regional pro-inflammatory responses. No storage cells were found in visceral organs of these mice. The absence of saposin C led to moderate increases in GC and lactosylceramide (LacCer) and their deacylated analogues. These results support the view that saposin C has multiple roles in glycosphingolipid (GSL) catabolism as well as a prominent function in CNS and axonal integrity independent of its role as an optimizer/stabilizer of GCase.
Collapse
Affiliation(s)
- Ying Sun
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Campeau PM, Rafei M, Boivin MN, Sun Y, Grabowski GA, Galipeau J. Characterization of Gaucher disease bone marrow mesenchymal stromal cells reveals an altered inflammatory secretome. Blood 2009; 114:3181-90. [PMID: 19587377 PMCID: PMC2925728 DOI: 10.1182/blood-2009-02-205708] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2009] [Accepted: 06/24/2009] [Indexed: 01/03/2023] Open
Abstract
Gaucher disease causes pathologic skeletal changes that are not fully explained. Considering the important role of mesenchymal stromal cells (MSCs) in bone structural development and maintenance, we analyzed the cellular biochemistry of MSCs from an adult patient with Gaucher disease type 1 (N370S/L444P mutations). Gaucher MSCs possessed a low glucocerebrosidase activity and consequently had a 3-fold increase in cellular glucosylceramide. Gaucher MSCs have a typical MSC marker phenotype, normal osteocytic and adipocytic differentiation, growth, exogenous lactosylceramide trafficking, cholesterol content, lysosomal morphology, and total lysosomal content, and a marked increase in COX-2, prostaglandin E2, interleukin-8, and CCL2 production compared with normal controls. Transcriptome analysis on normal MSCs treated with the glucocerebrosidase inhibitor conduritol B epoxide showed an up-regulation of an array of inflammatory mediators, including CCL2, and other differentially regulated pathways. These cells also showed a decrease in sphingosine-1-phosphate. In conclusion, Gaucher disease MSCs display an altered secretome that could contribute to skeletal disease and immune disease manifestations in a manner distinct and additive to Gaucher macrophages themselves.
Collapse
Affiliation(s)
- Philippe M Campeau
- Montreal Centre for Experimental Therapeutics in Cancer, Lady Davis Institute for Medical Research, Montreal, QC, Canada
| | | | | | | | | | | |
Collapse
|