1
|
Cerna-Chávez E, Rodríguez-Rodríguez JF, García-Conde KB, Ochoa-Fuentes YM. Potential of Streptomyces avermitilis: A Review on Avermectin Production and Its Biocidal Effect. Metabolites 2024; 14:374. [PMID: 39057697 PMCID: PMC11278826 DOI: 10.3390/metabo14070374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Secondary metabolites produced by the fermentation of Streptomyces avermitilis bacterium are powerful antiparasitic agents used in animal health, agriculture and human infection treatments. Avermectin is a macrocyclic lactone with four structural components (A1, A2, B1, B2), each of them containing a major and a minor subcomponent, out of which avermectin B1a is the most effective parasitic control compound. Avermectin B1a produces two homologue avermectins (B1 and B2) that have been used in agriculture as pesticides and antiparasitic agents, since 1985. It has a great affinity with the Cl-channels of the glutamate receptor, allowing the constant flow of Cl- ions into the nerve cells, causing a phenomenon of hyperpolarization causing death by flaccid paralysis. The purpose of this work was to gather information on the production of avermectins and their biocidal effects, with special emphasis on their role in the control of pests and phytopathogenic diseases. The literature showed that S. avermitilis is an important producer of macrocyclic lactones with biocidal properties. In addition, avermectin contributes to the control of ectoparasites and endoparasites in human health care, veterinary medicine and agriculture. Importantly, avermectin is a compound that is harmless to the host (no side effects), non-target organisms and the environment.
Collapse
Affiliation(s)
- Ernesto Cerna-Chávez
- Departamento de Parasitología, Universidad Autónoma Agraria Antonio Narro, Calzada Antonio Narro 1923, Saltillo 25315, Coahuila, Mexico;
| | - José Francisco Rodríguez-Rodríguez
- Estudiante de Postgrado en Ciencias en Parasitología Agrícola, Universidad Autónoma Agraria Antonia Narro, Calzada Antonio Narro 1923, Saltillo 25315, Coahuila, Mexico;
| | - Karen Berenice García-Conde
- Estudiante de Postgrado en Ciencias en Parasitología Agrícola, Universidad Autónoma Agraria Antonia Narro, Calzada Antonio Narro 1923, Saltillo 25315, Coahuila, Mexico;
| | - Yisa María Ochoa-Fuentes
- Departamento de Parasitología, Universidad Autónoma Agraria Antonio Narro, Calzada Antonio Narro 1923, Saltillo 25315, Coahuila, Mexico;
| |
Collapse
|
2
|
Assessment of the effect of sub-lethal acute toxicity of Emamectin benzoate in Labeo rohita using multiple biomarker approach. Toxicol Rep 2022; 9:102-110. [PMID: 35036329 PMCID: PMC8749126 DOI: 10.1016/j.toxrep.2022.01.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/04/2021] [Accepted: 01/04/2022] [Indexed: 12/19/2022] Open
Abstract
Emamectin benzoate (EMB) is a potent neurotoxin agent, widely used for ectoparasites control in aquaculture, but their detailed toxicological implications in Labeo rohita are unknown. Thus, this study was conceptualized to determine the LC50 and to investigate the effects of two sub-lethal concentrations 1/50th of 96 h LC50 (1.82 μgL-1) and 1/10thof 96 h LC50 (9.1 μgL-1) on hemato-immunological and biochemical responses in L. rohita (mean weight 25.54 ± 2.3 g and length 10.35 ± 2.4 cm) for a period of 24 h, 48 h, and 72 h. LC50 of EMB were 163 μgL-1, 112 μgL-1, 99 μgL-1 and 91 μgL-1 at 24 h, 48 h, 72 h, and 96 h respectively. The safe limit at 96 h LC50 of EMB was 2.30 μgL-1. In EMB treated fish, red blood cells, white blood cells, hemoglobin, and hematocrit counts were reduced (p < 0.05) significantly. Superoxide dismutase (SOD) activity in the liver and kidney declined (p < 0.05) at 72 h while in gill and muscle the activity increased significantly. Glutathione-s-transferase (GST) activity in the liver, gill, and kidney increased (p < 0.05) while muscle decreased significantly. Catalase (CAT) activity in liver, gill, and muscle decreased while in kidney increases. Glutamic-oxaloacetic acid transaminase (GOT) activity and Glutamate pyruvate transaminase (GPT) activity were increased in liver, kidney, and muscle tissue. The change in serum triglycerides, serum protein level was noticed. The level of cortisol, heat shock protein 70 (HSP70), and HSP90 increased (p < 0.05) while the immunological responses like immunoglobulin M (IgM) and complement 3(C3) activity decreased (p < 0.05) in EMB exposed fish. Thus, EMB exposure at two sub-lethal concentrations in L. rohita induces several hemato-immuno, and biochemical alterations in blood, serum, and different organs. The overall result of the present study indicated that EMB is toxic to fish even for a short-term exposure and low doses, and therefore utmost caution should be taken to prevent their drainage into water bodies.
Collapse
|
3
|
Muniz MS, Halbach K, Alves Araruna IC, Martins RX, Seiwert B, Lechtenfeld O, Reemtsma T, Farias D. Moxidectin toxicity to zebrafish embryos: Bioaccumulation and biomarker responses. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 283:117096. [PMID: 33866217 DOI: 10.1016/j.envpol.2021.117096] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/14/2021] [Accepted: 04/04/2021] [Indexed: 06/12/2023]
Abstract
Moxidectin is an antiparasitic drug belonging to the class of the macrocyclic lactones, subgroup mylbemicins. It is used worldwide in veterinary practice, but little is known about its potential environmental risks. Thus, we used the zebrafish embryo as a model system to study the potential effects of moxidectin on aquatic non-target organisms. The analyses were performed in two experimental sets: (1) acute toxicity and apical endpoints were characterized, with biomarker assays providing information on the activity levels of catalase (CAT), glutathione S-transferase (GST), lactate dehydrogenase (LDH), and acetylcholinesterase (AChE); and (2) internal concentration and spatial distribution of moxidectin were determined using ultraperformance liquid chromatography quadrupole-time-of-flight mass spectrometry (UPLC-QToF-MS) and matrix-assisted laser desorption/ionization-MS imaging (MALDI-MSi). The acute toxicity to zebrafish embryos (96 hpf) appeared mainly as a decrease in hatching rates (EC50 = 20.75 μg/L). It also altered the enzymatic activity of biomarker enzymes related to xenobiotic processing, anaerobic metabolism, and oxidative stress (GST, LDH, and CAT, respectively) and strongly accumulated in the embryos, as internal concentrations were 4 orders of magnitude higher than those detected in exposure solutions. MALDI-MSi revealed accumulations of the drug mainly in the head and eyes of the embryos (72 and 96 hpf). Thus, our results show that exposure to moxidectin decreases hatching success by 96 h and alters biochemical parameters in the early life stages of zebrafish while accumulating in the head and eye regions of the animals, demonstrating the need to prioritize this compound for environmental studies.
Collapse
Affiliation(s)
- Marta Silva Muniz
- Laboratory for Risk Assessment of Novel Technologies (LabRisk), Department of Molecular Biology, Federal University of Paraiba, João Pessoa, Brazil
| | - Katharina Halbach
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Igor Cauê Alves Araruna
- Laboratory for Risk Assessment of Novel Technologies (LabRisk), Department of Molecular Biology, Federal University of Paraiba, João Pessoa, Brazil
| | - Rafael Xavier Martins
- Laboratory for Risk Assessment of Novel Technologies (LabRisk), Department of Molecular Biology, Federal University of Paraiba, João Pessoa, Brazil
| | - Bettina Seiwert
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Oliver Lechtenfeld
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Thorsten Reemtsma
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany; Institute of Analytical Chemistry, University of Leipzig, Leipzig, Germany
| | - Davi Farias
- Laboratory for Risk Assessment of Novel Technologies (LabRisk), Department of Molecular Biology, Federal University of Paraiba, João Pessoa, Brazil.
| |
Collapse
|
4
|
Kilercioglu S, Ay O, Oksuz H, Yilmaz MB. The effects of the neurotoxic agent emamectin benzoate on the expression of immune and stress-related genes and blood serum profiles in the Rainbow trout. Mol Biol Rep 2020; 47:5243-5251. [PMID: 32567024 DOI: 10.1007/s11033-020-05599-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/17/2020] [Indexed: 11/29/2022]
Abstract
Emamectin, a neurotoxic agent, is a semi-synthetic insecticide that belongs to the Avermectin family and is used against helmintic infections in the Salmonidae family. Its secondary effects are not clear; thus, the aim of this study was to investigate the only effects of emamectin benzoate on various biochemical parameters (AST, ALT, GGT, total protein, albumin and glucose) in serum and expressional changes of IL-1β, TNF-α, HSP70 and IL-8 in liver and spleen. For the purpose stated above, rainbow trout (n = 15) were administered 50 μg EB per kg fish daily for 7, 14 and 21 days. The results indicated that weight gains did not change (p > 0.05), AST increased at day 21 (p < 0.05), while the changes of other biochemical parameters were not significant (p > 0.05). The changes in expression of IL-1β, TNF-α and HSP70 were significant (p < 0.05), while the changes of IL-8 expressions were not significant (p ˃ 0.05). In a conclusion, EB changed immun and stress-related gene expression in liver and spleen, and furthermore, AST changed in a dose- and time-dependent manner. The results imply that emamectin benzoate cause stress. This study is helpful to understand the effects of avermectin pharmaceutical family.
Collapse
Affiliation(s)
- Serdar Kilercioglu
- Biotechnology Research and Application Center, Cukurova University, 01130, Saricam, Adana, Turkey.
| | - Ozcan Ay
- Faculty of Fisheries, Mersin University, Yenisehir campus, 33160, Yenisehir,, Mersin, Turkey
| | - Hale Oksuz
- Faculty of Medicine, Cukurova University, 01130, Saricam, Adana, Turkey
| | | |
Collapse
|
5
|
Dar SA, Chatterjee A, Rather MA, Chetia D, Srivastava PP, Gupta S. Identification, functional characterization and expression profiling of cytochrome p450 1A (CYP1A) gene in Labeo rohita against emamectin benzoate. Int J Biol Macromol 2020; 158:S0141-8130(20)33081-6. [PMID: 32437798 DOI: 10.1016/j.ijbiomac.2020.04.215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/21/2020] [Accepted: 04/24/2020] [Indexed: 02/01/2023]
Abstract
The cytochrome p450 1A (CYP1A) plays vital role in detoxification of xenobiotic compounds in living organisms. In the present study, full-length CYP1A gene was sequenced from liver of Labeo rohita and mRNA expression analysis were carried out at 0, 2, 4, 8, 12, 24, 48, 72, 96 and 120 h (h) time points after emamectin benzoate treatment. The full-length cDNA sequence of CYP1A was 1741 bp which consist of open reading frame (ORF) of 1618 bp, 5'-untranslated region (UTR) 48 bp and 75 bp 3'-UTR respectively. ORF encodes 526 amino acids with a molecular mass a 59.05 kDa and an isoelectric point of 8.74. The subcellular localization confirmed presence of the CYP1A protein was higher in plasma membrane (45.8%), followed by the mitochondrial region (13.9%) and nuclear region (9.2%). The CYP1A protein interaction was found to intermingle more with other CYP family proteins. Analysis of tissue distribution revealed that CYP1A gene was predominantly expressed in the liver compared to other tissues kidney, gills, muscle and intestine. Furthermore, present study reveals that CYP1A mRNA level in emamectin benzoate treated group @ 20 mgkg-1 body was significantly (p < 0.05) higher compared with the control. The CYP1A mRNA expression levels were found upregulating with time and highest expression levels at 24 h. Histological examination found that emamectin benzoate treated liver revealed vacuolisation, hepatocyte infiltrations, cytoplasmic degeneration of hepatocytes compared to control. Overall, present results lay a strong basis for CYP1A is important biomarker for drug detoxification in aquatic animals.
Collapse
Affiliation(s)
- Showkat Ahmad Dar
- Department of Aqualife Medicine, Chonnam National University, South Korea
| | - Arunava Chatterjee
- Division of Fish Nutrition, Physiology, and Biochemistry, ICAR-Central Institute of Fisheries Education, Mumbai 400061, India
| | - Mohd Ashraf Rather
- Division of Fish Genetics and Biotechnology, Faculty of Fisheries, Rangil- Gandarbal (SKAUST-K), India
| | - Diganta Chetia
- Division of Fish Nutrition, Physiology, and Biochemistry, ICAR-Central Institute of Fisheries Education, Mumbai 400061, India
| | - Prem P Srivastava
- Division of Fish Nutrition, Physiology, and Biochemistry, ICAR-Central Institute of Fisheries Education, Mumbai 400061, India
| | - Subodh Gupta
- Division of Fish Nutrition, Physiology, and Biochemistry, ICAR-Central Institute of Fisheries Education, Mumbai 400061, India.
| |
Collapse
|
6
|
Smejkal GB, Kakumanu S. Safely meeting global salmon demand. NPJ Sci Food 2019; 2:17. [PMID: 31304267 PMCID: PMC6550187 DOI: 10.1038/s41538-018-0025-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 08/11/2018] [Accepted: 08/16/2018] [Indexed: 11/09/2022] Open
|
7
|
Cárcamo JG, Aguilar MN, Carreño CF, Vera T, Arias-Darraz L, Figueroa JE, Romero AP, Alvarez M, Yañez AJ. Consecutive emamectin benzoate and deltamethrin treatments affect the expressions and activities of detoxification enzymes in the rainbow trout (Oncorhynchus mykiss). Comp Biochem Physiol C Toxicol Pharmacol 2017; 191:129-137. [PMID: 27765649 DOI: 10.1016/j.cbpc.2016.10.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 10/13/2016] [Accepted: 10/13/2016] [Indexed: 01/12/2023]
Abstract
Rainbow trout (Oncorhynchus mykiss) subjected to three consecutive, alternating treatments with emamectin benzoate (EMB) and deltamethrin (DM) during outbreaks of Caligus rogercresseyi in a farm located in southern Chile (Hornopiren, Chiloé), were studied to determine the effects of these treatments on the protein and enzymatic activity levels of cytochrome P450 1A (CYP1A), flavin-containing monooxygenase (FMO) and glutathione S-transferase (GST) in different tissues. Consecutive and alternating EMB/DM treatments resulted in a 10-fold increase and 3-fold decrease of CYP1A protein levels in the intestine and gills, respectively. Notably, CYP1A activity levels decreased in most of the analyzed tissues. FMO protein and activity levels markedly increased in the kidney and the intestine. GST was up-regulated in all tissues, either as protein or enzyme activity. When comparing consecutive EMB/DM treatments against previous studies of EMB treatment alone, CYP1A activity levels were similarly diminished, except in muscle. Likewise, FMO activity levels were increased in most of the analyzed tissues, particularly in the muscle, kidney, and intestine. The increases observed for GST were essentially unchanged between consecutive EMB/DM and EMB only treatments. These results indicate that consecutive EMB/DM treatments in rainbow trout induce the expression and activity of FMO and GST enzymes and decrease CYP1A activity. These altered activities of detoxification enzymes could generate imbalances in metabolic processes, synthesis, degradation of hormones and complications associated with drug interactions. It is especially important when analyzing possible effects of consecutive antiparasitic treatments on withholding periods and salmon farming yields.
Collapse
Affiliation(s)
- Juan Guillermo Cárcamo
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile; Centro FONDAP, Interdisciplinary Center for Aquaculture Research (INCAR), Chile.
| | - Marcelo N Aguilar
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Constanza F Carreño
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Tamara Vera
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile; Centro FONDAP, Interdisciplinary Center for Aquaculture Research (INCAR), Chile
| | - Luis Arias-Darraz
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Jaime E Figueroa
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile; Centro FONDAP, Interdisciplinary Center for Aquaculture Research (INCAR), Chile
| | - Alex P Romero
- Centro FONDAP, Interdisciplinary Center for Aquaculture Research (INCAR), Chile; Laboratorio de Biotecnología y Patología Acuática, Instituto de Patología Animal, Universidad Austral de Chile, Valdivia, Chile
| | - Marco Alvarez
- Centro FONDAP, Interdisciplinary Center for Aquaculture Research (INCAR), Chile; Laboratorio de Biología Celular y Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello, Quillota 980, Viña del Mar, Chile
| | - Alejandro J Yañez
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile; Centro FONDAP, Interdisciplinary Center for Aquaculture Research (INCAR), Chile
| |
Collapse
|
8
|
Tucca F, Díaz-Jaramillo M, Cruz G, Silva J, Bay-Schmith E, Chiang G, Barra R. Toxic effects of antiparasitic pesticides used by the salmon industry in the marine amphipod Monocorophium insidiosum. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2014; 67:139-48. [PMID: 24609616 PMCID: PMC4079944 DOI: 10.1007/s00244-014-0008-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Accepted: 02/11/2014] [Indexed: 05/06/2023]
Abstract
The use of antiparasitic pesticides (APs) has been widely required by the salmon industry to treat diseases. The direct emission of chemicals in the seawater has produced uncertainty about the potential effects on nontarget organisms, such as crustaceans. The aim of this study was to assess the toxicity of three APs used by the salmon farm industry, such as emamectin benzoate (EB), cypermethrin (CP), and deltamethrin (DE), in the amphipod Monocorophium insidiosum during 10 days through whole-sediment bioassay tests. Lethal concentration by 50 % (LC50-10d) and biochemical responses, such as glutathione S-transferase (GST) and thiobarbituric acid reactive substances (TBARS), were measured as exposure and effects end points, respectively. Acute assays for DE (7.8 μg kg(-1), confidence interval, CI95% 5-11) and CP (57 μg kg(-1), CI95% 41-77) showed more mortality than EB (890 μg kg(-1), CI95% 672-1,171). In this study, it was possible to observe sublethal responses in amphipods after 2 days of exposure to APs. Significant induction in GST and TBARS (p < 0.05) were measured for CP and EB. Lower DE concentrations showed no significant biochemical responses. M. insidiosum was sensitive to AP concentrations at μg kg(-1) in sediments. This information would allow considering the possible consequences of detected concentrations for APs in areas with intensive salmon farming activity.
Collapse
Affiliation(s)
- Felipe Tucca
- Departamento de Sistemas Acuáticos, Facultad de Ciencias Ambientales y Centro EULA-Chile, Universidad de Concepción, Concepción, Chile,
| | | | | | | | | | | | | |
Collapse
|
9
|
Olsvik PA, Ørnsrud R, Lunestad BT, Steine N, Fredriksen BN. Transcriptional responses in Atlantic salmon (Salmo salar) exposed to deltamethrin, alone or in combination with azamethiphos. Comp Biochem Physiol C Toxicol Pharmacol 2014; 162:23-33. [PMID: 24674905 DOI: 10.1016/j.cbpc.2014.03.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 03/10/2014] [Accepted: 03/13/2014] [Indexed: 10/25/2022]
Abstract
Recently, Atlantic salmon (Salmo salar) fish farmers have applied a combination of deltamethrin and azamethiphos in high-concentration and short-duration immersion treatment to improve protection against sea-lice (Lepeophtheirus sp.). In this work we aimed to study the effects of deltamethrin, alone or in combination with azamethiphos, on the transcription of stress and detoxification marker genes. Atlantic salmon kept at 12°C (one group was also kept at 4-5°C) were treated with deltamethrin alone or in combination with azamethiphos for a total of 40min, and gill and liver tissue harvested for transcriptional analysis 2 and 24h post treatment. No lethality was observed during the experiment. The result showed that deltamethrin, alone or in combination with azamethiphos, affected the transcriptional levels of several oxidative stress markers, including MnSOD (SOD2) and HSP70 (HSPA8) in the liver, and GPX1, CAT, MnSOD, HSP70 and GSTP1 in the gills. Significant responses for CASP3B, BCLX, IGFBP1B and ATP1A1 (Na-K-ATPase a1b) by some of the treatments suggest that the pharmaceutical drugs may affect apoptosis, growth and ion regulation mechanisms. In fish kept at 4-5°C, different effects were observed, suggesting a temperature-dependent response. In conclusion, the observed responses indicate that short-term exposure to deltamethrin has a profound effect on transcription of the evaluated markers in gills and liver of fish. Co-treatment with azamethiphos appears to have small mitigating effects on the transcriptional response caused by deltamethrin exposure alone.
Collapse
Affiliation(s)
- Pål A Olsvik
- National Institute of Nutrition and Seafood Research, N-5005 Bergen, Norway.
| | - Robin Ørnsrud
- National Institute of Nutrition and Seafood Research, N-5005 Bergen, Norway
| | | | | | | |
Collapse
|
10
|
Herath TK, Bron JE, Thompson KD, Taggart JB, Adams A, Ireland JH, Richards RH. Transcriptomic analysis of the host response to early stage salmonid alphavirus (SAV-1) infection in Atlantic salmon Salmo salar L. FISH & SHELLFISH IMMUNOLOGY 2012; 32:796-807. [PMID: 22365992 DOI: 10.1016/j.fsi.2012.02.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 01/31/2012] [Accepted: 02/01/2012] [Indexed: 05/31/2023]
Abstract
Salmon pancreas disease, caused by salmonid alphavirus (SAV) of the family Togaviridae, is an economically important disease affecting farmed Atlantic salmon (Salmo salar L.) in Scotland, Norway, and Ireland. The virus causes characteristic lesions in the pancreas, heart, kidney and skeletal muscle of infected fish. The mechanisms responsible for the pathology and the immune responses elicited in infected Atlantic salmon are not fully understood. A microarray-based study was therefore performed to evaluate the host transcriptomic response during the early stages of an experimentally-induced SAV-1 infection. Atlantic salmon parr were injected intra-peritoneally with viral cell culture supernatant or cell culture supernatant without virus. RNA, extracted from head kidney sampled from infected and control fish at 1, 3 and 5 days post-injection (d.p.i.), was interrogated with the 17 k TRAITS/SGP cDNA microarray. The greatest number of significantly differentially expressed genes was recorded at 3 d.p.i., mainly associated with immune and defence mechanisms, including genes involved in interferon I pathways and Major Histocompatibility Complex Class I and II responses. Genes associated with apoptosis and cellular stress were also found to be differentially expressed between infected and uninfected individuals, as were genes involved in inhibiting viral attachment and replication. The microarray results were validated by follow-on analysis of eight genes by real-time PCR. The findings of the study reflect mechanisms used by the host to protect itself during the early stages of SAV-1 infection. In particular, there was evidence of rapid induction of interferon-mediated responses similar to those seen during mammalian alphavirus infections, and also early involvement of an adaptive immune response. This study provides essential knowledge to assist in the development of effective control and management strategies for SAV-1 infection.
Collapse
Affiliation(s)
- Tharangani K Herath
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, UK.
| | | | | | | | | | | | | |
Collapse
|
11
|
Veldhoen N, Ikonomou MG, Buday C, Jordan J, Rehaume V, Cabecinha M, Dubetz C, Chamberlain J, Pittroff S, Vallée K, van Aggelen G, Helbing CC. Biological effects of the anti-parasitic chemotherapeutant emamectin benzoate on a non-target crustacean, the spot prawn (Pandalus platyceros Brandt, 1851) under laboratory conditions. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2012; 108:94-105. [PMID: 22088864 DOI: 10.1016/j.aquatox.2011.10.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 10/10/2011] [Accepted: 10/21/2011] [Indexed: 05/31/2023]
Abstract
The potential impact of commercial salmon aquaculture along the coast of British Columbia on the health of non-target marine wildlife is of growing concern. In the current initiative, the biological effects on gene expression within spot prawn (Pandalus platyceros) exposed to the sea lice controlling agent, emamectin benzoate (EB; 0.1-4.8 mg/kg sediment), were investigated. A mean sediment/water partitioning coefficient (K(p)) was determined to be 21.81 and significant levels of EB were detected in the tail muscle tissue in all exposed animals. Animals selected for the experiment did not have eggs and were of similar weight. Significant mortality was observed within 8 days of EB treatment at concentrations between 0.1 and 0.8 mg/kg and there was no effect of EB on molting. Twelve spot prawn cDNA sequences were isolated from the tail muscle either by directed cloning or subtractive hybridization of control versus EB exposed tissues. Three of the transcripts most affected by EB exposure matched sequences encoding the 60S ribosomal protein L22, spliceosome RNA helicase WM6/UAP56, and the intracellular signal mediator histidine triad nucleotide binding protein 1 suggesting that translation, transcription regulation, and apoptosis pathways were impacted. The mRNA encoding the molting enzyme, β-N-acetylglucosaminidase, was not affected by EB treatment. However, the expression of this transcript was extremely variable making it unsuitable for effects assessment. The results suggest that short-term exposure to EB can impact biological processes within this non-target crustacean.
Collapse
Affiliation(s)
- Nik Veldhoen
- Department of Biochemistry & Microbiology, University of Victoria, P.O. Box 3055, Stn CSC, Victoria, BC, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Meland S, Farmen E, Heier LS, Rosseland BO, Salbu B, Song Y, Tollefsen KE. Hepatic gene expression profile in brown trout (Salmo trutta) exposed to traffic related contaminants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2011; 409:1430-1443. [PMID: 21295820 DOI: 10.1016/j.scitotenv.2011.01.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Revised: 01/05/2011] [Accepted: 01/06/2011] [Indexed: 05/30/2023]
Abstract
In recent decades there has been growing concern about highway runoff as a potential threat and a significant source of diffuse pollution to the aquatic environment. However, identifying ecotoxicological effects might be challenging, especially at sites where the traffic density is modest to low. Hence, there is a need for alternatives e.g. small-scale toxicity tests using conventional endpoints such as mortality and growth. The present paper presents result from a transcriptional (microarray) screening performed on liver from brown trout (Salmo trutta) acutely exposed (4h) to traffic-related contaminants during washing of a highway tunnel outside the city of Oslo, Norway. The results demonstrated that traffic-related contaminants caused a plethora of molecular changes that persisted several hours after the exposure (i.e. during recovery). Beside an evident transcriptional up-regulation of e.g. cytochrome P450 1A1 (CYP1A1), cytochrome P450 1B1 (CYP1B1), and cytosolic sulfotransferase (SULT) involved in xenobiotic biotransformation, the observed responses were predominantly associated with immunosuppression, oxidative damage, and endocrine modulation. The observed responses were likely caused by an interaction of several contaminants including trace metals and organic micro-pollutants such as PAHs.
Collapse
Affiliation(s)
- Sondre Meland
- Norwegian University of Life Sciences (UMB), Department of Plant and Environmental Sciences, P.O. Box 5003, N-1432 Ås, Norway.
| | | | | | | | | | | | | |
Collapse
|
13
|
Varó I, Rigos G, Navarro JC, del Ramo J, Calduch-Giner J, Hernández A, Pertusa J, Torreblanca A. Effect of ivermectin on the liver of gilthead sea bream Sparus aurata: a proteomic approach. CHEMOSPHERE 2010; 80:570-577. [PMID: 20451238 DOI: 10.1016/j.chemosphere.2010.04.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Revised: 04/09/2010] [Accepted: 04/11/2010] [Indexed: 05/29/2023]
Abstract
Gilthead sea bream Sparus aurata is the most commercialized Mediterranean aquacultured fish species. Ivermectin has recently (experimentally) started to be used to control ectoparasitic infestations in Mediterranean cultured marine fish. The potential hepatotoxicity of ivermectin was investigated in gilthead sea bream juveniles (35g) following oral administration at the recommended dose of 0.2 mgkg(-1) fish for 10d. Difference Gel Electrophoresis Technology (DIGE) was used to study the effect of this treatment in gilthead sea bream liver protein profile under routine culture conditions. The 2D-DIGE protein maps obtained were analyzed using the DeCyder 6.5 software. The results obtained showed significant changes in the expression of 36 proteins respect to the control group. Among these proteins, six increased in abundance, and 30 decreased. Spot showing differential expression respect to the control were analyzed by mass spectrometry and database search, which resulted in three positive identifications corresponding to hepatic proteins involved in lipid metabolism (apoA-I), oxidative stress responses and energy generation (beta-globin, ATP synthase subunit beta). These proteins have not been previously associated to invermectin effect.
Collapse
Affiliation(s)
- I Varó
- Department of Functional Biology, University of Valencia. Dr. Moliner, Spain.
| | | | | | | | | | | | | | | |
Collapse
|