1
|
Philip B, Behiry SI, Salem MZM, Amer MA, El-Samra IA, Abdelkhalek A, Heflish A. Trichoderma afroharzianum TRI07 metabolites inhibit Alternaria alternata growth and induce tomato defense-related enzymes. Sci Rep 2024; 14:1874. [PMID: 38253713 PMCID: PMC10803357 DOI: 10.1038/s41598-024-52301-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
Identifying a viable substitute for the limited array of current antifungal agents stands as a crucial objective in modern agriculture. Consequently, extensive worldwide research has been undertaken to unveil eco-friendly and effective agents capable of controlling pathogens resistant to the presently employed fungicides. This study explores the efficacy of Trichoderma isolates in combating tomato leaf spot disease, primarily caused by Alternaria alternata. The identified pathogen, A. alternata Alt3, was isolated and confirmed through the ITS region (OQ888806). Six Trichoderma isolates were assessed for their ability to inhibit Alt3 hyphal growth using dual culture, ethyl acetate extract, and volatile organic compounds (VOCs) techniques. The most promising biocontrol isolate was identified as T. afroharzianum isolate TRI07 based on three markers: ITS region (OQ820171), translation elongation factor alpha 1 gene (OR125580), and RNA polymerase II subunit gene (OR125581). The ethyl acetate extract of TRI07 isolate was subjected to GC-MS analysis, revealing spathulenol, triacetin, and aspartame as the main compounds, with percentages of 28.90, 14.03, and 12.97%, respectively. Analysis of TRI07-VOCs by solid-phase microextraction technique indicated that the most abundant compounds included ethanol, hydroperoxide, 1-methylhexyl, and 1-octen-3-one. When TRI07 interacted with Alt3, 34 compounds were identified, with major components including 1-octen-3-one, ethanol, and hexanedioic acid, bis(2-ethylhexyl) ester. In greenhouse experiment, the treatment of TRI07 48 h before inoculation with A. alternata (A3 treatment) resulted in a reduction in disease severity (16.66%) and incidence (44.44%). Furthermore, A3 treatment led to improved tomato growth performance parameters and increased chlorophyll content. After 21 days post-inoculation, A3 treatment was associated with increased production of antioxidant enzymes (CAT, POD, SOD, and PPO), while infected tomato plants exhibited elevated levels of oxidative stress markers MDA and H2O2. HPLC analysis of tomato leaf extracts from A3 treatment revealed higher levels of phenolic acids such as gallic, chlorogenic, caffeic, syringic, and coumaric acids, as well as flavonoid compounds including catechin, rutin, and vanillin. The novelty lies in bridging the gap between strain-specific attributes and practical application, enhancing the understanding of TRI07's potential for integrated pest management. This study concludes that TRI07 isolate presents potential natural compounds with biological activity, effectively controlling tomato leaf spot disease and promoting tomato plant growth. The findings have practical implications for agriculture, suggesting a sustainable biocontrol strategy that can enhance crop resilience and contribute to integrated pest management practices.
Collapse
Affiliation(s)
- Bassant Philip
- Agricultural Botany Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, 21531, Egypt.
| | - Said I Behiry
- Agricultural Botany Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, 21531, Egypt.
| | - Mohamed Z M Salem
- Forestry and Wood Technology Department, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria, 21545, Egypt.
| | - Mostafa A Amer
- Agricultural Botany Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, 21531, Egypt
| | - Ibrahim A El-Samra
- Agricultural Botany Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, 21531, Egypt
| | - Ahmed Abdelkhalek
- Plant Protection and Biomolecular Diagnosis Department, ALCRI, City of Scientific Research and Technological Applications, New Borg El Arab City, 21934, Egypt
| | - Ahmed Heflish
- Agricultural Botany Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, 21531, Egypt
| |
Collapse
|
2
|
Rojas Moreno MM, González-Pérez E, Rodríguez-Hernandez AA, Ortega-Amaro MA, Becerra-Flora A, Serrano M, Jiménez-Bremont JF. Expression of EPL1 from Trichoderma atroviride in Arabidopsis Confers Resistance to Bacterial and Fungal Pathogens. PLANTS (BASEL, SWITZERLAND) 2023; 12:2443. [PMID: 37447005 DOI: 10.3390/plants12132443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/15/2023] [Accepted: 06/15/2023] [Indexed: 07/15/2023]
Abstract
During plant interaction with beneficial microorganisms, fungi secrete a battery of elicitors that trigger plant defenses against pathogenic microorganisms. Among the elicitor molecules secreted by Trichoderma are cerato-platanin proteins, such as EPL1, from Trichoderma atroviride. In this study, Arabidopsis thaliana plants that express the TaEPL1 gene were challenged with phytopathogens to evaluate whether expression of EPL1 confers increased resistance to the bacterial pathogen Pseudomonas syringae and the necrotrophic fungus Botrytis cinerea. Infection assays showed that Arabidopsis EPL1-2, EPL1-3, EPL1-4 expressing lines were more resistant to both pathogens in comparison to WT plants. After Pseudomonas syringae infection, there were reduced disease symptoms (e.g., small chlorotic spots) and low bacterial titers in the three 35S::TaEPL1 expression lines. Similarly; 35S::TaEPL1 expression lines were more resistant to Botrytis cinerea infection, showing smaller lesion size in comparison to WT. Interestingly, an increase in ROS levels was detected in 35S::TaEPL1 expression lines when compared to WT. A higher expression of SA- and JA-response genes occurred in the 35S::TaEPL1 lines, which could explain the resistance of these EPL1 expression lines to both pathogens. We propose that EPL1 is an excellent elicitor, which can be used to generate crops with improved resistance to broad-spectrum diseases.
Collapse
Affiliation(s)
- Mónica Montserrat Rojas Moreno
- Laboratorio de Biotecnología Molecular de Plantas, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica A.C., San Luis Potosí 78216, Mexico
| | - Enrique González-Pérez
- Laboratorio de Biotecnología Molecular de Plantas, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica A.C., San Luis Potosí 78216, Mexico
| | - Aida Araceli Rodríguez-Hernandez
- CONAHCyT-Instituto Politécnico Nacional, CEPROBI, Km. 6.5 Carr. Yautepec-Jojutla Col. San Isidro, Calle CEPROBI No. 8, Yautepec 62739, Mexico
| | - María Azucena Ortega-Amaro
- Laboratorio de Biotecnología Molecular de Plantas, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica A.C., San Luis Potosí 78216, Mexico
- Coordinación Académica Región Altiplano Oeste, Universidad Autónoma de San Luis Potosí, Salinas de Hidalgo 78290, Mexico
| | - Alicia Becerra-Flora
- Laboratorio de Biotecnología Molecular de Plantas, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica A.C., San Luis Potosí 78216, Mexico
| | - Mario Serrano
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico
| | - Juan Francisco Jiménez-Bremont
- Laboratorio de Biotecnología Molecular de Plantas, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica A.C., San Luis Potosí 78216, Mexico
| |
Collapse
|
3
|
Li X, Wajjiha B, Zhang P, Dang Y, Prasad R, Wei Y, Zhang SH. Serendipita indica chitinase protects rice from the blast and bakanae diseases. J Basic Microbiol 2023. [PMID: 37032320 DOI: 10.1002/jobm.202200349] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 01/15/2023] [Accepted: 02/25/2023] [Indexed: 04/11/2023]
Abstract
Serendipita indica, a multifunctional and useful endophyte fungus, has been intensively investigated in promoting plant growth and resistance towards biotic and abiotic stress. Multiple chitinases from microorganisms or plants have been identified to have a high antifungal activity as a biological control. However, chitinase of S. indica still needs to be characterized. We functionally characterized a chitinase (SiChi) in S. indica. The result showed that the purified SiChi protein confers high chitinase activity; importantly, SiChi inhibits the conidial germination of Magnaporthe oryzae and Fusarium moniliforme. After the successful colonization of rice roots by S. indica, both the rice blast disease and bakanae disease were significantly reduced. Interestingly, the purified SiChi could promptly induce rice disease resistance towards M. oryzae and F. moniliforme pathogens when sprayed on rice leaves. Like S. indica, SiChi could upregulate rice pathogen-resistant proteins and defense enzymes. In conclusion, chitinase of S. indica has direct antifungal activity and indirect induced resistance activity, implying an efficient and economic strategy for rice disease control by applying S. indica and SiChi.
Collapse
Affiliation(s)
- Xinrui Li
- The Key Laboratory for Extreme-Environmental Microbiology, College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, China
- College of Plant Sciences, Jilin University, Changchun, Jilin, China
| | - Batool Wajjiha
- The Key Laboratory for Extreme-Environmental Microbiology, College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Penghui Zhang
- The Key Laboratory for Extreme-Environmental Microbiology, College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, China
- College of Plant Sciences, Jilin University, Changchun, Jilin, China
| | - Yuejia Dang
- The Key Laboratory for Extreme-Environmental Microbiology, College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, China
| | | | - Yi Wei
- The Key Laboratory for Extreme-Environmental Microbiology, College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Shi-Hong Zhang
- The Key Laboratory for Extreme-Environmental Microbiology, College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, China
- College of Plant Sciences, Jilin University, Changchun, Jilin, China
| |
Collapse
|
4
|
Behiry S, Soliman SA, Massoud MA, Abdelbary M, Kordy AM, Abdelkhalek A, Heflish A. Trichoderma pubescens Elicit Induced Systemic Resistance in Tomato Challenged by Rhizoctonia solani. J Fungi (Basel) 2023; 9:jof9020167. [PMID: 36836282 PMCID: PMC9961125 DOI: 10.3390/jof9020167] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/16/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Rhizoctonia solani causes severe diseases in many plant species, particularly root rot in tomato plants. For the first time, Trichoderma pubescens effectively controls R. solani in vitro and in vivo. R. solani strain R11 was identified using the ITS region (OP456527); meanwhile, T. pubescens strain Tp21 was characterized by the ITS region (OP456528) and two genes (tef-1 and rpb2). The antagonistic dual culture method revealed that T. pubescens had a high activity of 76.93% in vitro. A substantial increase in root length, plant height, shoot fresh and dry, and root fresh and dry weight was indicated after applying T. pubescens to tomato plants in vivo. Additionally, it significantly increased the chlorophyll content and total phenolic compounds. The treatment with T. pubescens exhibited a low disease index (DI, 16.00%) without significant differences with Uniform® fungicide at a concentration of 1 ppm (14.67%), while the R. solani-infected plants showed a DI of 78.67%. At 15 days after inoculation, promising increases in the relative expression levels of three defense-related genes (PAL, CHS, and HQT) were observed in all T. pubescens treated plants compared with the non-treated plants. Plants treated with T. pubescens alone showed the highest expression value, with relative transcriptional levels of PAL, CHS, and HQT that were 2.72-, 4.44-, and 3.72-fold higher in comparison with control plants, respectively. The two treatments of T. pubescens exhibited increasing antioxidant enzyme production (POX, SOD, PPO, and CAT), while high MDA and H2O2 levels were observed in the infected plants. The HPLC results of the leaf extract showed a fluctuation in polyphenolic compound content. T. pubescens application alone or for treating plant pathogen infection showed elevated phenolic acids such as chlorogenic and coumaric acids. Therefore, the ability of T. pubescens to inhibit the growth of R. solani, enhance the development of tomato plants, and induce systemic resistance supports the application of T. pubescens as a potential bioagent for managing root rot disease and productivity increase of crops.
Collapse
Affiliation(s)
- Said Behiry
- Agricultural Botany Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt
- Correspondence: (S.B.); (A.A.)
| | - Seham A. Soliman
- Plant Protection and Biomolecular Diagnosis Department, ALCRI, City of Scientific Research and Technological Applications, New Borg El Arab City 21934, Egypt
| | - Magdy A. Massoud
- Plant Protection Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt
| | - Moawad Abdelbary
- Plant Protection Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt
| | - Ahmed M. Kordy
- Plant Protection Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt
| | - Ahmed Abdelkhalek
- Plant Protection and Biomolecular Diagnosis Department, ALCRI, City of Scientific Research and Technological Applications, New Borg El Arab City 21934, Egypt
- Correspondence: (S.B.); (A.A.)
| | - Ahmed Heflish
- Agricultural Botany Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt
| |
Collapse
|
5
|
Yao X, Guo H, Zhang K, Zhao M, Ruan J, Chen J. Trichoderma and its role in biological control of plant fungal and nematode disease. Front Microbiol 2023; 14:1160551. [PMID: 37206337 PMCID: PMC10189891 DOI: 10.3389/fmicb.2023.1160551] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/04/2023] [Indexed: 05/21/2023] Open
Abstract
Trichoderma is mainly used to control soil-borne diseases as well as some leaf and panicle diseases of various plants. Trichoderma can not only prevent diseases but also promotes plant growth, improves nutrient utilization efficiency, enhances plant resistance, and improves agrochemical pollution environment. Trichoderma spp. also behaves as a safe, low-cost, effective, eco-friendly biocontrol agent for different crop species. In this study, we introduced the biological control mechanism of Trichoderma in plant fungal and nematode disease, including competition, antibiosis, antagonism, and mycoparasitism, as well as the mechanism of promoting plant growth and inducing plant systemic resistance between Trichoderma and plants, and expounded on the application and control effects of Trichoderma in the control of various plant fungal and nematode diseases. From an applicative point of view, establishing a diversified application technology for Trichoderma is an important development direction for its role in the sustainable development of agriculture.
Collapse
Affiliation(s)
- Xin Yao
- College of Agronomy, Guizhou University, Guiyang, China
| | - Hailin Guo
- Science and Technology Innovation Development Center of Bijie City, Bijie, China
| | - Kaixuan Zhang
- Institute of Crop Science, Chinese Academy of Agriculture Science, Beijing, China
| | - Mengyu Zhao
- College of Agronomy, Guizhou University, Guiyang, China
| | - Jingjun Ruan
- College of Agronomy, Guizhou University, Guiyang, China
- *Correspondence: Jingjun Ruan,
| | - Jie Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Jie Chen,
| |
Collapse
|
6
|
Wang Z, Wang Z, Lu B, Quan X, Zhao G, Zhang Z, Liu W, Tian Y. Antagonistic potential of Trichoderma as a biocontrol agent against Sclerotinia asari. Front Microbiol 2022; 13:997050. [PMID: 36267168 PMCID: PMC9578005 DOI: 10.3389/fmicb.2022.997050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/08/2022] [Indexed: 11/24/2022] Open
Abstract
In the present study, the inhibitory potential of 14 Trichoderma strains (isolated from Asarum rhizosphere) was investigated against Sclerotinia asari using the plate dilution method. The activity of antioxidant enzymes viz; catalase (CAT), peroxidase (POD), superoxide dismutase (SOD), and malondialdehyde (MDA) in S. asari treated with the two Trichoderma strains was also evaluated. Untargeted metabolomic analysis by using LC/MS analysis was carried out to determine differential metabolites in T. hamatum (A26) and T. koningiopsis (B30) groups. Moreover, transcriptome analysis of S. asari during the inhibition of S. asari by B30, and A26 compared with the control (CK) was performed. Results indicated that inhibition rates of T. koningiopsis B30, and T. hamatum A26 were highest compared to other strains. Similarly, non-volatile metabolites extracted from the B30 strain showed a 100% inhibition of S. asari. The activity of CAT, SOD, and POD decreased after treatment with A26 and B30 strains while increasing MDA content of S. asari. Antifungal activity of differential metabolites like abamectin, eplerenone, behenic acid, lauric acid, josamycin, erythromycin, and minocycline exhibited the highest inhibition of S. asari. Transcriptome analysis showed that differentially expressed genes were involved in many metabolic pathways which subsequently contributed toward antifungal activity of Trichoderma. These findings suggested that both Trichoderma strains (B30 and A26) could be effectively used as biocontrol agents against Sclerotinia disease of Asarum.
Collapse
Affiliation(s)
- Zhiqing Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin, China
- *Correspondence: Zhiqing Wang,
| | - Ziqing Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin, China
| | - Baohui Lu
- College of Plant Protection, Jilin Agricultural University, Changchun, Jilin, China
| | - Xingzhou Quan
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin, China
| | - Guangyuan Zhao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin, China
| | - Ze Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin, China
| | - Wanliang Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin, China
| | - Yixin Tian
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin, China
| |
Collapse
|
7
|
Trichoderma hamatum Strain Th23 Promotes Tomato Growth and Induces Systemic Resistance against Tobacco Mosaic Virus. J Fungi (Basel) 2022; 8:jof8030228. [PMID: 35330230 PMCID: PMC8951347 DOI: 10.3390/jof8030228] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 12/22/2022] Open
Abstract
Trichoderma hamatum strain Th23, isolated from tomato roots, was molecularly identified using phylogenetic analysis based on ITS, tef1, and rpb2 gene sequences and evaluated for its efficiency in suppressing tobacco mosaic virus (TMV) infection for the first time. Under greenhouse conditions, the application of Th23 promoted tomato growth with significant increases in shoot and root parameters as well as improved total chlorophyll content. Compared to the nontreated tomato plants, the soil pretreatment of tomato plants 48 h before TMV inoculation produced a significant reduction in the TMV accumulation level by 84.69% and enhanced different growth parameters. In contrast, TMV had a deleterious impact on fresh and dry matter accumulation and inhibited photosynthetic capacity. Furthermore, the protective activity of Th23 was associated with a significant increase in reactive oxygen species scavenging enzymes (PPO, CAT, and SOD) as well as decreased nonenzymatic oxidative stress markers (H2O2 and MDA) compared to the TMV treatment at 15 days post-viral inoculation (dpi). In addition, considerable increases in the transcriptional levels of polyphenolic genes (HQT and CHS) and pathogenesis-related proteins (PR-1 and PR-7) were shown to induce systemic resistance against TMV. Consequently, the ability of T. hamatum strain Th23 to promote plant growth, induce systemic resistance, and boost innate immunity against TMV infestation supported the incorporation of Th23 as a potential biocontrol agent for managing plant viral infections. To the best of our knowledge, this is the first report of the antiviral activity of T. hamatum against plant viral infection.
Collapse
|
8
|
Microbial interaction mediated programmed cell death in plants. 3 Biotech 2022; 12:43. [PMID: 35096500 PMCID: PMC8761208 DOI: 10.1007/s13205-021-03099-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 12/26/2021] [Indexed: 02/03/2023] Open
Abstract
Food demand of growing population can only be met by finding solutions for sustaining the crop yield. The understanding of basic mechanisms employed by microorganisms for the establishment of parasitic relationship with plants is a complex phenomenon. Symbionts and biotrophs are dependent on living hosts for completing their life cycle, whereas necrotrophs utilize dead cells for their growth and establishment. Hemibiotrophs as compared to other microbes associate themselves with plants in two phase's, viz. early bio-phase and later necro-phase. Plants and microbes interact with each other using receptors present on host cell surface and elicitors (PAMPs and effectors) produced by microbes. Plant-microbe interaction either leads to compatible or incompatible reaction. In response to various biotic and abiotic stress factors, plant undergoes programmed cell death which restricts the growth of biotrophs or hemibiotrophs while necrotrophs as an opportunist starts growing on dead tissue for their own benefit. PCD regulation is an outcome of plant-microbe crosstalk which entirely depends on various biochemical events like generation of reactive oxygen species, nitric oxide, ionic efflux/influx, CLPs, biosynthesis of phytohormones, phytoalexins, polyamines and certain pathogenesis-related proteins. This phenomenon mostly occurs in resistant and non-host plants during invasion of pathogenic microbes. The compatible or incompatible host-pathogen interaction depends upon the presence or absence of host plant resistance and pathogenic race. In addition to host-pathogen interaction, the defense induction by beneficial microbes must also be explored and used to the best of its potential. This review highlights the mechanism of microbe- or symbiont-mediated PCD along with defense induction in plants towards symbionts, biotrophs, necrotrophs and hemibiotrophs. Here we have also discussed the possible use of beneficial microbes in inducing systemic resistance in plants against pathogenic microbes.
Collapse
|
9
|
Effects on Capsicum annuum Plants Colonized with Trichoderma atroviride P. Karst Strains Genetically Modified in Taswo1, a Gene Coding for a Protein with Expansin-like Activity. PLANTS 2021; 10:plants10091919. [PMID: 34579451 PMCID: PMC8468806 DOI: 10.3390/plants10091919] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/07/2021] [Accepted: 09/13/2021] [Indexed: 12/01/2022]
Abstract
Here, we analyzed the effects on Capsicum annuum plants of Trichoderma atroviride P. Karst strains altered in the expression of SWOLLENIN (SWO1), a protein with amorphogenic activity on plant cell wall components. Strains of T. atroviride that overexpressed the Taswo1 gene were constructed as well as deletion mutants. A novel, cheap and accurate method for assessing root colonization was developed. Colonization assays showed that the Taswo1 overexpressing strains invaded the host root better than the WT, resulting in a stronger plant growth-promoting effect. The expression of plant defense marker genes for both the systemic acquired resistance and induced systemic resistance pathways was enhanced in plants inoculated with Taswo1 overexpressing strains, while inoculation with deletion mutant strains resulted in a similar level of expression to that observed upon inoculation with the wild-type strain. Response to pathogen infection was also enhanced in the plants inoculated with the Taswo1 overexpressing strains, and surprisingly, an intermediate level of protection was achieved with the mutant strains. Tolerance to abiotic stresses was also higher in plants inoculated with the Taswo1 overexpressing strains but was similar in plants inoculated with the wild-type or the mutant strains. Compatible osmolyte production in drought conditions was studied. This study may contribute to improving Trichoderma biocontrol and biofertilization abilities.
Collapse
|
10
|
Endo-chitinase Chit33 specificity on different chitinolytic materials allows the production of unexplored chitooligosaccharides with antioxidant activity. ACTA ACUST UNITED AC 2020; 27:e00500. [PMID: 32685384 PMCID: PMC7355052 DOI: 10.1016/j.btre.2020.e00500] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 12/25/2022]
Abstract
The biological activity of chitooligosaccharides (COS) has made them targets for industrial and medical sectors. In this work, endo-chitinase Chit33 from Trichoderma harzianum CECT 2413 was expressed in Pichia pastoris GS115 to levels never achieved before (630 mg/L; 3.3 U/mL), without its biochemical characteristics being substantially affected. Chit33 produced a mixture of fully and partially acetylated COS from different chitin derivatives. HPAEC-PAD Chromatography and mass spectrometry analyses showed that (GlcNAc)4 and GlcN-(GlcNAc)2 were mainly produced from colloidal chitin and chitosan, respectively. COS in reaction mixtures were fragmented according to their size and their antioxidant activity analyzed by reducing power and free radical scavenging activity essays. The highest antioxidant activity was achieved with COS in the range of 0.5-2 and 2-10 kDa produced from colloidal chitin and chitosan, respectively, which gives biotechnological potential to both the chitin derivatives of 0.5-10 kDa and the biocatalyst producing them.
Collapse
|
11
|
Trichoderma harzianum favours the access of arbuscular mycorrhizal fungi to non-host Brassicaceae roots and increases plant productivity. Sci Rep 2019; 9:11650. [PMID: 31406170 PMCID: PMC6690897 DOI: 10.1038/s41598-019-48269-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 08/01/2019] [Indexed: 12/20/2022] Open
Abstract
The family Brassicaceae includes plants that are non-host for arbuscular mycorrhizal fungi (AMF) such as the model plant Arabidopsis thaliana (arabidopsis) and the economically important crop plant Brassica napus (rapeseed). It is well known that Trichoderma species have the ability to colonize the rhizosphere of Brassicaceae plants, promoting growth and development as well as stimulating systemic defenses. The aim of the present work is to ascertain that Brassicaceae plants increase productivity when AMF and Trichoderma are combinedly applied, and how such an effect can be ruled. This simultaneous application of a Trichoderma harzianum biocontrol strain and an AMF formulation produces a significant increase in the colonization by Trichoderma and the presence of AMF in arabidopsis and rapeseed roots, such colonization accompanied by improved productivity in both Brassicaceae species. Expression profiling of defense-related marker genes suggests that the phytohormone salicylic acid plays a key role in the modulation of the root colonization process when both fungi are jointly applied.
Collapse
|
12
|
Yuan M, Huang Y, Ge W, Jia Z, Song S, Zhang L, Huang Y. Involvement of jasmonic acid, ethylene and salicylic acid signaling pathways behind the systemic resistance induced by Trichoderma longibrachiatum H9 in cucumber. BMC Genomics 2019; 20:144. [PMID: 30777003 PMCID: PMC6379975 DOI: 10.1186/s12864-019-5513-8] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 02/06/2019] [Indexed: 01/08/2023] Open
Abstract
Background Trichoderma spp. are effective biocontrol agents for many plant pathogens, thus the mechanism of Trichoderma-induced plant resistance is not fully understood. In this study, a novel Trichoderma strain was identified, which could promote plant growth and reduce the disease index of gray mold caused by Botrytis cinerea in cucumber. To assess the impact of Trichoderma inoculation on the plant response, a multi-omics approach was performed in the Trichoderma-inoculated cucumber plants through the analyses of the plant transcriptome, proteome, and phytohormone content. Results A novel Trichoderma strain was identified by morphological and molecular analysis, here named T. longibrachiatum H9. Inoculation of T. longibrachiatum H9 to cucumber roots promoted plant growth in terms of root length, plant height, and fresh weight. Root colonization of T. longibrachiatum H9 in the outer layer of epidermis significantly inhibited the foliar pathogen B. cinerea infection in cucumber. The plant transcriptome and proteome analyses indicated that a large number of differentially expressed genes (DEGs) and differentially expressed proteins (DEPs) were identified in cucumber plants 96 h post T. longibrachiatum H9 inoculation. Up-regulated DEGs and DEPs were mainly associated with defense/stress processes, secondary metabolism, and phytohormone synthesis and signaling, including jasmonic acid (JA), ethylene (ET) and salicylic acid (SA), in the T. longibrachiatum H9-inoculated cucumber plants in comparison to untreated plants. Moreover, the JA and SA contents significantly increased in cucumber plants with T. longibrachiatum H9 inoculation. Conclusions Application of T. longibrachiatum H9 to the roots of cucumber plants effectively promoted plant growth and significantly reduced the disease index of gray mold caused by B. cinerea. The analyses of the plant transcriptome, proteome and phytohormone content demonstrated that T. longibrachiatum H9 mediated plant systemic resistance to B. cinerea challenge through the activation of signaling pathways associated with the phytohormones JA/ET and SA in cucumber. Electronic supplementary material The online version of this article (10.1186/s12864-019-5513-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Min Yuan
- College of Life Sciences, North China University of Science and Technology, Tangshan, 063210, People's Republic of China
| | - Yuanyuan Huang
- Biology Institute, Hebei Academy of Sciences, Shijiazhuang, 050081, People's Republic of China
| | - Weina Ge
- College of Life Sciences, North China University of Science and Technology, Tangshan, 063210, People's Republic of China
| | - Zhenhua Jia
- Biology Institute, Hebei Academy of Sciences, Shijiazhuang, 050081, People's Republic of China
| | - Shuishan Song
- Biology Institute, Hebei Academy of Sciences, Shijiazhuang, 050081, People's Republic of China
| | - Lan Zhang
- College of Life Sciences, North China University of Science and Technology, Tangshan, 063210, People's Republic of China
| | - Yali Huang
- Biology Institute, Hebei Academy of Sciences, Shijiazhuang, 050081, People's Republic of China.
| |
Collapse
|
13
|
Khadka RB, Uphoff N. Effects of Trichoderma seedling treatment with System of Rice Intensification management and with conventional management of transplanted rice. PeerJ 2019; 7:e5877. [PMID: 30693151 PMCID: PMC6343584 DOI: 10.7717/peerj.5877] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 10/05/2018] [Indexed: 01/22/2023] Open
Abstract
Many benefits of Trichoderma inoculation for improving crop production have been documented, including growth and yield enhancement and the alleviation of biotic and abiotic stresses. However, because rice is usually cultivated under continuous flooding that creates anaerobic soil conditions, this limits the benefits of these beneficial fungi. Cultivating rice with the methods of the System of Rice Intensification (SRI) provides rice plants with a more favorable environment for their colonization by beneficial microbes in the soil because the soil is more aerobic under SRI management and contains more organic matter. This study evaluated the effects of Trichoderma inoculation of rice plants under SRI management compared with transplanted and flooded rice plants, considering also the effects of different means of fertilization and different varieties in rice. Experiments were conducted in 2015 and 2016 under the tropical climate of Nepal's western terai (plains) during both the rainy season (July to November) and the dry season (March to July). The results indicated significantly better performance (P = 0.01) associated with Trichoderma inoculation for both seasons and for both systems of crop management in terms of grain yield and other growth-contributing factors, compared to non-inoculated rice cropping. Relatively higher effects on grain yield were recorded also with organic compared to inorganic fertilization; for unimproved (heirloom) varieties compared with improved varieties; and from SRI vs. conventional flooded crop management. The yield increase with Trichoderma treatments across all trials was 31% higher than in untreated plots (4.9 vs 4.5 mt ha-1). With Trichoderma treatment, yields compared with non-treated plots were 24% higher with organic SRI (6.38 vs 5.13 mt ha-1) and 52% higher with non-organic SRI (6.38 vs 3.53 mt ha-1). With regard to varietal differences, under SRI management Trichoderma inoculation of the improved variety Sukhadhan-3 led to 26% higher yield (6.35 vs 5.04 mt ha-1), and with the heirloom variety Tilkidhan, yield was 41% higher (6.29 vs 4.45 mt ha-1). Economic analysis indicated that expanding the organic cultivation of local landraces under SRI management should be profitable for farmers where such rice has a good market price due to its premium quality and high demand and when SRI enhances yield. These varieties' present low yields can be significantly increased by integrating Trichoderma bio-inoculation with SRI cultural methods. Other recent research has shown that such inoculation can be managed profitably by farmers themselves.
Collapse
Affiliation(s)
- Ram B. Khadka
- Regional Agricultural Research Station, Nepal Agricultural Research Council, Khajura, Banke, Nepal
- Department of Plant Pathology, The Ohio State University, Wooster, OH, United States of America
| | - Norman Uphoff
- SRI-Rice, International Programs (IP/CALS), Cornell University, Ithaca, NY, United States of America
| |
Collapse
|
14
|
Singh BN, Dwivedi P, Sarma BK, Singh HB. Trichoderma asperellum T42 induces local defense against Xanthomonas oryzae pv. oryzae under nitrate and ammonium nutrients in tobacco. RSC Adv 2019; 9:39793-39810. [PMID: 35541384 PMCID: PMC9076103 DOI: 10.1039/c9ra06802c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 11/08/2019] [Indexed: 11/23/2022] Open
Abstract
Trichoderma has been explored and found to play a vital role in the defense mechanism of plants. However, its effects on host disease management in the presence of N nutrients remains elusive. The present study aimed to assess the latent effects of Trichoderma asperellum T42 on oxidative burst-mediated defense mechanisms against Xanthomonas oryzae pv. oryzae (Xoo) in tobacco plants fed 10 mM NO3− and 3 mM NH4+ nutrients. The nitrate-fed tobacco plants displayed an increased HR when Xoo infected, which was enhanced in the Trichoderma-treated plants. This mechanism was enhanced by the involvement of Trichoderma, which elicited NO production and enhanced the expression pattern of NO-modulating genes (NR, NOA and ARC). The real-time NO fluorescence intensity was alleviated in the NH4+-fed tobacco plants compared to that fed NO3− nutrient, suggesting the significant role of Trichoderma-elicited NO. The nitrite content and NR activity demonstration further confirmed that nitrate metabolism led to NO generation. The production of ROS (H2O2) in the plant leaves well-corroborated that the disease resistance was mediated through the oxidative burst mechanism. Nitrate application resulted in greater ROS production compared to NH4+ nutrient after Xoo infection at 12 h post-infection (hpi). Additionally, the mechanism of enhanced plant defense under NO3− and NH4+ nutrients mediated by Trichoderma involved NO, ROS production and induction of PR1a MEK3 and antioxidant enzyme transcription level. Moreover, the use of sodium nitroprusside (100 μM) with Xoo suspension in the leaves matched the disease resistance mediated via NO burst. Altogether, this study provides novel insights into the fundamental mechanism behind the role of Trichoderma in the activation of plant defense against non-host pathogens under N nutrients. A hypothetical proposed defense pathway activated during interactions between bacterial pathogen (Xoo) with tobacco plant leaves among treatments.![]()
Collapse
Affiliation(s)
- Bansh Narayan Singh
- Institute of Environment and Sustainable Development
- Banaras Hindu University
- Varanasi 221005
- India
- Department of Plant Physiology
| | - Padmanabh Dwivedi
- Department of Plant Physiology
- Institute of Agricultural Sciences
- Banaras Hindu University
- Varanasi 221005
- India
| | - Birinchi Kumar Sarma
- Department of Mycology and Plant Pathology
- Institute of Agricultural Sciences
- Banaras Hindu University
- Varanasi 221005
- India
| | - Harikesh Bahadur Singh
- Department of Mycology and Plant Pathology
- Institute of Agricultural Sciences
- Banaras Hindu University
- Varanasi 221005
- India
| |
Collapse
|
15
|
Pusztahelyi T. Chitin and chitin-related compounds in plant-fungal interactions. Mycology 2018; 9:189-201. [PMID: 30181925 PMCID: PMC6115883 DOI: 10.1080/21501203.2018.1473299] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 05/02/2018] [Indexed: 02/07/2023] Open
Abstract
Chitin is the second abundant polysaccharide in the world after cellulose. It is a vital structural component of the fungal cell wall but not for plants. In plants, fungi are recognised through the perception of conserved microbe-associated molecular patterns (MAMPs) to induce MAMP-triggered immunity (MTI). Chitin polymers and their modified form, chitosan, induce host defence responses in both monocotyledons and dicotyledons. The plants' response to chitin, chitosan, and derived oligosaccharides depends on the acetylation degree of these compounds which indicates possible biocontrol regulation of plant immune system. There has also been a considerable amount of recent research aimed at elucidating the roles of chitin hydrolases in fungi and plants as chitinase production in plants is not considered solely as an antifungal resistance mechanism. We discuss the importance of chitin forms and chitinases in the plant-fungal interactions and their role in persistent and possible biocontrol. Abbreviations ET, ethylene; GAP, GTPase-activating protein; GEF, GDP/GTP exchange factor; JA, jasmonic acid; LysM, lysin motif; MAMP, microbe-associated molecular pattern; MTI, MAMP-triggered immunity; NBS, nucleotide-binding site; NBS-LRR, nucleotide-binding site leucine-rich repeats; PM, powdery mildew; PR, pathogenesis-related; RBOH, respiratory burst oxidase homolog; RLK, receptor-like kinase; RLP, receptor-like protein; SA, salicylic acid; TF, transcription factor.
Collapse
Affiliation(s)
- Tünde Pusztahelyi
- Central Laboratory of Agricultural and Food Products, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Hungary
| |
Collapse
|
16
|
Hawkins LK, Mylroie JE, Oliveira DA, Smith JS, Ozkan S, Windham GL, Williams WP, Warburton ML. Characterization of the Maize Chitinase Genes and Their Effect on Aspergillus flavus and Aflatoxin Accumulation Resistance. PLoS One 2015; 10:e0126185. [PMID: 26090679 PMCID: PMC4475072 DOI: 10.1371/journal.pone.0126185] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 03/30/2015] [Indexed: 12/31/2022] Open
Abstract
Maize (Zea mays L.) is a crop of global importance, but prone to contamination by aflatoxins produced by fungi in the genus Aspergillus. The development of resistant germplasm and the identification of genes contributing to resistance would aid in the reduction of the problem with a minimal need for intervention by farmers. Chitinolytic enzymes respond to attack by potential pathogens and have been demonstrated to increase insect and fungal resistance in plants. Here, all chitinase genes in the maize genome were characterized via sequence diversity and expression patterns. Recent evolution within this gene family was noted. Markers from within each gene were developed and used to map the phenotypic effect on resistance of each gene in up to four QTL mapping populations and one association panel. Seven chitinase genes were identified that had alleles associated with increased resistance to aflatoxin accumulation and A. flavus infection in field grown maize. The chitinase in bin 1.05 identified a new and highly significant QTL, while chitinase genes in bins 2.04 and 5.03 fell directly beneath the peaks of previously published QTL. The expression patterns of these genes corroborate possible grain resistance mechanisms. Markers from within the gene sequences or very closely linked to them are presented to aid in the use of marker assisted selection to improve this trait.
Collapse
Affiliation(s)
- Leigh K. Hawkins
- USDA-ARS Corn Host Plant Resistance Research Unit, Mississippi State, Starkville, MS, United States of America
| | - J. Erik Mylroie
- USDA-ARS Corn Host Plant Resistance Research Unit, Mississippi State, Starkville, MS, United States of America
| | - Dafne A. Oliveira
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Starkville, MS, 39762, United States of America
| | - J. Spencer Smith
- USDA-ARS Corn Host Plant Resistance Research Unit, Mississippi State, Starkville, MS, United States of America
| | - Seval Ozkan
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Starkville, MS, 39762, United States of America
| | - Gary L. Windham
- USDA-ARS Corn Host Plant Resistance Research Unit, Mississippi State, Starkville, MS, United States of America
| | - W. Paul Williams
- USDA-ARS Corn Host Plant Resistance Research Unit, Mississippi State, Starkville, MS, United States of America
| | - Marilyn L. Warburton
- USDA-ARS Corn Host Plant Resistance Research Unit, Mississippi State, Starkville, MS, United States of America
| |
Collapse
|
17
|
Vos CMF, De Cremer K, Cammue BPA, De Coninck B. The toolbox of Trichoderma spp. in the biocontrol of Botrytis cinerea disease. MOLECULAR PLANT PATHOLOGY 2015; 16:400-12. [PMID: 25171761 PMCID: PMC6638538 DOI: 10.1111/mpp.12189] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Botrytis cinerea is a necrotrophic fungal pathogen causing disease in many plant species, leading to economically important crop losses. So far, fungicides have been widely used to control this pathogen. However, in addition to their detrimental effects on the environment and potential risks for human health, increasing fungicide resistance has been observed in the B. cinerea population. Biological control, that is the application of microbial organisms to reduce disease, has gained importance as an alternative or complementary approach to fungicides. In this respect, the genus Trichoderma constitutes a promising pool of organisms with potential for B. cinerea control. In the first part of this article, we review the specific mechanisms involved in the direct interaction between the two fungi, including mycoparasitism, the production of antimicrobial compounds and enzymes (collectively called antagonism), and competition for nutrients and space. In addition, biocontrol has also been observed when Trichoderma is physically separated from the pathogen, thus implying an indirect systemic plant defence response. Therefore, in the second part, we describe the consecutive steps leading to induced systemic resistance (ISR), starting with the initial Trichoderma-plant interaction and followed by the activation of downstream signal transduction pathways and, ultimately, the defence response resulting in ISR (ISR-prime phase). Finally, we discuss the ISR-boost phase, representing the effect of ISR priming by Trichoderma spp. on plant responses after additional challenge with B. cinerea.
Collapse
Affiliation(s)
- Christine M F Vos
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, 3001, Leuven, Belgium; Department of Plant Systems Biology, VIB, Technologiepark 927, 9052, Gent, Belgium
| | | | | | | |
Collapse
|
18
|
Trichoderma atroviride transcriptional regulator Xyr1 supports the induction of systemic resistance in plants. Appl Environ Microbiol 2014; 80:5274-81. [PMID: 24951787 DOI: 10.1128/aem.00930-14] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
As a result of a transcriptome-wide analysis of the ascomycete Trichoderma atroviride, mycoparasitism-related genes were identified; of these, 13 genes were further investigated for differential expression. In silico analysis of the upstream regulatory regions of these genes pointed to xylanase regulator 1 (Xyr1) as a putatively involved regulatory protein. Transcript analysis of the xyr1 gene of T. atroviride in confrontation with other fungi allowed us to determine that xyr1 levels increased during mycoparasitism. To gain knowledge about the precise role of Xyr1 in the mycoparasitic process, the corresponding gene was deleted from the T. atroviride genome. This resulted in strong reductions in the transcript levels of axe1 and swo1, which encode accessory cell wall-degrading enzymes considered relevant for mycoparasitism. We also analyzed the role of Xyr1 in the Trichoderma-Arabidopsis interaction, finding that the plant response elicited by T. atroviride is delayed if Xyr1 is missing in the fungus.
Collapse
|
19
|
Pereira JL, Queiroz RML, Charneau SO, Felix CR, Ricart CAO, da Silva FL, Steindorff AS, Ulhoa CJ, Noronha EF. Analysis of Phaseolus vulgaris response to its association with Trichoderma harzianum (ALL-42) in the presence or absence of the phytopathogenic fungi Rhizoctonia solani and Fusarium solani. PLoS One 2014; 9:e98234. [PMID: 24878929 PMCID: PMC4039509 DOI: 10.1371/journal.pone.0098234] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 04/30/2014] [Indexed: 12/22/2022] Open
Abstract
The present study was carried out to evaluate the ability of Trichoderma harzianum (ALL 42-isolated from Brazilian Cerrado soil) to promote common bean growth and to modulate its metabolism and defense response in the presence or absence of the phytopathogenic fungi Rhizoctonia solani and Fusarium solani using a proteomic approach. T. harzianum was able to promote common bean plants growth as shown by the increase in root/foliar areas and by size in comparison to plants grown in its absence. The interaction was shown to modulate the expression of defense-related genes (Glu1, pod3 and lox1) in roots of P. vulgaris. Proteomic maps constructed using roots and leaves of plants challenged or unchallenged by T. harzianum and phytopathogenic fungi showed differences. Reference gels presented differences in spot distribution (absence/presence) and relative volumes of common spots (up or down-regulation). Differential spots were identified by peptide fingerprinting MALDI-TOF mass spectrometry. A total of 48 identified spots (19 for leaves and 29 for roots) were grouped into protein functional classes. For leaves, 33%, 22% and 11% of the identified proteins were categorized as pertaining to the groups: metabolism, defense response and oxidative stress response, respectively. For roots, 17.2%, 24.1% and 10.3% of the identified proteins were categorized as pertaining to the groups: metabolism, defense response and oxidative stress response, respectively.
Collapse
Affiliation(s)
- Jackeline L. Pereira
- Department of Cellular Biology, University of Brasilia (UNB), Brasilia, Distrito Federal, Brazil
| | - Rayner M. L. Queiroz
- Department of Cellular Biology, University of Brasilia (UNB), Brasilia, Distrito Federal, Brazil
| | - Sébastien O. Charneau
- Department of Cellular Biology, University of Brasilia (UNB), Brasilia, Distrito Federal, Brazil
| | - Carlos R. Felix
- Department of Cellular Biology, University of Brasilia (UNB), Brasilia, Distrito Federal, Brazil
| | - Carlos A. O. Ricart
- Department of Cellular Biology, University of Brasilia (UNB), Brasilia, Distrito Federal, Brazil
| | | | - Andrei Stecca Steindorff
- Department of Cellular Biology, University of Brasilia (UNB), Brasilia, Distrito Federal, Brazil
| | - Cirano J. Ulhoa
- Biological Sciences Institute, Federal University of Goiás (UFG), Goiânia, Goiás, Brazil
- * E-mail:
| | - Eliane F. Noronha
- Department of Cellular Biology, University of Brasilia (UNB), Brasilia, Distrito Federal, Brazil
| |
Collapse
|
20
|
Singh B, Singh A, Singh B, Singh H. Trichoderma harzianum
elicits induced resistance in sunflower challenged by Rhizoctonia solani. J Appl Microbiol 2013; 116:654-66. [DOI: 10.1111/jam.12387] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 11/06/2013] [Accepted: 11/06/2013] [Indexed: 11/26/2022]
Affiliation(s)
- B.N. Singh
- Department of Mycology & Plant Pathology, Institute of Agricultural Sciences; Banaras Hindu University; Varanasi India
| | - A. Singh
- Department of Botany, Faculty of Science; Banaras Hindu University; Varanasi India
| | - B.R. Singh
- Department of Applied Physics, Z.H. College of Engg. & Tech., Centre of Excellence in Materials Science (Nanomaterials); Aligarh Muslim University; Aligarh India
| | - H.B. Singh
- Department of Mycology & Plant Pathology, Institute of Agricultural Sciences; Banaras Hindu University; Varanasi India
| |
Collapse
|
21
|
Goñi O, Sanchez-Ballesta MT, Merodio C, Escribano MI. Two cold-induced family 19 glycosyl hydrolases from cherimoya (Annona cherimola) fruit: an antifungal chitinase and a cold-adapted chitinase. PHYTOCHEMISTRY 2013; 95:94-104. [PMID: 23890591 DOI: 10.1016/j.phytochem.2013.07.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 06/27/2013] [Accepted: 07/03/2013] [Indexed: 06/02/2023]
Abstract
Two cold-induced chitinases were isolated and purified from the mesocarp cherimoyas (Annona cherimola Mill.) and they were characterised as acidic endochitinases with a Mr of 24.79 and 47.77kDa (AChi24 and AChi48, respectively), both family 19 glycosyl hydrolases. These purified chitinases differed significantly in their biochemical and biophysical properties. While both enzymes had similar optimal acidic pH values, AChi24 was enzymatically active and stable at alkaline pH values, as well as displaying an optimal temperature of 45°C and moderate thermostability. Kinetic studies revealed a great catalytic efficiency of AChi24 for oligomeric and polymeric substrates. Conversely, AChi48 hydrolysis showed positive co-operativity that was associated to a mixture of different functional oligomeric states through weak transient protein interactions. The rise in the AChi48 kcat at increasing enzyme concentrations provided evidence of its oligomerisation. AChi48 chitinase was active and stable in a broad acidic pH range, and while it was relatively labile as temperatures increased, with an optimal temperature of 35°C, it retained about 50% of its maximal activity from 5 to 50°C. Thermodynamic characterisation reflected the high kcat of AChi48 and the remarkably lower ΔH(‡), ΔS(‡) and ΔG(‡) values at 5°C compared to AChi24, indicating that the hydrolytic activity of AChi48 was less thermodependent. In vitro functional studies revealed that AChi24 had a strong antifungal defence potential against Botrytis cinerea, whereas they displayed no cryoprotective or antifreeze activity. Hence, based on biochemical, thermodynamic and functional data, this study demonstrates that two acidic endochitinases are induced at low temperatures in a subtropical fruit, and that one of them acts in an oligomeric cold-adapted manner.
Collapse
Affiliation(s)
- Oscar Goñi
- Grupo Biotecnología y Calidad Posrecolección, Departamento de Caracterización, Calidad y Seguridad, Instituto de Ciencia y Tecnología de Alimentos y Nutrición, ICTAN-CSIC, José Antonio Novais 10, Ciudad Universitaria, E-28040 Madrid, Spain
| | | | | | | |
Collapse
|
22
|
PacC and pH-dependent transcriptome of the mycotrophic fungus Trichoderma virens. BMC Genomics 2013; 14:138. [PMID: 23445374 PMCID: PMC3618310 DOI: 10.1186/1471-2164-14-138] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2012] [Accepted: 02/23/2013] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND In fungi, environmental pH is an important signal for development, and successful host colonization depends on homeostasis. Surprisingly, little is known regarding the role of pH in fungal-fungal interactions. Species of Trichoderma grow as soil saprobes but many are primarily mycotrophic, using other fungi as hosts. Therefore, Trichoderma spp. are studied for their potential in biocontrol of plant diseases. Particularly in alkaline soil, pH is a critical limiting factor for these biofungicides, whose optimal growth pH is 4-6. Gaining an understanding of pH adaptability is an important step in broadening the activity spectrum of these economically important fungi. RESULTS We studied the pH-responsive transcription factor PacC by gene knockout and by introduction of a constitutively active allele (pacCc). ΔpacC mutants exhibited reduced growth at alkaline pH, while pacCc strains grew poorly at acidic pH. In plate confrontation assays ΔpacC mutants showed decreased ability to compete with the plant pathogens Rhizoctonia solani and Sclerotium rolfsii. The pacCc strain exhibited an overgrowth of R. solani that was comparable to the wild type, but was unable to overgrow S. rolfsii. To identify genes whose expression is dependent on pH and pacC, we designed oligonucleotide microarrays from the transcript models of the T. virens genome, and compared the transcriptomes of wild type and mutant cultures exposed to high or low pH. Transcript levels from several functional classes were dependent on pacC, on pH, or on both. Furthermore, the expression of a set of pacC-dependent genes was increased in the constitutively-active pacCc strain, and was pH-independent in some, but not all cases. CONCLUSIONS PacC is important for biocontrol-related antagonism of other fungi by T. virens. As much as 5% of the transcriptome is pH-dependent, and of these genes, some 25% depend on pacC. Secondary metabolite biosynthesis and ion transport are among the relevant gene classes. We suggest that ΔpacC mutants may have lost their full biocontrol potential due to their inability to adapt to alkaline pH, to perceive ambient pH, or both. The results raise the novel possibility of genetically manipulating Trichoderma in order to improve adaptability and biocontrol at alkaline pH.
Collapse
|
23
|
Naher L, Tan SG, Ho CL, Yusuf UK, Ahmad SH, Abdullah F. mRNA expression of EgCHI1, EgCHI2, and EgCHI3 in oil palm leaves (Elaeis guineesis Jacq.) after treatment with Ganoderma boninense pat. and Trichoderma harzianum Rifai. ScientificWorldJournal 2012; 2012:647504. [PMID: 22919345 PMCID: PMC3419405 DOI: 10.1100/2012/647504] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 06/04/2012] [Indexed: 11/24/2022] Open
Abstract
Background. Basal stem rot (BSR) disease caused by the fungus Ganoderma boninense is the most serious disease affecting the oil palm; this is because the disease escapes the early disease detection. The biocontrol agent Trichoderma harzianum can protect the disease only at the early stage of the disease. In the present study, the expression levels of three oil palm (Elaeis guineensis Jacq.) chitinases encoding EgCHI1, EgCHI2, and EgCHI3 at 2, 5, and 8 weeks inoculation were measured in oil palm leaves from plants treated with G. boninense or T. harzianum alone or both. Methods. The five-month-old oil palm seedlings were treated with Gano-wood blocks inoculum and trichomulch. Expression of EgCHI1, EgCHI2, and EgCHI3 in treated leaves tissue was determined by real-time PCR. Results. Oil palm chitinases were not strongly expressed in oil palm leaves of plants treated with G. boninense alone compared to other treatments. Throughout the 8-week experiment, expression of EgCHI1 increased more than 3-fold in leaves of plants treated with T. harzianum and G. boninense when compared to those of control and other treated plants. Conclusion. The data illustrated that chitinase cDNA expression varied depending on tissue and the type of treatment.
Collapse
Affiliation(s)
- Laila Naher
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, Selangor, 43400 Serdang, Malaysia.
| | | | | | | | | | | |
Collapse
|
24
|
Shoresh M, Harman GE. Genome-wide identification, expression and chromosomal location of the genes encoding chitinolytic enzymes in Zea mays. Mol Genet Genomics 2008; 280:173-85. [PMID: 18560892 DOI: 10.1007/s00438-008-0354-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Accepted: 05/29/2008] [Indexed: 10/21/2022]
Abstract
Chitinolytic enzymes are important pathogenesis and stress related proteins. We identified 27 putative genes encoding endochitinases in the maize genome via in silico techniques and four exochitinases. Only seven of the endochitinases and segments of the exochitinases were heretofore known. The endochitinases included members of family 19 chitinases (classes I-IV of PR3, II of PR4) and members of family 18 chitinases (class III of PR8). Some similar enzymes were detected on adjacent regions of the same chromosome, and seem to result from duplication events. Most of the genes expressed were identified from EST libraries from plants exposed to biotic or abiotic stresses but also from libraries from tissues not exposed to stresses. We isolated proteins from seedlings of maize in the presence or absence of the symbiotic root colonizing fungus Trichoderma harzianum strain T22, and analyzed the activity of chitinolytic enzymes using an in-gel activity assay. The activity bands were identified by LC/MS/MS using the database from our in silico study. The identities of the enzymes changed depending on whether or not T22 was present. One activity band of about 95 kDa appeared to be a heterodimer between an exochitinase and any of several different endochitinases. The identity of the endochitinase component appeared to be dependent upon treatment.
Collapse
Affiliation(s)
- Michal Shoresh
- Department of Horticultural Sciences, Cornell University, Geneva, NY 14456, USA.
| | | |
Collapse
|