1
|
Ladinig U, Hörandl E, Klatt S, Wagner J. Reproductive Performance of the Alpine Plant Species Ranunculus kuepferi in a Climatic Elevation Gradient: Apomictic Tetraploids Do Not Show a General Fitness Advantage over Sexual Diploids. Life (Basel) 2024; 14:1202. [PMID: 39337984 PMCID: PMC11433044 DOI: 10.3390/life14091202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Previous studies on the mountain plant Ranunculus kuepferi concluded that apomictic self-compatible tetraploids have experienced a niche shift toward a colder climate during the Holocene, which suggests a fitness advantage over the sexual, self-sterile diploid parents under cold and stressful high-mountain conditions. However, there is still a lack of information on whether reproductive development would be advantageous for tetraploids. Here, we report on microsporogenesis, megagametogenesis, the dynamics of flower and seed development, and the consequences for reproductive success in a common garden experiment along a 1000 m climatic elevation gradient and in natural populations. Flower buds were initiated in the year preceding anthesis and passed winter in a pre-meiotic stage. Flower morphology differed in the known cytotype-specific way in that tetraploid flowers produced about twice as many carpels and fewer petals, stamens, and pollen grains than diploid flowers. Tetraploids developed precociously aposporous embryo sacs and showed a high rate of developmental disturbances. Sexual seed formation prevailed in diploids and pseudogamous apomixis in tetraploids. Along the elevation gradient, stigma pollen load, pollen performance, and seed output decreased. Combinations of reproductive traits, namely, bypass of meiosis irregularities and uniparental reproduction, might have promoted the vast expansion of apomictic R. kuepferi lines across the European Alps.
Collapse
Affiliation(s)
- Ursula Ladinig
- Department of Botany, Functional Plant Biology, University of Innsbruck, Sternwartestrasse 15, A-6020 Innsbruck, Austria
| | - Elvira Hörandl
- Department of Systematics, Biodiversity and Evolution of Plants, Albrecht-von-Haller Institute for Plant Sciences, University of Goettingen, Untere Karspuele 2, D-37073 Goettingen, Germany
| | - Simone Klatt
- Department of Systematics, Biodiversity and Evolution of Plants, Albrecht-von-Haller Institute for Plant Sciences, University of Goettingen, Untere Karspuele 2, D-37073 Goettingen, Germany
- Central Administration, University of Goettingen, Humboldtallee 15, D-37073 Goettingen, Germany
| | - Johanna Wagner
- Department of Botany, Functional Plant Biology, University of Innsbruck, Sternwartestrasse 15, A-6020 Innsbruck, Austria
| |
Collapse
|
2
|
Kaur H, Kaur G, Sirhindi G, Bhardwaj R, Alsahli AA, Ahmad P. Exploring the role of 28-homobrassinolide in regulation of temperature induced clastogenic aberrations and sugar metabolism of Brassica juncea L. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108893. [PMID: 39018776 DOI: 10.1016/j.plaphy.2024.108893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/08/2024] [Accepted: 06/27/2024] [Indexed: 07/19/2024]
Abstract
The present research primarily focuses on Brassica juncea's physiological and cytological responses to low and high temperature stress at 4 °C and 44 °C respectively, along with elucidating the protective role of 28-Homobrassinolide (28-homoBL). Cytological investigations performed in floral buds of Brassica juncea L. under temperature (24, 4, 44 °C) stress conditions depict the presence of some abnormalities associated with cytomixis such as chromosome stickiness or agglutination, pycnotic nature of chromatin, irregularities in spindle formation, disoriented chromatins, and non-synchronous chromatin material condensation in Brassicaceae family that subsisted at diploid level (2n = 36). Spindle abnormalities produce various size pollen grains such as sporads micronuclei at some stages of microsporogenesis, polyads, triads, dyads that irrupted the productiveness of pollen grains. Furthermore, sugars play an imperative role in protecting plants under stress besides being energy sources. Therefore, the present study revealed accumulation of total soluble sugars (TSS), with 28-homoBL treatment which pinpoints protective role of 28-homoBL under temperature stress. Sugar profiling was done by using high-performance liquid chromatography (HPLC) which helped in analyzing different sugars both quantitatively and qualitatively under 28-homoBL and temperature stress conditions. The results indicate that the 28-homoBL treatment substantially enhances plant tolerance to heat stress, as evident by higher mitotic indices, fewer chromosomal abnormalities, and significantly more sugar accumulation. The findings of the study acknowledge the potential of 28-homoBL in inducing temperature stress tolerance in B. juncea along with improving the metabolic stability thereby implying application of 28-homoBL in crop strengthening under variable temperature conditions.
Collapse
Affiliation(s)
- Harpreet Kaur
- P.G. Department of Botany, Khalsa College, Amritsar, 143001, Punjab, India; Department of Botany, Punjabi University, Patiala, 147002, Punjab, India.
| | - Gurvarinder Kaur
- Department of Botany, Punjabi University, Patiala, 147002, Punjab, India
| | - Geetika Sirhindi
- Department of Botany, Punjabi University, Patiala, 147002, Punjab, India
| | - Renu Bhardwaj
- Department of Botanical & Environmental Sciences, GNDU, Amritsar, India
| | - Abdulaziz Abdullah Alsahli
- Botany and Microbiology Department, Faculty of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Parvaiz Ahmad
- Department of Botany, GDC Pulwama, 192301, Jammu and Kashmir, India.
| |
Collapse
|
3
|
Marks RA, Delgado P, Makonya GM, Cooper K, VanBuren R, Farrant JM. Higher order polyploids exhibit enhanced desiccation tolerance in the grass Microchloa caffra. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:3612-3623. [PMID: 38511472 PMCID: PMC11156804 DOI: 10.1093/jxb/erae126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 03/15/2024] [Indexed: 03/22/2024]
Abstract
Desiccation tolerance evolved recurrently across diverse plant lineages to enable survival in water-limited conditions. Many resurrection plants are polyploid, and several groups have hypothesized that polyploidy contributed to the evolution of desiccation tolerance. However, due to the vast phylogenetic distance between resurrection plant lineages, the rarity of desiccation tolerance, and the prevalence of polyploidy in plants, this hypothesis has been difficult to test. Here, we surveyed natural variation in morphological, reproductive, and desiccation tolerance traits across several cytotypes of a single species to test for links between polyploidy and increased resilience. We sampled multiple natural populations of the resurrection grass Microchloa caffra across an environmental gradient ranging from mesic to xeric in South Africa. We describe two distinct ecotypes of M. caffra that occupy different extremes of the environmental gradient and exhibit consistent differences in ploidy, morphological, reproductive, and desiccation tolerance traits in both field and common growth conditions. Interestingly, plants with more polyploid genomes exhibited consistently higher recovery from desiccation, were less reproductive, and were larger than plants with smaller genomes and lower ploidy. These data indicate that selective pressures in increasingly xeric sites may play a role in maintaining and increasing desiccation tolerance and are mediated by changes in ploidy.
Collapse
Affiliation(s)
- Rose A Marks
- Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
- Plant Resilience Institute, Michigan State University, East Lansing, MI 48824, USA
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch 7701, South Africa
| | - Paula Delgado
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch 7701, South Africa
| | - Givemore Munashe Makonya
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch 7701, South Africa
- Washington State University, Irrigated Agriculture Research and Extension Centre, Prosser, WA 99350, USA
| | - Keren Cooper
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch 7701, South Africa
| | - Robert VanBuren
- Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
- Plant Resilience Institute, Michigan State University, East Lansing, MI 48824, USA
| | - Jill M Farrant
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch 7701, South Africa
| |
Collapse
|
4
|
Li X, Zhang L, Wei X, Datta T, Wei F, Xie Z. Polyploidization: A Biological Force That Enhances Stress Resistance. Int J Mol Sci 2024; 25:1957. [PMID: 38396636 PMCID: PMC10888447 DOI: 10.3390/ijms25041957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/01/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
Organisms with three or more complete sets of chromosomes are designated as polyploids. Polyploidy serves as a crucial pathway in biological evolution and enriches species diversity, which is demonstrated to have significant advantages in coping with both biotic stressors (such as diseases and pests) and abiotic stressors (like extreme temperatures, drought, and salinity), particularly in the context of ongoing global climate deterioration, increased agrochemical use, and industrialization. Polyploid cultivars have been developed to achieve higher yields and improved product quality. Numerous studies have shown that polyploids exhibit substantial enhancements in cell size and structure, physiological and biochemical traits, gene expression, and epigenetic modifications compared to their diploid counterparts. However, some research also suggested that increased stress tolerance might not always be associated with polyploidy. Therefore, a more comprehensive and detailed investigation is essential to complete the underlying stress tolerance mechanisms of polyploids. Thus, this review summarizes the mechanism of polyploid formation, the polyploid biochemical tolerance mechanism of abiotic and biotic stressors, and molecular regulatory networks that confer polyploidy stress tolerance, which can shed light on the theoretical foundation for future research.
Collapse
Affiliation(s)
- Xiaoying Li
- Henan International Joint Laboratory of Crop Gene Resources and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T & R Base of Zhengzhou University, Zhengzhou 450002, China
| | - Luyue Zhang
- Henan International Joint Laboratory of Crop Gene Resources and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaochun Wei
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T & R Base of Zhengzhou University, Zhengzhou 450002, China
| | - Tanusree Datta
- Henan International Joint Laboratory of Crop Gene Resources and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Fang Wei
- Henan International Joint Laboratory of Crop Gene Resources and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Zhengqing Xie
- Henan International Joint Laboratory of Crop Gene Resources and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
5
|
Katche E, Katche EI, Vasquez-Teuber P, Idris Z, Lo YT, Nugent D, Zou J, Batley J, Mason AS. Genome composition in Brassica interspecific hybrids affects chromosome inheritance and viability of progeny. Chromosome Res 2023; 31:22. [PMID: 37596507 PMCID: PMC10439240 DOI: 10.1007/s10577-023-09733-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/04/2023] [Accepted: 08/01/2023] [Indexed: 08/20/2023]
Abstract
Interspecific hybridization is widespread in nature and can result in the formation of new hybrid species as well as the transfer of traits between species. However, the fate of newly formed hybrid lineages is relatively understudied. We undertook pairwise crossing between multiple genotypes of three Brassica allotetraploid species Brassica juncea (2n = AABB), Brassica carinata (2n = BBCC), and Brassica napus (2n = AACC) to generate AABC, BBAC, and CCAB interspecific hybrids and investigated chromosome inheritance and fertility in these hybrids and their self-pollinated progeny. Surprisingly, despite the presence of a complete diploid genome in all hybrids, hybrid fertility was very low. AABC and BBAC first generation (F1) hybrids both averaged ~16% pollen viability compared to 3.5% in CCAB hybrids: most CCAB hybrid flowers were male-sterile. AABC and CCAB F1 hybrid plants averaged 5.5 and 0.5 seeds per plant, respectively, and BBAC F1 hybrids ~56 seeds/plant. In the second generation (S1), all confirmed self-pollinated progeny resulting from CCAB hybrids were sterile, producing no self-pollinated seeds. Three AABC S1 hybrids putatively resulting from unreduced gametes produced 3, 14, and 182 seeds each, while other AABC S1 hybrids averaged 1.5 seeds/plant (0-8). BBAC S1 hybrids averaged 44 seeds/plant (range 0-403). We also observed strong bias towards retention rather than loss of the haploid genomes, suggesting that the subgenomes in the Brassica allotetraploids are already highly interdependent, such that loss of one subgenome is detrimental to fertility and viability. Our results suggest that relationships between subgenomes determine hybridization outcomes in these species.
Collapse
Affiliation(s)
- Elvis Katche
- Plant Breeding Department, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Elizabeth Ihien Katche
- Plant Breeding Department, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
- Plant Breeding Department, University of Bonn, Katzenburgweg 5, 53115, Bonn, Germany
| | - Paula Vasquez-Teuber
- Plant Breeding Department, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
- Plant Breeding Department, University of Bonn, Katzenburgweg 5, 53115, Bonn, Germany
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, 4072, Australia
- Department of Plant Production, Faculty of Agronomy, University of Concepción, Av. Vicente Méndez, 595, Chillán, Chile
| | - Zurianti Idris
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, 4072, Australia
| | - Yu-Tzu Lo
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, 4072, Australia
| | - David Nugent
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, 4072, Australia
| | - Jun Zou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jacqueline Batley
- School of Biological Sciences, The University of Western Australia, 35 Stirling Hwy, Crawley, Perth, 6009, Australia
| | - Annaliese S Mason
- Plant Breeding Department, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany.
- Plant Breeding Department, University of Bonn, Katzenburgweg 5, 53115, Bonn, Germany.
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, 4072, Australia.
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
6
|
Yu J, Lei S, Fang S, Tai N, Yu W, Yang Z, Gu L, Wang H, Du X, Zhu B, Cai M. Identification, Characterization, and Cytological Analysis of Several Unexpected Hybrids Derived from Reciprocal Crosses between Raphanobrassica and Its Diploid Parents. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091875. [PMID: 37176933 PMCID: PMC10181067 DOI: 10.3390/plants12091875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 04/28/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023]
Abstract
Interspecific hybridization and accompanying backcross between crops and relatives have been recognized as a powerful method to broaden genetic diversity and transfer desirable adaptive traits. Crosses between radish (Raphanus sativus, RR, 2n = 18) and Brassica oleracea (CC, 2n = 18), which formed allotetraploid Raphanobrassica (RRCC, 2n = 36), initiated the construction of resynthetic allopolyploids. However, these progenies from the backcrosses between Raphanobrassica and the two diploid parents have not been well deciphered. Herein, thousands of backcrosses using both Raphanobrassica and the two diploid parents as pollen donors were employed. Several hybrids with expected (2n = 27) and unexpected chromosome numbers (2n = 26 and 2n = 36) were obtained. Fluorescence in situ hybridization (FISH) analysis with R-genome-specific sequences as probes demonstrated that the genome structures of the two expected hybrids were RRC and CCR, and the genome structures of the three unexpected hybrids were RRRC, CCCR, and RRC' (harbouring an incomplete C genome). The unexpected hybrids with extra R or C genomes showed similar phenotypic characteristics to their expected hybrids. FISH analysis with C-genome-specific sequences as probes demonstrated that the unexpected allotetraploid hybrids exhibited significantly more intergenomic chromosome pairings than the expected hybrids. The expected and unexpected hybrids provide not only novel germplasm resources for the breeding of radish and B. oleracea but also very important genetic material for genome dosage analysis.
Collapse
Affiliation(s)
- Jie Yu
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China
| | - Shaolin Lei
- Guizhou Institute of Oil Crops, Guizhou Academy of Agricultural Sciences, Guiyang 550009, China
| | - Shiting Fang
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China
| | - Niufang Tai
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China
| | - Wei Yu
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China
| | - Ziwei Yang
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China
| | - Lei Gu
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China
| | - Hongcheng Wang
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China
| | - Xuye Du
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China
| | - Bin Zhu
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China
| | - Mengxian Cai
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China
| |
Collapse
|
7
|
Novikova PY, Kolesnikova UK, Scott AD. Ancestral self-compatibility facilitates the establishment of allopolyploids in Brassicaceae. PLANT REPRODUCTION 2023; 36:125-138. [PMID: 36282331 PMCID: PMC9957919 DOI: 10.1007/s00497-022-00451-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/20/2022] [Indexed: 05/15/2023]
Abstract
Self-incompatibility systems based on self-recognition evolved in hermaphroditic plants to maintain genetic variation of offspring and mitigate inbreeding depression. Despite these benefits in diploid plants, for polyploids who often face a scarcity of mating partners, self-incompatibility can thwart reproduction. In contrast, self-compatibility provides an immediate advantage: a route to reproductive viability. Thus, diploid selfing lineages may facilitate the formation of new allopolyploid species. Here, we describe the mechanism of establishment of at least four allopolyploid species in Brassicaceae (Arabidopsis suecica, Arabidopsis kamchatica, Capsella bursa-pastoris, and Brassica napus), in a manner dependent on the prior loss of the self-incompatibility mechanism in one of the ancestors. In each case, the degraded S-locus from one parental lineage was dominant over the functional S-locus of the outcrossing parental lineage. Such dominant loss-of-function mutations promote an immediate transition to selfing in allopolyploids and may facilitate their establishment.
Collapse
Affiliation(s)
- Polina Yu Novikova
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, 50829, Cologne, Germany.
| | - Uliana K Kolesnikova
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, 50829, Cologne, Germany
| | - Alison Dawn Scott
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, 50829, Cologne, Germany
| |
Collapse
|
8
|
Duan T, Sicard A, Glémin S, Lascoux M. Expression pattern of resynthesized allotetraploid Capsella is determined by hybridization, not whole-genome duplication. THE NEW PHYTOLOGIST 2023; 237:339-353. [PMID: 36254103 PMCID: PMC10099941 DOI: 10.1111/nph.18542] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Polyploidization, the process leading to the increase in chromosome sets, is a major evolutionary transition in plants. Whole-genome duplication (WGD) within the same species gives rise to autopolyploids, whereas allopolyploids result from a compound process with two distinct components: WGD and interspecific hybridization. To dissect the instant effects of WGD and hybridization on gene expression and phenotype, we created a series of synthetic hybrid and polyploid Capsella plants, including diploid hybrids, autotetraploids of both parental species, and two kinds of resynthesized allotetraploids with different orders of WGD and hybridization. Hybridization played a major role in shaping the relative expression pattern of the neo-allopolyploids, whereas WGD had almost no immediate effect on relative gene expression pattern but, nonetheless, still affected phenotypes. No transposable element-mediated genomic shock scenario was observed in either neo-hybrids or neo-polyploids. Finally, WGD and hybridization interacted and the distorting effects of WGD were less strong in hybrids. Whole-genome duplication may even improve hybrid fertility. In summary, while the initial relative gene expression pattern in neo-allotetraploids was almost entirely determined by hybridization, WGD only had trivial effects on relative expression patterns, both processes interacted and had a strong impact on physical attributes and meiotic behaviors.
Collapse
Affiliation(s)
- Tianlin Duan
- Department of Ecology and Genetics, Evolutionary Biology Centre and Science for Life LaboratoryUppsala University75236UppsalaSweden
| | - Adrien Sicard
- Department of Plant BiologySwedish University of Agricultural Sciences750 07UppsalaSweden
| | - Sylvain Glémin
- Department of Ecology and Genetics, Evolutionary Biology Centre and Science for Life LaboratoryUppsala University75236UppsalaSweden
- UMR CNRS 6553 ECOBIOCampus Beaulieu, bât 14a, p.118, CS 7420535042RennesFrance
| | - Martin Lascoux
- Department of Ecology and Genetics, Evolutionary Biology Centre and Science for Life LaboratoryUppsala University75236UppsalaSweden
| |
Collapse
|
9
|
Zhou Q, Cheng X, Kong B, Zhao Y, Li Z, Sang Y, Wu J, Zhang P. Heat shock-induced failure of meiosis I to meiosis II transition leads to 2n pollen formation in a woody plant. PLANT PHYSIOLOGY 2022; 189:2110-2127. [PMID: 35567496 PMCID: PMC9342974 DOI: 10.1093/plphys/kiac219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/21/2022] [Indexed: 05/16/2023]
Abstract
The formation of diploid gametes through chromosome doubling is a major mechanism of polyploidization, diversification, and speciation in plants. Unfavorable climate conditions can induce or stimulate the production of diploid gametes during meiosis. Here, we demonstrated that heat shock stress (38°C for 3 or 6 h) induced 2n pollen formation, and we generated 42 triploids derived from heat shock-induced 2n pollen of Populus canescens. Meiotic analysis of treated pollen mother cells revealed that induced 2n pollen originated from the complete loss of meiosis II (MII). Among the 42 triploids, 38 triploids derived from second division restitution (SDR)-type 2n pollen and 4 triploids derived from first division restitution-type 2n pollen were verified using simple sequence repeats (SSR) molecular markers. Twenty-two differentially expressed genes related to the cell cycle were identified and characterized by expression profile analysis. Among them was POPTR_0002s08020g (PtCYCA1;2), which encodes a type A Cyclin CYCA1;2 that is required for the meiosis I (MI) to MII transition. After male flower buds were exposed to heat shock, a significant reduction was detected in PtCYCA1;2 expression. We inferred that the failure of MI-to-MII transitions might be associated with downregulated expression of PtCYCA1;2, leading to the formation of SDR-type 2n pollen. Our findings provide insights into mechanisms of heat shock-induced 2n pollen formation in a woody plant and verify that sensitivity to environmental stress has evolutionary importance in terms of polyploidization.
Collapse
Affiliation(s)
- Qing Zhou
- National Engineering Laboratory for Tree Breeding, Beijing, China
- Key laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing, China
- School of Bioscience and Biotechnology, Beijing Forestry University, Beijing 100083, People’s Republic of China
| | - Xuetong Cheng
- National Engineering Laboratory for Tree Breeding, Beijing, China
- Key laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing, China
- School of Bioscience and Biotechnology, Beijing Forestry University, Beijing 100083, People’s Republic of China
| | - Bo Kong
- National Engineering Laboratory for Tree Breeding, Beijing, China
- Key laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing, China
- School of Bioscience and Biotechnology, Beijing Forestry University, Beijing 100083, People’s Republic of China
| | - Yifan Zhao
- National Engineering Laboratory for Tree Breeding, Beijing, China
- Key laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing, China
- School of Bioscience and Biotechnology, Beijing Forestry University, Beijing 100083, People’s Republic of China
| | - Zhiqun Li
- National Engineering Laboratory for Tree Breeding, Beijing, China
- Key laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing, China
- School of Bioscience and Biotechnology, Beijing Forestry University, Beijing 100083, People’s Republic of China
| | - Yaru Sang
- National Engineering Laboratory for Tree Breeding, Beijing, China
- Key laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing, China
- School of Bioscience and Biotechnology, Beijing Forestry University, Beijing 100083, People’s Republic of China
| | - Jian Wu
- National Engineering Laboratory for Tree Breeding, Beijing, China
- Key laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing, China
- School of Bioscience and Biotechnology, Beijing Forestry University, Beijing 100083, People’s Republic of China
| | | |
Collapse
|
10
|
Clo J, Padilla-García N, Kolář F. Polyploidization as an opportunistic mutation: The role of unreduced gametes formation and genetic drift in polyploid establishment. J Evol Biol 2022; 35:1099-1109. [PMID: 35770884 DOI: 10.1111/jeb.14055] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/07/2022] [Indexed: 01/17/2023]
Abstract
It is broadly assumed that polyploidy success reflects an increase in fitness associated with whole-genome duplication (WGD), due to higher tolerance to stressful conditions. Nevertheless, WGD also arises with several costs in neo-polyploid lineages, like genomic instability, or cellular mis-management. In addition to these costs, neo-polyploid individuals also face frequency dependent selection because of frequent low-fitness triploids formed by cross-ploidy pollinations when tetraploids are primarily rare in the population. Interestingly, the idea that polyploidy can be fixed by genetic drift as a neutral or deleterious mutation is currently underexplored in the literature. To test how and when polyploidy can fix in a population by chance, we built a theoretical model in which autopolyploidization occurs through the production of unreduced gametes, a trait modelled as a quantitative trait that is allowed to vary through time. We found that when tetraploid individuals are less or as fit as their diploid progenitors, fixation of polyploidy is only possible when genetic drift is stronger than natural selection. The necessity of drift for tetraploid fixation holds even when polyploidy confers a selective advantage, except for scenarios where tetraploids are much fitter than diploids. Finally, we found that self-fertilization is less beneficial for tetraploid establishment than previously thought, notably when polyploids harbour an initial decrease in fitness. Our results bring a novel, non-exclusive explanation for the unequal temporal and spatial distribution of polyploid species.
Collapse
Affiliation(s)
- Josselin Clo
- Department of Botany, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Nélida Padilla-García
- Department of Botany, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Filip Kolář
- Department of Botany, Faculty of Science, Charles University in Prague, Prague, Czech Republic.,Institute of Botany of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
11
|
Xie L, Ke LZ, Lu XQ, Chen J, Zhang ZS. Exploiting Unreduced Gametes for Improving Ornamental Plants. FRONTIERS IN PLANT SCIENCE 2022; 13:883470. [PMID: 35734261 PMCID: PMC9207335 DOI: 10.3389/fpls.2022.883470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/27/2022] [Indexed: 06/06/2023]
Abstract
The formation of gametes with somatic chromosome number or unreduced gametes (2n gametes) is an important process involved in the origin of polyploid plants in nature. Unreduced gametes are the result of meiotic mutations occurring during micro- and mega-sporogenesis. 2n gametes have been identified or artificially induced in a large number of plant species. Breeding of plants through 2n gametes can be advantageous because it combines genetic effects of polyploidy with meiotic recombination and sexual hybridization to produce tremendous genetic variation and heterosis. 2n gametes also occur in ornamental plants, but the potential of using 2n gametes in ornamental plant breeding has not been extensively exploited. Ornamental plants are primarily produced for their esthetic appearance and novelty, not for food and yield, and they can be readily propagated through vegetative means. Triploids, tetraploids, and plants with even higher ploidy levels produced through 2n gametes can be propagated through tissue culture to fix their phenotypes, thus leading to the development of new cultivars. In this review article, we intend to discuss the mechanisms underlying the formation of 2n gametes, techniques for 2n gamete identification, methods for enhancing 2n gamete formation, and the current status in the use of 2n gametes for development of novel ornamental plants. We believe that polyploidy breeding through 2n gametes represents a viable way of developing new cultivars, new species, and even new genera of ornamental plants.
Collapse
Affiliation(s)
- Li Xie
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Li-zhen Ke
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Xiao-qi Lu
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Jianjun Chen
- Mid-Florida Research and Education Center, Environmental Horticulture Department, Institute of Food and Agricultural Sciences, University of Florida, Apopka, FL, United States
| | - Zhi-sheng Zhang
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
12
|
Tossi VE, Martínez Tosar LJ, Laino LE, Iannicelli J, Regalado JJ, Escandón AS, Baroli I, Causin HF, Pitta-Álvarez SI. Impact of polyploidy on plant tolerance to abiotic and biotic stresses. FRONTIERS IN PLANT SCIENCE 2022; 13:869423. [PMID: 36072313 PMCID: PMC9441891 DOI: 10.3389/fpls.2022.869423] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 07/25/2022] [Indexed: 05/04/2023]
Abstract
Polyploidy, defined as the coexistence of three or more complete sets of chromosomes in an organism's cells, is considered as a pivotal moving force in the evolutionary history of vascular plants and has played a major role in the domestication of several crops. In the last decades, improved cultivars of economically important species have been developed artificially by inducing autopolyploidy with chemical agents. Studies on diverse species have shown that the anatomical and physiological changes generated by either natural or artificial polyploidization can increase tolerance to abiotic and biotic stresses as well as disease resistance, which may positively impact on plant growth and net production. The aim of this work is to review the current literature regarding the link between plant ploidy level and tolerance to abiotic and biotic stressors, with an emphasis on the physiological and molecular mechanisms responsible for these effects, as well as their impact on the growth and development of both natural and artificially generated polyploids, during exposure to adverse environmental conditions. We focused on the analysis of those types of stressors in which more progress has been made in the knowledge of the putative morpho-physiological and/or molecular mechanisms involved, revealing both the factors in common, as well as those that need to be addressed in future research.
Collapse
Affiliation(s)
- Vanesa E. Tossi
- Laboratorio de Cultivo Experimental de Plantas y Microalgas, Departamento de Biodiversidad y Biología Experimental (DBBE), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Int. Güiraldes y Cantilo, Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Universidad de Buenos Aires, Instituto de Micología y Botánica (INMIBO), Ciudad Universitaria, Int. Güiraldes y Cantilo, Buenos Aires, Argentina
| | - Leandro J. Martínez Tosar
- Laboratorio de Cultivo Experimental de Plantas y Microalgas, Departamento de Biodiversidad y Biología Experimental (DBBE), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Int. Güiraldes y Cantilo, Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Universidad de Buenos Aires, Instituto de Micología y Botánica (INMIBO), Ciudad Universitaria, Int. Güiraldes y Cantilo, Buenos Aires, Argentina
- Departamento de Biotecnología, Alimentos, Agro y Ambiental (DEBAL), Facultad de Ingeniería y Ciencias Exactas, Universidad Argentina de la Empresa (UADE), Buenos Aires, Argentina
| | - Leandro E. Laino
- Laboratorio de Cultivo Experimental de Plantas y Microalgas, Departamento de Biodiversidad y Biología Experimental (DBBE), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Int. Güiraldes y Cantilo, Buenos Aires, Argentina
| | - Jesica Iannicelli
- Instituto Nacional de Tecnología, Agropecuaria (INTA), Instituto de Genética “Ewald A. Favret”, Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Universidad de Buenos Aires, Instituto de Biodiversidad y Biología Experimental (IBBEA), Ciudad Universitaria, Int. Güiraldes y Cantilo, Buenos Aires, Argentina
| | - José Javier Regalado
- Laboratorio de Cultivo Experimental de Plantas y Microalgas, Departamento de Biodiversidad y Biología Experimental (DBBE), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Int. Güiraldes y Cantilo, Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Universidad de Buenos Aires, Instituto de Micología y Botánica (INMIBO), Ciudad Universitaria, Int. Güiraldes y Cantilo, Buenos Aires, Argentina
| | - Alejandro Salvio Escandón
- Instituto Nacional de Tecnología, Agropecuaria (INTA), Instituto de Genética “Ewald A. Favret”, Buenos Aires, Argentina
| | - Irene Baroli
- Facultad de Ciencias Exactas y Naturales, Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Universidad de Buenos Aires, Instituto de Biodiversidad y Biología Experimental (IBBEA), Ciudad Universitaria, Int. Güiraldes y Cantilo, Buenos Aires, Argentina
- Departamento de Biodiversidad y Biología Experimental (DBBE), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Int. Güiraldes y Cantilo, Buenos Aires, Argentina
- Irene Baroli,
| | - Humberto Fabio Causin
- Departamento de Biodiversidad y Biología Experimental (DBBE), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Int. Güiraldes y Cantilo, Buenos Aires, Argentina
- Humberto Fabio Causin,
| | - Sandra Irene Pitta-Álvarez
- Laboratorio de Cultivo Experimental de Plantas y Microalgas, Departamento de Biodiversidad y Biología Experimental (DBBE), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Int. Güiraldes y Cantilo, Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Universidad de Buenos Aires, Instituto de Micología y Botánica (INMIBO), Ciudad Universitaria, Int. Güiraldes y Cantilo, Buenos Aires, Argentina
- *Correspondence: Sandra Irene Pitta-Álvarez, ;
| |
Collapse
|
13
|
Wang Y, van Rengs WMJ, Zaidan MWAM, Underwood CJ. Meiosis in crops: from genes to genomes. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6091-6109. [PMID: 34009331 PMCID: PMC8483783 DOI: 10.1093/jxb/erab217] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/14/2021] [Indexed: 05/06/2023]
Abstract
Meiosis is a key feature of sexual reproduction. During meiosis homologous chromosomes replicate, recombine, and randomly segregate, followed by the segregation of sister chromatids to produce haploid cells. The unique genotypes of recombinant gametes are an essential substrate for the selection of superior genotypes in natural populations and in plant breeding. In this review we summarize current knowledge on meiosis in diverse monocot and dicot crop species and provide a comprehensive resource of cloned meiotic mutants in six crop species (rice, maize, wheat, barley, tomato, and Brassica species). Generally, the functional roles of meiotic proteins are conserved between plant species, but we highlight notable differences in mutant phenotypes. The physical lengths of plant chromosomes vary greatly; for instance, wheat chromosomes are roughly one order of magnitude longer than those of rice. We explore how chromosomal distribution for crossover recombination can vary between species. We conclude that research on meiosis in crops will continue to complement that in Arabidopsis, and alongside possible applications in plant breeding will facilitate a better understanding of how the different stages of meiosis are controlled in plant species.
Collapse
Affiliation(s)
- Yazhong Wang
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg, Cologne, Germany
| | - Willem M J van Rengs
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg, Cologne, Germany
| | - Mohd Waznul Adly Mohd Zaidan
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg, Cologne, Germany
| | - Charles J Underwood
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg, Cologne, Germany
| |
Collapse
|
14
|
Soares NR, Mollinari M, Oliveira GK, Pereira GS, Vieira MLC. Meiosis in Polyploids and Implications for Genetic Mapping: A Review. Genes (Basel) 2021; 12:genes12101517. [PMID: 34680912 PMCID: PMC8535482 DOI: 10.3390/genes12101517] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 02/06/2023] Open
Abstract
Plant cytogenetic studies have provided essential knowledge on chromosome behavior during meiosis, contributing to our understanding of this complex process. In this review, we describe in detail the meiotic process in auto- and allopolyploids from the onset of prophase I through pairing, recombination, and bivalent formation, highlighting recent findings on the genetic control and mode of action of specific proteins that lead to diploid-like meiosis behavior in polyploid species. During the meiosis of newly formed polyploids, related chromosomes (homologous in autopolyploids; homologous and homoeologous in allopolyploids) can combine in complex structures called multivalents. These structures occur when multiple chromosomes simultaneously pair, synapse, and recombine. We discuss the effectiveness of crossover frequency in preventing multivalent formation and favoring regular meiosis. Homoeologous recombination in particular can generate new gene (locus) combinations and phenotypes, but it may destabilize the karyotype and lead to aberrant meiotic behavior, reducing fertility. In crop species, understanding the factors that control pairing and recombination has the potential to provide plant breeders with resources to make fuller use of available chromosome variations in number and structure. We focused on wheat and oilseed rape, since there is an abundance of elucidating studies on this subject, including the molecular characterization of the Ph1 (wheat) and PrBn (oilseed rape) loci, which are known to play a crucial role in regulating meiosis. Finally, we exploited the consequences of chromosome pairing and recombination for genetic map construction in polyploids, highlighting two case studies of complex genomes: (i) modern sugarcane, which has a man-made genome harboring two subgenomes with some recombinant chromosomes; and (ii) hexaploid sweet potato, a naturally occurring polyploid. The recent inclusion of allelic dosage information has improved linkage estimation in polyploids, allowing multilocus genetic maps to be constructed.
Collapse
Affiliation(s)
- Nina Reis Soares
- Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo, Piracicaba 13400-918, Brazil; (N.R.S.); (G.K.O.); (G.S.P.)
| | - Marcelo Mollinari
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27695-7566, USA;
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27695-7555, USA
| | - Gleicy K. Oliveira
- Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo, Piracicaba 13400-918, Brazil; (N.R.S.); (G.K.O.); (G.S.P.)
| | - Guilherme S. Pereira
- Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo, Piracicaba 13400-918, Brazil; (N.R.S.); (G.K.O.); (G.S.P.)
- Department of Agronomy, Federal University of Viçosa, Viçosa 36570-900, Brazil
| | - Maria Lucia Carneiro Vieira
- Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo, Piracicaba 13400-918, Brazil; (N.R.S.); (G.K.O.); (G.S.P.)
- Correspondence:
| |
Collapse
|
15
|
Katche E, Gaebelein R, Idris Z, Vasquez-Teuber P, Lo YT, Nugent D, Batley J, Mason AS. Stable, fertile lines produced by hybridization between allotetraploids Brassica juncea (AABB) and Brassica carinata (BBCC) have merged the A and C genomes. THE NEW PHYTOLOGIST 2021; 230:1242-1257. [PMID: 33476056 DOI: 10.1111/nph.17225] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
Many flowering plant taxa contain allopolyploids that share one or more genomes in common. In the Brassica genus, crop species Brassica juncea and Brassica carinata share the B genome, with 2n = AABB and 2n = BBCC genome complements, respectively. Hybridization results in 2n = BBAC hybrids, but the fate of these hybrids over generations of self-pollination has never been reported. We produced and characterized B. juncea × B. carinata (2n = BBAC) interspecific hybrids over six generations of self-pollination under selection for high fertility using a combination of genotyping, fertility phenotyping, and cytogenetics techniques. Meiotic pairing behaviour improved from 68% bivalents in the F1 to 98% in the S5 /S6 generations, and initially low hybrid fertility also increased to parent species levels. The S5 /S6 hybrids contained an intact B genome (16 chromosomes) plus a new, stable A/C genome (18-20 chromosomes) resulting from recombination and restructuring of A and C-genome chromosomes. Our results provide the first experimental evidence that two genomes can come together to form a new, restructured genome in hybridization events between two allotetraploid species that share a common genome. This mechanism should be considered in interpreting phylogenies in taxa with multiple allopolyploid species.
Collapse
Affiliation(s)
- Elvis Katche
- Plant Breeding Department, Justus Liebig University, Heinrich-Buff-Ring 26-32, Giessen, 35392, Germany
| | - Roman Gaebelein
- Plant Breeding Department, Justus Liebig University, Heinrich-Buff-Ring 26-32, Giessen, 35392, Germany
| | - Zurianti Idris
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Paula Vasquez-Teuber
- Plant Breeding Department, Justus Liebig University, Heinrich-Buff-Ring 26-32, Giessen, 35392, Germany
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
- Department of Plant Production, Faculty of Agronomy, University of Concepción, Av. Vicente Méndez 595, Chillán, Chile
| | - Yu-Tzu Lo
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - David Nugent
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Jacqueline Batley
- School of Biological Sciences, The University of Western Australia, 35 Stirling Hwy, Crawley, Perth, WA, 6009, Australia
| | - Annaliese S Mason
- Plant Breeding Department, Justus Liebig University, Heinrich-Buff-Ring 26-32, Giessen, 35392, Germany
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
- Plant Breeding Department, University of Bonn, Katzenburgweg 5, Bonn, 53115, Germany
| |
Collapse
|
16
|
Köhler C, Dziasek K, Del Toro-De León G. Postzygotic reproductive isolation established in the endosperm: mechanisms, drivers and relevance. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200118. [PMID: 33866810 DOI: 10.1098/rstb.2020.0118] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The endosperm is a developmental innovation of angiosperms that supports embryo growth and germination. Aside from this essential reproductive function, the endosperm fuels angiosperm evolution by rapidly establishing reproductive barriers between incipient species. Specifically, the endosperm prevents hybridization of newly formed polyploids with their non-polyploid progenitors, a phenomenon termed the triploid block. Furthermore, recently diverged diploid species are frequently reproductively isolated by endosperm-based hybridization barriers. Current genetic approaches have revealed a prominent role for epigenetic processes establishing these barriers. In particular, imprinted genes, which are expressed in a parent-of-origin-specific manner, underpin the interploidy barrier in the model species Arabidopsis. We will discuss the mechanisms establishing hybridization barriers in the endosperm, the driving forces for these barriers and their impact for angiosperm evolution. This article is part of the theme issue 'How does epigenetics influence the course of evolution?'
Collapse
Affiliation(s)
- Claudia Köhler
- Department of Plant Biology, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala 75007, Sweden
| | - Katarzyna Dziasek
- Department of Plant Biology, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala 75007, Sweden
| | - Gerardo Del Toro-De León
- Department of Plant Biology, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala 75007, Sweden
| |
Collapse
|
17
|
Van de Peer Y, Ashman TL, Soltis PS, Soltis DE. Polyploidy: an evolutionary and ecological force in stressful times. THE PLANT CELL 2021; 33:11-26. [PMID: 33751096 PMCID: PMC8136868 DOI: 10.1093/plcell/koaa015] [Citation(s) in RCA: 280] [Impact Index Per Article: 93.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/07/2020] [Indexed: 05/10/2023]
Abstract
Polyploidy has been hypothesized to be both an evolutionary dead-end and a source for evolutionary innovation and species diversification. Although polyploid organisms, especially plants, abound, the apparent nonrandom long-term establishment of genome duplications suggests a link with environmental conditions. Whole-genome duplications seem to correlate with periods of extinction or global change, while polyploids often thrive in harsh or disturbed environments. Evidence is also accumulating that biotic interactions, for instance, with pathogens or mutualists, affect polyploids differently than nonpolyploids. Here, we review recent findings and insights on the effect of both abiotic and biotic stress on polyploids versus nonpolyploids and propose that stress response in general is an important and even determining factor in the establishment and success of polyploidy.
Collapse
Affiliation(s)
- Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, VIB - UGent Center for Plant Systems Biology, B-9052 Ghent, Belgium
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Tia-Lynn Ashman
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Pamela S Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, Florida 32611
| | - Douglas E Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, Florida 32611
- Department of Biology, University of Florida, Gainesville, Florida 32611
| |
Collapse
|
18
|
Wang N, Kelly LJ, McAllister HA, Zohren J, Buggs RJA. Resolving phylogeny and polyploid parentage using genus-wide genome-wide sequence data from birch trees. Mol Phylogenet Evol 2021; 160:107126. [PMID: 33647400 DOI: 10.1016/j.ympev.2021.107126] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/15/2021] [Accepted: 02/22/2021] [Indexed: 01/04/2023]
Abstract
Numerous plant genera have a history including frequent hybridisation and polyploidisation (allopolyploidisation), which means that their phylogeny is a network of reticulate evolution that cannot be accurately depicted as a bifurcating tree with a single tip per species. The genus Betula, which contains many ecologically important tree species, is a case in point. We generated genome-wide sequence reads for 27 diploid and 36 polyploid Betula species or subspecies using restriction site associated DNA (RAD) sequences. These reads were assembled into contigs with a mean length of 675 bp. We reconstructed the evolutionary relationships among diploid Betula species using both supermatrix (concatenation) and species tree methods. We identified the closest diploid relatives of the polyploids according to the relative rates at which reads from polyploids mapped to contigs from different diploid species within a concatenated reference sequence. By mapping reads from allopolyploids to their different putative diploid relatives we assembled contigs from the putative sub-genomes of allopolyploid taxa. We used these to build new phylogenies that included allopolyploid sub-genomes as separate tips. This approach yielded a highly evidenced phylogenetic hypothesis for the genus Betula, including the complex reticulate origins of the majority of its polyploid taxa. Our phylogeny divides the genus into two well supported clades, which, interestingly, differ in their seed-wing morphology. We therefore propose to split Betula into two subgenera.
Collapse
Affiliation(s)
- Nian Wang
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK; State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, College of Forestry, Shandong Agricultural University, Tai'an 271018, China
| | - Laura J Kelly
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK; Royal Botanic Gardens Kew, Richmond, Surrey TW9 3AB, UK
| | - Hugh A McAllister
- Institute of Integrative Biology, Biosciences Building, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| | - Jasmin Zohren
- Sex Chromosome Biology Lab, the Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Richard J A Buggs
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK; Royal Botanic Gardens Kew, Richmond, Surrey TW9 3AB, UK.
| |
Collapse
|
19
|
Abstract
Polyploidization or whole genome duplication (WGD) is one of the main forces driving plant genome evolution and biodiversity with major implications for plant breeding and crop improvement. In nature, de novo formation of polyploid plant genomes most likely occurs through a modification of the sexual reproductive pathway. By interfering with reproductive genome stability, for example, via induction of meiotic restitution, diploid or polyploid gametes are ectopically formed that may participate in fertilization to yield polyploid offspring. This mechanism of WGD is generally referred to as sexual polyploidization. Considering the central role of sexual polyploidization in speciation, genome evolution and crop breeding, we provide here a set of methodologies to induce and characterize 2n pollen grain formation in plants. Using Arabidopsis thaliana as a model, we outline two different methods, that is, one chemical and one environmental, to induce male meiotic restitution and high frequency 2n pollen grain formation. In addition, we provide a set of simple and straightforward techniques to characterize alterations in male meiotic cell division and gametophytic ploidy stability underpinning 2n pollen formation. This comprehensive toolbox is applicable in a broad range of plant species to enable quick induction and assessment of 2n gamete formation during plant male reproduction.
Collapse
|
20
|
Liu M, Sun W, Ma Z, Yu G, Li J, Wang Y, Wang X. Comprehensive multiomics analysis reveals key roles of NACs in plant growth and development and its environmental adaption mechanism by regulating metabolite pathways. Genomics 2020; 112:4897-4911. [PMID: 32916257 DOI: 10.1016/j.ygeno.2020.08.038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/13/2020] [Accepted: 08/27/2020] [Indexed: 01/17/2023]
Abstract
Abnormal environmental conditions induce polyploidization and exacerbate vulnerability to agricultural production. Polyploidization is a pivotal event for plant adaption to stress and the expansion of transcription factors. NACs play key roles in plant stress resistance and growth and development, but the adaptive mechanism of NACs during plant polyploidization remain to be explored. Here, we identified and analyzed NACs from 15 species and found that the expansion of NACs was contributed by polyploidization. The regulatory networks were systematically analyzed based on polyomics. NACs might influence plant phenotypes and were correlated with amino acids acting as nitrogen source, indicating that NACs play a vital role in plant development. More importantly, in quinoa and Arabidopsis thaliana, NACs enabled plants to resist stress by regulating flavonoid pathways, and the universality was further confirmed by the Arabidopsis population. Our study provides a cornerstone for future research into improvement of important agronomic traits by transcription factors in a changing global environment.
Collapse
Affiliation(s)
- Moyang Liu
- Shanghai Jiao Tong University, School of Agriculture and Biology, Joint Center for Single Cell Biology, Shanghai, China.
| | - Wenjun Sun
- Sichuan Agricultural University, College of Life Science, Ya'an, China.
| | - Zhaotang Ma
- Sichuan Agricultural University, State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Key Laboratory of Major Crop Diseases and Rice Research Institute, Chengdu, China.
| | - Guolong Yu
- Shanghai Jiao Tong University, School of Agriculture and Biology, Joint Center for Single Cell Biology, Shanghai, China.
| | - Jiahao Li
- Shanghai Jiao Tong University, School of Agriculture and Biology, Joint Center for Single Cell Biology, Shanghai, China.
| | - Yudong Wang
- Shanghai Jiao Tong University, School of Agriculture and Biology, Joint Center for Single Cell Biology, Shanghai, China.
| | - Xu Wang
- Shanghai Jiao Tong University, School of Agriculture and Biology, Joint Center for Single Cell Biology, Shanghai, China.
| |
Collapse
|
21
|
Development and Characteristics of Interspecific Hybrids between Brassica oleracea L. and B. napus L. AGRONOMY-BASEL 2020. [DOI: 10.3390/agronomy10091339] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Interspecific hybridization between B. oleracea inbred lines of head cabbage, Brussels sprouts, kale and B. taurica and inbred lines of rapeseed (B. napus L.) were performed aiming at the development of the new sources of genetic variability of vegetable Brassicas. Using conventional crossings and the embryo-rescue techniques the following interspecific hybrids were developed: 11 genotypes of F1 generation, 18 genotypes of F2 and F1 × F2 generations (produced after self- and cross-pollination of interspecific F1 hybrids), 10 plants of the BC1 generation (resulted from crossing head cabbage cytoplasmic male-sterile lines with interspecific hybrids of the F2 and F1 generations) and 8 plants of BC1 × (F1 × F2). No viable seeds of the BC2 generation (B. oleracea) were obtained due to the strong incompatibility and high mortality of embryos. The morphological characteristics during the vegetative and generative stages, pollen characteristics, seed development and propagation, nuclear DNA contents and genome compositions of interspecific hybrids were analyzed. All the interspecific F1 hybrids were male-fertile with a majority of undeveloped and malformed pollen grains. They showed intermediate values for morphological traits and nuclear DNA contents and had nearly triploid chromosomal numbers (27 to 29) compared with parental lines. The F2 generation had a doubled nuclear DNA content, with 52 and 56 chromosomes, indicating their allohexaploid nature. F2 hybrids were characterized by a high heterosis of morphological characteristics, viable pollen and good seed development. F1 × F2 hybrids were male-fertile with a diversified DNA content and intermediate pollen viability. BC1 plants were male-sterile with an intermediate nuclear DNA content between the F2 and head cabbage, having 28 to 38 chromosomes. Plants of the BC1 × (F1 × F2) generation were in majority male-fertile with 38–46 chromosomes, high seed set, high heterosis and intermediate values for morphological traits. The obtained interspecific hybrids are valuable as new germplasm for improving Brassica-breeding programs.
Collapse
|
22
|
Svačina R, Sourdille P, Kopecký D, Bartoš J. Chromosome Pairing in Polyploid Grasses. FRONTIERS IN PLANT SCIENCE 2020; 11:1056. [PMID: 32733528 PMCID: PMC7363976 DOI: 10.3389/fpls.2020.01056] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 06/26/2020] [Indexed: 05/20/2023]
Abstract
Polyploids are species in which three or more sets of chromosomes coexist. Polyploidy frequently occurs in plants and plays a major role in their evolution. Based on their origin, polyploid species can be divided into two groups: autopolyploids and allopolyploids. The autopolyploids arise by multiplication of the chromosome sets from a single species, whereas allopolyploids emerge from the hybridization between distinct species followed or preceded by whole genome duplication, leading to the combination of divergent genomes. Having a polyploid constitution offers some fitness advantages, which could become evolutionarily successful. Nevertheless, polyploid species must develop mechanism(s) that control proper segregation of genetic material during meiosis, and hence, genome stability. Otherwise, the coexistence of more than two copies of the same or similar chromosome sets may lead to multivalent formation during the first meiotic division and subsequent production of aneuploid gametes. In this review, we aim to discuss the pathways leading to the formation of polyploids, the occurrence of polyploidy in the grass family (Poaceae), and mechanisms controlling chromosome associations during meiosis, with special emphasis on wheat.
Collapse
Affiliation(s)
- Radim Svačina
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czechia
| | - Pierre Sourdille
- INRA, Génétique, Diversité, Ecophysiologie des Céréales, Clermont-Ferrand, France
| | - David Kopecký
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czechia
| | - Jan Bartoš
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czechia
| |
Collapse
|
23
|
Fox DT, Soltis DE, Soltis PS, Ashman TL, Van de Peer Y. Polyploidy: A Biological Force From Cells to Ecosystems. Trends Cell Biol 2020; 30:688-694. [PMID: 32646579 DOI: 10.1016/j.tcb.2020.06.006] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 12/20/2022]
Abstract
Polyploidy, resulting from the duplication of the entire genome of an organism or cell, greatly affects genes and genomes, cells and tissues, organisms, and even entire ecosystems. Despite the wide-reaching importance of polyploidy, communication across disciplinary boundaries to identify common themes at different scales has been almost nonexistent. However, a critical need remains to understand commonalities that derive from shared polyploid cellular processes across organismal diversity, levels of biological organization, and fields of inquiry - from biodiversity and biocomplexity to medicine and agriculture. Here, we review the current understanding of polyploidy at the organismal and suborganismal levels, identify shared research themes and elements, and propose new directions to integrate research on polyploidy toward confronting interdisciplinary grand challenges of the 21st century.
Collapse
Affiliation(s)
- Donald T Fox
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA.
| | - Douglas E Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA; Department of Biology, University of Florida, Gainesville, FL 32611, USA.
| | - Pamela S Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA.
| | - Tia-Lynn Ashman
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium; Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa; College of Horticulture, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
24
|
Levin DA. Plant speciation in the age of climate change. ANNALS OF BOTANY 2019; 124:769-775. [PMID: 31250895 PMCID: PMC6868396 DOI: 10.1093/aob/mcz108] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 06/25/2019] [Indexed: 05/08/2023]
Abstract
BACKGROUND Species diversity is likely to undergo a sharp decline in the next century. Perhaps as many as 33 % of all plant species may expire as a result of climate change. All parts of the globe will be impacted, and all groups of organisms will be affected. Hundreds of species throughout the world have already experienced local extinction. PERSPECTIVES While thousands of species may become extinct in the next century and beyond, species formation will still occur. I consider which modes of plant species formation are likely to prevail in the next 500 years. I argue that speciation primarily will involve mechanisms that produce reproductively isolated lineages within less (often much less) than 100 generations. I will not especially consider the human element in promoting species formation, because it will continue and because the conclusions presented here are unaffected by it. The impact of climate change may be much more severe and widespread. CONCLUSIONS The most common modes of speciation likely to be operative in the next 500 years ostensibly will be auto- and allopolyploidy. Polyploid species or the antecedents thereof can arise within two generations. Moreover, polyploids often have broader ecological tolerances, and are likely to be more invasive than are their diploid relatives. Polyploid species may themselves spawn additional higher level polyploids either through crosses with diploid species or between pre-existing polyploids. The percentage of polyploid species is likely to exceed 50 % within the next 500 years vs. 35 % today. The stabilized hybrid derivatives (homoploid hybrid speciation) could emerge within a hundred generations after species contact, as could speciation involving chromosomal rearrangements (and perhaps number), but the number of such events is likely to be low. Speciation involving lineage splitting will be infrequent because the formation of substantive pre- and post-zygotic barriers typically takes many thousands of years.
Collapse
Affiliation(s)
- Donald A Levin
- Department of Integrative Biology, University of Texas, Austin, USA
| |
Collapse
|
25
|
Gaebelein R, Schiessl SV, Samans B, Batley J, Mason AS. Inherited allelic variants and novel karyotype changes influence fertility and genome stability in Brassica allohexaploids. THE NEW PHYTOLOGIST 2019; 223:965-978. [PMID: 30887525 DOI: 10.1111/nph.15804] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 03/13/2019] [Indexed: 05/22/2023]
Abstract
Synthetic allohexaploid Brassica hybrids (2n = AABBCC) do not exist naturally, but can be synthesized by crosses between diploid and/or allotetraploid Brassica species. Using these hybrids, we aimed to identify how novel allohexaploids restore fertility and normal meiosis after formation. Chromosome inheritance, genome structure, fertility and meiotic behaviour were assessed in three segregating allohexaploid populations derived from the cross (B. napus × B. carinata) × B. juncea using a combination of molecular marker genotyping, phenotyping and cytogenetics. Plants with unbalanced A-C translocations in one direction (where a C-genome chromosome fragment replaces an A-genome fragment) but not the other (where an A-genome fragment replaces a C-genome fragment) showed significantly reduced fertility across all populations. Genomic regions associated with fertility contained several meiosis genes with putatively causal mutations inherited from the parents (copies of SCC2 in the A genome, PAIR1/PRD3, PRD1 and ATK1/KATA/KIN14a in the B genome, and MSH2 and SMC1/TITAN8 in the C genome). Reduced seed fertility associated with the loss of chromosome fragments from only one subgenome following homoeologous exchanges could comprise a mechanism for biased genome fractionation in allopolyploids. Pre-existing meiosis gene variants present in allotetraploid parents may help to stabilize meiosis in novel allohexaploids.
Collapse
Affiliation(s)
- Roman Gaebelein
- Department of Plant Breeding, Justus Liebig University, Heinrich-Buff-Ring 26-32, Giessen, 35392, Germany
| | - Sarah V Schiessl
- Department of Plant Breeding, Justus Liebig University, Heinrich-Buff-Ring 26-32, Giessen, 35392, Germany
| | - Birgit Samans
- Faculty of Health Science, Technische Hochschule Mittelhessen, Wiesenstrasse 14, Giessen, 35390, Germany
| | - Jacqueline Batley
- School of Biological Sciences and Institute of Agriculture, University of Western Australia, 35 Stirling Hwy, Perth, WA, 6009, Australia
| | - Annaliese S Mason
- Department of Plant Breeding, Justus Liebig University, Heinrich-Buff-Ring 26-32, Giessen, 35392, Germany
| |
Collapse
|
26
|
Liu B, Mo WJ, Zhang D, De Storme N, Geelen D. Cold Influences Male Reproductive Development in Plants: A Hazard to Fertility, but a Window for Evolution. PLANT & CELL PHYSIOLOGY 2019; 60:7-18. [PMID: 30602022 DOI: 10.1093/pcp/pcy209] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/11/2018] [Indexed: 05/16/2023]
Abstract
Being sessile organisms, plants suffer from various abiotic stresses including low temperature. In particular, male reproductive development of plants is extremely sensitive to cold which may dramatically reduce viable pollen shed and plant fertility. Cold stress disrupts stamen development and prominently interferes with the tapetum, with the stress-responsive hormones ABA and gibberellic acid being greatly involved. In particular, low temperature stress delays and/or inhibits programmed cell death of the tapetal cells which consequently damages pollen development and causes male sterility. On the other hand, studies in Arabidopsis and crops have revealed that ectopically decreased temperature has an impact on recombination and cytokinesis during meiotic cell division, implying a putative role for temperature in manipulating plant genomic diversity and architecture during the evolution of plants. Here, we review the current understanding of the physiological impact of cold stress on the main male reproductive development processes including tapetum development, male meiosis and gametogenesis. Moreover, we provide insights into the genetic factors and signaling pathways that are involved, with putative mechanisms being discussed.
Collapse
Affiliation(s)
- Bing Liu
- College of Life Sciences, South-Central University for Nationalities, Wuhan, China
- School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Wen-Juan Mo
- Experiment Center of Forestry in North China, Chinese Academy of Forestry, Beijing, China
| | - Dabing Zhang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Nico De Storme
- Department of Plants and Crops, unit HortiCell, Faculty of Bioscience Engineering, University of Ghent, Ghent, Belgium
| | - Danny Geelen
- Department of Plants and Crops, unit HortiCell, Faculty of Bioscience Engineering, University of Ghent, Ghent, Belgium
| |
Collapse
|
27
|
Garavello M, Cuenca J, Dreissig S, Fuchs J, Houben A, Aleza P. Assessing Ploidy Level Analysis and Single Pollen Genotyping of Diploid and Euploid Citrus Genotypes by Fluorescence-Activated Cell Sorting and Whole-Genome Amplification. FRONTIERS IN PLANT SCIENCE 2019; 10:1174. [PMID: 31611896 PMCID: PMC6769063 DOI: 10.3389/fpls.2019.01174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 08/27/2019] [Indexed: 05/06/2023]
Abstract
Flow cytometry is widely used to determine genome size and ploidy level in plants. This technique, when coupled with fluorescence-activated cell sorting (FACS), whole genome amplification and genotyping (WGA), opens up new opportunities for genetic studies of individualized nuclei. This strategy was used to analyze the genetic composition of single pollen nuclei of different citrus species. The flow cytometry and microscope observations allowed us to differentiate the populations of pollen nuclei present in the diploid and euploid genotypes analyzed, showing that citrus has binuclear pollen. We have identified in the "CSO" tangor an additional nuclei population composed by the vegetative plus generative nuclei. Genotyping of this nuclei population revealed that vegetative and generative nuclei show the same genetic configuration. In addition, we have demonstrated the presence of unreduced gametes in the diploid genotype "Mexican lime." Genomic amplification is a robust method for haploid nuclei genotyping with several molecular markers, whereas in diploid nuclei using heterozygous markers showed a bias towards one of the two alleles, limiting the use of this tool in this type of nuclei. We further discuss the importance and applications of single pollen genotyping in citrus genetic studies.
Collapse
Affiliation(s)
- Miguel Garavello
- Centro de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias (IVIA), Moncada, Valencia, Spain
- INTA, Concordia Agricultural Experiment Station, Concordia, Argentina
| | - José Cuenca
- Centro de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias (IVIA), Moncada, Valencia, Spain
| | - Steven Dreissig
- Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Jörg Fuchs
- Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Andreas Houben
- Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Pablo Aleza
- Centro de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias (IVIA), Moncada, Valencia, Spain
- *Correspondence: Pablo Aleza,
| |
Collapse
|
28
|
Gohar M, Gäbelein R, Mason AS. A quartet pollen phenotype identified in a population of Brassica interspecific hybrids shows incomplete penetrance and variable response to temperature. PLANT BIOLOGY (STUTTGART, GERMANY) 2018; 20:894-901. [PMID: 29883021 DOI: 10.1111/plb.12854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 06/03/2018] [Indexed: 06/08/2023]
Abstract
Quartet pollen, where pollen grains remain attached to each other post-meiosis, is useful for tetrad analysis, crossover assessment and centromere mapping. We observed the quartet pollen phenotype for the first time in the agriculturally significant Brassica genus, in an experimental population of allohexaploid Brassica hybrids derived from the cross (Brassica napus × B. carinata) × B. juncea followed by two self-pollination generations. Quartet pollen production was assessed in 144 genotypes under glasshouse conditions, following which a set of 16 genotypes were selected to further investigate the effect of environment (warm: 25 °C and cold: 10 °C temperatures) on quartet pollen production in growth cabinets. Under glasshouse phenotyping conditions, only 92 out of 144 genotypes produced enough pollen to score: of these, 30 did not produce any observable quartet pollen, while 62 genotypes produced quartet pollen at varying frequencies. Quartet pollen production appeared quantitative and did not clearly fall into phenotypic or qualitative categories indicative of major gene expression. No consistent effect of temperature on quartet pollen production was identified, with some genotypes producing more and some producing less quartet pollen under different temperature treatments. The genetic heterogeneity and frequent pollen infertility of this population prevents strong conclusions being made. However, it is clear that the quartet phenotype in this Brassica population does not show complete penetrance and shows variable (likely genotype-specific) response to temperature stress. In future, identification of quartet phenotypes in Brassica would perhaps best be carried out via screening of diploid (e.g. B. rapa) TILLING populations.
Collapse
Affiliation(s)
- M Gohar
- Department of Plant Breeding, Justus Liebig University, Giessen, Germany
| | - R Gäbelein
- Department of Plant Breeding, Justus Liebig University, Giessen, Germany
| | - A S Mason
- Department of Plant Breeding, Justus Liebig University, Giessen, Germany
| |
Collapse
|
29
|
Pelé A, Rousseau-Gueutin M, Chèvre AM. Speciation Success of Polyploid Plants Closely Relates to the Regulation of Meiotic Recombination. FRONTIERS IN PLANT SCIENCE 2018; 9:907. [PMID: 30002669 PMCID: PMC6031745 DOI: 10.3389/fpls.2018.00907] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 06/08/2018] [Indexed: 05/18/2023]
Abstract
Polyploidization is a widespread phenomenon, especially in flowering plants that have all undergone at least one event of whole genome duplication during their evolutionary history. Consequently, a large range of plants, including many of the world's crops, combines more than two sets of chromosomes originating from the same (autopolyploids) or related species (allopolyploids). Depending on the polyploid formation pathway, different patterns of recombination will be promoted, conditioning the level of heterozygosity. A polyploid population harboring a high level of heterozygosity will produce more genetically diverse progenies. Some of these individuals may show a better adaptability to different ecological niches, increasing their chance for successful establishment through natural selection. Another condition for young polyploids to survive corresponds to the formation of well-balanced gametes, assuring a sufficient level of fertility. In this review, we discuss the consequences of polyploid formation pathways, meiotic behavior and recombination regulation on the speciation success and maintenance of polyploid species.
Collapse
Affiliation(s)
- Alexandre Pelé
- Plant Breeding, Wageningen University & Research, Wageningen, Netherlands
- Institut de Génétique, Environnement et Protection des Plantes, Institut National de la Recherche Agronomique, Agrocampus Ouest, Université de Rennes 1, Rennes, France
| | - Mathieu Rousseau-Gueutin
- Institut de Génétique, Environnement et Protection des Plantes, Institut National de la Recherche Agronomique, Agrocampus Ouest, Université de Rennes 1, Rennes, France
| | - Anne-Marie Chèvre
- Institut de Génétique, Environnement et Protection des Plantes, Institut National de la Recherche Agronomique, Agrocampus Ouest, Université de Rennes 1, Rennes, France
| |
Collapse
|
30
|
Klatt S, Schinkel CCF, Kirchheimer B, Dullinger S, Hörandl E. Effects of cold treatments on fitness and mode of reproduction in the diploid and polyploid alpine plant Ranunculus kuepferi (Ranunculaceae). ANNALS OF BOTANY 2018; 121:1287-1298. [PMID: 29462249 PMCID: PMC6007502 DOI: 10.1093/aob/mcy017] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 01/25/2017] [Indexed: 05/20/2023]
Abstract
Background and Aims Alpine plants grow in harsh environments and are thought to face occasional frost during the sensitive reproductive phase. Apomixis (asexual reproduction via seed) can be advantageous when sexual reproduction is disturbed by cold stress. Apomictic polyploids tend to grow in colder climates than their sexual diploid relatives. Whether cold temperatures actually induce apomixis was unknown to date. Methods We tested experimentally in climate cabinets for effects of low temperatures and repeated frost on phenology, fitness and mode of reproduction in diploid and tetraploid cytotypes of the alpine species Ranunculus kuepferi. The reproduction mode was determined via flow cytometric seed screening (FCSS). Key Results Diploids produced the first flowers earlier than the tetraploids in all treatments. Cold treatments significantly reduced the fitness of both cytotypes regarding seed set, and increased the frequency of apomictic seed formation in diploids, but not in tetraploids. Over consecutive years, the degree of facultative apomixis showed individual phenotypic plasticity. Conclusions Cold stress is correlated to expression of apomixis in warm-adapted, diploid R. kuepferi, while temperature-tolerant tetraploids just maintain facultative apomixis as a possible adaptation to colder climates. However, expression of apomixis may not depend on polyploidy, but rather on failure of the sexual pathway.
Collapse
Affiliation(s)
- Simone Klatt
- Department of Systematics, Biodiversity and Evolution of Plants, University of Goettingen, Goettingen, Germany
| | - Christoph C F Schinkel
- Department of Systematics, Biodiversity and Evolution of Plants, University of Goettingen, Goettingen, Germany
| | - Bernhard Kirchheimer
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Stefan Dullinger
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Elvira Hörandl
- Department of Systematics, Biodiversity and Evolution of Plants, University of Goettingen, Goettingen, Germany
| |
Collapse
|
31
|
Li Q, Chen Y, Yue F, Qian W, Song H. Microspore culture reveals high fitness of B. napus-like gametes in an interspecific hybrid between Brassica napus and B. oleracea. PLoS One 2018; 13:e0193548. [PMID: 29494698 PMCID: PMC5832323 DOI: 10.1371/journal.pone.0193548] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 02/13/2018] [Indexed: 11/18/2022] Open
Abstract
The strategies of crossing B. napus with parental species play important role in broadening and improving the genetic basis of B. napus by the introgression of genetic resources from parental species. With these strategies, it is easy to select new types of B. napus, but difficult to select new types of B. rapa or B. oleracea by self-pollination. This characteristic may be a consequence of high competition with B. napus gametes. To verify the role of gamete viability in producing new B. napus individuals, the meiotic chromosome behavior of the interspecific hybrid between B. napus (Zhongshuang 9) and B. oleracea (6m08) was studied, and microspore-derived (MD) individuals were analyzed. The highest fitness of the 9:19 (1.10%) pattern was observed with a 5.49-fold higher than theoretical expectation among the six chromosome segregation patterns in the hybrid. A total of 43 MD lines with more than 14 chromosomes were developed from the hybrid, and 8 (18.6%) of them were B. napus-like (n = 19) type gametes, having the potential to broaden the genetic basis of natural B. napus (GD = 0.43 ± 0.04). It is easy to produce B. napus-like gametes with 19 chromosomes, and these gametes showed high fitness and competition in the microspore-derived lines, suggesting it might be easy to select new types of B. napus from the interspecific hybrid between B. napus and B. oleracea.
Collapse
Affiliation(s)
- Qinfei Li
- College of Horticulture and Landscape, Southwest University, Chongqing, China
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Yangui Chen
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Fang Yue
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Wei Qian
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- * E-mail: (WQ); (HS)
| | - Hongyuan Song
- College of Horticulture and Landscape, Southwest University, Chongqing, China
- * E-mail: (WQ); (HS)
| |
Collapse
|
32
|
Hojsgaard D. Transient Activation of Apomixis in Sexual Neotriploids May Retain Genomically Altered States and Enhance Polyploid Establishment. FRONTIERS IN PLANT SCIENCE 2018; 9:230. [PMID: 29535745 PMCID: PMC5834478 DOI: 10.3389/fpls.2018.00230] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 02/09/2018] [Indexed: 05/19/2023]
Abstract
Polyploid genomes evolve and follow a series of dynamic transfigurations along with adaptation and speciation. The initial formation of a new polyploid individual within a diploid population usually involves a triploid bridge, a two-step mechanism of cell fusions between ubiquitous (reduced) and rare (unreduced) gametes. The primary fusion event creates an intermediate triploid individual with unbalanced genome sets, a situation of genomic-shock characterized by gene expression dysregulation, high dosage sensitivity, disturbed cell divisions, and physiological and reproductive attributes drastically altered. This near-sterile neotriploid must produce (even) eupolyploids through secondary fusion events to restore genome steadiness, meiotic balance, and fertility required for the demographic establishment of a nascent lineage. Natural conditions locate several difficulties to polyploid establishment, including the production of highly unbalanced and rarely unreduced (euploid) gametes, frequency-dependent disadvantages (minority cytotype exclusion), severe fitness loss, and ecological competition with diploid parents. Persistence and adaptation of neopolyploids depend upon genetic and phenotypic novelty coupled to joint selective forces that preserve shock-induced genomic changes (subgenome homeolog partitioning) and drive meiotic (reproductive) stabilization and ecological diversification. Thus, polyploid establishment through the triploid bridge is a feasible but not ubiquitous process that requires a number of low-probability events and singular circumstances. Yet, frequencies of polyploids suggest that polyploid establishment is a pervasive process. To explain this disparity, and supported in experimental evidence, I propose that situations like hybridization and ploidy-state transitions associated to genomic shock and substantial developmental alterations can transiently activate apomixis as a mechanism to halt genomic instability and cancel factors restraining neopolyploid's sexual fertility, particularly in triploids. Apomixis -as a temporal alternative to sex- skip meiosis and syngamy, and thus can freeze genomic attributes, avoid unbalanced chromosomal segregation and increase the formation of unreduced euploid gametes, elude frequency-dependent reproductive disadvantages by parthenogenetic development of the embryo and permissive development of endosperm during seed formation, and increase the effective population size of the neopolyploid lineage favoring the formation rate of eupolyploids compared to aneuploids. The subsequent action of genome resilience mechanisms that alleviate transcriptomic shock and selection upon gene interactions might restore a stable meiosis and sexual fertility within few generations, as observed in synthetic polyploids. Alternatively, provided that resilience mechanisms fail, the neopolyploid might retain apomixis and hold genomically and transcriptionally altered states for many generations.
Collapse
Affiliation(s)
- Diego Hojsgaard
- Department of Systematics, Biodiversity and Evolution of Plants, Albrecht-von-Haller Institute for Plant Sciences, Georg August University of Göttingen, Göttingen, Germany
| |
Collapse
|
33
|
Marques I, Loureiro J, Draper D, Castro M, Castro S. How much do we know about the frequency of hybridisation and polyploidy in the Mediterranean region? PLANT BIOLOGY (STUTTGART, GERMANY) 2018; 20 Suppl 1:21-37. [PMID: 28963818 DOI: 10.1111/plb.12639] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 09/25/2017] [Indexed: 06/07/2023]
Abstract
Natural hybridisation and polyploidy are currently recognised as drivers of biodiversity, despite early scepticism about their importance. The Mediterranean region is a biodiversity hotspot where geological and climatic events have created numerous opportunities for speciation through hybridisation and polyploidy. Still, our knowledge on the frequency of these mechanisms in the region is largely limited, despite both phenomena are frequently cited in studies of Mediterranean plants. We reviewed information available from biodiversity and cytogenetic databases to provide the first estimates of hybridisation and polyploidy frequency in the Mediterranean region. We also inspected the most comprehensive modern Mediterranean Flora (Flora iberica) to survey the frequency and taxonomic distribution of hybrids and polyploids in Iberian Peninsula. We found that <6% of Mediterranean plants were hybrids, although a higher frequency was estimated for the Iberian Peninsula (13%). Hybrids were concentrated in few families and in even fewer genera. The overall frequency of polyploidy (36.5%) was comparable with previous estimates in other regions; however our estimates increased when analysing the Iberian Peninsula (48.8%). A surprisingly high incidence of species harbouring two or more ploidy levels was also observed (21.7%). A review of the available literature also showed that the ecological factors driving emergence and establishment of new entities are still poorly studied in the Mediterranean flora, although geographic barriers seem to play a major role in polyploid complexes. Finally, this study reveals several gaps and limitations in our current knowledge about the frequency of hybridisation and polyploidy in the Mediterranean region. The obtained estimates might change in the future with the increasing number of studies; still, rather than setting the complete reality, we hope that this work triggers future studies on hybridisation and polyploidy in the Mediterranean region.
Collapse
Affiliation(s)
- I Marques
- Department of Agricultural and Environmental Sciences, High Polytechnic School of Huesca, University of Zaragoza, Huesca, Spain
| | - J Loureiro
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - D Draper
- Centro de Ecologia, Evolução e Alterações Ambientais (cE3c), Universidade de Lisboa, Lisbon, Portugal
- UBC Botanical Garden & Centre for Plant Research, and Department of Botany, University of British Columbia, Vancouver, Canada
| | - M Castro
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - S Castro
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
- Botanic Garden of the University of Coimbra, Coimbra, Portugal
| |
Collapse
|
34
|
Evolutionary Dynamics of Unreduced Gametes. Trends Genet 2017; 33:583-593. [PMID: 28732599 DOI: 10.1016/j.tig.2017.06.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 06/23/2017] [Accepted: 06/27/2017] [Indexed: 11/20/2022]
Abstract
Unreduced gametes, which have the somatic (2n) chromosome number, are an important precursor to polyploid formation and apomixis. The product of irregularities in meiosis, 2n gametes are expected to be rare and deleterious in most natural populations, contrary to their wide taxonomic distribution and the prevalence of polyploidy. To better understand this discrepancy, we review contemporary evidence related to four aspects of 2n gamete dynamics in natural populations: (i) estimates of their frequency; (ii) their environmental and genetic determinants; (iii) adaptive and nonadaptive processes regulating their evolution; and (iv) factors regulating their union and production of polyploids in diploid populations. Aided by high-throughput methods of detection, these foci will advance our understanding of variation in 2n gametes within and among species, and their role in polyploid evolution.
Collapse
|
35
|
Wang J, Li D, Shang F, Kang X. High temperature-induced production of unreduced pollen and its cytological effects in Populus. Sci Rep 2017; 7:5281. [PMID: 28706219 PMCID: PMC5509662 DOI: 10.1038/s41598-017-05661-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 06/01/2017] [Indexed: 11/18/2022] Open
Abstract
Temperature change is of potential to trigger the formation of unreduced gametes. In this study, we showed that short periods of high temperature treatment can induce the production of 2n pollen in Populus pseudo-simonii Kitag. The meiotic stage, duration of treatment, and temperature have significant effects on the induction of 2n pollen. Heat stress resulted in meiotic abnormalities, including failure of chromosome separation, chromosome stickiness, laggards and micronuclei. Spindle disorientations in the second meiotic division, such as parallel, fused, and tripolar spindles, either increased in frequency or were induced de novo by high temperature treatment. We found that the high temperature treatment induced depolymerisation of meiotic microtubular cytoskeleton, resulting in the failure of chromosome segregation. New microtubular cytoskeletons were able to repolymerise in some heat-treated cells after transferring them to normal conditions. However, aberrant cytokinesis occurred owing to defects of new radial microtubule systems, leading to production of monads, dyads, triads, and polyads. This suggested that depolymerisation and incomplete restoration of microtubules may be important for high temperature-induction of unreduced gametes. These findings might help us understand how polyploidisation is induced by temperature-related stress and support the potential effects of global climate change on reproductive development of plants.
Collapse
Affiliation(s)
- Jun Wang
- Beijing Advanced Innovation Centre for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, People's Republic of China.
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083, People's Republic of China.
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, MOE, Beijing Forestry University, Beijing, 100083, People's Republic of China.
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, People's Republic of China.
| | - Daili Li
- Beijing Huang Fa Nursery, Beijing, 102601, People's Republic of China
| | - Fengnan Shang
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083, People's Republic of China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Xiangyang Kang
- Beijing Advanced Innovation Centre for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, People's Republic of China
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083, People's Republic of China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, MOE, Beijing Forestry University, Beijing, 100083, People's Republic of China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, People's Republic of China
| |
Collapse
|
36
|
Rouiss H, Cuenca J, Navarro L, Ollitrault P, Aleza P. Unreduced Megagametophyte Production in Lemon Occurs via Three Meiotic Mechanisms, Predominantly Second-Division Restitution. FRONTIERS IN PLANT SCIENCE 2017; 8:1211. [PMID: 28747921 PMCID: PMC5506204 DOI: 10.3389/fpls.2017.01211] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 06/27/2017] [Indexed: 05/23/2023]
Abstract
Unreduced (2n) gametes have played a pivotal role in polyploid plant evolution and are useful for sexual polyploid breeding in various species, particularly for developing new seedless citrus varieties. The underlying mechanisms of 2n gamete formation were recently revealed for Citrus reticulata but remain poorly understood for other citrus species, including lemon (C. limon [L.] Burm. f.). Here, we investigated the frequency and causal meiotic mechanisms of 2n megagametophyte production in lemon. We genotyped 48progeny plants of two lemon genotypes, "Eureka Frost" and "Fino", using 16 Simple Sequence Repeat (SSR) and 18 Single Nucleotide Polymorphism (SNP) markers to determine the genetic origin of the progenies and the underlying mechanisms for 2n gamete formation. We utilized a maximum-likelihood method based on parental heterozygosity restitution (PHR) of centromeric markers and analysis of PHR patterns along the chromosome. The frequency of 2n gamete production was 4.9% for "Eureka Frost" and 8.3% for "Fino", with three meiotic mechanisms leading to 2n gamete formation. We performed the maximum-likelihood method at the individual level via centromeric marker analysis, finding that 88% of the hybrids arose from second-division restitution (SDR), 7% from first-division restitution (FDR) or pre-meiotic doubling (PRD), and 5% from post-meiotic genome doubling (PMD). The pattern of PHR along LG1 confirmed that SDR is the main mechanism for 2n gamete production. Recombination analysis between markers in this LG revealed partial chiasma interference on both arms. We discuss the implications of these restitution mechanisms for citrus breeding and lemon genetics.
Collapse
Affiliation(s)
- Houssem Rouiss
- Centro de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones AgrariasMoncada, Valencia, Spain
- Unité Mixte de Recherche Amélioration Génétique et Adaptation des Plantes (UMR Agap), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Station de RoujolPetit-Bourg, Guadeloupe, France
| | - José Cuenca
- Centro de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones AgrariasMoncada, Valencia, Spain
| | - Luis Navarro
- Centro de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones AgrariasMoncada, Valencia, Spain
| | - Patrick Ollitrault
- Unité Mixte de Recherche Amélioration Génétique et Adaptation des Plantes (UMR Agap), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Station de RoujolPetit-Bourg, Guadeloupe, France
| | - Pablo Aleza
- Centro de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones AgrariasMoncada, Valencia, Spain
| |
Collapse
|
37
|
Dhar MK, Kour G, Kaul S. B chromosome in Plantago lagopus Linnaeus, 1753 shows preferential transmission and accumulation through unusual processes. COMPARATIVE CYTOGENETICS 2017; 11:375-392. [PMID: 28919970 PMCID: PMC5596978 DOI: 10.3897/compcytogen.11i2.11779] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 03/13/2017] [Indexed: 06/07/2023]
Abstract
Plantago lagopus is a diploid (2n = 2x =12) weed belonging to family Plantaginaceae. We reported a novel B chromosome in this species composed of 5S and 45S ribosomal DNA and other repetitive elements. In the present work, presence of B chromosome(s) was confirmed through FISH on root tip and pollen mother cells. Several experiments were done to determine the transmission of B chromosome through male and female sex tracks. Progenies derived from the reciprocal crosses between plants with (1B) and without (0B) B chromosomes were studied. The frequency of B chromosome bearing plants was significantly higher than expected, in the progeny of 1B female × 0B male. Thus, the B chromosome seems to have preferential transmission through the female sex track, which may be due to meiotic drive. One of the most intriguing aspects of the present study was the recovery of plants having more chromosomes than the standard complement of 12 chromosomes. Such plants were isolated from the progenies of B chromosome carrying plants. The origin of these plants can be explained on the basis of a two step process; formation of unreduced gametes in 1B plants and fusion of unreduced gametes with the normal gametes or other unreduced gametes. Several molecular techniques were used which unequivocally confirmed similar genetic constitution of 1B (parent) and plants with higher number of chromosomes.
Collapse
Affiliation(s)
- Manoj K. Dhar
- School of Biotechnology, University of Jammu, Jammu-180006, INDIA
| | - Gurmeet Kour
- School of Biotechnology, University of Jammu, Jammu-180006, INDIA
| | - Sanjana Kaul
- School of Biotechnology, University of Jammu, Jammu-180006, INDIA
| |
Collapse
|
38
|
Abstract
Polyploidy, or the duplication of entire genomes, has been observed in prokaryotic and eukaryotic organisms, and in somatic and germ cells. The consequences of polyploidization are complex and variable, and they differ greatly between systems (clonal or non-clonal) and species, but the process has often been considered to be an evolutionary 'dead end'. Here, we review the accumulating evidence that correlates polyploidization with environmental change or stress, and that has led to an increased recognition of its short-term adaptive potential. In addition, we discuss how, once polyploidy has been established, the unique retention profile of duplicated genes following whole-genome duplication might explain key longer-term evolutionary transitions and a general increase in biological complexity.
Collapse
|
39
|
Zhan Z, Nwafor CC, Hou Z, Gong J, Zhu B, Jiang Y, Zhou Y, Wu J, Piao Z, Tong Y, Liu C, Zhang C. Cytological and morphological analysis of hybrids between Brassicoraphanus, and Brassica napus for introgression of clubroot resistant trait into Brassica napus L. PLoS One 2017; 12:e0177470. [PMID: 28505203 PMCID: PMC5432170 DOI: 10.1371/journal.pone.0177470] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 04/27/2017] [Indexed: 11/29/2022] Open
Abstract
Interspecific hybridization is a powerful tool for improvement of crop species, it has the potential to broaden the genetic base and create new plant forms for breeding programs. Synthetic allopolyploid is a widely-used model for the study of genetic recombination and fixed heterosis in Brassica. In Brassica napus breeding, identification and introgression of new sources of clubroot resistance trait from wild or related species into it by hybridization is a long-term crop management strategy for clubroot disease. Radish (Raphanus sativus L.) is a close relative of the Brassica and most radish accessions are immune to the clubroot disease. A synthesized allotetraploid Brassicoraphanus (RRCC, 2n = 36) between R. sativus cv. HQ-04 (2n = 18, RR) and Brassica oleracea var. alboglabra (L.H Bailey) (2n = 18, CC) proved resistant of multiple clubroot disease pathogen P. brassicae. To predict the possibility to transfer the clubroot resistance trait from the RR subgenome of allotetraploid Brassicoraphanus (RRCC, 2n = 36) into Brassica napus (AACC, 2n = 38), we analyzed the frequency of chromosome pairings in the F1 hybrids produced from a cross between B. napus cv. HS5 and the allotetraploid, characterize the genomic composition of some backcrossed progeny (BC1) using GISH, BAC-FISH and AFLP techniques. The level of intergenomic pairing between A and R genomes in the F1 hybrid was high, allosyndetic bivalents formed in 73.53% PMCs indicative of significant level of homeologous recombination between two genomes and high probability of incorporating chromosomal segments/genes from R-genome into A/C-genomes. The BC1 plants inherited variant extra R chromosomes or fragments from allotetraploid as revealed by GISH and AFLP analysis. 13.51% BC2 individuals were resistant to clubroot disease, and several resistance lines had high pollen fertility, Overall, the genetic material presented in this work represents a potential new genetic resource for practical use in breeding B. napus clubroot resistant cultivars.
Collapse
Affiliation(s)
- Zongxiang Zhan
- National Research Center of Rapeseed Engineering and Technology and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Chinedu Charles Nwafor
- National Research Center of Rapeseed Engineering and Technology and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhaoke Hou
- National Research Center of Rapeseed Engineering and Technology and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jianfang Gong
- National Research Center of Rapeseed Engineering and Technology and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Bin Zhu
- College of Life Science, Guizhou Normal University, Guiyang, China
| | - Yingfen Jiang
- Crop Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Yongming Zhou
- National Research Center of Rapeseed Engineering and Technology and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jiangsheng Wu
- National Research Center of Rapeseed Engineering and Technology and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhongyun Piao
- Department of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Yue Tong
- Yichang Academy of Agriculture Science, Yichang, China
| | - Chao Liu
- National Research Center of Rapeseed Engineering and Technology and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Chunyu Zhang
- National Research Center of Rapeseed Engineering and Technology and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- * E-mail:
| |
Collapse
|
40
|
Borisov YM, Kryshchuk IA, Gaiduchenko HS, Cherepanova EV, Zadyra SV, Levenkova ES, Lukashov DV, Orlov VN. Karyotypic differentiation of populations of the common shrew Sorex araneus L. (Mammalia) in Belarus. COMPARATIVE CYTOGENETICS 2017; 11:359-373. [PMID: 28919969 PMCID: PMC5596991 DOI: 10.3897/compcytogen.11i2.11142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 04/08/2017] [Indexed: 06/07/2023]
Abstract
The common shrews, Sorex araneus Linnaeus, 1758, inhabiting the territory of Belarus, are characterized by a significant variation in the frequency of Robertsonian (Rb) translocations. The frequency clines for translocations specific of three chromosome races: the West Dvina (gm, hk, ip, no, qr), Kiev (g/m, hi, k/o, n, p, q, r), and Białowieża (g/r, hn, ik, m/p, o, q) have already been studied in this territory. In this communication we report new data on polymorphic populations with Rb metacentrics specific of the Neroosa race (go, hi, kr, mn, p/q) in south-eastern Belarus, analyse the distribution of karyotypes in southern and central Belarus and draw particular attention to the fixation of the acrocentric variants of chromosomes in this area. The results show that certain Rb metacentrics specific of the Neroosa, West Dvina, Kiev, and Białowieża races (namely, go and pq; ip; ko; hn and ik, respectively) are absent in many polymorphic populations. Thus, the karyotypic differentiation of S. araneus in the studied area is determined by unequal spread of different Rb translocations and by fixation of acrocentric variants of specific chromosomes.
Collapse
Affiliation(s)
- Yury M. Borisov
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninskij Prosp. 33, 119071 Moscow, Russia
| | - Iryna A. Kryshchuk
- Scientific and Practical Center for Bioresources, National Academy of Sciences of Belarus, Akademicheskaya St. 27, 220072 Minsk, Republic of Belarus
| | - Helen S. Gaiduchenko
- Scientific and Practical Center for Bioresources, National Academy of Sciences of Belarus, Akademicheskaya St. 27, 220072 Minsk, Republic of Belarus
| | - Elena V. Cherepanova
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninskij Prosp. 33, 119071 Moscow, Russia
| | - Svetlana V. Zadyra
- Shevchenko Kiev National University, Educational–Scientific Center Institute of Biology, Kiev, 03187 Ukraine
| | - Elena S. Levenkova
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninskij Prosp. 33, 119071 Moscow, Russia
| | - Dmitriy V. Lukashov
- Shevchenko Kiev National University, Educational–Scientific Center Institute of Biology, Kiev, 03187 Ukraine
| | - Victor N. Orlov
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninskij Prosp. 33, 119071 Moscow, Russia
| |
Collapse
|
41
|
Triploid Production from Interspecific Crosses of Two Diploid Perennial Helianthus with Diploid Cultivated Sunflower ( Helianthus annuus L.). G3-GENES GENOMES GENETICS 2017; 7:1097-1108. [PMID: 28179393 PMCID: PMC5386858 DOI: 10.1534/g3.116.036327] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Wild Helianthus species are a valuable genetic resource for the improvement of cultivated sunflower. We report the discovery and characterization of a unique high frequency production of triploids when cultivated sunflower was pollinated by specific accessions of diploid Helianthus nuttallii T. & G. and H. maximiliani Schr. Genomic in situ hybridization (GISH) analyses indicated that the triploid F1s had two genomes from the wild pollen sources and one from the cultivated line. Mitotic chromosome analyses indicated that the frequency of triploid progenies from the crosses of cultivated lines × H. nuttallii accession 102 (N102) was significantly higher than those of unexpected polyploid progenies from the crosses of wild perennial species × N102, and no unexpected polyploids were obtained from the reverse crosses. Pollen stainability analysis suggested the existence of a low percentage of unreduced (2n) male gametes in some accessions, especially N102 and H. maximiliani accession 1113 (M1113), which were generated at the telophase II and tetrad stages of meiosis. The triploid F1s could be the results of preferred fertilization of the low frequency of 2n male gametes with the female gametes of the cultivated sunflower, due to the dosage factors related to recognition and rejection of foreign pollen during fertilization. The triploids have been used to produce amphiploids and aneuploids. Future studies of the male gametes' fate from pollination through fertilization will further uncover the mechanism of this whole genome transmission. Studies of the genetic control of this trait will facilitate research on sunflower polyploidy speciation and evolution, and the utilization of this trait in sunflower breeding.
Collapse
|
42
|
Kreiner JM, Kron P, Husband BC. Frequency and maintenance of unreduced gametes in natural plant populations: associations with reproductive mode, life history and genome size. THE NEW PHYTOLOGIST 2017; 214:879-889. [PMID: 28134436 DOI: 10.1111/nph.14423] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 12/03/2016] [Indexed: 05/20/2023]
Abstract
Fertilization involving unreduced (2n) gametes is considered the dominant mechanism of polyploid formation in angiosperms; however, our knowledge of the prevalence of and evolutionary mechanisms maintaining 2n gametes in natural populations is limited. We hypothesize that 2n gametes are deleterious consequences of meiotic errors maintained by mutation-selection balance and should increase in species with relaxed opportunities for selection on sexual processes (asexuality), reduced efficacy of selection (asexuality, selfing) and increased genome instability (high chromosome number). We used flow cytometry to estimate male 2n gamete production in 60 populations from 24 species of Brassicaceae. We quantified variation in 2n gamete production within and among species, and examined associations with life history, reproductive mode, genome size and chromosomal number while accounting for phylogeny. Most individuals produced < 2% 2n male gametes, whereas a small number had > 5% (up to 85%) production. Variation in 2n gamete production was significant among species and related to reproductive system; asexual species produced significantly more 2n gametes than mixed-mating and outcrossing species. Our results, unique in their multi-species perspective, are consistent with 2n gametes being deleterious but maintained when opportunities for selection are limited. Rare individuals with elevated 2n gamete production may be key contributors to polyploid formation.
Collapse
Affiliation(s)
- Julia M Kreiner
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada, N1G 2W1
| | - Paul Kron
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada, N1G 2W1
| | - Brian C Husband
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada, N1G 2W1
| |
Collapse
|
43
|
Tütüncü Konyar S. Ultrastructural aspects of pollen ontogeny in an endangered plant species, Pancratium maritimum L. (Amaryllidaceae). PROTOPLASMA 2017; 254:881-900. [PMID: 27460470 DOI: 10.1007/s00709-016-0998-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 06/20/2016] [Indexed: 05/16/2023]
Abstract
Pollen ontogeny in Pancratium maritimum L. was studied from the sporogenous cell to mature pollen grain stages using transmission electron, scanning electron, and light microscopy to determine whether the pollen development in P. maritimum follows the basic scheme in angiosperms or not. In the course of microsporogenesis and microgametogenesis, special attention was given to the considerable ultrastructural changes that are observed in the cytoplasm of microsporocytes, microspores, and mature pollen grains throughout the successive stages of pollen development. Microsporocyte differentiation concerning number and ultrastructure of organelles facilitates the transition of microsporocytes from the sporophytic phase to the gametophytic phase. However, cytoplasmic differentiation of generative and vegetative cells supports their functional distinctness and pollen maturation. Although microsporogenesis and microgametogenesis in P. maritimum generally follow the usual angiosperm pattern, abnormalities such as formation of unreduced gametes were observed. During normal microsporogenesis, meiocytes undergo meiosis and successive cytokinesis, resulting in the formation of isobilateral, decussate, and linear tetrads. Subsequent to the development of free and vacuolated microspores, the first mitotic division occurs and bicellular monosulcate pollen grains are produced. Pollen grains are shed from the anther at binucleate stage. During pollen ontogeny, three periods of vacuolization were observed: in meiocytes, in mononucleate free microspores, and in the generative cell.
Collapse
Affiliation(s)
- Sevil Tütüncü Konyar
- Department of Biology, Faculty of Science, Trakya University, 22030, Edirne, Turkey.
| |
Collapse
|
44
|
Kaur M, Himshikha, Singhal VK. Occurrence of Syncytes: A Possible Mechanism Owing to the Origin of Polyploid Cytotypes in Achillea millefolium L. within Indian Himalayas. CYTOLOGIA 2017. [DOI: 10.1508/cytologia.82.375] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
| | - Himshikha
- Department of Botany, Punjabi University
| | | |
Collapse
|
45
|
Sharma BB, Kalia P, Singh D, Sharma TR. Introgression of Black Rot Resistance from Brassica carinata to Cauliflower ( Brassica oleracea botrytis Group) through Embryo Rescue. FRONTIERS IN PLANT SCIENCE 2017; 8:1255. [PMID: 28769959 PMCID: PMC5513967 DOI: 10.3389/fpls.2017.01255] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/03/2017] [Indexed: 05/21/2023]
Abstract
Black rot caused by Xanthomonas campestris pv. campestris (Xcc) is a very important disease of cauliflower (Brassica oleracea botrytis group) resulting into 10-50% yield losses every year. Since there is a dearth of availability of resistance to black rot disease in B. oleracea (C genome), therefore exploration of A and B genomes was inevitable as they have been reported to be potential reservoirs of gene(s) for resistance to black rot. To utilize these sources, interspecific hybrid and backcross progeny (B1) were generated between cauliflower "Pusa Sharad" and Ethiopian mustard "NPC-9" employing in vitro embryo rescue technique. Direct ovule culture method was better than siliqua culture under different temperature regime periods. Hybridity testing of F1 inter-specific plants was carried out using co-dominant SSR marker and Brassica B and C genome-specific (DB and DC) primers. Meiosis in the di-genomic (BCC) interspecific hybrid of B. oleracea botrytis group (2n = 18, CC) × B. carinata (2n = 4x = 34, BBCC) was higly disorganized and cytological analysis of pollen mother cells revealed chromosomes 2n = 26 at metaphase-I. Fertile giant pollen grain formation was observed frequently in interspecific F1 hybrid and BC1 plants. The F1 inter-specific plants were found to be resistant to Xcc race 1. Segregation distortion was observed in BC1 generation for black rot resistance and different morphological traits. The At1g70610 marker analysis confirmed successful introgression of black rot resistance in interspecific BC1 population. This effort will go a long way in pyramiding gene(s) for resistance against black rot in Cole crops, especially cauliflower and cabbage for developing durable resistance, thus minimize dependency on bactericides.
Collapse
Affiliation(s)
- Brij B. Sharma
- Division of Vegetable Science, Indian Council of Agricultural Research-Indian Agricultural Research InstituteNew Delhi, India
| | - Pritam Kalia
- Division of Vegetable Science, Indian Council of Agricultural Research-Indian Agricultural Research InstituteNew Delhi, India
- *Correspondence: Pritam Kalia
| | - Dinesh Singh
- Division of Plant Pathology, Indian Council of Agricultural Research-Indian Agricultural Research InstituteNew Delhi, India
| | | |
Collapse
|
46
|
Sora D, Kron P, Husband BC. Genetic and environmental determinants of unreduced gamete production in Brassica napus, Sinapis arvensis and their hybrids. Heredity (Edinb) 2016; 117:440-448. [PMID: 27577694 PMCID: PMC5117845 DOI: 10.1038/hdy.2016.69] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 07/08/2016] [Accepted: 07/13/2016] [Indexed: 11/08/2022] Open
Abstract
Unreduced gametes, sperm or egg cells with the somatic chromosome number, are an important mechanism of polyploid formation and gene flow between heteroploid plants. The meiotic processes leading to unreduced gamete formation are well documented, but the relative influence of environmental and genetic factors on the frequency of unreduced gametes remain largely untested. Furthermore, direct estimates of unreduced gametes based on DNA content are technically challenging and, hence, uncommon. Here, we use flow cytometry to measure the contribution of genetic (hybridization) and environmental (nutrient limitation, wounding) changes to unreduced male gamete production in Brassica napus, Sinapis arvensis and two hybrid lines. Treatments were applied to greenhouse grown plants in a random factorial design, with pollen sampled at two time intervals. Overall, the frequency of unreduced gametes averaged 0.59% (range 0.06-2.17%), plus a single outlier with 27%. Backcrossed hybrids had 39 to 75% higher unreduced gamete production than parental genotypes, averaged across all treatments, although the statistical significance of these differences depended on sampling period and wounding treatment. Unreduced gamete frequencies were higher for the second sampling period than the first. There were no direct effects of wounding or nutrient regime. Our results indicate that both genetic and environmental factors can induce increased unreduced gametes, highlighting the potential importance of environmental heterogeneity and genetic composition of populations in driving polyploid evolution.
Collapse
Affiliation(s)
- D Sora
- Department of Biology, Bioscience Complex, Queen's University, Kingston, Ontario, Canada
| | - P Kron
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - B C Husband
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
47
|
Sidorchuk YV, Kravets EA, Mursalimov SR, Plokhovskaya SG, Goryunova II, Yemets AI, Blume YB, Deineko EV. Efficiency of the induction of cytomixis in the microsporogenesis of dicotyledonous (N. tabacum L.) and monocotyledonous (H. distichum L.) plants by thermal stress. Russ J Dev Biol 2016. [DOI: 10.1134/s1062360416060072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
48
|
McAllister CA, Miller AJ. Single nucleotide polymorphism discovery via genotyping by sequencing to assess population genetic structure and recurrent polyploidization in Andropogon gerardii. AMERICAN JOURNAL OF BOTANY 2016; 103:1314-1325. [PMID: 27466055 DOI: 10.3732/ajb.1600146] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 06/27/2016] [Indexed: 06/06/2023]
Abstract
PREMISE OF THE STUDY Autopolyploidy, genome duplication within a single lineage, can result in multiple cytotypes within a species. Geographic distributions of cytotypes may reflect the evolutionary history of autopolyploid formation and subsequent population dynamics including stochastic (drift) and deterministic (differential selection among cytotypes) processes. Here, we used a population genomic approach to investigate whether autopolyploidy occurred once or multiple times in Andropogon gerardii, a widespread, North American grass with two predominant cytotypes. METHODS Genotyping by sequencing was used to identify single nucleotide polymorphisms (SNPs) in individuals collected from across the geographic range of A. gerardii. Two independent approaches to SNP calling were used: the reference-free UNEAK pipeline and a reference-guided approach based on the sequenced Sorghum bicolor genome. SNPs generated using these pipelines were analyzed independently with genetic distance and clustering. KEY RESULTS Analyses of the two SNP data sets showed very similar patterns of population-level clustering of A. gerardii individuals: a cluster of A. gerardii individuals from the southern Plains, a northern Plains cluster, and a western cluster. Groupings of individuals corresponded to geographic localities regardless of cytotype: 6x and 9x individuals from the same geographic area clustered together. CONCLUSIONS SNPs generated using reference-guided and reference-free pipelines in A. gerardii yielded unique subsets of genomic data. Both data sets suggest that the 9x cytotype in A. gerardii likely evolved multiple times from 6x progenitors across the range of the species. Genomic approaches like GBS and diverse bioinformatics pipelines used here facilitate evolutionary analyses of complex systems with multiple ploidy levels.
Collapse
Affiliation(s)
- Christine A McAllister
- Department of Biology and Natural Resources, Principia College, Elsah, Illinois 62028 USA
| | - Allison J Miller
- Department of Biology, Saint Louis University, St. Louis, Missouri 63130 USA
| |
Collapse
|
49
|
Fakhri Z, Mirzaghaderi G, Ahmadian S, Mason AS. Unreduced gamete formation in wheat × Aegilops spp. hybrids is genotype specific and prevented by shared homologous subgenomes. PLANT CELL REPORTS 2016; 35:1143-54. [PMID: 26883221 DOI: 10.1007/s00299-016-1951-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 02/03/2016] [Indexed: 05/22/2023]
Abstract
The presence of homologous subgenomes inhibited unreduced gamete formation in wheat × Aegilops interspecific hybrids. Unreduced gamete rates were under the control of the wheat nuclear genome. Production of unreduced gametes is common among interspecific hybrids, and may be affected by parental genotypes and genomic similarity. In the present study, five cultivars of Triticum aestivum and two tetraploid Aegilops species (i.e. Ae. triuncialis and Ae. cylindrica) were reciprocally crossed to produce 20 interspecific hybrid combinations. These hybrids comprised two different types: T. aestivum × Aegilops triuncialis; 2n = ABDU(t)C(t) (which lack a common subgenome) and T. aestivum × Ae. cylindrica; 2n = ABDD(c)C(c) (which share a common subgenome). The frequency of unreduced gametes in F1 hybrids was estimated in sporads from the frequency of dyads, and the frequency of viable pollen, germinated pollen and seed set were recorded. Different meiotic abnormalities recorded in the hybrids included precocious chromosome migration to the poles at metaphase I and II, laggards in anaphase I and II, micronuclei and chromosome stickiness, failure in cell wall formation, premature cytokinesis and microspore fusion. The mean frequency of restitution meiosis was 10.1 %, and the mean frequency of unreduced viable pollen was 4.84 % in T. aestivum × Ae. triuncialis hybrids. By contrast, in T. aestivum × Ae. cylindrica hybrids no meiotic restitution was observed, and a low rate of viable gametes (0.3 %) was recorded. This study present evidence that high levels of homologous pairing between the D and D(c) subgenomes may interfere with meiotic restitution and the formation of unreduced gametes. Variation in unreduced gamete production was also observed between T. aestivum × Ae. triuncialis hybrid plants, suggesting genetic control of this trait.
Collapse
Affiliation(s)
- Zhaleh Fakhri
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Kurdistan, P. O. Box 416, Sanandaj, Iran
| | - Ghader Mirzaghaderi
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Kurdistan, P. O. Box 416, Sanandaj, Iran.
| | - Samira Ahmadian
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Kurdistan, P. O. Box 416, Sanandaj, Iran
| | - Annaliese S Mason
- IFZ Research Centre for Biosystems, Land Use and Nutrition, Department of Plant Breeding, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| |
Collapse
|
50
|
Mason AS, Rousseau-Gueutin M, Morice J, Bayer PE, Besharat N, Cousin A, Pradhan A, Parkin IAP, Chèvre AM, Batley J, Nelson MN. Centromere Locations in Brassica A and C Genomes Revealed Through Half-Tetrad Analysis. Genetics 2016; 202:513-23. [PMID: 26614742 PMCID: PMC4788232 DOI: 10.1534/genetics.115.183210] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 11/23/2015] [Indexed: 11/18/2022] Open
Abstract
Locating centromeres on genome sequences can be challenging. The high density of repetitive elements in these regions makes sequence assembly problematic, especially when using short-read sequencing technologies. It can also be difficult to distinguish between active and recently extinct centromeres through sequence analysis. An effective solution is to identify genetically active centromeres (functional in meiosis) by half-tetrad analysis. This genetic approach involves detecting heterozygosity along chromosomes in segregating populations derived from gametes (half-tetrads). Unreduced gametes produced by first division restitution mechanisms comprise complete sets of nonsister chromatids. Along these chromatids, heterozygosity is maximal at the centromeres, and homologous recombination events result in homozygosity toward the telomeres. We genotyped populations of half-tetrad-derived individuals (from Brassica interspecific hybrids) using a high-density array of physically anchored SNP markers (Illumina Brassica 60K Infinium array). Mapping the distribution of heterozygosity in these half-tetrad individuals allowed the genetic mapping of all 19 centromeres of the Brassica A and C genomes to the reference Brassica napus genome. Gene and transposable element density across the B. napus genome were also assessed and corresponded well to previously reported genetic map positions. Known centromere-specific sequences were located in the reference genome, but mostly matched unanchored sequences, suggesting that the core centromeric regions may not yet be assembled into the pseudochromosomes of the reference genome. The increasing availability of genetic markers physically anchored to reference genomes greatly simplifies the genetic and physical mapping of centromeres using half-tetrad analysis. We discuss possible applications of this approach, including in species where half-tetrads are currently difficult to isolate.
Collapse
Affiliation(s)
- Annaliese S Mason
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University, 35392 Giessen, Germany School of Agriculture and Food Sciences and Centre for Integrative Legume Research, The University of Queensland, Brisbane 4072, Australia
| | | | - Jérôme Morice
- IGEPP, Institut National de la Recherche Agronomique, BP35327, 35653 Le Rheu, France
| | - Philipp E Bayer
- School of Agriculture and Food Sciences and Centre for Integrative Legume Research, The University of Queensland, Brisbane 4072, Australia School of Plant Biology and The University of Western Australia (UWA) Institute of Agriculture, The UWA, Crawley 6009, Perth, Australia
| | - Naghmeh Besharat
- School of Plant Biology and The University of Western Australia (UWA) Institute of Agriculture, The UWA, Crawley 6009, Perth, Australia
| | - Anouska Cousin
- School of Plant Biology and The University of Western Australia (UWA) Institute of Agriculture, The UWA, Crawley 6009, Perth, Australia
| | - Aneeta Pradhan
- School of Plant Biology and The University of Western Australia (UWA) Institute of Agriculture, The UWA, Crawley 6009, Perth, Australia
| | - Isobel A P Parkin
- Agriculture and Agri-Food Canada, Saskatoon Research Centre, Saskatoon, Saskatchewan, Canada
| | - Anne-Marie Chèvre
- IGEPP, Institut National de la Recherche Agronomique, BP35327, 35653 Le Rheu, France
| | - Jacqueline Batley
- School of Plant Biology and The University of Western Australia (UWA) Institute of Agriculture, The UWA, Crawley 6009, Perth, Australia School of Agriculture and Food Sciences and Centre for Integrative Legume Research, The University of Queensland, Brisbane 4072, Australia
| | - Matthew N Nelson
- School of Plant Biology and The University of Western Australia (UWA) Institute of Agriculture, The UWA, Crawley 6009, Perth, Australia Natural Capital and Plant Health, Royal Botanic Gardens Kew, Ardingly, West Sussex, RH17 6TN, United Kingdom
| |
Collapse
|