1
|
Safaeizadeh M, Boller T, Becker C. Comparative RNA-seq analysis of Arabidopsis thaliana response to AtPep1 and flg22, reveals the identification of PP2-B13 and ACLP1 as new members in pattern-triggered immunity. PLoS One 2024; 19:e0297124. [PMID: 38833485 PMCID: PMC11149889 DOI: 10.1371/journal.pone.0297124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 12/28/2023] [Indexed: 06/06/2024] Open
Abstract
In this research, a high-throughput RNA sequencing-based transcriptome analysis technique (RNA-Seq) was used to evaluate differentially expressed genes (DEGs) in the wild type Arabidopsis seedlings in response to AtPep1, a well-known peptide representing an endogenous damage-associated molecular pattern (DAMP), and flg22, a well-known microbe-associated molecular pattern (MAMP). We compared and dissected the global transcriptional landscape of Arabidopsis thaliana in response to AtPep1 and flg22 and could identify shared and unique DEGs in response to these elicitors. We found that while a remarkable number of flg22 up-regulated genes were also induced by AtPep1, 256 genes were exclusively up-regulated in response to flg22, and 328 were exclusively up-regulated in response to AtPep1. Furthermore, among down-regulated DEGs upon flg22 treatment, 107 genes were exclusively down-regulated by flg22 treatment, while 411 genes were exclusively down-regulated by AtPep1. We found a number of hitherto overlooked genes to be induced upon treatment with either flg22 or with AtPep1, indicating their possible involvement general pathways in innate immunity. Here, we characterized two of them, namely PP2-B13 and ACLP1. pp2-b13 and aclp1 mutants showed increased susceptibility to infection by the virulent pathogen Pseudomonas syringae DC3000 and its mutant Pst DC3000 hrcC (lacking the type III secretion system), as evidenced by increased proliferation of the two pathogens in planta. Further, we present evidence that the aclp1 mutant is deficient in ethylene production upon flg22 treatment, while the pp2-b13 mutant is deficient in the production of reactive oxygen species (ROS). The results from this research provide new information for a better understanding of the immune system in Arabidopsis.
Collapse
Affiliation(s)
- Mehdi Safaeizadeh
- Department of Cellular and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
- Zürich-Basel Plant Science Center, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Thomas Boller
- Zürich-Basel Plant Science Center, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Claude Becker
- LMU Biocentre, Faculty of Biology, Ludwig-Maximilian-University Munich, Martinsried, Germany
| |
Collapse
|
2
|
Kaur D, Schedl A, Lafleur C, Martinez Henao J, van Dam NM, Rivoal J, Bede JC. Arabidopsis Transcriptomics Reveals the Role of Lipoxygenase2 (AtLOX2) in Wound-Induced Responses. Int J Mol Sci 2024; 25:5898. [PMID: 38892085 PMCID: PMC11173247 DOI: 10.3390/ijms25115898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
In wounded Arabidopsis thaliana leaves, four 13S-lipoxygenases (AtLOX2, AtLOX3, AtLOX4, AtLOX6) act in a hierarchical manner to contribute to the jasmonate burst. This leads to defense responses with LOX2 playing an important role in plant resistance against caterpillar herb-ivory. In this study, we sought to characterize the impact of AtLOX2 on wound-induced phytohormonal and transcriptional responses to foliar mechanical damage using wildtype (WT) and lox2 mutant plants. Compared with WT, the lox2 mutant had higher constitutive levels of the phytohormone salicylic acid (SA) and enhanced expression of SA-responsive genes. This suggests that AtLOX2 may be involved in the biosynthesis of jasmonates that are involved in the antagonism of SA biosynthesis. As expected, the jasmonate burst in response to wounding was dampened in lox2 plants. Generally, 1 h after wounding, genes linked to jasmonate biosynthesis, jasmonate signaling attenuation and abscisic acid-responsive genes, which are primarily involved in wound sealing and healing, were differentially regulated between WT and lox2 mutants. Twelve h after wounding, WT plants showed stronger expression of genes associated with plant protection against insect herbivory. This study highlights the dynamic nature of jasmonate-responsive gene expression and the contribution of AtLOX2 to this pathway and plant resistance against insects.
Collapse
Affiliation(s)
- Diljot Kaur
- Department of Plant Science, McGill University, 21,111 rue Lakeshore, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada; (D.K.); (J.M.H.)
- Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 rue Sherbrooke E., Montréal, QC H1X 2B2, Canada;
| | - Andreas Schedl
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 52, 04103 Leipzig, Germany (N.M.v.D.)
- Institute of Biodiversity, Friedrich Schiller University Jena, 07743 Jena, Germany
- German Biomass Research Centre (DBFZ), Torgauer Straße 116, 04347 Leipzig, Germany
| | - Christine Lafleur
- Department of Animal Science, McGill University, 21,111 rue Lakeshore, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada;
| | - Julian Martinez Henao
- Department of Plant Science, McGill University, 21,111 rue Lakeshore, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada; (D.K.); (J.M.H.)
| | - Nicole M. van Dam
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 52, 04103 Leipzig, Germany (N.M.v.D.)
- Institute of Biodiversity, Friedrich Schiller University Jena, 07743 Jena, Germany
- Leibniz Institute for Vegetable and Ornamental Crops (IGZ), Theodor-Echtermeyerweg-1, 14979 Großbeeren, Germany
| | - Jean Rivoal
- Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 rue Sherbrooke E., Montréal, QC H1X 2B2, Canada;
| | - Jacqueline C. Bede
- Department of Plant Science, McGill University, 21,111 rue Lakeshore, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada; (D.K.); (J.M.H.)
| |
Collapse
|
3
|
Wei F, Chen P, Jian H, Guo X, Lv X, Lian B, Sun M, An L, Dang X, Yang M, Wu H, Zhang N, Wu A, Wang H, Ma L, Fu X, Lu J, Yu S, Wei H. A systematic analysis of the phloem protein 2 (PP2) proteins in Gossypium hirsutum reveals that GhPP2-33 regulates salt tolerance. BMC Genomics 2023; 24:467. [PMID: 37596513 PMCID: PMC10439568 DOI: 10.1186/s12864-023-09546-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 07/29/2023] [Indexed: 08/20/2023] Open
Abstract
BACKGROUND Phloem protein 2 (PP2) proteins play a vital role in the Phloem-based defense (PBD) and participate in many abiotic and biotic stress. However, research on PP2 proteins in cotton is still lacking. RESULTS A total of 25, 23, 43, and 47 PP2 genes were comprehensively identified and characterized in G.arboretum, G.raimondii, G.barbadense, and G.hirsutum. The whole genome duplication (WGD) and allopolyploidization events play essential roles in the expansion of PP2 genes. The promoter regions of GhPP2 genes contain many cis-acting elements related to abiotic stress and the weighted gene co-expression network analysis (WGCNA) analysis displayed that GhPP2s could be related to salt stress. The qRT-PCR assays further confirmed that GhPP2-33 could be dramatically upregulated during the salt treatment. And the virus-induced gene silencing (VIGS) experiment proved that the silencing of GhPP2-33 could decrease salt tolerance. CONCLUSIONS The results in this study not only offer new perspectives for understanding the evolution of PP2 genes in cotton but also further explore their function under salt stress.
Collapse
Affiliation(s)
- Fei Wei
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Zhengzhou University, Zhengzhou, 450001, China
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research of CAAS, Anyang, 455000, China
| | - Pengyun Chen
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research of CAAS, Anyang, 455000, China
| | - Hongliang Jian
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research of CAAS, Anyang, 455000, China
| | - Xiaohao Guo
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research of CAAS, Anyang, 455000, China
| | - Xiaoyan Lv
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research of CAAS, Anyang, 455000, China
| | - Boying Lian
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research of CAAS, Anyang, 455000, China
| | - Mengxi Sun
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research of CAAS, Anyang, 455000, China
| | - Li An
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research of CAAS, Anyang, 455000, China
| | - Xinyu Dang
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research of CAAS, Anyang, 455000, China
| | - Miaoqian Yang
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research of CAAS, Anyang, 455000, China
| | - Hongmei Wu
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research of CAAS, Anyang, 455000, China
| | - Nan Zhang
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research of CAAS, Anyang, 455000, China
| | - Aimin Wu
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research of CAAS, Anyang, 455000, China
| | - Hantao Wang
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research of CAAS, Anyang, 455000, China
| | - Liang Ma
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research of CAAS, Anyang, 455000, China
| | - Xiaokang Fu
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research of CAAS, Anyang, 455000, China
| | - Jianhua Lu
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research of CAAS, Anyang, 455000, China
| | - Shuxun Yu
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research of CAAS, Anyang, 455000, China.
| | - Hengling Wei
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Zhengzhou University, Zhengzhou, 450001, China.
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research of CAAS, Anyang, 455000, China.
| |
Collapse
|
4
|
Zhang S, Wang X, He J, Zhang S, Zhao T, Fu S, Zhou C. A Sec-dependent effector, CLIBASIA_04425, contributes to virulence in ' Candidatus Liberibater asiaticus'. FRONTIERS IN PLANT SCIENCE 2023; 14:1224736. [PMID: 37554557 PMCID: PMC10405523 DOI: 10.3389/fpls.2023.1224736] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/05/2023] [Indexed: 08/10/2023]
Abstract
Citrus Huanglongbing (HLB) is the most destructive citrus disease worldwide, mainly caused by 'Candidatus Liberibacter asiaticus' (CLas). It encodes a large number of Sec-dependent effectors that contribute to HLB progression. In this study, an elicitor triggering ROS burst and cell death in Nicotiana benthamiana, CLIBASIA_04425 (CLas4425), was identified. Of particular interest, its cell death-inducing activity is associated with its subcellular localization and the cytoplasmic receptor Botrytis-induced kinase 1 (BIK1). Compared with CLas infected psyllids, CLas4425 showed higher expression level in planta. The transient expression of CLas4425 in N. benthamiana and its overexpression in Citrus sinensis enhanced plant susceptibility to Pseudomonas syringae pv. tomato DC3000 ΔhopQ1-1 and CLas, respectively. Furthermore, the salicylic acid (SA) level along with the expression of genes NPR1/EDS1/NDR1/PRs in SA signal transduction was repressed in CLas4425 transgenic citrus plants. Taken together, CLas4425 is a virulence factor that promotes CLas proliferation, likely by interfering with SA-mediated plant immunity. The results obtained facilitate our understanding of CLas pathogenesis.
Collapse
Affiliation(s)
- Shushe Zhang
- Citrus Research Institute, Southwest University/National Citrus Engineering Research Center, Chongqing, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Chinese Academy of Agriculture Sciences, Institute of Plant Protection, Beijing, China
| | - Xuefeng Wang
- Citrus Research Institute, Southwest University/National Citrus Engineering Research Center, Chongqing, China
| | - Jun He
- Citrus Research Institute, Southwest University/National Citrus Engineering Research Center, Chongqing, China
| | - Song Zhang
- Guangxi Citrus Breeding and Cultivation Engineering Technology Center Academy of Specialty Crops, Guangxi, Guilin, China
| | - Tingchang Zhao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Chinese Academy of Agriculture Sciences, Institute of Plant Protection, Beijing, China
| | - Shimin Fu
- Citrus Research Institute, Southwest University/National Citrus Engineering Research Center, Chongqing, China
| | - Changyong Zhou
- Citrus Research Institute, Southwest University/National Citrus Engineering Research Center, Chongqing, China
| |
Collapse
|
5
|
Wojszko K, Różańska E, Sobczak M, Kuczerski K, Krępski T, Wiśniewska A. The role of AtPP2-A3 and AtPP2-A8 genes encoding Nictaba-related lectin domains in the defense response of Arabidopsis thaliana to Heterodera schachtii. PLANTA 2023; 258:40. [PMID: 37420105 PMCID: PMC10329053 DOI: 10.1007/s00425-023-04196-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/27/2023] [Indexed: 07/09/2023]
Abstract
MAIN CONCLUSION Expression levels of AtPP2-A3 and AtPP2-A8 are reduced in syncytia induced by Heterodera schachtii and decline of their expression levels decreases host susceptibility, whereas their overexpression promotes susceptibility to parasite. Plant-parasitic nematodes cause huge crop losses worldwide. Heterodera schachtii is a sedentary cyst-forming nematode that induces a feeding site called a syncytium via the delivery of secreted chemical substances (effectors) to host cells, which modulate host genes expression and phytohormone regulation patterns. Genes encoding the Nictaba-related lectin domain have been found among the plant genes with downregulated expression during the development of syncytia induced by H. schachtii in Arabidopsis thaliana roots. To investigate the role of two selected Nictaba-related genes in the plant response to beet cyst nematode parasitism, mutants and plants overexpressing AtPP2-A3 or AtPP2-A8 were infected, and promoter activity and protein localization were analyzed. In wild-type plants, AtPP2-A3 and AtPP2-A8 were expressed only in roots, especially in the cortex and rhizodermis. After nematode infection, their expression was switched off in regions surrounding a developing syncytium. Astonishingly, plants overexpressing AtPP2-A3 or AtPP2-A8 were more susceptible to nematode infection than wild-type plants, whereas mutants were less susceptible. Based on these results and changes in AtPP2-A3 and AtPP2-A8 expression patterns after treatments with different stress phytohormones, we postulate that the AtPP2-A3 and AtPP2-A8 genes play important roles in the defense response to beet cyst nematode infection.
Collapse
Affiliation(s)
- Kamila Wojszko
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences, SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Elżbieta Różańska
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences, SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Mirosław Sobczak
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences, SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Karol Kuczerski
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences, SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Tomasz Krępski
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences, SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Anita Wiśniewska
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences, SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland.
| |
Collapse
|
6
|
Yu Y, Zhang S, Yu Y, Cui N, Yu G, Zhao H, Meng X, Fan H. The pivotal role of MYB transcription factors in plant disease resistance. PLANTA 2023; 258:16. [PMID: 37311886 DOI: 10.1007/s00425-023-04180-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 06/06/2023] [Indexed: 06/15/2023]
Abstract
MAIN CONCLUSION MYB transcription factors are essential for diverse biology processes in plants. This review has focused on the potential molecular actions of MYB transcription factors in plant immunity. Plants possess a variety of molecules to defend against disease. Transcription factors (TFs) serve as gene connections in the regulatory networks controlling plant growth and defense against various stressors. As one of the largest TF families in plants, MYB TFs coordinate molecular players that modulate plant defense resistance. However, the molecular action of MYB TFs in plant disease resistance lacks a systematic analysis and summary. Here, we describe the structure and function of the MYB family in the plant immune response. Functional characterization revealed that MYB TFs often function either as positive or negative modulators towards different biotic stressors. Moreover, the MYB TF resistance mechanisms are diverse. The potential molecular actions of MYB TFs are being analyzed to uncover functions by controlling the expression of resistance genes, lignin/flavonoids/cuticular wax biosynthesis, polysaccharide signaling, hormone defense signaling, and the hypersensitivity response. MYB TFs have a variety of regulatory modes that fulfill pivotal roles in plant immunity. MYB TFs regulate the expression of multiple defense genes and are, therefore, important for increasing plant disease resistance and promoting agricultural production.
Collapse
Affiliation(s)
- Yongbo Yu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Shuo Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Yang Yu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Na Cui
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Guangchao Yu
- College of Chemistry and Life Sciences, Anshan Normal University, Anshan, China
| | - Hongyan Zhao
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Xiangnan Meng
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China.
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang Agricultural University, Shenyang, China.
| | - Haiyan Fan
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China.
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang Agricultural University, Shenyang, China.
| |
Collapse
|
7
|
Lu K, Zhang L, Qin L, Chen X, Wang X, Zhang M, Dong H. Importin β1 Mediates Nuclear Entry of EIN2C to Confer the Phloem-Based Defense against Aphids. Int J Mol Sci 2023; 24:ijms24108545. [PMID: 37239892 DOI: 10.3390/ijms24108545] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/28/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Ethylene Insensitive 2 (EIN2) is an integral membrane protein that regulates ethylene signaling towards plant development and immunity by release of its carboxy-terminal functional portion (EIN2C) into the nucleus. The present study elucidates that the nuclear trafficking of EIN2C is induced by importin β1, which triggers the phloem-based defense (PBD) against aphid infestations in Arabidopsis. In plants, IMPβ1 interacts with EIN2C to facilitate EIN2C trafficking into the nucleus, either by ethylene treatment or by green peach aphid infestation, to confer EIN2-dependent PBD responses, which, in turn, impede the phloem-feeding activity and massive infestation by the aphid. In Arabidopsis, moreover, constitutively expressed EIN2C can complement the impβ1 mutant regarding EIN2C localization to the plant nucleus and the subsequent PBD development in the concomitant presence of IMPβ1 and ethylene. As a result, the phloem-feeding activity and massive infestation by green peach aphid were highly inhibited, indicating the potential value of EIN2C in protecting plants from insect attacks.
Collapse
Affiliation(s)
- Kai Lu
- State Key Laboratory of Crop Biology, College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| | - Liyuan Zhang
- State Key Laboratory of Crop Biology, College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| | - Lina Qin
- State Key Laboratory of Crop Biology, College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| | - Xiaochen Chen
- State Key Laboratory of Crop Biology, College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| | - Xiaobing Wang
- Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, Danzhou 571737, China
| | - Meixiang Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an 710019, China
| | - Hansong Dong
- State Key Laboratory of Crop Biology, College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| |
Collapse
|
8
|
Si Y, Fan H, Lu H, Li Y, Guo Y, Liu C, Chai L, Du C. Cucumis sativus PHLOEM PROTEIN 2-A1 like gene positively regulates salt stress tolerance in cucumber seedlings. PLANT MOLECULAR BIOLOGY 2023; 111:493-504. [PMID: 37016105 DOI: 10.1007/s11103-023-01336-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 01/27/2023] [Indexed: 06/19/2023]
Abstract
PHLOEM PROTEIN 2-A1 like (PP2-A1) gene is a member of the PP2 multigene family, and the protein encoded by which has the function of stress defense. Based on our previous proteomic study of cucumber phloem sap, CsPP2-A1 protein expression was significantly enriched under salt stress. In this paper, we obtained CsPP2-A1 interfering (CsPP2-A1-RNAi) cucumber by Agrobacterium tumefaciens-mediated method. The phenotypic changes of wild-type (WT) cucumber, CsPP2-A1-overexpressing (OE) cucumber, and CsPP2-A1-RNAi cucumber under salt treatment were observed and compared. Furthermore, physiological indicators were measured in four aspects: osmoregulation, membrane permeability, antioxidant system, and photosynthetic system. The analysis of contribution and correlation for each variable were conducted by principal component analysis (PCA) and Pearson's correlation coefficient. The above results showed that CsPP2-A1-RNAi cucumber plants exhibited weaker salt tolerance compared to WT cucumber and CsPP2-A1-OE cucumber plants in terms of phenotype and physiological indicators in response to salt stress, while CsPP2-A1-OE cucumber always showed the robust salt tolerance. Together, these results indicated that CsPP2-A1 brought a salinity tolerance ability to cucumber through osmoregulation and reactive oxygen species (ROS) homeostasis. The results of the study provided evidence for the function of CsPP2-A1 in plant salt tolerance enhancement, and they will serve as a reference for future salt-tolerant cucumber genetic manipulation.
Collapse
Affiliation(s)
- Yuyang Si
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Huaifu Fan
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Hongjie Lu
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Yapeng Li
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Yuting Guo
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Chen Liu
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Li'ang Chai
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Changxia Du
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China.
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China.
| |
Collapse
|
9
|
The phloem lectin PP2-A1 enhances aphid resistance by affecting aphid behavior and maintaining ROS homeostasis in cucumber plants. Int J Biol Macromol 2023; 229:432-442. [PMID: 36581040 DOI: 10.1016/j.ijbiomac.2022.12.248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/02/2022] [Accepted: 12/21/2022] [Indexed: 12/27/2022]
Abstract
Aphid (Aphis gossypii Glover) attack frequently results in a significant loss of output and deterioration of fruit quality in cucumber (Cucumis sativus L.). Phloem protein 2 (PP2) is conserved as a phloem lectin in plants, and few studies have been conducted on the regulatory mechanism of PP2. Based on our previous study of CsPP2-A1 in cucumber, to further investigate the biological function of CsPP2-A1, we compared the changes of selectivity, non-selectivity, colonization, reproductions of aphids, and the phenotype in wild type (WT), CsPP2-A1 overexpressing (CsPP2-A1-OE), and CsPP2-A1 interfering (CsPP2-A1-RNAi) cucumber plants after inoculation with aphids. We found that CsPP2-A1-OE cucumber plants generated resistance to aphids. The aphid colonization rate and number of reproductions of CsPP2-A1-OE cucumber plants were significantly lower than that of WT and CsPP2-A1-RNAi cucumber plants. Through Pearson's correlation and principal component analysis (PCA), it was found that CsPP2-A1 played a crucial role in the balance of reactive oxygen species (ROS) in plants. Overexpression of the CsPP2-A1 resulted in increased levels of antioxidant enzyme, eliminating ROS and preventing the damage by ROS in cucumber. Furthermore, nutritional imbalance for aphids and content of secondary metabolites were increased in overexpressed CsPP2-A1 cucumber plants, and thus preventing aphid attack. These together may improve cucumber resistance against aphids and the mechanism of CsPP2-A1 defense against aphids was preliminarily explored.
Collapse
|
10
|
Bobbili KB, Sivaji N, Priya B, Suguna K, Surolia A. Structure and interactions of the phloem lectin (phloem protein 2) Cus17 from Cucumis sativus. Structure 2023; 31:464-479.e5. [PMID: 36882058 DOI: 10.1016/j.str.2023.02.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/28/2022] [Accepted: 02/08/2023] [Indexed: 03/08/2023]
Abstract
Phloem protein 2 (PP2) contributes crucially to phloem-based defense in plants by binding to carbohydrates displayed by pathogens. However, its three-dimensional structure and the sugar binding site remained unexplored. Here, we report the crystal structure of the dimeric PP2 Cus17 from Cucumis sativus in its apo form and complexed with nitrobenzene, N-acetyllactosamine, and chitotriose. Each protomer of Cus17 consists of two antiparallel four-stranded twisted β sheets, a β hairpin, and three short helices forming a β sandwich architectural fold. This structural fold has not been previously observed in other plant lectin families. Structure analysis of the lectin-carbohydrate complexes reveals an extended carbohydrate binding site in Cus17, composed mostly of aromatic amino acids. Our studies suggest a highly conserved tertiary structure and a versatile binding site capable of recognizing motifs common to diverse glycans on plant pathogens/pests, which makes the PP2 family suited for phloem-based plant defense.
Collapse
Affiliation(s)
- Kishore Babu Bobbili
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| | - Nukathoti Sivaji
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| | - Badma Priya
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| | - Kaza Suguna
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| | - Avadhesha Surolia
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India.
| |
Collapse
|
11
|
Wang P, Zhao F, Zheng T, Liu Z, Ji X, Zhang Z, Pervaiz T, Shangguan L, Fang J. Whole-genome re-sequencing, diversity analysis, and stress-resistance analysis of 77 grape rootstock genotypes. FRONTIERS IN PLANT SCIENCE 2023; 14:1102695. [PMID: 36844076 PMCID: PMC9947647 DOI: 10.3389/fpls.2023.1102695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Grape rootstocks play critical role in the development of the grape industry over the globe for their higher adaptability to various environments, and the evaluation of their genetic diversity among grape genotypes is necessary to the conservation and utility of genotypes. METHODS To analyze the genetic diversity of grape rootstocks for a better understanding multiple resistance traits, whole-genome re-sequencing of 77 common grape rootstock germplasms was conducted in the present study. RESULTS About 645 billion genome sequencing data were generated from the 77 grape rootstocks at an average depth of ~15.5×, based on which the phylogenic clusters were generated and the domestication of grapevine rootstocks was explored. The results indicated that the 77 rootstocks originated from five ancestral components. Through phylogenetic, principal components, and identity-by-descent (IBD) analyses, these 77 grape rootstocks were assembled into ten groups. It is noticed that the wild resources of V. amurensis and V. davidii, originating from China and being generally considered to have stronger resistance against biotic and abiotic stresses, were sub-divided from the other populations. Further analysis indicated that a high level of linkage disequilibrium was found among the 77 rootstock genotypes, and a total of 2,805,889 single nucleotide polymorphisms (SNPs) were excavated, GWAS analysis among the grape rootstocks located 631, 13, 9, 2, 810, and 44 SNP loci that were responsible to resistances to phylloxera, root-knot nematodes, salt, drought, cold and waterlogging traits. DISCUSSION This study generated a significant amount of genomic data from grape rootstocks, thus providing a theoretical basis for further research on the resistance mechanism of grape rootstocks and the breeding of resistant varieties. These findings also reveal that China originated V. amurensis and V. davidii could broaden the genetic background of grapevine rootstocks and be important germplasm used in breeding high stress-resistant grapevine rootstocks.
Collapse
Affiliation(s)
- Peipei Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Fanggui Zhao
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Ting Zheng
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Zhongjie Liu
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Xinglong Ji
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Zhichang Zhang
- Shandong Zhichang Agricultural Science and Technology Development Co. LTD, Rizhao, China
| | - Tariq Pervaiz
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA, United States
| | - Lingfei Shangguan
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Jinggui Fang
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
12
|
Le Provost G, Brachi B, Lesur I, Lalanne C, Labadie K, Aury JM, Da Silva C, Postolache D, Leroy T, Plomion C. Gene expression and genetic divergence in oak species highlight adaptive genes to soil water constraints. PLANT PHYSIOLOGY 2022; 190:2466-2483. [PMID: 36066428 PMCID: PMC9706432 DOI: 10.1093/plphys/kiac420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
Drought and waterlogging impede tree growth and may even lead to tree death. Oaks, an emblematic group of tree species, have evolved a range of adaptations to cope with these constraints. The two most widely distributed European species, pedunculate (PO; Quercus robur L.) and sessile oak (SO; Quercus petraea Matt. Lieb), have overlapping ranges, but their respective distribution are highly constrained by local soil conditions. These contrasting ecological preferences between two closely related and frequently hybridizing species constitute a powerful model to explore the functional bases of the adaptive responses in oak. We exposed oak seedlings to waterlogging and drought, conditions typically encountered by the two species in their respective habitats, and studied changes in gene expression in roots using RNA-seq. We identified genes that change in expression between treatments differentially depending on species. These "species × environment"-responsive genes revealed adaptive molecular strategies involving adventitious and lateral root formation, aerenchyma formation in PO, and osmoregulation and ABA regulation in SO. With this experimental design, we also identified genes with different expression between species independently of water conditions imposed. Surprisingly, this category included genes with functions consistent with a role in intrinsic reproductive barriers. Finally, we compared our findings with those for a genome scan of species divergence and found that the expressional candidate genes included numerous highly differentiated genetic markers between the two species. By combining transcriptomic analysis, gene annotation, pathway analyses, as well as genome scan for genetic differentiation among species, we were able to highlight loci likely involved in adaptation of the two species to their respective ecological niches.
Collapse
Affiliation(s)
| | | | - Isabelle Lesur
- INRAE, Univ. Bordeaux, BIOGECO, Cestas, F-33610, France
- Helix Venture, Mérignac, F-33700, France
| | | | - Karine Labadie
- Genoscope, Institut de Biologie François-Jacob, Commissariat à l'Energie Atomique (CEA), Université Paris-Saclay, Evry, 91057, France
| | - Jean-Marc Aury
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, 91057, France
| | - Corinne Da Silva
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, 91057, France
| | - Dragos Postolache
- National Institute for Research and Development in Forestry “Marin Drăcea”, Cluj Napoca Research Station, Cluj-Napoca, 400202, Romania
| | - Thibault Leroy
- INRAE, Univ. Bordeaux, BIOGECO, Cestas, F-33610, France
- IRHS-UMR1345, Université d’Angers, INRAE, Institut Agro, Beaucouzé, 49071, France
| | | |
Collapse
|
13
|
Chesnais Q, Golyaev V, Velt A, Rustenholz C, Brault V, Pooggin MM, Drucker M. Comparative Plant Transcriptome Profiling of Arabidopsis thaliana Col-0 and Camelina sativa var. Celine Infested with Myzus persicae Aphids Acquiring Circulative and Noncirculative Viruses Reveals Virus- and Plant-Specific Alterations Relevant to Aphid Feeding Behavior and Transmission. Microbiol Spectr 2022; 10:e0013622. [PMID: 35856906 PMCID: PMC9430646 DOI: 10.1128/spectrum.00136-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 06/19/2022] [Indexed: 11/20/2022] Open
Abstract
Evidence is accumulating that plant viruses alter host plant traits in ways that modify their insect vectors' behavior. These alterations often enhance virus transmission, which has led to the hypothesis that these effects are manipulations caused by viral adaptation. However, we lack a mechanistic understanding of the genetic basis of these indirect, plant-mediated effects on vectors, their dependence on the plant host, and their relation to the mode of virus transmission. Transcriptome profiling of Arabidopsis thaliana and Camelina sativa plants infected with turnip yellows virus (TuYV) or cauliflower mosaic virus (CaMV) and infested with the common aphid vector Myzus persicae revealed strong virus- and host-specific differences in gene expression patterns. CaMV infection caused more severe effects on the phenotype of both plant hosts than did TuYV infection, and the severity of symptoms correlated strongly with the proportion of differentially expressed genes, especially photosynthesis genes. Accordingly, CaMV infection modified aphid behavior and fecundity more strongly than did infection with TuYV. Overall, infection with CaMV, relying on the noncirculative transmission mode, tends to have effects on metabolic pathways, with strong potential implications for insect vector-plant host interactions (e.g., photosynthesis, jasmonic acid, ethylene, and glucosinolate biosynthetic processes), while TuYV, using the circulative transmission mode, alters these pathways only weakly. These virus-induced deregulations of genes that are related to plant physiology and defense responses might impact both aphid probing and feeding behavior on infected host plants, with potentially distinct effects on virus transmission. IMPORTANCE Plant viruses change the phenotype of their plant hosts. Some of the changes impact interactions of the plant with insects that feed on the plants and transmit these viruses. These modifications may result in better virus transmission. We examine here the transcriptomes of two plant species infected with two viruses with different transmission modes to work out whether there are plant species-specific and transmission mode-specific transcriptome changes. Our results show that both are the case.
Collapse
Affiliation(s)
- Quentin Chesnais
- SVQV, UMR1131, INRAE Centre Grand Est–Colmar, Université Strasbourg, Strasbourg, France
| | - Victor Golyaev
- PHIM Plant Health Institute, Université Montpellier, INRAE, CIRAD, IRD, Institut Agro, Montpellier, France
| | - Amandine Velt
- SVQV, UMR1131, INRAE Centre Grand Est–Colmar, Université Strasbourg, Strasbourg, France
| | - Camille Rustenholz
- SVQV, UMR1131, INRAE Centre Grand Est–Colmar, Université Strasbourg, Strasbourg, France
| | - Véronique Brault
- SVQV, UMR1131, INRAE Centre Grand Est–Colmar, Université Strasbourg, Strasbourg, France
| | - Mikhail M. Pooggin
- PHIM Plant Health Institute, Université Montpellier, INRAE, CIRAD, IRD, Institut Agro, Montpellier, France
| | - Martin Drucker
- SVQV, UMR1131, INRAE Centre Grand Est–Colmar, Université Strasbourg, Strasbourg, France
| |
Collapse
|
14
|
Twayana M, Girija AM, Mohan V, Shah J. Phloem: At the center of action in plant defense against aphids. JOURNAL OF PLANT PHYSIOLOGY 2022; 273:153695. [PMID: 35468314 DOI: 10.1016/j.jplph.2022.153695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 04/04/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
The location of the phloem deep inside the plant, the high hydrostatic pressure in the phloem, and the composition of phloem sap, which is rich in sugar with a high C:N ratio, allows phloem sap feeding insects to occupy a unique ecological niche. The anatomy and physiology of aphids, a large group of phytophagous insects that use their mouthparts, which are modified into stylets, to consume large amounts of phloem sap, has allowed aphids to successfully exploit this niche, however, to the detriment of agriculture and horticulture. The ability to reproduce asexually, a short generation time, the development of resistance to commonly used insecticides, and their ability to vector viral diseases makes aphids among the most damaging pests of plants. Here we review how plants utilize their ability to occlude sieve elements and accumulate antibiotic and antinutritive factors in the phloem sap to limit aphid infestation. In addition, we summarize progress on understanding how plants perceive aphids to activate defenses in the phloem.
Collapse
Affiliation(s)
- Moon Twayana
- Department of Biological Sciences and BioDiscovery Institute, University of North Texas, Denton, TX, 76210, USA.
| | - Anil M Girija
- Department of Biological Sciences and BioDiscovery Institute, University of North Texas, Denton, TX, 76210, USA.
| | - Vijee Mohan
- Department of Biological Sciences and BioDiscovery Institute, University of North Texas, Denton, TX, 76210, USA.
| | - Jyoti Shah
- Department of Biological Sciences and BioDiscovery Institute, University of North Texas, Denton, TX, 76210, USA.
| |
Collapse
|
15
|
Zuo R, Xie M, Gao F, Sumbal W, Cheng X, Liu Y, Bai Z, Liu S. The Characterization of the Phloem Protein 2 Gene Family Associated with Resistance to Sclerotinia sclerotiorum in Brassica napus. Int J Mol Sci 2022; 23:3934. [PMID: 35409295 PMCID: PMC8999561 DOI: 10.3390/ijms23073934] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 02/04/2023] Open
Abstract
In plants, phloem is not only a vital structure that is used for nutrient transportation, but it is also the location of a response that defends against various stresses, named phloem-based defense (PBD). Phloem proteins (PP2s) are among the predominant proteins in phloem, indicating their potential functional role in PBD. Sclerotinia disease (SD), which is caused by the necrotrophic fungal pathogen S. sclerotiorum (Sclerotinia sclerotiorum), is a devastating disease that affects oil crops, especially Brassica napus (B. napus), mainly by blocking nutrition and water transportation through xylem and phloem. Presently, the role of PP2s in SD resistance is still largely estimated. Therefore, in this study, we identified 62 members of the PP2 gene family in the B. napus genome with an uneven distribution across the 19 chromosomes. A phylogenetic analysis classified the BnPP2s into four clusters (I-IV), with cluster I containing the most members (28 genes) as a consequence of its frequent genome segmental duplication. A comparison of the gene structures and conserved motifs suggested that BnPP2 genes were well conserved in clusters II to IV, but were variable in cluster I. Interestingly, the motifs in different clusters displayed unique features, such as motif 6 specifically existing in cluster III and motif 1 being excluded from cluster IV. These results indicated the possible functional specification of BnPP2s. A transcriptome data analysis showed that the genes in clusters II to IV exhibited dynamic expression alternation in tissues and the stimulation of S. sclerotiorum, suggesting that they could participate in SD resistance. A GWAS analysis of a rapeseed population comprising 324 accessions identified four BnPP2 genes that were potentially responsible for SD resistance and a transgenic study that was conducted by transiently expressing BnPP2-6 in tobacco (Nicotiana tabacum) leaves validated their positive role in regulating SD resistance in terms of reduced lesion size after inoculation with S. sclerotiorum hyphal plugs. This study provides useful information on PP2 gene functions in B. napus and could aid elaborated functional studies on the PP2 gene family.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zetao Bai
- Key Laboratory of Biology and Genetics Improvement of Oil Crops, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China; (R.Z.); (M.X.); (F.G.); (W.S.); (X.C.); (Y.L.); (S.L.)
| | | |
Collapse
|
16
|
De Coninck T, Van Damme EJM. Review: The multiple roles of plant lectins. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 313:111096. [PMID: 34763880 DOI: 10.1016/j.plantsci.2021.111096] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 10/14/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
For decades, the biological roles of plant lectins remained obscure and subject to speculation. With the advent of technological and scientific progress, researchers have compiled a vast amount of information regarding the structure, biological activities and functionality of hundreds of plant lectins. Data mining of genomes and transcriptome sequencing and high-throughput analyses have resulted in new insights. This review aims to provide an overview of what is presently known about plant lectins, highlighting their versatility and the importance of plant lectins for a multitude of biological processes, such as plant development, immunity, stress signaling and regulation of gene expression. Though lectins primarily act as readers of the glycocode, the multiple roles of plant lectins suggest that their functionality goes beyond carbohydrate-recognition.
Collapse
Affiliation(s)
- Tibo De Coninck
- Laboratory of Glycobiology & Biochemistry, Dept. of Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| | - Els J M Van Damme
- Laboratory of Glycobiology & Biochemistry, Dept. of Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| |
Collapse
|
17
|
Sanden NC, Schulz A. Stationary sieve element proteins. JOURNAL OF PLANT PHYSIOLOGY 2021; 266:153511. [PMID: 34537466 DOI: 10.1016/j.jplph.2021.153511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/13/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
Vascular plants use the phloem to move sugars and other molecules from source leaves to sink organs such as roots and fruits. Within the phloem, enucleate sieve elements provide the low-resistance pipe system that enable bulk flow of sap. In this review, we provide an overview of the highly specific protein machinery that localize to mature sieve elements without entering the phloem translocation stream. Generally, the proteins either maintain the flow, protect the sieve element against pathogens or transmit system wide signals. A notable exception is found in poppy, where part of the opium biosynthesis is compartmentalized in sieve elements. Biosynthesis of sieve element proteins happens either continuously in companion cell or transiently in immature sieve elements before nuclear disintegration. The latter population is translated during differentiation and stays functional without turnover during the entire lifespan of sieve elements. We discuss how protein longevity imposes some interesting restrictions on plants, especially in arborescent monocots with long living sieve elements.
Collapse
Affiliation(s)
- Niels Christian Sanden
- DynaMo Center, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark; Section for Transport Biology, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Alexander Schulz
- DynaMo Center, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark; Section for Transport Biology, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark.
| |
Collapse
|
18
|
Shi S, Wang H, Nie L, Tan D, Zhou C, Zhang Q, Li Y, Du B, Guo J, Huang J, Wu D, Zheng X, Guan W, Shan J, Zhu L, Chen R, Xue L, Walling LL, He G. Bph30 confers resistance to brown planthopper by fortifying sclerenchyma in rice leaf sheaths. MOLECULAR PLANT 2021; 14:1714-1732. [PMID: 34246801 DOI: 10.1016/j.molp.2021.07.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/24/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
Phloem-feeding insects cause massive losses in agriculture and horticulture. Host plant resistance to phloem-feeding insects is often mediated by changes in phloem composition, which deter insect settling and feeding and decrease viability. Here, we report that rice plant resistance to the phloem-feeding brown planthopper (BPH) is associated with fortification of the sclerenchyma tissue, which is located just beneath the epidermis and a cell layer or two away from the vascular bundle in the rice leaf sheath. We found that BPHs prefer to feed on the smooth and soft region on the surface of rice leaf sheaths called the long-cell block. We identified Bph30 as a rice BPH resistance gene that prevents BPH stylets from reaching the phloem due to the fortified sclerenchyma. Bph30 is strongly expressed in sclerenchyma cells and enhances cellulose and hemicellulose synthesis, making the cell walls stiffer and sclerenchyma thicker. The structurally fortified sclerenchyma is a formidable barrier preventing BPH stylets from penetrating the leaf sheath tissues and arriving at the phloem to feed. Bph30 belongs to a novel gene family, encoding a protein with two leucine-rich domains. Another member of the family, Bph40, also conferred resistance to BPH. Collectively, the fortified sclerenchyma-mediated resistance mechanism revealed in this study expands our understanding of plant-insect interactions and opens a new path for controlling planthoppers in rice.
Collapse
Affiliation(s)
- Shaojie Shi
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Huiying Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Lingyun Nie
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Di Tan
- The Institute of Technological Science, School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
| | - Cong Zhou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Qian Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yi Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Bo Du
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jianping Guo
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jin Huang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Di Wu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xiaohong Zheng
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Wei Guan
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Junhan Shan
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Lili Zhu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Rongzhi Chen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Longjian Xue
- The Institute of Technological Science, School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
| | - Linda L Walling
- Department of Botany and Plant Sciences, University of CaliforniaA, Riverside, CA 92521, USA
| | - Guangcun He
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
19
|
Wang Z, Lü Q, Zhang L, Zhang M, Chen L, Zou S, Zhang C, Dong H. Aphid salivary protein Mp1 facilitates infestation by binding phloem protein 2-A1 in Arabidopsis. Biochem Biophys Res Commun 2021; 572:105-111. [PMID: 34364288 DOI: 10.1016/j.bbrc.2021.07.066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 10/20/2022]
Abstract
We have previously demonstrated that Arabidopsis (Arabidopsis thaliana) phloem protein PP2-A1 is an integral component of resistance to the green peach aphid (Myzus persicae). Here, we report that M. persicae overcomes the resistance of PP2-A1 by using the salivary protein Mp1 as an energetic effector and an interactor of AtPP2-A1. Using the RNA interference technique, we demonstrated that Mp1 plays an essential role in the phloem-feeding activity of M. persicae. When the Mp1 gene was silenced, aphids incurred serious impairments not only in phloem-feeding activity, but also in survival and fertility. In essence, phloem-feeding activity was attributed to the molecular interaction between Mp1 and AtPP2-A1. The Mp1 and AtPP2-A1 interactions were localized to plant cell membranes by co-immunoprecipitation and bimolecular fluorescence complementation experiments. Furthermore, the interaction was found to be required for aphid feeding on Arabidopsis phloem. Overall, our results suggest that Mp1 is an important effector of M. persicae and interacts with AtPP2-A1 to facilitate infestation in the plant tissue by this insect.
Collapse
Affiliation(s)
- Zhen Wang
- Plant Growth and Defense Signaling Laboratory, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Qingyun Lü
- College of Plant Protection, Shandong Agricultural University, Taian, 271018, China.
| | - Liyuan Zhang
- College of Plant Protection, Shandong Agricultural University, Taian, 271018, China; State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018, China.
| | - Mou Zhang
- Plant Growth and Defense Signaling Laboratory, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Lei Chen
- College of Plant Protection, Shandong Agricultural University, Taian, 271018, China; State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018, China.
| | - Shenshen Zou
- College of Plant Protection, Shandong Agricultural University, Taian, 271018, China; State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018, China.
| | - Chunling Zhang
- Plant Growth and Defense Signaling Laboratory, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Hansong Dong
- College of Plant Protection, Shandong Agricultural University, Taian, 271018, China; State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018, China.
| |
Collapse
|
20
|
Munir S, Ahmed A, Li Y, He P, Singh BK, He P, Li X, Asad S, Wu Y, He Y. The hidden treasures of citrus: finding Huanglongbing cure where it was lost. Crit Rev Biotechnol 2021; 42:634-649. [PMID: 34325576 DOI: 10.1080/07388551.2021.1942780] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Huanglongbing (HLB), a deadly citrus disease which has significantly downsized the entire industry worldwide. The intractable and incurable disease has brought the citriculture an enormous loss of productivity. With no resistant varieties available, failure of chemical treatments despite repeated applications, and hazardous consequences to environmental health, have led to large-scale research to find a sustainable cure. Inside plants, the key determinants of health and safety, live the endophytic microbes. Endophytes possess unrivaled plant benefiting properties. The progression of HLB is known to cause disturbance in endophytic bacterial communities. Given the importance of the plant endophytic microbiome in disease progression, the notion of engineering microbiomes through indigenous endophytes is attracting scientific attention which is considered revolutionary as it precludes the incompatibility concerns associated with the use of alien (microbes from other plant species) endophytes. In this review, we briefly discuss the transformation of the plant-pathogen-environment to the plant-pathogen-microbial system in a disease triangle. We also argue the employment of indigenous endophytes isolated from a healthy state to engineer the diseased citrus endophytic microbiomes that can provide sustainable solution for vascular pathogens. We evaluated the plethora of microbiomes responses to the re-introduction of endophytes which leads to disease resistance in the citrus host. The idea is not merely confined to citrus-HLB, but it is globally applicable for tailoring a customized cure for general plant-pathogen systems particularly for the diseases caused by the vascular system-restricted pathogens.
Collapse
Affiliation(s)
- Shahzad Munir
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, P. R. China
| | - Ayesha Ahmed
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, P. R. China
| | - Yongmei Li
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, P. R. China
| | - Pengbo He
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, P. R. China
| | - Brajesh K Singh
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith South, Australia.,Global Centre for Land Based Innovation, Western Sydney University, Penrith South, Australia
| | - Pengfei He
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, P. R. China
| | - Xingyu Li
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, P. R. China
| | - Suhail Asad
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, P. R. China
| | - Yixin Wu
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, P. R. China.,College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, P. R. China
| | - Yueqiu He
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, P. R. China
| |
Collapse
|
21
|
Mondal S, Bobbili KB, Paul S, Swamy MJ. DSC and FCS Studies Reveal the Mechanism of Thermal and Chemical Unfolding of CIA17, a Polydisperse Oligomeric Protein from Coccinia Indica. J Phys Chem B 2021; 125:7117-7127. [PMID: 34167304 DOI: 10.1021/acs.jpcb.1c02120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The mechanism of thermal and chemical unfolding of Coccinia indica agglutinin (CIA17), a chitooligosacharide-specific phloem exudate lectin, was investigated by biophysical approaches. DSC studies revealed that the unfolding thermogram of CIA17 consists of three components (Tm ∼ 98, 106, and 109 °C), which could be attributed to the dissociation of protein oligomers into constituent dimers, dissociation of the dimers into monomers, and unfolding of the monomers. Intrinsic fluorescence studies on the chemical denaturation by guanidinium thiocyanate and guanidinium chloride indicated the presence of two distinct steps in the unfolding pathway, which could be assigned to dissociation of the dimeric protein into monomers and unfolding of the monomers. Results of fluorescence correlation spectroscopic studies could be interpreted in terms of the following model: CIA17 forms oligomeric structures in a concentration dependent manner, with the protein existing as a monomer below 1 nM concentration but associating to form dimers at higher concentrations (KD ≈ 2.9 nM). The dimers associate to yield tetramers with a KD of ∼50 μM, which further associate to form higher oligomers with further increase in concentration. These results are consistent with the proposed role of CIA17 as a key player in the defense response of the plant against microbes and insects.
Collapse
Affiliation(s)
- Saradamoni Mondal
- School of Chemistry, University of Hyderabad, Hyderabad-500 046, India
| | | | - Sumanta Paul
- School of Chemistry, University of Hyderabad, Hyderabad-500 046, India
| | - Musti J Swamy
- School of Chemistry, University of Hyderabad, Hyderabad-500 046, India
| |
Collapse
|
22
|
Escudero-Martinez C, Leybourne DJ, Bos JIB. Plant resistance in different cell layers affects aphid probing and feeding behaviour during non-host and poor-host interactions. BULLETIN OF ENTOMOLOGICAL RESEARCH 2021; 111:31-38. [PMID: 32539886 DOI: 10.1017/s0007485320000231] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Aphids are phloem-feeding insects that cause economic losses to crops globally. Whilst aphid interactions with susceptible plants and partially resistant genotypes have been well characterized, the interactions between aphids and non-host species are not well understood. Unravelling these non-host interactions can identify the mechanisms which contribute to plant resistance. Using contrasting aphid-host plant systems, including the broad host range pest Myzus persicae (host: Arabidopsis; poor-host: barley) and the cereal pest Rhopalosiphum padi (host: barley; non-host: Arabidopsis), we conducted a range of physiological experiments and compared aphid settling and probing behaviour on a host plant vs either a non-host or poor-host. In choice experiments, we observed that around 10% of aphids selected a non-host or poor-host plant species after 24 h. Using the Electrical Penetration Graph technique, we showed that feeding and probing behaviours differ during non-host and poor-host interactions when compared with a host interaction. In the Arabidopsis non-host interaction with the cereal pest R. padi aphids were unable to reach and feed on the phloem, with resistance likely residing in the mesophyll cell layer. In the barley poor-host interaction with M. persicae, resistance is likely phloem-based as phloem ingestion was reduced compared with the host interaction. Overall, our data suggest that plant resistance to aphids in non-host and poor-host interactions with these aphid species likely resides in different plant cell layers. Future work will take into account specific cell layers where resistances are based to dissect the underlying mechanisms and gain a better understanding of how we may improve crop resistance to aphids.
Collapse
Affiliation(s)
- Carmen Escudero-Martinez
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
- Division of Plant Sciences, School of Life Sciences, University of Dundee, Dundee, Scotland
| | - Daniel J Leybourne
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
- Division of Plant Sciences, School of Life Sciences, University of Dundee, Dundee, Scotland
| | - Jorunn I B Bos
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
- Division of Plant Sciences, School of Life Sciences, University of Dundee, Dundee, Scotland
| |
Collapse
|
23
|
Romero-Pérez A, Ameye M, Audenaert K, Van Damme EJM. Overexpression of F-Box Nictaba Promotes Defense and Anthocyanin Accumulation in Arabidopsis thaliana After Pseudomonas syringae Infection. FRONTIERS IN PLANT SCIENCE 2021; 12:692606. [PMID: 34394146 PMCID: PMC8358183 DOI: 10.3389/fpls.2021.692606] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/28/2021] [Indexed: 05/12/2023]
Abstract
Pseudomonas syringae pv. tomato DC3000 (Pst DC3000) is a well-known pathogen and model organism used to study plant-pathogen interactions and subsequent plant immune responses. Numerous studies have demonstrated the effect of Pst DC3000 on Arabidopsis plants and how type III effectors are required to promote bacterial virulence and pathogenesis. F-Box Nictaba (encoded by At2g02360) is a stress-inducible lectin that is upregulated in Arabidopsis thaliana leaves after Pst DC3000 infection. In this study, a flood inoculation assay was optimized to check the performance of transgenic Arabidopsis seedlings with different expression levels of F-Box Nictaba after bacterial infection. Using a combination of multispectral and fluorescent imaging combined with molecular techniques, disease symptoms, transcript levels for F-Box Nictaba, and disease-related genes were studied in Arabidopsis leaves infected with two virulent strains: Pst DC3000 and its mutant strain, deficient in flagellin ΔfliC. Analyses of plants infected with fluorescently labeled Pst DC3000 allowed us to study the differences in bacterial colonization between plant lines. Overexpression plants showed a reduced bacterial content during the later stages of the infection. Our results show that overexpression of F-Box Nictaba resulted in reduced leaf damage after bacterial infections, whereas knockdown and knockout lines were not more susceptible to Pseudomonas infection than wild-type plants. In contrast to wild-type and knockout plants, overexpressing lines for F-Box Nictaba revealed a significant increase in anthocyanin content, better efficiency of photosystem II (Fv/Fm), and higher chlorophyll content after Pst DC3000 infection. Overexpression of F-Box Nictaba coincided with increased expression of salicylic acid (SA) related defense genes, confirming earlier data that showed that F-Box Nictaba is part of the SA-dependent defense against Pst DC3000 infection. Knockout lines yielded no discernible effects on plant symptoms after Pseudomonas infection suggesting possible gene redundancy between F-Box Nictaba genes.
Collapse
Affiliation(s)
- Andrea Romero-Pérez
- Laboratory of Biochemistry and Glycobiology, Department of Biotechnology, Ghent University, Ghent, Belgium
| | - Maarten Ameye
- Laboratory of Applied Mycology and Phenomics, Department of Plants and Crops, Ghent University, Ghent, Belgium
| | - Kris Audenaert
- Laboratory of Applied Mycology and Phenomics, Department of Plants and Crops, Ghent University, Ghent, Belgium
| | - Els J. M. Van Damme
- Laboratory of Biochemistry and Glycobiology, Department of Biotechnology, Ghent University, Ghent, Belgium
- *Correspondence: Els J. M. Van Damme
| |
Collapse
|
24
|
Mitsopoulou N, Lakiotis K, Golia EE, Khah EM, Pavli OI. Response of hrpZ Psph-transgenic N. benthamiana plants under cadmium stress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:3787-3796. [PMID: 32418109 DOI: 10.1007/s11356-020-09204-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 05/06/2020] [Indexed: 06/11/2023]
Abstract
The hrpZPsph gene from Pseudomonas syringae pv. phaseolicola, in its secretable form (SP/hrpZPsph), has previously proven capable of conferring resistance against rhizomania disease as well as abiotic stresses in Nicotiana benthamiana plants, while enhancing plant growth. This study aimed at investigating the response of SP/hrpZPsph-expressing plants under cadmium stress. Transgenic N. benthamiana lines, homozygous for the SP/hrpZPsph gene, and wild-type plants were exposed to Cd at different stress levels (0, 50, 100, 150 μΜ CdCl2). Plants' response to stress was assessed at germination and at the whole plant level on the basis of physiological and growth parameters, including seed germination percentage, shoot and root length, total chlorophyll content, fresh and dry root weight, as well as overall symptomatology, and Cd content in leaves and roots. At germination phase, significant differences were noted in germination rates and post-germination growth among stress levels, with Cd effects being in most cases analogous to the level applied but also among plant categories. Although seedling growth was adversely affected in all plant categories, especially at high stress level, lines #6 and #9 showed the lowest decrease in root and shoot length over control. The superiority of these lines was further manifested at the whole plant level by the absence of stress-attributed symptoms and the low or zero reduction in chlorophyll content. Interestingly, a differential tissue-specific Cd accumulation pattern was observed in wt- and hrpZPsph-plants, with the former showing an increased Cd content in leaves and the latter retaining Cd in the roots. These data are discussed in the context of possible mechanisms underlying the hrpZPsph-based Cd stress resistance.
Collapse
Affiliation(s)
- Nikoletta Mitsopoulou
- Department of Agriculture Crop Production and Rural Environment, School of Agricultural Sciences, University of Thessaly, 38446, Volos, Greece
| | - Kosmas Lakiotis
- Department of Agriculture Crop Production and Rural Environment, School of Agricultural Sciences, University of Thessaly, 38446, Volos, Greece
| | - Evangelia E Golia
- Department of Agriculture Crop Production and Rural Environment, School of Agricultural Sciences, University of Thessaly, 38446, Volos, Greece
| | - Ebrahim M Khah
- Department of Agriculture Crop Production and Rural Environment, School of Agricultural Sciences, University of Thessaly, 38446, Volos, Greece
| | - Ourania I Pavli
- Department of Agriculture Crop Production and Rural Environment, School of Agricultural Sciences, University of Thessaly, 38446, Volos, Greece.
| |
Collapse
|
25
|
Tolstyko EA, Lezzhov AA, Morozov SY, Solovyev AG. Phloem transport of structured RNAs: A widening repertoire of trafficking signals and protein factors. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 299:110602. [PMID: 32900440 DOI: 10.1016/j.plantsci.2020.110602] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/20/2020] [Accepted: 07/14/2020] [Indexed: 06/11/2023]
Abstract
The conducting sieve tubes of the phloem consist of sieve elements (SEs), which are enucleate cells incapable of transcription and translation. Nevertheless, SEs contain a large variety of RNAs, and long-distance RNA trafficking via the phloem has been documented. The phloem transport of certain RNAs, as well as the further unloading of these RNAs at target tissues, is essential for plant individual development and responses to environmental cues. The translocation of such RNAs via the phloem is believed to be directed by RNA structural elements serving as phloem transport signals (PTSs), which are recognized by proteins that direct the PTS-containing RNAs into the phloem translocation pathway. The ability of phloem transport has been reported for several classes of structured RNAs including viroids, genuine tRNAs, mRNAs with tRNA sequences embedded into mRNA untranslated regions, tRNA-like structures in the genomic RNAs of plant viruses, and micro-RNA (miRNA) precursors (pri-miRNA). Here, three distinct types of such RNAs are discussed, along with the proteins that may specifically interact with these structures in the phloem. Three-dimensional (3D) motifs, which are characteristic of imperfect RNA duplexes, are discussed as elements of phloem-mobile structured RNAs specifically recognized by proteins involved in phloem transport, thus serving as PTSs.
Collapse
Affiliation(s)
- Eugeny A Tolstyko
- Department of Virology, Biological Faculty, Moscow State University, Moscow, 119234, Russia
| | - Alexander A Lezzhov
- Faculty of Bioengineering and Bioinformatics, Moscow State University, Moscow, 119991, Russia
| | - Sergey Y Morozov
- Department of Virology, Biological Faculty, Moscow State University, Moscow, 119234, Russia; Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119992, Russia
| | - Andrey G Solovyev
- Department of Virology, Biological Faculty, Moscow State University, Moscow, 119234, Russia; Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119992, Russia; Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Moscow, 119991, Russia.
| |
Collapse
|
26
|
Natural variations at the Stay-Green gene promoter control lifespan and yield in rice cultivars. Nat Commun 2020; 11:2819. [PMID: 32499482 PMCID: PMC7272468 DOI: 10.1038/s41467-020-16573-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 05/06/2020] [Indexed: 11/08/2022] Open
Abstract
Increased grain yield will be critical to meet the growing demand for food, and could be achieved by delaying crop senescence. Here, via quantitative trait locus (QTL) mapping, we uncover the genetic basis underlying distinct life cycles and senescence patterns of two rice subspecies, indica and japonica. Promoter variations in the Stay-Green (OsSGR) gene encoding the chlorophyll-degrading Mg++-dechelatase were found to trigger higher and earlier induction of OsSGR in indica, which accelerated senescence of indica rice cultivars. The indica-type promoter is present in a progenitor subspecies O. nivara and thus was acquired early during the evolution of rapid cycling trait in rice subspecies. Japonica OsSGR alleles introgressed into indica-type cultivars in Korean rice fields lead to delayed senescence, with increased grain yield and enhanced photosynthetic competence. Taken together, these data establish that naturally occurring OsSGR promoter and related lifespan variations can be exploited in breeding programs to augment rice yield.
Collapse
|
27
|
Seasonality of interactions between a plant virus and its host during persistent infection in a natural environment. ISME JOURNAL 2019; 14:506-518. [PMID: 31664159 PMCID: PMC6976672 DOI: 10.1038/s41396-019-0519-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 08/17/2019] [Accepted: 08/25/2019] [Indexed: 11/08/2022]
Abstract
Persistent infection, wherein a pathogen is continually present in a host individual, is widespread in virus–host systems. However, little is known regarding how seasonal environments alter virus–host interaction during such metastability. We observed a lineage-to-lineage infection of the host plant Arabidopsis halleri with Turnip mosaic virus for 3 years without severe damage. Virus dynamics and virus–host interactions within hosts were highly season dependent. Virus accumulation in the newly formed leaves was temperature dependent and was suppressed during winter. Transcriptome analyses suggested that distinct defence mechanisms, i.e. salicylic acid (SA)-dependent resistance and RNA silencing, were predominant during spring and autumn, respectively. Transcriptomic difference between infected and uninfected plants other than defence genes appeared transiently only during autumn in upper leaves. However, the virus preserved in the lower leaves is transferred to the clonal offspring of the host plants during spring. In the linage-to-linage infection of the A. halleri–TuMV system, both host clonal reproduction and virus transmission into new clonal rosettes are secured during the winter–spring transition. How virus and host overwinter turned out to be critical for understanding a long-term virus–host interaction within hosts under temperate climates, and more generally, understanding seasonality provides new insight into ecology of plant viruses.
Collapse
|
28
|
Silva-Sanzana C, Celiz-Balboa J, Garzo E, Marcus SE, Parra-Rojas JP, Rojas B, Olmedo P, Rubilar MA, Rios I, Chorbadjian RA, Fereres A, Knox P, Saez-Aguayo S, Blanco-Herrera F. Pectin Methylesterases Modulate Plant Homogalacturonan Status in Defenses against the Aphid Myzus persicae. THE PLANT CELL 2019; 31:1913-1929. [PMID: 31126981 PMCID: PMC6713307 DOI: 10.1105/tpc.19.00136] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/29/2019] [Accepted: 05/20/2019] [Indexed: 05/18/2023]
Abstract
Because they suck phloem sap and act as vectors for phytopathogenic viruses, aphids pose a threat to crop yields worldwide. Pectic homogalacturonan (HG) has been described as a defensive element for plants during infections with phytopathogens. However, its role during aphid infestation remains unexplored. Using immunofluorescence assays and biochemical approaches, the HG methylesterification status and associated modifying enzymes during the early stage of Arabidopsis (Arabidopsis thaliana) infestation with the green peach aphid (Myzus persicae) were analyzed. Additionally, the influence of pectin methylesterase (PME) activity on aphid settling and feeding behavior was evaluated by free choice assays and the Electrical Penetration Graph technique, respectively. Our results revealed that HG status and HG-modifying enzymes are significantly altered during the early stage of the plant-aphid interaction. Aphid infestation induced a significant increase in total PME activity and methanol emissions, concomitant with a decrease in the degree of HG methylesterification. Conversely, inhibition of PME activity led to a significant decrease in the settling and feeding preference of aphids. Furthermore, we demonstrate that the PME inhibitor AtPMEI13 has a defensive role during aphid infestation, since pmei13 mutants are significantly more susceptible to M. persicae in terms of settling preference, phloem access, and phloem sap drainage.
Collapse
Affiliation(s)
- Christian Silva-Sanzana
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370186, Chile
| | - Jonathan Celiz-Balboa
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370186, Chile
| | - Elisa Garzo
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas, Madrid 28006, Spain
| | - Susan E Marcus
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Juan Pablo Parra-Rojas
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370186, Chile
| | - Barbara Rojas
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370186, Chile
| | - Patricio Olmedo
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370186, Chile
| | - Miguel A Rubilar
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370186, Chile
| | - Ignacio Rios
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370186, Chile
| | - Rodrigo A Chorbadjian
- Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Alberto Fereres
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas, Madrid 28006, Spain
| | - Paul Knox
- Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Susana Saez-Aguayo
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370186, Chile
| | - Francisca Blanco-Herrera
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370186, Chile
- Millennium Institute for Integrative Biology, Santiago 7500565, Chile
| |
Collapse
|
29
|
Abstract
Diverse molecular processes regulate the interactions between plants and insect herbivores. Here, we review genes and proteins that are involved in plant-herbivore interactions and discuss how their discovery has structured the current standard model of plant-herbivore interactions. Plants perceive damage-associated and, possibly, herbivore-associated molecular patterns via receptors that activate early signaling components such as Ca2+, reactive oxygen species, and MAP kinases. Specific defense reprogramming proceeds via signaling networks that include phytohormones, secondary metabolites, and transcription factors. Local and systemic regulation of toxins, defense proteins, physical barriers, and tolerance traits protect plants against herbivores. Herbivores counteract plant defenses through biochemical defense deactivation, effector-mediated suppression of defense signaling, and chemically controlled behavioral changes. The molecular basis of plant-herbivore interactions is now well established for model systems. Expanding molecular approaches to unexplored dimensions of plant-insect interactions should be a future priority.
Collapse
Affiliation(s)
- Matthias Erb
- Institute of Plant Sciences, University of Bern, 3000 Bern, Switzerland;
| | - Philippe Reymond
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland;
| |
Collapse
|
30
|
Miao XY, Qu HP, Han YL, He CF, Qiu DW, Cheng ZW. The protein elicitor Hrip1 enhances resistance to insects and early bolting and flowering in Arabidopsis thaliana. PLoS One 2019; 14:e0216082. [PMID: 31022256 PMCID: PMC6483360 DOI: 10.1371/journal.pone.0216082] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 04/12/2019] [Indexed: 11/19/2022] Open
Abstract
The elicitor Hrip1 isolated from necrotrophic fungus Alternaria tenuissima, could induce systemic acquired resistance in tobacco to enhance resistance to tobacco mosaic virus. In the present study, we found that the transgenic lines of Hrip1-overexpression in wild type (WT) Arabidopsis thaliana were more resistant to Spodoptera exigua and were early bolting and flowering than the WT. A profiling of transcription assay using digital gene expression profiling was used for transgenic and WT Arabidopsis thaliana. Differentially expressed genes including 40 upregulated and three downregulated genes were identified. In transgenic lines of Hrip1-overexpression, three genes related to jasmonate (JA) biosynthesis were significantly upregulated, and the JA level was found to be higher than WT. Two GDSL family members (GLIP1 and GLIP4) and pathogen-related gene, which participated in pathogen defense action, were upregulated in the transgenic line of Hrip1-overexpression. Thus, Hrip1 is involved in affecting the flower bolting time and regulating endogenous JA biosynthesis and regulatory network to enhance resistance to insect.
Collapse
Affiliation(s)
- Xin-yue Miao
- Beijing Key Laboratory of Plants Resource Research and Development, School of Sciences, Beijing Technology and Business University, Beijing, China
| | - Hong-pan Qu
- Beijing Key Laboratory of Plants Resource Research and Development, School of Sciences, Beijing Technology and Business University, Beijing, China
| | - Ya-lei Han
- Aerospace Center Hospital, Cardiovascular Department, Beijing, China
| | - Cong-fen He
- Beijing Key Laboratory of Plants Resource Research and Development, School of Sciences, Beijing Technology and Business University, Beijing, China
| | - De-wen Qiu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhi-wei Cheng
- Beijing Key Laboratory of Plants Resource Research and Development, School of Sciences, Beijing Technology and Business University, Beijing, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
31
|
Santamaría ME, Martínez M, Arnaiz A, Rioja C, Burow M, Grbic V, Díaz I. An Arabidopsis TIR-Lectin Two-Domain Protein Confers Defense Properties against Tetranychus urticae. PLANT PHYSIOLOGY 2019; 179:1298-1314. [PMID: 30765478 PMCID: PMC6446783 DOI: 10.1104/pp.18.00951] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 02/04/2019] [Indexed: 05/13/2023]
Abstract
Plant immunity depends on fast and specific transcriptional reprogramming triggered by the perception of biotic stresses. Numerous studies have been conducted to better understand the response of plants to the generalist herbivore two-spotted spider mite (Tetranychus urticae). However, how plants perceive mites and how this perception is translated into changes in gene expression are largely unknown. In this work, we identified a gene induced in Arabidopsis (Arabidopsis thaliana) upon spider mite attack that encodes a two-domain protein containing predicted lectin and Toll/Interleukin-1 receptor domains. The gene, previously named PP2-A5, belongs to the Phloem Protein2 family. Biotic assays showed that PP2-A5 confers tolerance to T. urticae Overexpression or knockout of PP2-A5 leads to transcriptional reprogramming that alters the balance of hormone accumulation and corresponding signaling pathways. The nucleocytoplasmic location of this protein supports a direct interaction with regulators of gene transcription, suggesting that the combination of two putative signaling domains in a single protein may provide a novel mechanism for regulating gene expression. Together, our results suggest that PP2-A5 improves the ability to defend against T. urticae by participating in the tight regulation of hormonal cross talk upon mite feeding. Further research is needed to determine the mechanism by which this two-domain protein functions and to clarify its molecular role in signaling following a spider mite attack.
Collapse
Affiliation(s)
- M Estrella Santamaría
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, 28223 Madrid, Spain
- Departamento de Biotecnología y Biología Vegetal-Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, 28040 Madrid, Spain
| | - Manuel Martínez
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, 28223 Madrid, Spain
- Departamento de Biotecnología y Biología Vegetal-Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, 28040 Madrid, Spain
| | - Ana Arnaiz
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, 28223 Madrid, Spain
| | - Cristina Rioja
- DynaMo Center, Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871 Frederiksberg C, Denmark
| | - Meike Burow
- DynaMo Center, Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871 Frederiksberg C, Denmark
| | - Vojislava Grbic
- Department of Biology, University of Western Ontario, London, Ontario, Canada N6A 5B7
| | - Isabel Díaz
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, 28223 Madrid, Spain
- Departamento de Biotecnología y Biología Vegetal-Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, 28040 Madrid, Spain
| |
Collapse
|
32
|
Nalam V, Louis J, Shah J. Plant defense against aphids, the pest extraordinaire. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 279:96-107. [PMID: 30709498 DOI: 10.1016/j.plantsci.2018.04.027] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 04/02/2018] [Accepted: 04/30/2018] [Indexed: 05/20/2023]
Abstract
Aphids are amongst the most damaging pests of plants that use their stylets to penetrate the plant tissue to consume large amounts of phloem sap and thus deprive the plant of photoassimilates. In addition, some aphids vector important viral diseases of plants. Plant defenses targeting aphids are broadly classified as antibiosis, which interferes with aphid growth, survival and fecundity, and antixenosis, which influences aphid behavior, including plant choice and feeding from the sieve elements. Here we review the multitude of steps in the infestation process where these defenses can be exerted and highlight the progress made on identifying molecular factors and mechanisms that contribute to host defense, including plant resistance genes and signaling components, as well as aphid-derived effectors that elicit or attenuate host defenses. Also discussed is the impact of aphid-vectored plant viruses on plant-aphid interaction and the concept of tolerance, which allows plant to withstand or recover from damage resulting from the infestation.
Collapse
Affiliation(s)
- Vamsi Nalam
- Department of Biology, Indiana University-Purdue University, Fort Wayne, Indiana, 46805, USA.
| | - Joe Louis
- Department of Entomology and Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA.
| | - Jyoti Shah
- Department of Biological Sciences and BioDiscovery Institute, University of North Texas, Denton, TX, 76203, USA.
| |
Collapse
|
33
|
Sapala A, Runions A, Smith RS. Mechanics, geometry and genetics of epidermal cell shape regulation: different pieces of the same puzzle. CURRENT OPINION IN PLANT BIOLOGY 2019; 47:1-8. [PMID: 30170216 DOI: 10.1016/j.pbi.2018.07.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/30/2018] [Accepted: 07/31/2018] [Indexed: 05/28/2023]
Abstract
Pavement cells in the leaf epidermis of many plant species have intricate shapes that fit together much like the pieces of a jigsaw puzzle. They provide an accessible system to understand the development of complex cell shape. Since a protrusion in one cell must fit into the indentation in its neighbor, puzzle cells are also a good system to study how cell shape is coordinated across a plant tissue. Although molecular mechanisms have been proposed for both the patterning and coordination of puzzle cells, evidence is accumulating that mechanical and/or geometric cues may play a more significant role than previously thought.
Collapse
Affiliation(s)
- Aleksandra Sapala
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, 50829 Cologne, Germany
| | - Adam Runions
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, 50829 Cologne, Germany
| | - Richard S Smith
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, 50829 Cologne, Germany.
| |
Collapse
|
34
|
Guo P, Zheng Y, Peng D, Liu L, Dai L, Chen C, Wang B. Identification and expression characterization of the Phloem Protein 2 (PP2) genes in ramie (Boehmeria nivea L. Gaudich). Sci Rep 2018; 8:10734. [PMID: 30013165 PMCID: PMC6048116 DOI: 10.1038/s41598-018-28953-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 06/28/2018] [Indexed: 11/20/2022] Open
Abstract
Phloem protein 2 (PP2) is one of the most abundant and enigmatic proteins in sieve elements and companion cells, which play important roles in the maintenance of morphology, photoassimilate transportation and wound protection in higher plants, but to date, no PP2 (BnPP2) genes had been identified in ramie. Here, a total of 15 full-length BnPP2 genes were identified. These BnPP2 genes exhibited different responses to abiotic stresses. Interestingly, the BnPP2 genes are more sensitive to insect pests than to other stresses. A study of the BnPP2-15 promoter revealed that pBnPP2-15 could drive specific GUS expression in the petiole, root and stamen and could also be induced by mechanical wounding and aphid infection in transgenic Arabidopsis lines. The subcellular localization of six BnPP2 proteins showed that GFP-BnPP2-1, GFP-BnPP2-6, GFP-BnPP2-7, GFP-BnPP2-9, GFP-BnPP2-11 and GFP-BnPP2-12 were predominantly located in the cytoplasm. These results provide useful information elucidating the functions of BnPP2 genes in ramie.
Collapse
Affiliation(s)
- Pingan Guo
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, 1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, China
| | - Yancheng Zheng
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, 1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, China
| | - Dingxiang Peng
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, 1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, China
| | - Lijun Liu
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, 1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, China
| | - Lunjin Dai
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, 1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, China
| | - Cong Chen
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, 1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, China
| | - Bo Wang
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, 1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, China.
| |
Collapse
|
35
|
Sun M, Voorrips RE, Steenhuis-Broers G, van’t Westende W, Vosman B. Reduced phloem uptake of Myzus persicae on an aphid resistant pepper accession. BMC PLANT BIOLOGY 2018; 18:138. [PMID: 29945550 PMCID: PMC6020309 DOI: 10.1186/s12870-018-1340-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 06/04/2018] [Indexed: 05/24/2023]
Abstract
BACKGROUND The green peach aphid (GPA), Myzus persicae, is economically one of the most threatening pests in pepper cultivation, which not only causes direct damage but also transmits many viruses. Breeding aphid resistant pepper varieties is a promising and environmentally friendly method to control aphid populations in the field and in the greenhouse. Until now, no strong sources of resistance against the GPA have been identified. Therefore the main aims of this study were to identify pepper materials with a good level of resistance to GPA and to elucidate possible resistance mechanisms. RESULTS We screened 74 pepper accessions from different geographical areas for resistance to M. persicae. After four rounds of evaluation we identified one Capsicum baccatum accession (PB2013071) as highly resistant to M. persicae, while the accessions PB2013062 and PB2012022 showed intermediate resistance. The resistance of PB2013071 resulted in a severely reduced uptake of phloem compared to the susceptible accession, as determined by Electrical Penetration Graph (EPG) studies. Feeding of M. persicae induced the expression of callose synthase genes and resulted in callose deposition in the sieve elements in resistant, but not in susceptible plants. CONCLUSIONS Three aphid resistant pepper accessions were identified, which will be important for breeding aphid resistant pepper varieties in the future. The most resistant accession PB2013071 showed phloem-based resistance against aphid infestation.
Collapse
Affiliation(s)
- Mengjing Sun
- Plant Breeding, Wageningen University & Research, P.O. Box 386, 6700 AJ Wageningen, The Netherlands
| | - Roeland E. Voorrips
- Plant Breeding, Wageningen University & Research, P.O. Box 386, 6700 AJ Wageningen, The Netherlands
| | - Greet Steenhuis-Broers
- Plant Breeding, Wageningen University & Research, P.O. Box 386, 6700 AJ Wageningen, The Netherlands
| | - Wendy van’t Westende
- Plant Breeding, Wageningen University & Research, P.O. Box 386, 6700 AJ Wageningen, The Netherlands
| | - Ben Vosman
- Plant Breeding, Wageningen University & Research, P.O. Box 386, 6700 AJ Wageningen, The Netherlands
| |
Collapse
|
36
|
Li H, Yu Y, Li Z, Arkorful E, Yang Y, Liu X, Li X, Li R. Benzothiadiazole and B-Aminobutyricacid Induce Resistance to Ectropis Obliqua in Tea Plants ( Camellia Sinensis (L.) O. Kuntz). Molecules 2018; 23:E1290. [PMID: 29843375 PMCID: PMC6100368 DOI: 10.3390/molecules23061290] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 05/22/2018] [Accepted: 05/24/2018] [Indexed: 11/16/2022] Open
Abstract
In order to investigate the effect of benzothiadiazole (BTH) and β-aminobutyric acid (BABA) on the resistance of tea plants (Camellia sinensis) to tea geometrid (Ectropis obliqua), three levels each of benzothiadiazole (BTH) and β-aminobutyric acid (BABA) were sprayed on 10-year-old tea plants. Generally PPO and PAL activities increased with low concentrations of BTH and BABA treatments. Quantitative RT-PCR revealed a 1.43 and 2.72-fold increase in PPO gene expression, and 3.26 and 3.99-fold increase in PAL gene expression with 75 mg/L BTH and 400 mg/L BABA respectively. Analysis of hydrolysis of synthetic substrates also revealed that chymotrypsin-like enzyme activity present in larval midgut extracts was not significantly inhibited by BTH and BABA. However, proteinase activity was found to be inversely proportional to the age of tea geometrid. Larvae pupation rate decreased by 8.10, 10.81 and 21.62% when tea geometrid were fed with leaves treated with 25, 50 and 75 mg/L BTH solutions, while 100, 200 and 400 mg/L BABA solutions decreased same by 8.10, 16.21 and 13.51% respectively. Also, larvae development period delayed to 23.33 and 26.33 days with 75 mg/L BTH and 400 mg/L BABA treatments respectively. The results in this study; therefore, suggest that benzothiadiazole (BTH) and β-aminobutyric acid (BABA) play a role in inducing resistance in tea plants to tea geometrid, with the optimal effect achieved at BTH-3 (75 mg/L) and BABA-3 (400 mg/L), respectively.
Collapse
Affiliation(s)
- Huan Li
- Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Science, Nanjing 210014, China.
| | - Ying Yu
- Tea Research Institute, Nanjing Agricultural University, Nanjing 210095, China.
| | - Zhenzhen Li
- Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Science, Nanjing 210014, China.
| | - Emmanuel Arkorful
- Tea Research Institute, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yiyang Yang
- Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Science, Nanjing 210014, China.
| | - Xinqiu Liu
- Tea Research Institute, Nanjing Agricultural University, Nanjing 210095, China.
| | - Xinghui Li
- Tea Research Institute, Nanjing Agricultural University, Nanjing 210095, China.
| | - Ronglin Li
- Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Science, Nanjing 210014, China.
| |
Collapse
|
37
|
Xu W, Liu W, Ye R, Mazarei M, Huang D, Zhang X, Stewart CN. A profilin gene promoter from switchgrass (Panicum virgatum L.) directs strong and specific transgene expression to vascular bundles in rice. PLANT CELL REPORTS 2018; 37:587-597. [PMID: 29340787 DOI: 10.1007/s00299-018-2253-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 01/05/2018] [Indexed: 05/25/2023]
Abstract
A switchgrass vascular tissue-specific promoter (PvPfn2) and its 5'-end serial deletions drive high levels of vascular bundle transgene expression in transgenic rice. Constitutive promoters are widely used for crop genetic engineering, which can result in multiple off-target effects, including suboptimal growth and epigenetic gene silencing. These problems can be potentially avoided using tissue-specific promoters for targeted transgene expression. One particularly urgent need for targeted cell wall modification in bioenergy crops, such as switchgrass (Panicum virgatum L.), is the development of vasculature-active promoters to express cell wall-affective genes only in the specific tissues, i.e., xylem and phloem. From a switchgrass expression atlas we identified promoter sequence upstream of a vasculature-specific switchgrass profilin gene (PvPfn2), especially in roots, nodes and inflorescences. When the putative full-length (1715 bp) and 5'-end serial deletions of the PvPfn2 promoter (shortest was 413 bp) were used to drive the GUS reporter expression in stably transformed rice (Oryza sativa L.), strong vasculature-specificity was observed in various tissues including leaves, leaf sheaths, stems, and flowers. The promoters were active in both phloem and xylem. It is interesting to note that the promoter was active in many more tissues in the heterologous rice system than in switchgrass. Surprisingly, all four 5'-end promoter deletions, including the shortest fragment, had the same expression patterns as the full-length promoter and with no attenuation in GUS expression in rice. These results indicated that the PvPfn2 promoter variants are new tools to direct transgene expression specifically to vascular tissues in monocots. Of special interest is the very compact version of the promoter, which could be of use for vasculature-specific genetic engineering in monocots.
Collapse
Affiliation(s)
- Wenzhi Xu
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA
- Department of Grassland Science, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Wusheng Liu
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA
- Department of Horticultural Science, North Carolina State University, Raleigh, NC, USA
| | - Rongjian Ye
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA
| | - Mitra Mazarei
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA
| | - Debao Huang
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA
| | - Xinquan Zhang
- Department of Grassland Science, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - C Neal Stewart
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA.
| |
Collapse
|
38
|
Bobbili KB, Datta D, Mondal S, Polepalli S, Pohlentz G, Mormann M, Swamy MJ. Purification, chitooligosaccharide binding properties and thermal stability of CIA24, a new PP2-like phloem exudate lectin from ivy gourd (Coccinia indica). Int J Biol Macromol 2018; 110:588-597. [DOI: 10.1016/j.ijbiomac.2018.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 12/12/2017] [Accepted: 01/01/2018] [Indexed: 10/18/2022]
|
39
|
Bobbili KB, Pohlentz G, Narahari A, Sharma K, Surolia A, Mormann M, Swamy MJ. Coccinia indica agglutinin, a 17 kDa PP2 like phloem lectin: Affinity purification, primary structure and formation of self-assembled filaments. Int J Biol Macromol 2018; 108:1227-1236. [DOI: 10.1016/j.ijbiomac.2017.11.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 11/04/2017] [Accepted: 11/06/2017] [Indexed: 12/23/2022]
|
40
|
Signaling through plant lectins: modulation of plant immunity and beyond. Biochem Soc Trans 2018; 46:217-233. [PMID: 29472368 DOI: 10.1042/bst20170371] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/10/2018] [Accepted: 01/13/2018] [Indexed: 12/12/2022]
Abstract
Lectins constitute an abundant group of proteins that are present throughout the plant kingdom. Only recently, genome-wide screenings have unraveled the multitude of different lectin sequences within one plant species. It appears that plants employ a plurality of lectins, though relatively few lectins have already been studied and functionally characterized. Therefore, it is very likely that the full potential of lectin genes in plants is underrated. This review summarizes the knowledge of plasma membrane-bound lectins in different biological processes (such as recognition of pathogen-derived molecules and symbiosis) and illustrates the significance of soluble intracellular lectins and how they can contribute to plant signaling. Altogether, the family of plant lectins is highly complex with an enormous diversity in biochemical properties and activities.
Collapse
|
41
|
Kloth KJ, Busscher-Lange J, Wiegers GL, Kruijer W, Buijs G, Meyer RC, Albrectsen BR, Bouwmeester HJ, Dicke M, Jongsma MA. SIEVE ELEMENT-LINING CHAPERONE1 Restricts Aphid Feeding on Arabidopsis during Heat Stress. THE PLANT CELL 2017; 29:2450-2464. [PMID: 28970334 PMCID: PMC5774557 DOI: 10.1105/tpc.16.00424] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 08/18/2017] [Accepted: 09/25/2017] [Indexed: 05/20/2023]
Abstract
The role of phloem proteins in plant resistance to aphids is still largely elusive. By genome-wide association mapping of aphid behavior on 350 natural Arabidopsis thaliana accessions, we identified the small heat shock-like SIEVE ELEMENT-LINING CHAPERONE1 (SLI1). Detailed behavioral studies on near-isogenic and knockout lines showed that SLI1 impairs phloem feeding. Depending on the haplotype, aphids displayed a different duration of salivation in the phloem. On sli1 mutants, aphids prolonged their feeding sessions and ingested phloem at a higher rate than on wild-type plants. The largest phenotypic effects were observed at 26°C, when SLI1 expression is upregulated. At this moderately high temperature, sli1 mutants suffered from retarded elongation of the inflorescence and impaired silique development. Fluorescent reporter fusions showed that SLI1 is confined to the margins of sieve elements where it lines the parietal layer and colocalizes in spherical bodies around mitochondria. This localization pattern is reminiscent of the clamp-like structures observed in previous ultrastructural studies of the phloem and shows that the parietal phloem layer plays an important role in plant resistance to aphids and heat stress.
Collapse
Affiliation(s)
- Karen J Kloth
- Laboratory of Entomology, Wageningen University, 6700 AA Wageningen, The Netherlands
- Laboratory of Plant Physiology, Wageningen University, 6700 AA Wageningen, The Netherlands
- Bioscience, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-901 87 Umeå, Sweden
| | - Jacqueline Busscher-Lange
- Laboratory of Plant Physiology, Wageningen University, 6700 AA Wageningen, The Netherlands
- Bioscience, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| | - Gerrie L Wiegers
- Laboratory of Entomology, Wageningen University, 6700 AA Wageningen, The Netherlands
- Biointeractions and Plant Health, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| | - Willem Kruijer
- Biometris, Wageningen University, 6700 AA Wageningen, The Netherlands
| | - Gonda Buijs
- Laboratory of Plant Physiology, Wageningen University, 6700 AA Wageningen, The Netherlands
| | - Rhonda C Meyer
- Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany
| | - Benedicte R Albrectsen
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-901 87 Umeå, Sweden
| | - Harro J Bouwmeester
- Laboratory of Plant Physiology, Wageningen University, 6700 AA Wageningen, The Netherlands
| | - Marcel Dicke
- Laboratory of Entomology, Wageningen University, 6700 AA Wageningen, The Netherlands
| | - Maarten A Jongsma
- Bioscience, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
42
|
Farquharson KL. A Phloem Protein Contributes to Aphid Resistance and Heat Stress Tolerance. THE PLANT CELL 2017; 29:2309-2310. [PMID: 28978759 PMCID: PMC5774563 DOI: 10.1105/tpc.17.00781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
|
43
|
Liu S, Liu M, Wang S, Lin Y, Zhang H, Wang Q, Zhao Y. Analysis of the Panax ginseng stem/leaf transcriptome and gene expression during the leaf expansion period. Mol Med Rep 2017; 16:6396-6404. [PMID: 28849068 DOI: 10.3892/mmr.2017.7377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 04/24/2017] [Indexed: 11/05/2022] Open
Abstract
Ginseng (Panax ginseng C.A Meyer) is a widely used herbal remedy, however, the majority of studies have focused on the roots, with less known about the aerial regions of the plant. As the stems and leaves are the primary aerial tissues, the present study characterized their transcriptional profiles using Illumina next‑generation sequencing technology. The gene expression profiles and the functional genes of ginseng stems (GS) and leaves (GL) were analyzed during the leaf‑expansion period. cDNA libraries of the GS and GL of 5‑year‑old ginseng plants were separately constructed. In the GS library, 38,000,000 sequencing reads were produced. These reads were assembled into 99,809 unique sequences with a mean size of 572 bp, and 57,371 sequences were identified based on similarity searches against known proteins. The assembled sequences were annotated using Gene Ontology terms, Clusters of Orthologous Groups classifications and Kyoto Encyclopedia of Genes and Genomes pathways. For GL, >118,000,000 sequencing reads were produced, which were assembled into 73,163 unique sequences, from which 50,523 sequences were identified. Additionally, several genes involved in the regulation of growth‑related, stress‑related, pathogenesis‑related, and chlorophyll metabolism‑associated proteins were found and expressed at high levels, with low expression levels of ginsenoside biosynthesis enzymes also found. The results of the present study provide a valuable useful sequence resource for ginseng in general, and specifically for further investigations of the functional genomics and molecular genetics of GS and GL during early growth.
Collapse
Affiliation(s)
- Shichao Liu
- Center of Chinese Medicine and Bio‑Engineering Research, Changchun University of Chinese Medicine, Changchun, Jilin 130000, P.R. China
| | - Meichen Liu
- Center of Chinese Medicine and Bio‑Engineering Research, Changchun University of Chinese Medicine, Changchun, Jilin 130000, P.R. China
| | - Siming Wang
- Center of Chinese Medicine and Bio‑Engineering Research, Changchun University of Chinese Medicine, Changchun, Jilin 130000, P.R. China
| | - Yanling Lin
- Science and Education Department, Jilin Provincial Academy of Chinese Medicine Sciences, Changchun, Jilin 130000, P.R. China
| | - Hui Zhang
- Center of Chinese Medicine and Bio‑Engineering Research, Changchun University of Chinese Medicine, Changchun, Jilin 130000, P.R. China
| | - Qun Wang
- Center of Chinese Medicine and Bio‑Engineering Research, Changchun University of Chinese Medicine, Changchun, Jilin 130000, P.R. China
| | - Yu Zhao
- Center of Chinese Medicine and Bio‑Engineering Research, Changchun University of Chinese Medicine, Changchun, Jilin 130000, P.R. China
| |
Collapse
|
44
|
Zhai Y, Li P, Mei Y, Chen M, Chen X, Xu H, Zhou X, Dong H, Zhang C, Jiang W. Three MYB genes co-regulate the phloem-based defence against English grain aphid in wheat. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:4153-4169. [PMID: 28922762 DOI: 10.1093/jxb/erx204] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Plant phloem-based defence (PBD) against phloem-feeding insects is characteristic of the sieve occlusion by phloem lectins and β-1,3-glucan callose, both of which are produced under regulation by ethylene and MYB transcription factors. Wheat PBD requires β-1,3-glucan synthase-like proteins GSL2, GSL10, and GSL12, and may also require insect-resistant mannose-binding lectins Hfr-1 and Wci-1, which can accumulate in the phloem upon aphid feeding. This study elucidates whether any of the 73 MYB genes identified previously in the common wheat Triticum aestivum genome plays a role in wheat PBD activation with regard to the GSLs and lectins. Wheat MYB genes TaMYB19, TaMYB29, and TaMYB44 are highly activated in response to infestation of English grain aphid, and their silencing facilitates aphid feeding on wheat phloem and represses wheat PBD responses. Repressed PBD is shown to decrease aphid-induced callose deposition in wheat leaf epidermis and decrease aphid-induced expression of genes GSL2, GSL10, GSL12, Hfr-1, and Wci-1 in wheat leaf tissues. Based on single gene silencing effects, TaMYB19, TaMYB29, and TaMYB44 contribute 55-82% of PBD responses. However, the contributions of TaMYB genes to PBD are eliminated by ethylene signalling inhibitors, while simultaneous silencing of the three TaMYB genes cancels the tested PBD responses. Therefore, TaMYB19, TaMYB29, and TaMYB44 are co-regulators of wheat PBD and execute this function through crosstalk with the ethylene signalling pathway.
Collapse
Affiliation(s)
- Yan Zhai
- Department of Entomology, Nanjing Agricultural University, Nanjing 210095, China
| | - Ping Li
- National Ministry of Education Key Laboratory of Integrated Management of Crop Diseases and Insect Pests, Nanjing 210095, China
| | - Yu Mei
- Department of Entomology, Nanjing Agricultural University, Nanjing 210095, China
| | - Mingye Chen
- Department of Entomology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaochen Chen
- National Ministry of Education Key Laboratory of Integrated Management of Crop Diseases and Insect Pests, Nanjing 210095, China
| | - Heng Xu
- National Ministry of Education Key Laboratory of Integrated Management of Crop Diseases and Insect Pests, Nanjing 210095, China
| | - Xuan Zhou
- Department of Entomology, Nanjing Agricultural University, Nanjing 210095, China
| | - Hansong Dong
- National Ministry of Education Key Laboratory of Integrated Management of Crop Diseases and Insect Pests, Nanjing 210095, China
| | - Chunling Zhang
- Department of Entomology, Nanjing Agricultural University, Nanjing 210095, China
| | - Weihua Jiang
- National Ministry of Education Key Laboratory of Integrated Management of Crop Diseases and Insect Pests, Nanjing 210095, China
| |
Collapse
|
45
|
Van Holle S, De Schutter K, Eggermont L, Tsaneva M, Dang L, Van Damme EJM. Comparative Study of Lectin Domains in Model Species: New Insights into Evolutionary Dynamics. Int J Mol Sci 2017; 18:ijms18061136. [PMID: 28587095 PMCID: PMC5485960 DOI: 10.3390/ijms18061136] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 05/20/2017] [Accepted: 05/22/2017] [Indexed: 01/07/2023] Open
Abstract
Lectins are present throughout the plant kingdom and are reported to be involved in diverse biological processes. In this study, we provide a comparative analysis of the lectin families from model species in a phylogenetic framework. The analysis focuses on the different plant lectin domains identified in five representative core angiosperm genomes (Arabidopsisthaliana, Glycine max, Cucumis sativus, Oryza sativa ssp. japonica and Oryza sativa ssp. indica). The genomes were screened for genes encoding lectin domains using a combination of Basic Local Alignment Search Tool (BLAST), hidden Markov models, and InterProScan analysis. Additionally, phylogenetic relationships were investigated by constructing maximum likelihood phylogenetic trees. The results demonstrate that the majority of the lectin families are present in each of the species under study. Domain organization analysis showed that most identified proteins are multi-domain proteins, owing to the modular rearrangement of protein domains during evolution. Most of these multi-domain proteins are widespread, while others display a lineage-specific distribution. Furthermore, the phylogenetic analyses reveal that some lectin families evolved to be similar to the phylogeny of the plant species, while others share a closer evolutionary history based on the corresponding protein domain architecture. Our results yield insights into the evolutionary relationships and functional divergence of plant lectins.
Collapse
Affiliation(s)
- Sofie Van Holle
- Department of Molecular Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| | - Kristof De Schutter
- Department of Molecular Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| | - Lore Eggermont
- Department of Molecular Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| | - Mariya Tsaneva
- Department of Molecular Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| | - Liuyi Dang
- Department of Molecular Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| | - Els J M Van Damme
- Department of Molecular Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| |
Collapse
|
46
|
Eggermont L, Stefanowicz K, Van Damme EJM. Nictaba Homologs from Arabidopsis thaliana Are Involved in Plant Stress Responses. FRONTIERS IN PLANT SCIENCE 2017; 8:2218. [PMID: 29375596 PMCID: PMC5767604 DOI: 10.3389/fpls.2017.02218] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 12/18/2017] [Indexed: 05/04/2023]
Abstract
Plants are constantly exposed to a wide range of environmental stresses, but evolved complicated adaptive and defense mechanisms which allow them to survive in unfavorable conditions. These mechanisms protect and defend plants by using different immune receptors located either at the cell surface or in the cytoplasmic compartment. Lectins or carbohydrate-binding proteins are widespread in the plant kingdom and constitute an important part of these immune receptors. In the past years, lectin research has focused on the stress-inducible lectins. The Nicotiana tabacum agglutinin, abbreviated as Nictaba, served as a model for one family of stress-related lectins. Here we focus on three non-chimeric Nictaba homologs from Arabidopsis thaliana, referred to as AN3, AN4, and AN5. Confocal microscopy of ArathNictaba enhanced green fluorescent protein (EGFP) fusion constructs transiently expressed in N. benthamiana or stably expressed in A. thaliana yielded fluorescence for AN4 and AN5 in the nucleus and the cytoplasm of the plant cell, while fluorescence for AN3 was only detected in the cytoplasm. RT-qPCR analysis revealed low expression for all three ArathNictabas in different tissues throughout plant development. Stress application altered the expression levels, but all three ArathNictabas showed a different expression pattern. Pseudomonas syringae infection experiments with AN4 and AN5 overexpression lines demonstrated a significantly higher tolerance of several transgenic lines to P. syringae compared to wild type plants. Finally, AN4 was shown to interact with two enzymes involved in plant defense, namely TGG1 and BGLU23. Taken together, our data suggest that the ArathNictabas represent stress-regulated proteins with a possible role in plant stress responses. On the long term this research can contribute to the development of more stress-resistant plants.
Collapse
|
47
|
Cooper WR, Horton DR. Elicitors of Host Plant Defenses Partially Suppress Cacopsylla pyricola (Hemiptera: Psyllidae) Populations Under Field Conditions. JOURNAL OF INSECT SCIENCE (ONLINE) 2017; 17:3093134. [PMID: 28365771 PMCID: PMC5416828 DOI: 10.1093/jisesa/iex020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Indexed: 06/07/2023]
Abstract
Defense elicitors are products that activate acquired defense responses in plants, thus rendering the plants less susceptible to attack by a broad range of pests. We demonstrated previously under laboratory conditions that foliar applications of the defense elicitors Actigard (acibenzolar-S-methyl), Employ (harpin protein), or ODC (chitosan) to potted pear trees (Pyrus communis L.) each caused an increase in mortality of Cacopsylla pyricola (Förster) (Hemiptera: Psyllidae) nymphs and altered the settling and oviposition behavior of the adults. In this study, we monitored C. pyricola populations over a 3-yr period on orchard-grown trees treated with water (untreated control), Actigard, Employ, or ODC. Fewer nymphs were observed on trees treated with elicitors compared with untreated trees in both 2014 and 2016. A similar but statistically nonsignificant pattern was observed in 2015 when nearly 30% fewer nymphs were observed on trees treated with elicitors versus untreated controls. Observed reductions in psyllid numbers by defense elicitors were modest and do not warrant the use of these products alone for managing C. pyricola. However, these products are often used for management of fire blight, and our observations that elicitors also reduce C. pyricola populations may be useful for system-wide integrated pest management approaches.
Collapse
Affiliation(s)
- W Rodney Cooper
- USDA-ARS-Yakima Agricultural Research Laboratory, 5230 Konnowac Pass Road, Wapato, WA 98951 (; )
| | - David R Horton
- USDA-ARS-Yakima Agricultural Research Laboratory, 5230 Konnowac Pass Road, Wapato, WA 98951 (; )
| |
Collapse
|
48
|
RNA Interference in Insect Vectors for Plant Viruses. Viruses 2016; 8:v8120329. [PMID: 27973446 PMCID: PMC5192390 DOI: 10.3390/v8120329] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 12/05/2016] [Accepted: 12/06/2016] [Indexed: 01/09/2023] Open
Abstract
Insects and other arthropods are the most important vectors of plant pathogens. The majority of plant pathogens are disseminated by arthropod vectors such as aphids, beetles, leafhoppers, planthoppers, thrips and whiteflies. Transmission of plant pathogens and the challenges in managing insect vectors due to insecticide resistance are factors that contribute to major food losses in agriculture. RNA interference (RNAi) was recently suggested as a promising strategy for controlling insect pests, including those that serve as important vectors for plant pathogens. The last decade has witnessed a dramatic increase in the functional analysis of insect genes, especially those whose silencing results in mortality or interference with pathogen transmission. The identification of such candidates poses a major challenge for increasing the role of RNAi in pest control. Another challenge is to understand the RNAi machinery in insect cells and whether components that were identified in other organisms are also present in insect. This review will focus on summarizing success cases in which RNAi was used for silencing genes in insect vector for plant pathogens, and will be particularly helpful for vector biologists.
Collapse
|
49
|
Dong Y, Li P, Zhang C. Harpin Hpa1 promotes flower development in Impatiens and Parochetus plants. BOTANICAL STUDIES 2016; 57:22. [PMID: 28597432 PMCID: PMC5430589 DOI: 10.1186/s40529-016-0132-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 06/29/2016] [Indexed: 05/27/2023]
Abstract
BACKGROUND The harpin protein Hpa1 has multiple beneficial effects in plants, promoting plant growth and development, increasing crop yield, and inducing plant resistance to pathogens and insect pests. In these effects, the 10-40 residue fragment (Hpa110-42) isolated from the Hpa1 sequence is 1.3 to 7.5-fold more effective than the full length. RESULTS This study extends the beneficial effects of Hpa1 and Hpa110-42 to flower development in three species of the garden balsam Impatiens and the garden scoparius Parochetus communis plant. The external application of Hpa1 or Hpa110-42 to the four ornamental plants had three effects, i.e., promoting flower growth, retarding senescence of fully expanded flowers, and increasing anthocyanin concentrations in those flowers and therefore improving their ornamental visages. Based on quantitative comparisons, Hpa110-42 was at least 17 and 42 % more effective than Hpa1 to increase anthocyanin concentrations and to promote the growth of flowers or delay their senescence. CONCLUSION Our results suggest that Hpa1 and especially Hpa110-42 have a great potential of horticultural application to increase ornamental merits of the different garden plants.
Collapse
Affiliation(s)
- Yilan Dong
- Nanjing Foreign Language School, 30 East Beijing Road, Nanjing, 210008 China
| | - Ping Li
- College of Plant Protection, Nanjing Agricultural University, 1 Weigang Town, Nanjing, 210095 China
| | - Chunling Zhang
- College of Plant Protection, Nanjing Agricultural University, 1 Weigang Town, Nanjing, 210095 China
| |
Collapse
|
50
|
Bruno M, Koschmieder J, Wuest F, Schaub P, Fehling-Kaschek M, Timmer J, Beyer P, Al-Babili S. Enzymatic study on AtCCD4 and AtCCD7 and their potential to form acyclic regulatory metabolites. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:5993-6005. [PMID: 27811075 PMCID: PMC5100015 DOI: 10.1093/jxb/erw356] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The Arabidopsis carotenoid cleavage dioxygenase 4 (AtCCD4) is a negative regulator of the carotenoid content of seeds and has recently been suggested as a candidate for the generation of retrograde signals that are thought to derive from the cleavage of poly-cis-configured carotene desaturation intermediates. In this work, we investigated the activity of AtCCD4 in vitro and used dynamic modeling to determine its substrate preference. Our results document strict regional specificity for cleavage at the C9-C10 double bond in carotenoids and apocarotenoids, with preference for carotenoid substrates and an obstructing effect on hydroxyl functions, and demonstrate the specificity for all-trans-configured carotenes and xanthophylls. AtCCD4 cleaved substrates with at least one ionone ring and did not convert acyclic carotene desaturation intermediates, independent of their isomeric states. These results do not support a direct involvement of AtCCD4 in generating the supposed regulatory metabolites. In contrast, the strigolactone biosynthetic enzyme AtCCD7 converted 9-cis-configured acyclic carotenes, such as 9-cis-ζ-carotene, 9'-cis-neurosporene, and 9-cis-lycopene, yielding 9-cis-configured products and indicating that AtCCD7, rather than AtCCD4, is the candidate for forming acyclic retrograde signals.
Collapse
Affiliation(s)
- Mark Bruno
- Albert-Ludwigs University of Freiburg, Faculty of Biology, Schaenzlestr. 1, D-79104 Freiburg, Germany
| | - Julian Koschmieder
- Albert-Ludwigs University of Freiburg, Faculty of Biology, Schaenzlestr. 1, D-79104 Freiburg, Germany
| | - Florian Wuest
- Albert-Ludwigs University of Freiburg, Faculty of Biology, Schaenzlestr. 1, D-79104 Freiburg, Germany
| | - Patrick Schaub
- Albert-Ludwigs University of Freiburg, Faculty of Biology, Schaenzlestr. 1, D-79104 Freiburg, Germany
| | - Mirjam Fehling-Kaschek
- Albert-Ludwigs University of Freiburg, Department of Physics, Hermann-Herder-Str. 3a, D-79104 Freiburg, Germany
| | - Jens Timmer
- Albert-Ludwigs University of Freiburg, Department of Physics, Hermann-Herder-Str. 3a, D-79104 Freiburg, Germany
- Albert-Ludwigs University of Freiburg, BIOSS Center for Biological Signalling Studies, Schaenzlestr. 18, D-79104 Freiburg, Germany
| | - Peter Beyer
- Albert-Ludwigs University of Freiburg, Faculty of Biology, Schaenzlestr. 1, D-79104 Freiburg, Germany
| | - Salim Al-Babili
- Albert-Ludwigs University of Freiburg, Faculty of Biology, Schaenzlestr. 1, D-79104 Freiburg, Germany
- King Abdullah University of Science and Technology (KAUST), BESE Division, Center for Desert Agriculture, 23955-6900 Thuwal, Saudi Arabia
| |
Collapse
|