1
|
Wu Y, Li H, Ma S, Ma H, Tan L. Physiological and differential protein expression analyses of the calcium stress response in the Drynaria roosii rhizome. Heliyon 2024; 10:e38260. [PMID: 39386768 PMCID: PMC11462351 DOI: 10.1016/j.heliyon.2024.e38260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 09/15/2024] [Accepted: 09/20/2024] [Indexed: 10/12/2024] Open
Abstract
High concentration Ca2+ in karst soil is harmful to agriculture. Some dominant plants can adapt well to karst soil, but how Ca2+ affect plant is unknown. Drynaria roosii is a Ca2+-tolerant fern and its dry rhizome is a common Chinese medicine of Miao nationality in Guizhou, China. This study analyzed the physiological and proteomic characteristics of the rhizome of D. roosii under calcium stress. Physiological results indicated that calcium stress may lead to osmotic stress. Proteomic results showed that 147 differentially expressed proteins (96 increased, 51decreased) were identified under calcium stress, and these proteins mainly involved in signal transduction, protein translation, material transport, antioxidant defense and secondary metabolism. This study will lay a foundation for studying the calcium adaptation mechanism of D. roosii at the molecular level.
Collapse
Affiliation(s)
| | | | - Shanshan Ma
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Hongna Ma
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Longyan Tan
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| |
Collapse
|
2
|
Lu Y, Cheng K, Tang H, Li J, Zhang C, Zhu H. The role of Rab GTPase in Plant development and stress. JOURNAL OF PLANT PHYSIOLOGY 2024; 296:154239. [PMID: 38574493 DOI: 10.1016/j.jplph.2024.154239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/26/2024] [Accepted: 03/26/2024] [Indexed: 04/06/2024]
Abstract
Small GTPase is a type of crucial regulator in eukaryotes. It acts as a molecular switch by binding with GTP and GDP in cytoplasm, affecting various cellular processes. Small GTPase were divided into five subfamilies based on sequence, structure and function: Ras, Rho, Rab, Arf/Sar and Ran, with Rab being the largest subfamily. Members of the Rab subfamily play an important role in regulating complex vesicle transport and microtubule system activity. Plant cells are composed of various membrane-bound organelles, and vesicle trafficking is fundamental to the existence of plants. At present, the function of some Rab members, such as RabA1a, RabD2b/c and RabF2, has been well characterized in plants. This review summarizes the role of Rab GTPase in regulating plant tip growth, morphogenesis, fruit ripening and stress response, and briefly describes the regulatory mechanisms involved. It provides a reference for further alleviating environmental stress, improving plant resistance and even improving fruit quality.
Collapse
Affiliation(s)
- Yao Lu
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| | - Ke Cheng
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| | - Hui Tang
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| | - Jinyan Li
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| | - Chunjiao Zhang
- Supervision, Inspection & Testing Center of Agricultural Products Quality, Ministry of Agriculture and Rural Affairs, Beijing, 100083, China.
| | - Hongliang Zhu
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| |
Collapse
|
3
|
Kou X, Cao P, Zhao Z, Zhang X, Dai Y, Wang K, Wu J, Zhang S. Comparative genomic analysis of the RabGAP gene family in seven Rosaceae species, and functional identification of PbrRabGAP10 in controlling pollen tube growth by mediating cellulose deposition in pear. Int J Biol Macromol 2024; 256:128498. [PMID: 38042315 DOI: 10.1016/j.ijbiomac.2023.128498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 12/04/2023]
Abstract
Rab GTPase-activating proteins (RabGAPs), serving as crucial signaling switches, play essential roles in several physiological processes related to plant growth and development. However, despite their importance, information regarding the RabGAP gene family and their biological functions remains unknown in the Rosaceae. In this study, we identified a total of 127 RabGAP genes in seven Rosaceae species, which were divided into five subfamilies. Our findings indicate that whole genome duplication (WGD) events or dispersed duplication events largely contributed to the expansion of RabGAP family members within Rosaceae species. Through tissue-specific expression analyses, we revealed that the PbrRabGAP genes exhibited distinct expression patterns in different pear tissues. Furthermore, by examining the expression pattern during pollen development and employing an antisense oligonucleotide approach, we demonstrated that PbrRabGAP10, located in the cytoplasm, mediates the imbalance of cellulose distribution, thus regulating pollen tube elongation. In conclusion, the present study offers an overview of the RabGAP family in Rosaceae genomes and serves as the basis for further functional studies.
Collapse
Affiliation(s)
- Xiaobing Kou
- School of Life Sciences, Nantong University, Nantong 226019, Jiangsu, People's Republic of China.
| | - Peng Cao
- College of Faculty of Applied Technology, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Zhen Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin Zhang
- School of Life Sciences, Nantong University, Nantong 226019, Jiangsu, People's Republic of China
| | - Yan Dai
- School of Life Sciences, Nantong University, Nantong 226019, Jiangsu, People's Republic of China
| | - Kai Wang
- School of Life Sciences, Nantong University, Nantong 226019, Jiangsu, People's Republic of China
| | - Juyou Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Shaoling Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
4
|
Allsman LA, Bellinger MA, Huang V, Duong M, Contreras A, Romero AN, Verboonen B, Sidhu S, Zhang X, Steinkraus H, Uyehara AN, Martinez SE, Sinclair RM, Soriano GS, Diep B, Byrd V. D, Noriega A, Drakakaki G, Sylvester AW, Rasmussen CG. Subcellular positioning during cell division and cell plate formation in maize. FRONTIERS IN PLANT SCIENCE 2023; 14:1204889. [PMID: 37484472 PMCID: PMC10360171 DOI: 10.3389/fpls.2023.1204889] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 05/24/2023] [Indexed: 07/25/2023]
Abstract
Introduction During proliferative plant cell division, the new cell wall, called the cell plate, is first built in the middle of the cell and then expands outward to complete cytokinesis. This dynamic process requires coordinated movement and arrangement of the cytoskeleton and organelles. Methods Here we use live-cell markers to track the dynamic reorganization of microtubules, nuclei, endoplasmic reticulum, and endomembrane compartments during division and the formation of the cell plate in maize leaf epidermal cells. Results The microtubule plus-end localized protein END BINDING1 (EB1) highlighted increasing microtubule dynamicity during mitosis to support rapid changes in microtubule structures. The localization of the cell-plate specific syntaxin KNOLLE, several RAB-GTPases, as well as two plasma membrane localized proteins was assessed after treatment with the cytokinesis-specific callose-deposition inhibitor Endosidin7 (ES7) and the microtubule-disrupting herbicide chlorpropham (CIPC). While ES7 caused cell plate defects in Arabidopsis thaliana, it did not alter callose accumulation, or disrupt cell plate formation in maize. In contrast, CIPC treatment of maize epidermal cells occasionally produced irregular cell plates that split or fragmented, but did not otherwise disrupt the accumulation of cell-plate localized proteins. Discussion Together, these markers provide a robust suite of tools to examine subcellular trafficking and organellar organization during mitosis and cell plate formation in maize.
Collapse
Affiliation(s)
- Lindy A. Allsman
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, Riverside, CA, United States
| | - Marschal A. Bellinger
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, Riverside, CA, United States
| | - Vivian Huang
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, Riverside, CA, United States
| | - Matthew Duong
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, Riverside, CA, United States
| | - Alondra Contreras
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, Riverside, CA, United States
| | - Andrea N. Romero
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, Riverside, CA, United States
| | - Benjamin Verboonen
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, Riverside, CA, United States
| | - Sukhmani Sidhu
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, Riverside, CA, United States
| | - Xiaoguo Zhang
- Department of Molecular Biology, University of Wyoming, Laramie, WY, United States
| | - Holly Steinkraus
- Department of Molecular Biology, University of Wyoming, Laramie, WY, United States
| | - Aimee N. Uyehara
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, Riverside, CA, United States
| | - Stephanie E. Martinez
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, Riverside, CA, United States
| | - Rosalie M. Sinclair
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Gabriela Salazar Soriano
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, Riverside, CA, United States
| | - Beatrice Diep
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, Riverside, CA, United States
| | - Dawson Byrd V.
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, Riverside, CA, United States
| | - Alexander Noriega
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, Riverside, CA, United States
| | - Georgia Drakakaki
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Anne W. Sylvester
- Department of Molecular Biology, University of Wyoming, Laramie, WY, United States
| | - Carolyn G. Rasmussen
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
5
|
Robinson R, Sprott D, Couroux P, Routly E, Labbé N, Xing T, Robert LS. The triticale mature pollen and stigma proteomes - assembling the proteins for a productive encounter. J Proteomics 2023; 278:104867. [PMID: 36870675 DOI: 10.1016/j.jprot.2023.104867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/13/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023]
Abstract
Triticeae crops are major contributors to global food production and ensuring their capacity to reproduce and generate seeds is critical. However, despite their importance our knowledge of the proteins underlying Triticeae reproduction is severely lacking and this is not only true of pollen and stigma development, but also of their pivotal interaction. When the pollen grain and stigma are brought together they have each accumulated the proteins required for their intended meeting and accordingly studying their mature proteomes is bound to reveal proteins involved in their diverse and complex interactions. Using triticale as a Triticeae representative, gel-free shotgun proteomics was used to identify 11,533 and 2977 mature stigma and pollen proteins respectively. These datasets, by far the largest to date, provide unprecedented insights into the proteins participating in Triticeae pollen and stigma development and interactions. The study of the Triticeae stigma has been particularly neglected. To begin filling this knowledge gap, a developmental iTRAQ analysis was performed revealing 647 proteins displaying differential abundance as the stigma matures in preparation for pollination. An in-depth comparison to an equivalent Brassicaceae analysis divulged both conservation and diversification in the makeup and function of proteins involved in the pollen and stigma encounter. SIGNIFICANCE: Successful pollination brings together the mature pollen and stigma thus initiating an intricate series of molecular processes vital to crop reproduction. In the Triticeae crops (e.g. wheat, barley, rye, triticale) there persists a vast deficit in our knowledge of the proteins involved which needs to be addressed if we are to face the many upcoming challenges to crop production such as those associated with climate change. At maturity, both the pollen and stigma have acquired the protein complement necessary for their forthcoming encounter and investigating their proteomes will inevitably provide unprecedented insights into the proteins enabling their interactions. By combining the analysis of the most comprehensive Triticeae pollen and stigma global proteome datasets to date with developmental iTRAQ investigations, proteins implicated in the different phases of pollen-stigma interaction enabling pollen adhesion, recognition, hydration, germination and tube growth, as well as those underlying stigma development were revealed. Extensive comparisons between equivalent Triticeae and Brassiceae datasets highlighted both the conservation of biological processes in line with the shared goal of activating the pollen grain and promoting pollen tube invasion of the pistil to effect fertilization, as well as the significant distinctions in their proteomes consistent with the considerable differences in their biochemistry, physiology and morphology.
Collapse
Affiliation(s)
- Reneé Robinson
- Ottawa Research and Development Centre, 960 Carling Ave., Ottawa, Ontario K1A 0C6, Canada; Carleton University, Department of Biology, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - David Sprott
- Ottawa Research and Development Centre, 960 Carling Ave., Ottawa, Ontario K1A 0C6, Canada
| | - Philippe Couroux
- Ottawa Research and Development Centre, 960 Carling Ave., Ottawa, Ontario K1A 0C6, Canada
| | - Elizabeth Routly
- Ottawa Research and Development Centre, 960 Carling Ave., Ottawa, Ontario K1A 0C6, Canada
| | - Natalie Labbé
- Ottawa Research and Development Centre, 960 Carling Ave., Ottawa, Ontario K1A 0C6, Canada
| | - Tim Xing
- Carleton University, Department of Biology, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - Laurian S Robert
- Ottawa Research and Development Centre, 960 Carling Ave., Ottawa, Ontario K1A 0C6, Canada.
| |
Collapse
|
6
|
Khatoon U, Prasad V, Sawant SV. Expression dynamics and a loss-of-function of Arabidopsis RabC1 GTPase unveil its role in plant growth and seed development. PLANTA 2023; 257:89. [PMID: 36988700 DOI: 10.1007/s00425-023-04122-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 03/16/2023] [Indexed: 06/19/2023]
Abstract
Transcript isoform dynamics, spatiotemporal expression, and mutational analysis uncover that Arabidopsis RabC1 GTPase is required for root length, flowering time, seed size, and seed mucilage. Rab GTPases are crucial regulators for moving different molecules to their specific compartments according to the needs of the cell. In this work, we illustrate the role of RabC1 GTPase in Arabidopsis growth and seed development. We identify and analyze the expression pattern of three transcript isoforms of RabC1 in different development stages, along with their tissue-specific transcript abundance. The promoter activity of RabC1 using promoter-GUS fusion shows that it is widely expressed during the growth of Arabidopsis, particularly in seed tissues such as chalazal seed coat and chalazal endosperm. Lack of RabC1 function led to shorter roots, lesser biomass, delayed flowering, and sluggish plant development. The mutants had smaller seeds than the wildtype, less seed mass, and lower seed coat permeability. Developing seeds also revealed a smaller endosperm cavity and shorter integument cells. Additionally, we found that the knock-out mutant had downregulated expression of genes implicated in the transit of sugars and amino acids from maternal tissue to developing seed. The seeds of the loss-of-function mutant had reduced seed mucilage. All the observed mutant phenotypes were restored in the complemented lines confirming the function of RabC1 in seed development and plant growth.
Collapse
Affiliation(s)
- Uzma Khatoon
- Plant Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India
- Department of Botany, University of Lucknow, Lucknow, 226007, India
| | - Vivek Prasad
- Department of Botany, University of Lucknow, Lucknow, 226007, India
| | - Samir V Sawant
- Plant Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India.
| |
Collapse
|
7
|
Çetinbaş-Genç A, Conti V, Cai G. Let's shape again: the concerted molecular action that builds the pollen tube. PLANT REPRODUCTION 2022; 35:77-103. [PMID: 35041045 DOI: 10.1007/s00497-022-00437-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
The pollen tube is being subjected to control by a complex network of communication that regulates its shape and the misfunction of a single component causes specific deformations. In flowering plants, the pollen tube is a tubular extension of the pollen grain required for successful sexual reproduction. Indeed, maintaining the unique shape of the pollen tube is essential for the pollen tube to approach the embryo sac. Many processes and molecules (such as GTPase activity, phosphoinositides, Ca2+ gradient, distribution of reactive oxygen species and nitric oxide, nonuniform pH values, organization of the cytoskeleton, balance between exocytosis and endocytosis, and cell wall structure) play key and coordinated roles in maintaining the cylindrical shape of pollen tubes. In addition, the above factors must also interact with each other so that the cell shape is maintained while the pollen tube follows chemical signals in the pistil that guide it to the embryo sac. Any intrinsic changes (such as erroneous signals) or extrinsic changes (such as environmental stresses) can affect the above factors and thus fertilization by altering the tube morphology. In this review, the processes and molecules that enable the development and maintenance of the unique shape of pollen tubes in angiosperms are presented emphasizing their interaction with specific tube shape. Thus, the purpose of the review is to investigate whether specific deformations in pollen tubes can help us to better understand the mechanism underlying pollen tube shape.
Collapse
Affiliation(s)
- Aslıhan Çetinbaş-Genç
- Department of Biology, Marmara University, Göztepe Campus, 34722, Kadıköy, Istanbul, Turkey.
| | - Veronica Conti
- Department of Life Sciences, University of Siena, via Mattioli 4, 53100, Siena, Italy
| | - Giampiero Cai
- Department of Life Sciences, University of Siena, via Mattioli 4, 53100, Siena, Italy
| |
Collapse
|
8
|
Hao G, Zhao X, Zhang M, Ying J, Yu F, Li S, Zhang Y. Vesicle trafficking in
Arabidopsis
pollen tubes. FEBS Lett 2022; 596:2231-2242. [DOI: 10.1002/1873-3468.14343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/08/2022] [Accepted: 03/08/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Guang‐Jiu Hao
- State Key Laboratory of Crop Biology College of Life Sciences Shandong Agricultural University Tai’an, Shandong China
| | - Xin‐Ying Zhao
- State Key Laboratory of Crop Biology College of Life Sciences Shandong Agricultural University Tai’an, Shandong China
| | | | - Jun Ying
- State Key Laboratory of Crop Biology College of Life Sciences Shandong Agricultural University Tai’an, Shandong China
| | - Fei Yu
- State Key Laboratory of Crop Biology College of Life Sciences Shandong Agricultural University Tai’an, Shandong China
| | - Sha Li
- State Key Laboratory of Crop Biology College of Life Sciences Shandong Agricultural University Tai’an, Shandong China
| | - Yan Zhang
- State Key Laboratory of Crop Biology College of Life Sciences Shandong Agricultural University Tai’an, Shandong China
- College of Life Sciences Nankai University China
- Frontiers Science Center for Cell Responses Nankai University China
| |
Collapse
|
9
|
Pang L, Ma Z, Zhang X, Huang Y, Li R, Miao Y, Li R. The small GTPase RABA2a recruits SNARE proteins to regulate the secretory pathway in parallel with the exocyst complex in Arabidopsis. MOLECULAR PLANT 2022; 15:398-418. [PMID: 34798312 DOI: 10.1016/j.molp.2021.11.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 10/24/2021] [Accepted: 11/12/2021] [Indexed: 05/22/2023]
Abstract
Delivery of proteins to the plasma membrane occurs via secretion, which requires tethering, docking, priming, and fusion of vesicles. In yeast and mammalian cells, an evolutionarily conserved RAB GTPase activation cascade functions together with the exocyst and SNARE proteins to coordinate vesicle transport with fusion at the plasma membrane. However, it is unclear whether this is the case in plants. In this study, we show that the small GTPase RABA2a recruits and interacts with the VAMP721/722-SYP121-SNAP33 SNARE ternary complex for membrane fusion. Through immunoprecipitation coupled with mass spectrometry analysis followed by the validatation with a series of biochemical assays, we identified the SNARE proteins VAMP721 and SYP121 as the interactors and downstream effectors of RABA2a. Further expreiments showed that RABA2a interacts with all members of the SNARE complex in its GTP-bound form and modulates the assembly of the VAMP721/722-SYP121-SNAP33 SNARE ternary complex. Intriguingly, we did not observe the interaction of the exocyst subunits with either RABA2a or theSNARE proteins in several different experiments. Neither RABA2a inactivation affects the subcellular localization or assembly of the exocystnor the exocyst subunit mutant exo84b shows the disrupted RABA2a-SNARE association or SNARE assembly, suggesting that the RABA2a-SNARE- and exocyst-mediated secretory pathways are largely independent. Consistently, our live imaging experiments reveal that the two sets of proteins follow non-overlapping trafficking routes, and genetic and cell biologyanalyses indicate that the two pathways select different cargos. Finally, we demonstrate that the plant-specific RABA2a-SNARE pathway is essential for the maintenance of potassium homeostasis in Arabisopsis seedlings. Collectively, our findings imply that higher plants might have generated different endomembrane sorting pathways during evolution and may enable the highly conserved endomembrane proteins to participate in plant-specific trafficking mechanisms for adaptation to the changing environment.
Collapse
Affiliation(s)
- Lei Pang
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhiming Ma
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Xi Zhang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yuanzhi Huang
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ruili Li
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yansong Miao
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Ruixi Li
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
10
|
Ying S, Blancaflor EB, Liao F, Scheible W. A phosphorus-limitation induced, functionally conserved DUF506 protein is a repressor of root hair elongation in plants. THE NEW PHYTOLOGIST 2022; 233:1153-1171. [PMID: 34775627 PMCID: PMC9300206 DOI: 10.1111/nph.17862] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/07/2021] [Indexed: 06/13/2023]
Abstract
Root hairs (RHs) function in nutrient and water acquisition, root metabolite exudation, soil anchorage and plant-microbe interactions. Longer or more abundant RHs are potential breeding traits for developing crops that are more resource-use efficient and can improve soil health. While many genes are known to promote RH elongation, relatively little is known about genes and mechanisms that constrain RH growth. Here we demonstrate that a DOMAIN OF UNKNOWN FUNCTION 506 (DUF506) protein, AT3G25240, negatively regulates Arabidopsis thaliana RH growth. The AT3G25240 gene is strongly and specifically induced during phosphorus (P)-limitation. Mutants of this gene, which we call REPRESSOR OF EXCESSIVE ROOT HAIR ELONGATION 1 (RXR1), have much longer RHs, higher phosphate content and seedling biomass, while overexpression of the gene exhibits opposite phenotypes. Co-immunoprecipitation, pull-down and bimolecular fluorescence complementation (BiFC) analyses reveal that RXR1 physically interacts with a RabD2c GTPase in nucleus, and a rabd2c mutant phenocopies the rxr1 mutant. Furthermore, N-terminal variable region of RXR1 is crucial for inhibiting RH growth. Overexpression of a Brachypodium distachyon RXR1 homolog results in repression of RH elongation in Brachypodium. Taken together, our results reveal a novel DUF506-GTPase module with a prominent role in repression of plant RH elongation especially under P stress.
Collapse
Affiliation(s)
- Sheng Ying
- Noble Research Institute LLCArdmoreOK73401USA
- Present address:
Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMI48823USA
| | | | - Fuqi Liao
- Noble Research Institute LLCArdmoreOK73401USA
| | | |
Collapse
|
11
|
Robinson R, Sollapura V, Couroux P, Sprott D, Ravensdale M, Routly E, Xing T, Robert LS. The Brassica mature pollen and stigma proteomes: preparing to meet. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:1546-1568. [PMID: 33650121 DOI: 10.1111/tpj.15219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 02/16/2021] [Accepted: 02/18/2021] [Indexed: 06/12/2023]
Abstract
Successful pollination in Brassica brings together the mature pollen grain and stigma papilla, initiating an intricate series of molecular processes meant to eventually enable sperm cell delivery for fertilization and reproduction. At maturity, the pollen and stigma cells have acquired proteomes, comprising the primary molecular effectors required upon their meeting. Knowledge of the roles and global composition of these proteomes in Brassica species is largely lacking. To address this gap, gel-free shotgun proteomics was performed on the mature pollen and stigma of Brassica carinata, a representative of the Brassica family and its many crop species (e.g. Brassica napus, Brassica oleracea and Brassica rapa) that holds considerable potential as a bio-industrial crop. A total of 5608 and 7703 B. carinata mature pollen and stigma proteins were identified, respectively. The pollen and stigma proteomes were found to reflect not only their many common functional and developmental objectives, but also the important differences underlying their cellular specialization. Isobaric tag for relative and absolute quantification (iTRAQ) was exploited in the first analysis of a developing Brassicaceae stigma, and revealed 251 B. carinata proteins that were differentially abundant during stigma maturation, providing insight into proteins involved in the initial phases of pollination. Corresponding pollen and stigma transcriptomes were also generated, highlighting functional divergences between the proteome and transcriptome during different stages of pollen-stigma interaction. This study illustrates the investigative potential of combining the most comprehensive Brassicaceae pollen and stigma proteomes to date with iTRAQ and transcriptome data to provide a unique global perspective of pollen and stigma development and interaction.
Collapse
Affiliation(s)
- Reneé Robinson
- Ottawa Research and Development Centre, 960 Carling Ave., Ottawa, Ontario, K1A 0C6, Canada
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada
| | - Vishwanath Sollapura
- Ottawa Research and Development Centre, 960 Carling Ave., Ottawa, Ontario, K1A 0C6, Canada
| | - Philippe Couroux
- Ottawa Research and Development Centre, 960 Carling Ave., Ottawa, Ontario, K1A 0C6, Canada
| | - Dave Sprott
- Ottawa Research and Development Centre, 960 Carling Ave., Ottawa, Ontario, K1A 0C6, Canada
| | - Michael Ravensdale
- Ottawa Research and Development Centre, 960 Carling Ave., Ottawa, Ontario, K1A 0C6, Canada
| | - Elizabeth Routly
- Ottawa Research and Development Centre, 960 Carling Ave., Ottawa, Ontario, K1A 0C6, Canada
| | - Tim Xing
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada
| | - Laurian S Robert
- Ottawa Research and Development Centre, 960 Carling Ave., Ottawa, Ontario, K1A 0C6, Canada
| |
Collapse
|
12
|
Tripathy MK, Deswal R, Sopory SK. Plant RABs: Role in Development and in Abiotic and Biotic Stress Responses. Curr Genomics 2021; 22:26-40. [PMID: 34045922 PMCID: PMC8142350 DOI: 10.2174/1389202922666210114102743] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 12/05/2020] [Accepted: 12/26/2020] [Indexed: 12/15/2022] Open
Abstract
Endosomal trafficking plays an integral role in various eukaryotic cellular activities and is vital for higher-order functions in multicellular organisms. RAB GTPases are important proteins that influence various aspects of membrane traffic, which consequently influence many cellular functions and responses. Compared to yeast and mammals, plants have evolved a unique set of plant-specific RABs that play a significant role in their development. RABs form the largest family of small guanosine triphosphate (GTP)-binding proteins, and are divided into eight sub-families named RAB1, RAB2, RAB5, RAB6, RAB7, RAB8, RAB11 and RAB18. Recent studies on different species suggest that RAB proteins play crucial roles in intracellular trafficking and cytokinesis, in autophagy, plant microbe interactions and in biotic and abiotic stress responses. This review recaptures and summarizes the roles of RABs in plant cell functions and in enhancing plant survival under stress conditions.
Collapse
Affiliation(s)
- Manas K Tripathy
- 1International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India; 2Department of Botany, University of Delhi, Delhi 110007, India
| | - Renu Deswal
- 1International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India; 2Department of Botany, University of Delhi, Delhi 110007, India
| | - Sudhir K Sopory
- 1International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India; 2Department of Botany, University of Delhi, Delhi 110007, India
| |
Collapse
|
13
|
Rojek J, Tucker MR, Pinto SC, Rychłowski M, Lichocka M, Soukupova H, Nowakowska J, Bohdanowicz J, Surmacz G, Gutkowska M. Rab-dependent vesicular traffic affects female gametophyte development in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:320-340. [PMID: 32939545 PMCID: PMC7853608 DOI: 10.1093/jxb/eraa430] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 09/15/2020] [Indexed: 05/10/2023]
Abstract
Eukaryotic cells rely on the accuracy and efficiency of vesicular traffic. In plants, disturbances in vesicular trafficking are well studied in quickly dividing root meristem cells or polar growing root hairs and pollen tubes. The development of the female gametophyte, a unique haploid reproductive structure located in the ovule, has received far less attention in studies of vesicular transport. Key molecules providing the specificity of vesicle formation and its subsequent recognition and fusion with the acceptor membrane are Rab proteins. Rabs are anchored to membranes by covalently linked geranylgeranyl group(s) that are added by the Rab geranylgeranyl transferase (RGT) enzyme. Here we show that Arabidopsis plants carrying mutations in the gene encoding the β-subunit of RGT (rgtb1) exhibit severely disrupted female gametogenesis and this effect is of sporophytic origin. Mutations in rgtb1 lead to internalization of the PIN1 and PIN3 proteins from the basal membranes to vesicles in provascular cells of the funiculus. Decreased transport of auxin out of the ovule is accompanied by auxin accumulation in tissue surrounding the growing gametophyte. In addition, female gametophyte development arrests at the uni- or binuclear stage in a significant portion of the rgtb1 ovules. These observations suggest that communication between the sporophyte and the developing female gametophyte relies on Rab-dependent vesicular traffic of the PIN1 and PIN3 transporters and auxin efflux out of the ovule.
Collapse
Affiliation(s)
- Joanna Rojek
- Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk, Poland
| | - Matthew R Tucker
- Waite Research Institute, School of Agriculture, Food and Wine, The University of Adelaide, Urrbrae, South Australia, Australia
| | - Sara C Pinto
- Waite Research Institute, School of Agriculture, Food and Wine, The University of Adelaide, Urrbrae, South Australia, Australia
- LAQV REQUIMTE, Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, rua do Campo Alegre s/n Porto, Portugal
| | - Michał Rychłowski
- Intercollegiate Faculty of Biotechnology, University of Gdansk, Abrahama 58, Gdansk, Poland
| | - Małgorzata Lichocka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, Warsaw, Poland
| | - Hana Soukupova
- Institute of Experimental Botany, Czech Academy of Sciences, Rozvojova 263, Praha 6 Lysolaje, Czech Republic
| | - Julita Nowakowska
- Faculty of Biology, University of Warsaw, Miecznikowa 1, Warsaw, Poland
| | - Jerzy Bohdanowicz
- Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk, Poland
| | - Gabriela Surmacz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, Warsaw, Poland
| | - Małgorzata Gutkowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, Warsaw, Poland
- Correspondence:
| |
Collapse
|
14
|
Marković V, Cvrčková F, Potocký M, Kulich I, Pejchar P, Kollárová E, Synek L, Žárský V. EXO70A2 Is Critical for Exocyst Complex Function in Pollen Development. PLANT PHYSIOLOGY 2020; 184:1823-1839. [PMID: 33051268 PMCID: PMC7723085 DOI: 10.1104/pp.19.01340] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 10/01/2020] [Indexed: 05/15/2023]
Abstract
Pollen development, pollen grain germination, and pollen tube elongation are crucial biological processes in angiosperm plants that need precise regulation to deliver sperm cells to ovules for fertilization. Highly polarized secretion at a growing pollen tube tip requires the exocyst tethering complex responsible for specific targeting of secretory vesicles to the plasma membrane. Here, we demonstrate that Arabidopsis (Arabidopsis thaliana) EXO70A2 (At5g52340) is the main exocyst EXO70 isoform in the male gametophyte, governing the conventional secretory function of the exocyst, analogous to EXO70A1 (At5g03540) in the sporophyte. Our analysis of a CRISPR-generated exo70a2 mutant revealed that EXO70A2 is essential for efficient pollen maturation, pollen grain germination, and pollen tube growth. GFP:EXO70A2 was localized to the nucleus and cytoplasm in developing pollen grains and later to the apical domain in growing pollen tube tips characterized by intensive exocytosis. Moreover, EXO70A2 could substitute for EXO70A1 function in the sporophyte, but not vice versa, indicating partial functional redundancy of these two closely related isoforms and higher specificity of EXO70A2 for pollen development-related processes. Phylogenetic analysis revealed that the ancient duplication of EXO70A, one of which is always highly expressed in pollen, occurred independently in monocots and dicots. In summary, EXO70A2 is a crucial component of the exocyst complex in Arabidopsis pollen that is required for efficient plant sexual reproduction.
Collapse
Affiliation(s)
- Vedrana Marković
- Department of Experimental Plant Biology, Faculty of Science, Charles University, 12844 Prague 2, Czech Republic
- Institute of Experimental Botany, Czech Academy of Sciences, 16502 Prague 6, Czech Republic
| | - Fatima Cvrčková
- Department of Experimental Plant Biology, Faculty of Science, Charles University, 12844 Prague 2, Czech Republic
| | - Martin Potocký
- Department of Experimental Plant Biology, Faculty of Science, Charles University, 12844 Prague 2, Czech Republic
- Institute of Experimental Botany, Czech Academy of Sciences, 16502 Prague 6, Czech Republic
| | - Ivan Kulich
- Department of Experimental Plant Biology, Faculty of Science, Charles University, 12844 Prague 2, Czech Republic
| | - Přemysl Pejchar
- Institute of Experimental Botany, Czech Academy of Sciences, 16502 Prague 6, Czech Republic
| | - Eva Kollárová
- Department of Experimental Plant Biology, Faculty of Science, Charles University, 12844 Prague 2, Czech Republic
| | - Lukáš Synek
- Institute of Experimental Botany, Czech Academy of Sciences, 16502 Prague 6, Czech Republic
| | - Viktor Žárský
- Department of Experimental Plant Biology, Faculty of Science, Charles University, 12844 Prague 2, Czech Republic
- Institute of Experimental Botany, Czech Academy of Sciences, 16502 Prague 6, Czech Republic
| |
Collapse
|
15
|
Zhou Y, Yang Y, Niu Y, Fan T, Qian D, Luo C, Shi Y, Li S, An L, Xiang Y. The Tip-Localized Phosphatidylserine Established by Arabidopsis ALA3 Is Crucial for Rab GTPase-Mediated Vesicle Trafficking and Pollen Tube Growth. THE PLANT CELL 2020; 32:3170-3187. [PMID: 32817253 PMCID: PMC7534478 DOI: 10.1105/tpc.19.00844] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 07/17/2020] [Accepted: 08/17/2020] [Indexed: 05/20/2023]
Abstract
RabA4 subfamily proteins, the key regulators of intracellular transport, are vital for tip growth of plant polar cells, but their unique distribution in the apical zone and role in vesicle targeting and trafficking in the tips remain poorly understood. Here, we found that loss of Arabidopsis (Arabidopsis thaliana) AMINOPHOSPHOLIPID ATPASE 3 (ALA3) function resulted in a marked decrease in YFP-RabA4b/ RFP-RabA4d- and FM4-64-labeled vesicles from the inverted-cone zone of the pollen tube tip, misdistribution of certain intramembrane compartment markers, and an obvious increase in pollen tube width. Additionally, we revealed that phosphatidylserine (PS) was abundant in the inverted-cone zone of the apical pollen tube in wild-type Arabidopsis and was mainly colocalized with the trans-Golgi network/early endosome, certain post-Golgi compartments, and the plasma membrane. Loss of ALA3 function resulted in loss of polar localization of apical PS and significantly decreased PS distribution, suggesting that ALA3 is a key regulator for establishing and maintaining the polar localization of apical PS in pollen tubes. We further demonstrated that certain Rab GTPases colocalized with PS in vivo and bound to PS in vitro. Moreover, ALA3 and RabA4d collectively regulated pollen tube growth genetically. Thus, we propose that the tip-localized PS established by ALA3 is crucial for Rab GTPase-mediated vesicle targeting/trafficking and polar growth of pollen tubes in Arabidopsis.
Collapse
Affiliation(s)
- Yuelong Zhou
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yang Yang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yue Niu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - TingTing Fan
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Dong Qian
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Changxin Luo
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yumei Shi
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Shanwei Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Lizhe An
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yun Xiang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
16
|
Scholz P, Anstatt J, Krawczyk HE, Ischebeck T. Signalling Pinpointed to the Tip: The Complex Regulatory Network That Allows Pollen Tube Growth. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1098. [PMID: 32859043 PMCID: PMC7569787 DOI: 10.3390/plants9091098] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/18/2020] [Accepted: 08/23/2020] [Indexed: 12/13/2022]
Abstract
Plants display a complex life cycle, alternating between haploid and diploid generations. During fertilisation, the haploid sperm cells are delivered to the female gametophyte by pollen tubes, specialised structures elongating by tip growth, which is based on an equilibrium between cell wall-reinforcing processes and turgor-driven expansion. One important factor of this equilibrium is the rate of pectin secretion mediated and regulated by factors including the exocyst complex and small G proteins. Critically important are also non-proteinaceous molecules comprising protons, calcium ions, reactive oxygen species (ROS), and signalling lipids. Among the latter, phosphatidylinositol 4,5-bisphosphate and the kinases involved in its formation have been assigned important functions. The negatively charged headgroup of this lipid serves as an interaction point at the apical plasma membrane for partners such as the exocyst complex, thereby polarising the cell and its secretion processes. Another important signalling lipid is phosphatidic acid (PA), that can either be formed by the combination of phospholipases C and diacylglycerol kinases or by phospholipases D. It further fine-tunes pollen tube growth, for example by regulating ROS formation. How the individual signalling cues are intertwined or how external guidance cues are integrated to facilitate directional growth remain open questions.
Collapse
Affiliation(s)
- Patricia Scholz
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Justus-von-Liebig Weg 11, D-37077 Goettingen, Germany; (J.A.); (H.E.K.)
| | | | | | - Till Ischebeck
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Justus-von-Liebig Weg 11, D-37077 Goettingen, Germany; (J.A.); (H.E.K.)
| |
Collapse
|
17
|
Zhu G, Gao W, Song X, Sun F, Hou S, Liu N, Huang Y, Zhang D, Ni Z, Chen Q, Guo W. Genome-wide association reveals genetic variation of lint yield components under salty field conditions in cotton (Gossypium hirsutum L.). BMC PLANT BIOLOGY 2020; 20:23. [PMID: 31937242 PMCID: PMC6961271 DOI: 10.1186/s12870-019-2187-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 12/05/2019] [Indexed: 05/02/2023]
Abstract
BACKGROUND Salinity is one of the most significant environmental factors limiting the productivity of cotton. However, the key genetic components responsible for the reduction in cotton yield in saline-alkali soils are still unclear. RESULTS Here, we evaluated three main components of lint yield, single boll weight (SBW), lint percentage (LP) and boll number per plant (BNPP), across 316 G. hirsutum accessions under four salt conditions over two years. Phenotypic analysis indicated that LP was unchanged under different salt conditions, however BNPP decreased significantly and SBW increased slightly under high salt conditions. Based on 57,413 high-quality single nucleotide polymorphisms (SNPs) and genome-wide association study (GWAS) analysis, a total of 42, 91 and 25 stable quantitative trait loci (QTLs) were identified for SBW, LP and BNPP, respectively. Phenotypic and QTL analysis suggested that there was little correlation among the three traits. For LP, 8 stable QTLs were detected simultaneously in four different salt conditions, while fewer repeated QTLs for SBW or BNPP were identified. Gene Ontology (GO) analysis indicated that their regulatory mechanisms were also quite different. Via transcriptome profile data, we detected that 10 genes from the 8 stable LP QTLs were predominantly expressed during fiber development. Further, haplotype analyses found that a MYB gene (GhMYB103), with the two SNP variations in cis-regulatory and coding regions, was significantly correlated with lint percentage, implying a crucial role in lint yield. We also identified that 40 candidate genes from BNPP QTLs were salt-inducible. Genes related to carbohydrate metabolism and cell structure maintenance were rich in plants grown in high salt conditions, while genes related to ion transport were active in plants grown in low salt conditions, implying different regulatory mechanisms for BNPP at high and low salt conditions. CONCLUSIONS This study provides a foundation for elucidating cotton salt tolerance mechanisms and contributes gene resources for developing upland cotton varieties with high yields and salt stress tolerance.
Collapse
Affiliation(s)
- Guozhong Zhu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Engineering Research Center of Hybrid Cotton Development (the Ministry of Education), Nanjing Agricultural University, Nanjing, 210095 China
| | - Wenwei Gao
- Engineering Research Center for Cotton (the Ministry of Education), Xinjiang Agricultural University, Urumqi, 830052 China
| | - Xiaohui Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Engineering Research Center of Hybrid Cotton Development (the Ministry of Education), Nanjing Agricultural University, Nanjing, 210095 China
| | - Fenglei Sun
- Engineering Research Center for Cotton (the Ministry of Education), Xinjiang Agricultural University, Urumqi, 830052 China
| | - Sen Hou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Engineering Research Center of Hybrid Cotton Development (the Ministry of Education), Nanjing Agricultural University, Nanjing, 210095 China
| | - Na Liu
- Engineering Research Center for Cotton (the Ministry of Education), Xinjiang Agricultural University, Urumqi, 830052 China
| | - Yajie Huang
- Engineering Research Center for Cotton (the Ministry of Education), Xinjiang Agricultural University, Urumqi, 830052 China
| | - Dayong Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Engineering Research Center of Hybrid Cotton Development (the Ministry of Education), Nanjing Agricultural University, Nanjing, 210095 China
| | - Zhiyong Ni
- Engineering Research Center for Cotton (the Ministry of Education), Xinjiang Agricultural University, Urumqi, 830052 China
| | - Quanjia Chen
- Engineering Research Center for Cotton (the Ministry of Education), Xinjiang Agricultural University, Urumqi, 830052 China
| | - Wangzhen Guo
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Engineering Research Center of Hybrid Cotton Development (the Ministry of Education), Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
18
|
Devani RS, Chirmade T, Sinha S, Bendahmane A, Dholakia BB, Banerjee AK, Banerjee J. Flower bud proteome reveals modulation of sex-biased proteins potentially associated with sex expression and modification in dioecious Coccinia grandis. BMC PLANT BIOLOGY 2019; 19:330. [PMID: 31337343 PMCID: PMC6651928 DOI: 10.1186/s12870-019-1937-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 07/11/2019] [Indexed: 05/27/2023]
Abstract
BACKGROUND Dioecy is an important sexual system wherein, male and female flowers are borne on separate unisexual plants. Knowledge of sex-related differences can enhance our understanding in molecular and developmental processes leading to unisexual flower development. Coccinia grandis is a dioecious species belonging to Cucurbitaceae, a family well-known for diverse sexual forms. Male and female plants have 22A + XY and 22A + XX chromosomes, respectively. Previously, we have reported a gynomonoecious form (22A + XX) of C. grandis bearing morphologically hermaphrodite flowers (GyM-H) and female flowers (GyM-F). Also, we have showed that foliar spray of AgNO3 on female plant induces morphologically hermaphrodite bud development (Ag-H) despite the absence of Y-chromosome. RESULTS To identify sex-related differences, total proteomes from male, female, GyM-H and Ag-H flower buds at early and middle stages of development were analysed by label-free proteomics. Protein search against the cucumber protein sequences (Phytozome) as well as in silico translated C. grandis flower bud transcriptome database, resulted in the identification of 2426 and 3385 proteins (FDR ≤ 1%), respectively. The latter database was chosen for further analysis as it led to the detection of higher number of proteins. Identified proteins were annotated using BLAST2GO pipeline. SWATH-MS-based comparative abundance analysis between Female_Early_vs_Male_Early, Ag_Early_vs_Female_Early, GyM-H_Middle_vs_Male_Middle and Ag_Middle_vs_ Male_Middle led to the identification of 650, 1108, 905 and 805 differentially expressed proteins, respectively, at fold change ≥1.5 and P ≤ 0.05. Ethylene biosynthesis-related candidates as highlighted in protein interaction network were upregulated in female buds compared to male buds. AgNO3 treatment on female plant induced proteins related to pollen development in Ag-H buds. Additionally, a few proteins governing pollen germination and tube growth were highly enriched in male buds compared to Ag-H and GyM-H buds. CONCLUSION Overall, current proteomic analysis provides insights in the identification of key proteins governing dioecy and unisexual flower development in cucurbitaceae, the second largest horticultural family in terms of economic importance. Also, our results suggest that the ethylene-mediated stamen inhibition might be conserved in dioecious C. grandis similar to its monoecious cucurbit relatives. Further, male-biased proteins associated with pollen germination and tube growth identified here can help in understanding pollen fertility.
Collapse
Affiliation(s)
- Ravi Suresh Devani
- Biology Division, Indian Institute of Science Education and Research (IISER), Pune, 411008 India
- IPS2, INRA, CNRS, University Paris Sud, University of Evry, University of Paris Diderot, University of Paris Saclay, Batiment 630, 91405 Orsay, France
| | - Tejas Chirmade
- Biochemical Science Division National Chemical laboratory (CSIR-NCL), Pune, 411008 India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Sangram Sinha
- Department of Botany, Tripura University, Suryamaninagar, Tripura 799022 India
| | - Abdelhafid Bendahmane
- IPS2, INRA, CNRS, University Paris Sud, University of Evry, University of Paris Diderot, University of Paris Saclay, Batiment 630, 91405 Orsay, France
| | - Bhushan B. Dholakia
- Biology Division, Indian Institute of Science Education and Research (IISER), Pune, 411008 India
- Biochemical Science Division National Chemical laboratory (CSIR-NCL), Pune, 411008 India
- Department of Molecular Biology & Bioinformatics, Tripura University, Suryamaninagar, Tripura 799022 India
| | - Anjan Kumar Banerjee
- Biology Division, Indian Institute of Science Education and Research (IISER), Pune, 411008 India
| | - Jayeeta Banerjee
- Biology Division, Indian Institute of Science Education and Research (IISER), Pune, 411008 India
| |
Collapse
|
19
|
Sato R, Maeshima M. The ER-localized aquaporin SIP2;1 is involved in pollen germination and pollen tube elongation in Arabidopsis thaliana. PLANT MOLECULAR BIOLOGY 2019; 100:335-349. [PMID: 30963359 DOI: 10.1007/s11103-019-00865-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 03/28/2019] [Indexed: 06/09/2023]
Abstract
The ER membrane localized aquaporin SIP2;1 is involved in adaptation to ER stresses during pollen tube elongation. Aquaporins play multifaceted roles through selective transport of water and small neutral substrates. Here, we focused on the physiological roles of Arabidopsis thaliana aquaporins, namely SIP1;1, SIP1;2 and SIP2;1, which are localized to the endoplasmic reticulum (ER). While their loss-of-function mutants displayed normal vegetative growth. We identified defects in pollen of sip2;1. Whereas the germination rate of sip2;1 pollen was ~ 60% that of the wild type (WT), in vitro germinated sip2;1 pollen tube length was reduced up to 82% compared to the WT. Importantly, most pollen tubes on pistils from sip2;1 stopped elongation in the mid-region of pistils, and the bottom region of sip2;1 siliques lacked seeds. Consistently, silique of sip2;1 were short, whereby the average seed number per silique was nearly the half of the WT. The above phenotypes recovered in SIP2;1 complementation lines. We detected mRNA of SIP2;1 and protein in pollen, and further revealed that the GFP-linked SIP2;1 localization in the ER of growing pollen tubes. The basal mRNA level of BINDING PROTEIN 3 (BiP3), a key gene induced by ER stress, in pollen was markedly higher than that in roots, suggesting that the pollen underwent ER stress under normal growth conditions. BiP3 mRNA was dramatically increased in sip2;1 pollen. Altogether, our findings suggest that the aquaporin SIP2;1 is probably involved in the alleviation of ER stress and that the lack of SIP2;1 reduces both pollen germination and pollen tube elongation.
Collapse
Affiliation(s)
- Ryosuke Sato
- Laboratory of Cell Dynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601, Japan
| | - Masayoshi Maeshima
- Laboratory of Cell Dynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601, Japan.
| |
Collapse
|
20
|
Shen X, Xu L, Liu Y, Dong H, Zhou D, Zhang Y, Lin S, Cao J, Huang L. Comparative transcriptome analysis and ChIP-sequencing reveals stage-specific gene expression and regulation profiles associated with pollen wall formation in Brassica rapa. BMC Genomics 2019; 20:264. [PMID: 30943898 PMCID: PMC6446297 DOI: 10.1186/s12864-019-5637-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 03/24/2019] [Indexed: 12/05/2022] Open
Abstract
Background Genic male sterility (GMS) line is an important approach to utilize heterosis in Brassica rapa, one of the most widely cultivated vegetable crops in Northeast Asia. However, the molecular genetic mechanisms of GMS remain to be largely unknown. Results Detailed phenotypic observation of ‘Bcajh97-01A/B’, a B. rapa genic male sterile AB line in this study revealed that the aberrant meiotic cytokinesis and premature tapetal programmed cell death occurring in the sterile line ultimately resulted in microspore degeneration and pollen wall defect. Further gene expression profile of the sterile and fertile floral buds of ‘Bcajh97-01A/B’ at five typical developmental stages during pollen development supported the result of phenotypic observation and identified stage-specific genes associated with the main events associated with pollen wall development, including tapetum development or functioning, callose metabolism, pollen exine formation and cell wall modification. Additionally, by using ChIP-sequencing, the genomic and gene-level distribution of trimethylated histone H3 lysine 4 (H3K4) and H3K27 were mapped on the fertile floral buds, and a great deal of pollen development-associated genes that were covalently modified by H3K4me3 and H3K27me3 were identified. Conclusions Our study provids a deeper understanding into the gene expression and regulation network during pollen development and pollen wall formation in B. rapa, and enabled the identification of a set of candidate genes for further functional annotation. Electronic supplementary material The online version of this article (10.1186/s12864-019-5637-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiuping Shen
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China.,Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture / Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou, 310058, China
| | - Liai Xu
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China.,Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture / Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou, 310058, China
| | - Yanhong Liu
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China.,Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture / Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou, 310058, China
| | - Heng Dong
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China.,Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture / Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou, 310058, China
| | - Dong Zhou
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China.,Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture / Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou, 310058, China
| | - Yuzhi Zhang
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China.,Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture / Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou, 310058, China
| | - Sue Lin
- Institute of Life Sciences, Wenzhou University, Wenzhou, 325000, China
| | - Jiashu Cao
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China.,Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture / Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou, 310058, China
| | - Li Huang
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China. .,Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture / Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou, 310058, China.
| |
Collapse
|
21
|
Golgi-localized LOT regulates trans-Golgi network biogenesis and pollen tube growth. Proc Natl Acad Sci U S A 2018; 115:12307-12312. [PMID: 30413616 DOI: 10.1073/pnas.1809206115] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The trans-Golgi network (TGN) is an essential tubular-vesicular organelle derived from the Golgi and functions as an independent sorting and trafficking hub within the cell. However, the molecular regulation of TGN biogenesis remains enigmatic. Here we identified an Arabidopsis mutant loss of TGN (lot) that is defective in TGN formation and sterile due to impaired pollen tube growth in the style. The mutation leads to overstacking of the Golgi cisternae and significant reduction in the number of TGNs and vesicles surrounding the Golgi in pollen, which is corroborated by the dispersed cytosolic distribution of TGN-localized proteins. Consistently, deposition of extracellular pectin and plasma membrane localization of kinases and phosphoinositide species are also impaired. Subcellular localization analysis suggests that LOT is localized on the periphery of the Golgi cisternae, but the mutation does not affect the localization of Golgi-resident proteins. Furthermore, the yeast complementation result suggests that LOT could functionally act as a component of the guanine nucleotide exchange factor (GEF) complex of small Rab GTPase Ypt6. Taken together, these findings suggest that LOT is a critical player for TGN biogenesis in the plant lineage.
Collapse
|
22
|
Bhandary P, Seetharam AS, Arendsee ZW, Hur M, Wurtele ES. Raising orphans from a metadata morass: A researcher's guide to re-use of public 'omics data. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 267:32-47. [PMID: 29362097 DOI: 10.1016/j.plantsci.2017.10.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 10/07/2017] [Accepted: 10/15/2017] [Indexed: 05/19/2023]
Abstract
More than 15 petabases of raw RNAseq data is now accessible through public repositories. Acquisition of other 'omics data types is expanding, though most lack a centralized archival repository. Data-reuse provides tremendous opportunity to extract new knowledge from existing experiments, and offers a unique opportunity for robust, multi-'omics analyses by merging metadata (information about experimental design, biological samples, protocols) and data from multiple experiments. We illustrate how predictive research can be accelerated by meta-analysis with a study of orphan (species-specific) genes. Computational predictions are critical to infer orphan function because their coding sequences provide very few clues. The metadata in public databases is often confusing; a test case with Zea mays mRNA seq data reveals a high proportion of missing, misleading or incomplete metadata. This metadata morass significantly diminishes the insight that can be extracted from these data. We provide tips for data submitters and users, including specific recommendations to improve metadata quality by more use of controlled vocabulary and by metadata reviews. Finally, we advocate for a unified, straightforward metadata submission and retrieval system.
Collapse
Affiliation(s)
- Priyanka Bhandary
- Dept. of Genetics Development and Cell Biology, Iowa State University, Ames IA 50010, USA; Center for Metabolic Biology, Iowa State University, Ames, IA 50011, USA
| | - Arun S Seetharam
- Genome Informatics Facility, Office of Biotechnology, Iowa State University, Ames, IA 50011, USA
| | - Zebulun W Arendsee
- Dept. of Genetics Development and Cell Biology, Iowa State University, Ames IA 50010, USA; Center for Metabolic Biology, Iowa State University, Ames, IA 50011, USA
| | - Manhoi Hur
- Dept. of Genetics Development and Cell Biology, Iowa State University, Ames IA 50010, USA; Center for Metabolic Biology, Iowa State University, Ames, IA 50011, USA
| | - Eve Syrkin Wurtele
- Dept. of Genetics Development and Cell Biology, Iowa State University, Ames IA 50010, USA; Center for Metabolic Biology, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
23
|
Pizarro L, Leibman-Markus M, Schuster S, Bar M, Meltz T, Avni A. Tomato Prenylated RAB Acceptor Protein 1 Modulates Trafficking and Degradation of the Pattern Recognition Receptor LeEIX2, Affecting the Innate Immune Response. FRONTIERS IN PLANT SCIENCE 2018; 9:257. [PMID: 29545816 PMCID: PMC5838007 DOI: 10.3389/fpls.2018.00257] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 02/12/2018] [Indexed: 05/18/2023]
Abstract
Plants recognize microbial/pathogen associated molecular patterns (MAMP/PAMP) through pattern recognition receptors (PRRs) triggering an immune response against pathogen progression. MAMP/PAMP triggered immune response requires PRR endocytosis and trafficking for proper deployment. LeEIX2 is a well-known Solanum lycopersicum RLP-PRR, able to recognize and respond to the fungal MAMP/PAMP ethylene-inducing xylanase (EIX), and its function is highly dependent on intracellular trafficking. Identifying protein machinery components regulating LeEIX2 intracellular trafficking is crucial to our understanding of LeEIX2 mediated immune responses. In this work, we identified a novel trafficking protein, SlPRA1A, a predicted regulator of RAB, as an interactor of LeEIX2. Overexpression of SlPRA1A strongly decreases LeEIX2 endosomal localization, as well as LeEIX2 protein levels. Accordingly, the innate immune responses to EIX are markedly reduced by SlPRA1A overexpression, presumably due to a decreased LeEIX2 availability. Studies into the role of SlPRA1A in LeEIX2 trafficking revealed that LeEIX2 localization in multivesicular bodies/late endosomes is augmented by SlPRA1A. Furthermore, inhibiting vacuolar function prevents the LeEIX2 protein level reduction mediated by SlPRA1A, suggesting that SlPRA1A may redirect LeEIX2 trafficking to the vacuole for degradation. Interestingly, SlPRA1A overexpression reduces the amount of several RLP-PRRs, but does not affect the protein level of receptor-like kinase PRRs, suggesting a specific role of SlPRA1A in RLP-PRR trafficking and degradation.
Collapse
Affiliation(s)
- Lorena Pizarro
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | | | - Silvia Schuster
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Maya Bar
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Tal Meltz
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Adi Avni
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
- *Correspondence: Adi Avni,
| |
Collapse
|
24
|
Li P, Guo W. Genome-wide characterization of the Rab gene family in Gossypium by comparative analysis. BOTANICAL STUDIES 2017; 58:26. [PMID: 28577194 PMCID: PMC5457372 DOI: 10.1186/s40529-017-0181-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 05/24/2017] [Indexed: 05/10/2023]
Abstract
BACKGROUND Rab protein family is the largest subfamily of small G protein family. As one of the most important families in plant, Rab family plays an important role in the process of plant growth and development. So far, the identification of 57 members of the Rab family in Arabidopsis has been completed. In cotton, the relevant family has not been reported. RESULTS Here, we identified 87, 169, 136, 80 Rabs in the four sequenced cotton species, G. raimondii (D5), G. hirsutum acc. TM-1 (AD1), G. barbadense acc. 3-79 (AD2) and G. arboreum (A2), respectively. Biological information analysis showed that the number of amino acid is 200-300 aa among Rab family members in G. raimondii and the protein molecular weight is between 20 and 30 kDa, which is consistent with the characterization of the Rab protein itself. 87 GrRabs in G. raimondii are divided into eight groups. In each group, intron numbers and subcellular localization of Rab protein are basically the same. We mapped the distribution of GrRab genes on 13 chromosomes of G. raimondii except two genes. Among the 87 GrRabs in G. raimondii, we identified 60 pairs of GrRabs formed in whole genome duplication. Among all the gene pairs, the Ka/Ks values were less than 1. This indicates that it is the results of the purification selection and will help maintain the conservation of gene in structure and function. Further, 4 of the 87 GrRabs showed tandem duplication. They were GrRabA2a vs GrRabD1a and GrRabA2h vs GrRabD1b respectively. Expression patterns analysis of 169 GhRabs in G. hirsutum acc. TM-1 indicates that most Rab family members play a certain role in different tissues/organs and different growth stages of cotton, implying their potential function in the polar growth of pollen tube, root hair and fiber cell, as well as improving stress and disease tolerance. CONCLUSION The systematic investigation of Rab genes in cotton will lay a foundation for understanding the functional roles of different Rab members in the polar growth and stress tolerance.
Collapse
Affiliation(s)
- Peng Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 Jiangsu Province People’s Republic of China
| | - Wangzhen Guo
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 Jiangsu Province People’s Republic of China
| |
Collapse
|
25
|
Paul P, Röth S, Schleiff E. Importance of organellar proteins, protein translocation and vesicle transport routes for pollen development and function. PLANT REPRODUCTION 2016; 29:53-65. [PMID: 26874709 DOI: 10.1007/s00497-016-0274-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 01/18/2016] [Indexed: 05/27/2023]
Abstract
Protein translocation. Cellular homeostasis strongly depends on proper distribution of proteins within cells and insertion of membrane proteins into the destined membranes. The latter is mediated by organellar protein translocation and the complex vesicle transport system. Considering the importance of protein transport machineries in general it is foreseen that these processes are essential for pollen function and development. However, the information available in this context is very scarce because of the current focus on deciphering the fundamental principles of protein transport at the molecular level. Here we review the significance of protein transport machineries for pollen development on the basis of pollen-specific organellar proteins as well as of genetic studies utilizing mutants of known organellar proteins. In many cases these mutants exhibit morphological alterations highlighting the requirement of efficient protein transport and translocation in pollen. Furthermore, expression patterns of genes coding for translocon subunits and vesicle transport factors in Arabidopsis thaliana are summarized. We conclude that with the exception of the translocation systems in plastids-the composition and significance of the individual transport systems are equally important in pollen as in other cell types. Apparently for plastids only a minimal translocon, composed of only few subunits, exists in the envelope membranes during maturation of pollen. However, only one of the various transport systems known from thylakoids seems to be required for the function of the "simple thylakoid system" existing in pollen plastids. In turn, the vesicle transport system is as complex as seen for other cell types as it is essential, e.g., for pollen tube formation.
Collapse
Affiliation(s)
- Puneet Paul
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, 60438, Frankfurt Am Main, Germany
| | - Sascha Röth
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, 60438, Frankfurt Am Main, Germany
| | - Enrico Schleiff
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, 60438, Frankfurt Am Main, Germany.
- Cluster of Excellence Frankfurt, Goethe University, 60438, Frankfurt Am Main, Germany.
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University, 60438, Frankfurt Am Main, Germany.
| |
Collapse
|
26
|
Chao Q, Gao ZF, Wang YF, Li Z, Huang XH, Wang YC, Mei YC, Zhao BG, Li L, Jiang YB, Wang BC. The proteome and phosphoproteome of maize pollen uncovers fertility candidate proteins. PLANT MOLECULAR BIOLOGY 2016; 91:287-304. [PMID: 26969016 DOI: 10.1007/s11103-016-0466-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 03/03/2016] [Indexed: 06/05/2023]
Abstract
Maize is unique since it is both monoecious and diclinous (separate male and female flowers on the same plant). We investigated the proteome and phosphoproteome of maize pollen containing modified proteins and here we provide a comprehensive pollen proteome and phosphoproteome which contain 100,990 peptides from 6750 proteins and 5292 phosphorylated sites corresponding to 2257 maize phosphoproteins, respectively. Interestingly, among the total 27 overrepresented phosphosite motifs we identified here, 11 were novel motifs, which suggested different modification mechanisms in plants compared to those of animals. Enrichment analysis of pollen phosphoproteins showed that pathways including DNA synthesis/chromatin structure, regulation of RNA transcription, protein modification, cell organization, signal transduction, cell cycle, vesicle transport, transport of ions and metabolisms, which were involved in pollen development, the following germination and pollen tube growth, were regulated by phosphorylation. In this study, we also found 430 kinases and 105 phosphatases in the maize pollen phosphoproteome, among which calcium dependent protein kinases (CDPKs), leucine rich repeat kinase, SNF1 related protein kinases and MAPK family proteins were heavily enriched and further analyzed. From our research, we also uncovered hundreds of male sterility-associated proteins and phosphoproteins that might influence maize productivity and serve as targets for hybrid maize seed production. At last, a putative complex signaling pathway involving CDPKs, MAPKs, ubiquitin ligases and multiple fertility proteins was constructed. Overall, our data provides new insight for further investigation of protein phosphorylation status in mature maize pollen and construction of maize male sterile mutants in the future.
Collapse
Affiliation(s)
- Qing Chao
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, China
| | - Zhi-Fang Gao
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, China
| | - Yue-Feng Wang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, China
| | - Zhe Li
- The State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Xia-He Huang
- Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ying-Chun Wang
- Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ying-Chang Mei
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, China
| | - Biligen-Gaowa Zhao
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, China
| | - Liang Li
- Institute of Crop Cultivation and Farming, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Yu-Bo Jiang
- Institute of Crop Cultivation and Farming, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Bai-Chen Wang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, China.
| |
Collapse
|
27
|
Gutkowska M, Wnuk M, Nowakowska J, Lichocka M, Stronkowski MM, Swiezewska E. Rab geranylgeranyl transferase β subunit is essential for male fertility and tip growth in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:213-24. [PMID: 25316062 PMCID: PMC4265159 DOI: 10.1093/jxb/eru412] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Rab proteins, key players in vesicular transport in all eukaryotic cells, are post-translationally modified by lipid moieties. Two geranylgeranyl groups are attached to the Rab protein by the heterodimeric enzyme Rab geranylgeranyl transferase (RGT) αβ. Partial impairment in this enzyme activity in Arabidopsis, by disruption of the AtRGTB1 gene, is known to influence plant stature and disturb gravitropic and light responses. Here it is shown that mutations in each of the RGTB genes cause a tip growth defect, visible as root hair and pollen tube deformations. Moreover, FM 1-43 styryl dye endocytosis and recycling are affected in the mutant root hairs. Finally, it is demonstrated that the double mutant, with both AtRGTB genes disrupted, is non-viable due to absolute male sterility. Doubly mutated pollen is shrunken, has an abnormal exine structure, and shows strong disorganization of internal membranes, particularly of the endoplasmic reticulum system.
Collapse
Affiliation(s)
- Malgorzata Gutkowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Marta Wnuk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Julita Nowakowska
- Warsaw University, Faculty of Biology, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Malgorzata Lichocka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Michal M Stronkowski
- Warsaw University of Technology, Faculty of Mathematics and Information Science, Koszykowa 75, 00-662 Warsaw, Poland
| | - Ewa Swiezewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| |
Collapse
|
28
|
Paul P, Simm S, Mirus O, Scharf KD, Fragkostefanakis S, Schleiff E. The complexity of vesicle transport factors in plants examined by orthology search. PLoS One 2014; 9:e97745. [PMID: 24844592 PMCID: PMC4028247 DOI: 10.1371/journal.pone.0097745] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 04/24/2014] [Indexed: 11/18/2022] Open
Abstract
Vesicle transport is a central process to ensure protein and lipid distribution in eukaryotic cells. The current knowledge on the molecular components and mechanisms of this process is majorly based on studies in Saccharomyces cerevisiae and Arabidopsis thaliana, which revealed 240 different proteinaceous factors either experimentally proven or predicted to be involved in vesicle transport. In here, we performed an orthologue search using two different algorithms to identify the components of the secretory pathway in yeast and 14 plant genomes by using the 'core-set' of 240 factors as bait. We identified 4021 orthologues and (co-)orthologues in the discussed plant species accounting for components of COP-II, COP-I, Clathrin Coated Vesicles, Retromers and ESCRTs, Rab GTPases, Tethering factors and SNAREs. In plants, we observed a significantly higher number of (co-)orthologues than yeast, while only 8 tethering factors from yeast seem to be absent in the analyzed plant genomes. To link the identified (co-)orthologues to vesicle transport, the domain architecture of the proteins from yeast, genetic model plant A. thaliana and agriculturally relevant crop Solanum lycopersicum has been inspected. For the orthologous groups containing (co-)orthologues from yeast, A. thaliana and S. lycopersicum, we observed the same domain architecture for 79% (416/527) of the (co-)orthologues, which documents a very high conservation of this process. Further, publically available tissue-specific expression profiles for a subset of (co-)orthologues found in A. thaliana and S. lycopersicum suggest that some (co-)orthologues are involved in tissue-specific functions. Inspection of localization of the (co-)orthologues based on available proteome data or localization predictions lead to the assignment of plastid- as well as mitochondrial localized (co-)orthologues of vesicle transport factors and the relevance of this is discussed.
Collapse
Affiliation(s)
- Puneet Paul
- Department of Biosciences Molecular Cell Biology of Plants
| | - Stefan Simm
- Department of Biosciences Molecular Cell Biology of Plants
| | - Oliver Mirus
- Department of Biosciences Molecular Cell Biology of Plants
| | | | | | - Enrico Schleiff
- Department of Biosciences Molecular Cell Biology of Plants
- Cluster of Excellence Frankfurt
- Center of Membrane Proteomics; Goethe University Frankfurt, Frankfurt/Main, Germany
- * E-mail:
| |
Collapse
|
29
|
Maruyama D, Sugiyama T, Endo T, Nishikawa SI. Multiple BiP Genes of Arabidopsis thaliana are Required for Male Gametogenesis and Pollen Competitiveness. ACTA ACUST UNITED AC 2014; 55:801-10. [DOI: 10.1093/pcp/pcu018] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
30
|
Lin SY, Chen PW, Chuang MH, Juntawong P, Bailey-Serres J, Jauh GY. Profiling of translatomes of in vivo-grown pollen tubes reveals genes with roles in micropylar guidance during pollination in Arabidopsis. THE PLANT CELL 2014; 26:602-18. [PMID: 24532595 PMCID: PMC3967028 DOI: 10.1105/tpc.113.121335] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Transcriptome profiling has been used to identify genes expressed in pollen tubes elongating in vitro; however, little is known of the transcriptome of in vivo-grown pollen tubes due to the difficulty of collecting pollen that is elongating within the solid maternal gynoecium. Using a pollen-specific promoter (ProLAT52) to generate epitope-tagged polysomal-RNA complexes that could be affinity purified, we obtained mRNAs undergoing translation (the translatome) of in vivo-grown pollen tubes from self-pollinated gynoecia of Arabidopsis thaliana. Translatomes of pollen grains as well as in vivo- and in vitro-cultured pollen tubes were assayed by microarray analyses, revealing over 500 transcripts specifically enriched in in vivo-elongating pollen tubes. Functional analyses of several in vivo mutants (iv) of these pollination-enhanced transcripts revealed partial pollination/fertilization and seed formation defects in siliques (iv2, iv4, and iv6). Cytological observation confirmed the involvement of these genes in specialized processes including micropylar guidance (IV6 and IV4), pollen tube burst (IV2), and repulsion of multiple pollen tubes in embryo sac (IV2). In summary, the selective immunopurification of transcripts engaged with polysomes in pollen tubes within self-fertilized florets has identified a cohort of pollination-enriched transcripts that facilitated the identification of genes important in in vivo pollen tube biology.
Collapse
Affiliation(s)
- Shih-Yun Lin
- Institute of Plant and Microbial Biology, Academia
Sinica, Taipei 11529, Taiwan
| | - Pei-Wei Chen
- Institute of Plant and Microbial Biology, Academia
Sinica, Taipei 11529, Taiwan
| | - Ming-Hsiang Chuang
- Institute of Plant and Microbial Biology, Academia
Sinica, Taipei 11529, Taiwan
| | - Piyada Juntawong
- Center for Plant Cell Biology and Department Botany and
Plant Sciences, University of California, Riverside, California 92521
| | - Julia Bailey-Serres
- Center for Plant Cell Biology and Department Botany and
Plant Sciences, University of California, Riverside, California 92521
| | - Guang-Yuh Jauh
- Institute of Plant and Microbial Biology, Academia
Sinica, Taipei 11529, Taiwan
- Molecular and Biological Agricultural Sciences, Taiwan
International Graduate Program, National Chung-Hsing University–Academia
Sinica, Taipei 11529, Taiwan
- Biotechnology Center, National Chung-Hsing University,
Taichung 40227, Taiwan
- Address correspondence to
| |
Collapse
|
31
|
Wang L, Wang W, Wang YQ, Liu YY, Wang JX, Zhang XQ, Ye D, Chen LQ. Arabidopsis galacturonosyltransferase (GAUT) 13 and GAUT14 have redundant functions in pollen tube growth. MOLECULAR PLANT 2013; 6:1131-48. [PMID: 23709340 DOI: 10.1093/mp/sst084] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Cell wall biosynthesis is indispensable for pollen tube growth. Despite its importance to sexual reproduction, the molecular mechanisms of pollen tube wall biosynthesis remain poorly understood. Here, we report functional characterization of two putative Arabidopsis galacturonosyltransferase genes, GAUT13 and GAUT14, which are essential for pollen tube growth. GAUT13 and GAUT14 encode the proteins that share a high amino acid sequence identity and are located in the Golgi apparatus. The T-DNA insertion mutants, gaut13 and gaut14, did not exhibit any observable defects, but the gaut13 gaut14 double mutants were defective in pollen tube growth; 35.2-37.3% pollen tubes in the heterozygous double mutants were swollen and defective in elongation. The outer layer of the cell wall did not appear distinctly fibrillar in the double mutant pollen tubes. Furthermore, distribution of homogalacturonan labeled with JIM5 and JIM7 in the double mutant pollen tube wall was significantly altered compared to wild-type. Our results suggest that GAUT13 and GAUT14 function redundantly in pollen tube growth, possibly through participation in pectin biosynthesis of the pollen tube wall.
Collapse
Affiliation(s)
- Li Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Hong MJ, Lee YM, Son YS, Im CH, Yi YB, Rim YG, Bahk JD, Heo JB. Rice Rab11 is required for JA-mediated defense signaling. Biochem Biophys Res Commun 2013; 434:797-802. [DOI: 10.1016/j.bbrc.2013.04.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Accepted: 04/11/2013] [Indexed: 10/26/2022]
|
33
|
Jiang J, Jiang J, Qiu L, Miao Y, Yao L, Cao J. Identification of gene expression profile during fertilization in Brassica campestris subsp. chinensis. Genome 2013; 56:39-48. [PMID: 23379337 DOI: 10.1139/gen-2012-0088] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fertilization is controlled by a complex gene regulatory network. To study the fertilization mechanism, we determined time courses of the four developmental stages of fertilization in Chinese cabbage pak-choi (Brassica campestris subsp. chinensis) by cytological observation. We then used the Arabidopsis ATH1 microarray to characterize the gene expression profiles of pollinated and unpollinated pistils in B. campestris subsp. chinensis. The result showed 44 up-regulated genes and 33 down-regulated genes in pollinated pistils compared with unpollinated pistils. Gene ontology analysis identified 20% of the up-regulated genes as belonging to the category of cell wall metabolism. We compared the up-regulated genes in pollinated pistils with previously identified pollen development related genes. Ten genes were found to be in common, which were termed as continuously expressed genes, in the two processes in the present article. Their expression patterns during pollen development and fertilization processes were then verified by RT-PCR. One of the continuously expressed genes, the homologous gene of At3g01270 in B. campestris subsp. chinensis, was confirmed as specifically expressed in microspores and pollinated pistils by using in situ hybridization. The potential biological functions of the other continuously expressed genes were also discussed.
Collapse
Affiliation(s)
- Jingjing Jiang
- a Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China
| | | | | | | | | | | |
Collapse
|