1
|
Prajapati MR, Singh J, Kumar P, Dixit R. De novo transcriptome analysis and identification of defensive genes in garlic (Allium sativum L.) using high-throughput sequencing. J Genet Eng Biotechnol 2023; 21:56. [PMID: 37162611 PMCID: PMC10172436 DOI: 10.1186/s43141-023-00499-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/20/2023] [Indexed: 05/11/2023]
Abstract
BACKGROUND Garlic (Allium sativum L.) is the second most widely cultivated Allium which is mainly grown in temperate regions and used as a flavoring agent in a wide variety of foods. Garlic contains various bioactive compounds whose metabolic pathways, plant-pathogen interactions, defensive genes, identify interaction networks, and functional genomics were not previously predicted in the garlic at the genomic level. To address this issue, we constructed two garlic Illumina 2000 libraries from tissues of garlic clove and leaf. RESULTS Approximately 43 million 125 bp paired-end reads were obtained in the two libraries. A total of 239,973 contigs were generated by de novo assembly of both samples and were compared with the sequences in the NCBI non-redundant protein database (Nr). In total, 42% of contigs were matched to known proteins in public databases including Nr, Gene Ontology (GO), and Cluster Orthologous Gene Database (COG), and then, contigs were mapped to 138 via functional annotation against the Kyoto Encyclopedia of Genes and Genomes pathway database (KEGG). In addition, a number of regulatory genes including the CCHC (Zn) family, followed by WD40, bromodomain, bZIP, AP2-EREBP, BED-type (Zn) proteins, and defense response proteins related to different conserved domains, such as RGA3, NBS-LRR, TIR-NBS-LRR, LRR, NBS-ARC, and CC-NBS-LRR were discovered based on the transcriptome dataset. We compared the ortholog gene family of the A. sativum transcriptome to A. thaliana, O. sativa, and Z. mays and found that 12,077 orthologous gene families are specific to A. sativum L. Furthermore, we identified genes involved in plant defense mechanisms, their protein-protein interaction network, and plant-pathogen interaction pathways. CONCLUSIONS Our study contains an extensive sequencing and functional gene-annotation analysis of A. sativum L. The findings provide insights into the molecular basis of TFs, defensive genes, and a reference for future studies on the genetics and breeding of A. sativum L.
Collapse
Affiliation(s)
- Malyaj R Prajapati
- Division of Microbial and Environmental Biotechnology, College of Biotechnology, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, Uttar Pradesh, 250110, India
| | - Jitender Singh
- Department of Microbiology, Chaudhary Charan Singh University, Meerut, Uttar Pradesh, 250004, India.
| | - Pankaj Kumar
- Division of Microbial and Environmental Biotechnology, College of Biotechnology, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, Uttar Pradesh, 250110, India.
| | - Rekha Dixit
- Division of Microbial and Environmental Biotechnology, College of Biotechnology, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, Uttar Pradesh, 250110, India
| |
Collapse
|
2
|
Fu X, Li G, Hu F, Huang J, Lou Y, Li Y, Li Y, He H, Lv Y, Cheng J. Comparative transcriptome analysis in peaberry and regular bean coffee to identify bean quality associated genes. BMC Genom Data 2023; 24:12. [PMID: 36849914 PMCID: PMC9969625 DOI: 10.1186/s12863-022-01098-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/15/2022] [Indexed: 03/01/2023] Open
Abstract
BACKGROUND The peaberry bean in Arabica coffee has exceptional quality compared to the regular coffee bean. Understanding the molecular mechanism of bean quality is imperative to introduce superior coffee quality traits. Despite high economic importance, the regulatory aspects of bean quality are yet largely unknown in peaberry. A transcriptome analysis was performed by using peaberry and regular coffee beans in this study. RESULTS The result of phenotypic analysis stated a difference in the physical attributes of both coffee beans. In addition, transcriptome analysis revealed low genetic differences. Only 139 differentially expressed genes were detected in which 54 genes exhibited up-regulation and 85 showed down-regulations in peaberry beans compared to regular beans. The majority of differentially expressed genes had functional annotation with cell wall modification, lipid binding, protein binding, oxidoreductase activity, and transmembrane transportation. Many fold lower expression of Ca25840-PMEs1, Ca30827-PMEs2, Ca30828-PMEs3, Ca25839-PMEs4, Ca36469-PGs. and Ca03656-Csl genes annotated with cell wall modification might play a critical role to develop different bean shape patterns in Arabica. The ERECTA family genes Ca15802-ERL1, Ca99619-ERL2, Ca07439-ERL3, Ca97226-ERL4, Ca89747-ERL5, Ca07056-ERL6, Ca01141-ERL7, and Ca32419-ERL8 along lipid metabolic pathway genes Ca06708-ACOX1, Ca29177-ACOX2, Ca01563-ACOX3, Ca34321-CPFA1, and Ca36201-CPFA2 are predicted to regulate different shaped bean development. In addition, flavonoid biosynthesis correlated genes Ca03809-F3H, Ca95013-CYP75A1, and Ca42029-CYP75A2 probably help to generate rarely formed peaberry beans. CONCLUSION Our results provide molecular insights into the formation of peaberry. The data resources will be important to identify candidate genes correlated with the different bean shape patterns in Arabica.
Collapse
Affiliation(s)
- Xingfei Fu
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Yunnan, Baoshan, 678000, China
| | - Guiping Li
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Yunnan, Baoshan, 678000, China
| | - Faguang Hu
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Yunnan, Baoshan, 678000, China
| | - Jiaxiong Huang
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Yunnan, Baoshan, 678000, China
| | - Yuqiang Lou
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Yunnan, Baoshan, 678000, China
| | - Yaqi Li
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Yunnan, Baoshan, 678000, China
| | - Yanan Li
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Yunnan, Baoshan, 678000, China
| | - Hongyan He
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Yunnan, Baoshan, 678000, China
| | - YuLan Lv
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Yunnan, Baoshan, 678000, China
| | - Jinhuan Cheng
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Yunnan, Baoshan, 678000, China.
| |
Collapse
|
3
|
de Sousa LP, Cipriano MAP, da Silva MJ, Patrício FRA, Freitas SDS, Carazzolle MF, Mondego JMC. Functional genomics analysis of a phyllospheric Pseudomonas spp with potential for biological control against coffee rust. BMC Microbiol 2022; 22:222. [PMID: 36131235 PMCID: PMC9494895 DOI: 10.1186/s12866-022-02637-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 01/13/2022] [Indexed: 11/14/2022] Open
Abstract
Background Pseudomonas spp. promotes plant growth and colonizes a wide range of environments. During the annotation of a Coffea arabica ESTs database, we detected a considerable number of contaminant Pseudomonas sequences, specially associated with leaves. The genome of a Pseudomonas isolated from coffee leaves was sequenced to investigate in silico information that could offer insights about bacterial adaptation to coffee phyllosphere. In parallel, several experiments were performed to confirm certain physiological characteristics that could be associated with phyllospheric behavior. Finally, in vivo and in vitro experiments were carried out to verify whether this isolate could serve as a biocontrol agent against coffee rust and how the isolate could act against the infection. Results The isolate showed several genes that are associated with resistance to environmental stresses, such as genes encoding heat/cold shock proteins, antioxidant enzymes, carbon starvation proteins, proteins that control osmotic balance and biofilm formation. There was an increase of exopolysaccharides synthesis in response to osmotic stress, which may protect cells from dessication on phyllosphere. Metabolic pathways for degradation and incorporation into citrate cycle of phenolic compounds present in coffee were found, and experimentally confirmed. In addition, MN1F was found to be highly tolerant to caffeine. The experiments of biocontrol against coffee leaf rust showed that the isolate can control the progress of the disease, most likely through competition for resources. Conclusion Genomic analysis and experimental data suggest that there are adaptations of this Pseudomonas to live in association with coffee leaves and to act as a biocontrol agent.
Supplementary Information The online version contains supplementary material available at 10.1186/s12866-022-02637-4.
Collapse
Affiliation(s)
- Leandro Pio de Sousa
- Instituto Agronômico de Campinas, IAC, Campinas, SP, Brazil.,Programa de Pós-Graduação Em Genética E Biologia Molecular, UNICAMP, Campinas, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
4
|
de Sousa LP, Cipriano MAP, Freitas SDS, Carazzolle MF, da Silva MJ, Mondego JMC. Genomic and physiological evaluation of two root associated Pseudomonas from Coffea arabica. Microbiol Res 2022; 263:127129. [PMID: 35907286 DOI: 10.1016/j.micres.2022.127129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 06/23/2022] [Accepted: 07/12/2022] [Indexed: 10/17/2022]
Abstract
Many Pseudomonas species promote plant growth and colonize a wide range of environments. The annotation of a Coffea arabica ESTs database revealed a considerable number of Pseudomonas sequences. To evaluate the genomic and physiology of Pseudomonas that inhabit coffee plants, fluorescent Pseudomonas from C. arabica root environment were isolated. Two of them had their genomes sequenced; one from rhizospheric soil, named as MNR3A, and one from internal part of the root, named as EMN2. In parallel, we performed biochemical and physiological experiments to confirm genomic analyses results. Interestingly, EMN2 has achromobactin and aerobactin siderophore receptors, but does not have the genes responsible for the production of these siderophores, suggesting an interesting bacterial competition strategy. The two bacterial isolates were able to degrade and catabolize plant phenolic compounds for their own benefit. Surprisingly, MNR3A and EMN2 do not contain caffeine methylases that are responsible for the catabolism of caffeine. In fact, bench experiments confirm that the bacteria did not metabolize caffeine, but were resistant and chemically attracted to it. Furthermore, both bacteria, most especially MNR3A, were able to increase growth of lettuce plants. Our results indicate MNR3A as a potential plant growth promoting bacteria.
Collapse
Affiliation(s)
- Leandro Pio de Sousa
- Instituto Agronômico de Campinas, IAC, Campinas, SP, Brazil; UNICAMP, Programa de Pós-graduação em Genética e Biologia Molecular, Campinas, SP, Brazil
| | | | | | | | | | | |
Collapse
|
5
|
Abstract
Coffee is one of the most important commodities in the global market. Of the 130 species of Coffea, only Coffea arabica and Coffea canephora are actually cultivated on a large scale. Despite the economic and social importance of coffee, little research has been done on the coffee tree microbiome. To assess the structure and function of the rhizosphere microbiome, we performed a deep shotgun metagenomic sequencing of the rhizospheres of five different species, C. arabica, C. canephora, Coffea stenophylla, Coffea racemosa, and Coffea liberica. Our findings indicated that C. arabica and C. stenophylla have different microbiomes, while no differences were detected between the other Coffea species. The core rhizosphere microbiome comprises genera such as Streptomyces, Mycobacterium, Bradyrhizobium, Burkholderia, Sphingomonas, Penicillium, Trichoderma, and Rhizophagus, several of which are potential plant-beneficial microbes. Streptomyces and mycorrhizal fungi dominate the microbial communities. The concentration of sucrose in the rhizosphere seems to influence fungal communities, and the concentration of caffeine/theobromine has little effect on the microbiome. We also detected a possible relationship between drought tolerance in Coffea and known growth-promoting microorganisms. The results provide important information to guide future studies of the coffee tree microbiome to improve plant production and health. IMPORTANCE The microbiome has been identified as a fundamental factor for the maintenance of plant health, helping plants to fight diseases and the deleterious effects of abiotic stresses. Despite this, in-depth studies of the microbiome have been limited to a few species, generally with a short life cycle, and perennial species have mostly been neglected. The coffee tree microbiome, on the other hand, has gained interest in recent years as Coffea trees are perennial tropical species of enormous importance, especially for developing countries. A better understanding of the microorganisms associated with coffee trees can help to mitigate the deleterious effects of climate change on the crop, improving plant health and making the system more sustainable.
Collapse
|
6
|
Setyaningsih W, Putro AW, Fathimah RN, Kurnia KA, Darmawan N, Yulianto B, Jiwanti PK, Carrera CA, Palma M. A microwave-based extraction method for the determination of sugar and polyols: Application to the characterization of regular and peaberry coffees. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
7
|
Differences between the Leaf Mycobiome of Coffea arabica and Wild Coffee Species and Their Modulation by Caffeine/Chlorogenic Acid Content. Microorganisms 2021; 9:microorganisms9112296. [PMID: 34835422 PMCID: PMC8619290 DOI: 10.3390/microorganisms9112296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 10/23/2021] [Accepted: 10/28/2021] [Indexed: 12/03/2022] Open
Abstract
The study of microbes associated with the coffee tree has been gaining strength in recent years. In this work, we compared the leaf mycobiome of the traditional crop Coffea arabica with wild species Coffea racemosa and Coffea stenophylla using ITS sequencing for qualitative information and real-time PCR for quantitative information, seeking to relate the mycobiomes with the content of caffeine and chlorogenic acid in leaves. Dothideomycetes, Wallemiomycetes, and Tremellomycetes are the dominant classes of fungi. The core leaf mycobiome among the three Coffea species is formed by Hannaella, Cladosporium, Cryptococcus, Erythrobasidium, and Alternaria. A network analysis showed that Phoma, an important C. arabica pathogen, is negatively related to six fungal species present in C. racemosa and C. stenophylla and absent in C. arabica. Finally, C. arabica have more than 35 times the concentration of caffeine and 2.5 times the concentration of chlorogenic acid than C. stenophylla and C. racemosa. The relationship between caffeine/chlorogenic acid content, the leaf mycobiome, and genotype pathogen resistance is discussed.
Collapse
|
8
|
Li Z, Zhang C, Zhang Y, Zeng W, Cesarino I. Coffee cell walls—composition, influence on cup quality and opportunities for coffee improvements. FOOD QUALITY AND SAFETY 2021. [DOI: 10.1093/fqsafe/fyab012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
The coffee beverage is the second most consumed drink worldwide after water. In coffee beans, cell wall storage polysaccharides (CWSPs) represent around 50 per cent of the seed dry mass, mainly consisting of galactomannans and arabinogalactans. These highly abundant structural components largely influence the organoleptic properties of the coffee beverage, mainly due to the complex changes they undergo during the roasting process. From a nutritional point of view, coffee CWSPs are soluble dietary fibers shown to provide numerous health benefits in reducing the risk of human diseases. Due to their influence on coffee quality and their health-promoting benefits, CWSPs have been attracting significant research attention. The importance of cell walls to the coffee industry is not restricted to beans used for beverage production, as several coffee by-products also present high concentrations of cell wall components. These by-products include cherry husks, cherry pulps, parchment skin, silver skin, and spent coffee grounds, which are currently used or have the potential to be utilized either as food ingredients or additives, or for the generation of downstream products such as enzymes, pharmaceuticals, and bioethanol. In addition to their functions during plant development, cell walls also play a role in the plant’s resistance to stresses. Here, we review several aspects of coffee cell walls, including chemical composition, biosynthesis, their function in coffee’s responses to stresses, and their influence on coffee quality. We also propose some potential cell wall–related biotechnological strategies envisaged for coffee improvements.
Collapse
Affiliation(s)
| | | | | | | | - Igor Cesarino
- Department of Botany, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
9
|
dos Santos TB, Baba VY, Vieira LGE, Pereira LFP, Domingues DS. The urea transporter DUR3 is differentially regulated by abiotic and biotic stresses in coffee plants. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:203-212. [PMID: 33707863 PMCID: PMC7907287 DOI: 10.1007/s12298-021-00930-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 11/20/2020] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
The high costs of N fertilizers in the coffee production emphasizes the need to optimize fertilization practices and improve nitrogen use efficiency. Urea is widespread in nature, characterizing itself as a significant source of nitrogen for the growth and development of several organisms. Thus, the characterization of genes involved in urea transport in coffee plants is an important research topic for the sustainable production of this valuable cash crop. In the current study, we evaluated the expression of the DUR3 gene under abiotic and biotic stresses in coffee plants. Here, we show that the expression of a high-affinity urea transporter gene (CaDUR3) was up-regulated by N starvation in leaves and roots of two out of three C. arabica cultivars examined. Moreover, the CaDUR3 gene was differentially expressed in coffee plants under different abiotic and biotic stresses. In plants of cv. IAPAR59, CaDUR3 showed an increased expression in leaves after exposure to water deficit and heat stress, while it was downregulated in plants under salinity. Upon infection with H. vastatrix (coffee rust), the CaDUR3 was markedly up-regulated at the beginning of the infection process in the disease susceptible Catuaí Vermelho 99 in comparison with the resistant cultivar. These results indicate that besides urea acquisition and N-remobilization, CaDUR3 gene may be closely involved in the response to various stresses.
Collapse
Affiliation(s)
- Tiago Benedito dos Santos
- Laboratório de Biotecnologia Vegetal, Instituto Agronômico Do Paraná (IAPAR), Londrina, Londrina, 86047-902 Brazil
- Universidade Do Oeste Paulista (UNOESTE), Rodovia Raposo Tavares, Km 572, Presidente Prudente, 19067-175 Brazil
| | - Viviane Y. Baba
- Laboratório de Biotecnologia Vegetal, Instituto Agronômico Do Paraná (IAPAR), Londrina, Londrina, 86047-902 Brazil
| | - Luiz Gonzaga Esteves Vieira
- Universidade Do Oeste Paulista (UNOESTE), Rodovia Raposo Tavares, Km 572, Presidente Prudente, 19067-175 Brazil
| | | | - Douglas Silva Domingues
- Departamento de Botânica, Instituto de Biociências de Rio Claro, Universidade Estadual Paulista, (UNESP), Avenida 24-A, 1515, Rio Claro, 13506-900 Brazil
| |
Collapse
|
10
|
Marques I, Fernandes I, David PH, Paulo OS, Goulao LF, Fortunato AS, Lidon FC, DaMatta FM, Ramalho JC, Ribeiro-Barros AI. Transcriptomic Leaf Profiling Reveals Differential Responses of the Two Most Traded Coffee Species to Elevated [CO 2]. Int J Mol Sci 2020; 21:ijms21239211. [PMID: 33287164 PMCID: PMC7730880 DOI: 10.3390/ijms21239211] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 02/06/2023] Open
Abstract
As atmospheric [CO2] continues to rise to unprecedented levels, understanding its impact on plants is imperative to improve crop performance and sustainability under future climate conditions. In this context, transcriptional changes promoted by elevated CO2 (eCO2) were studied in genotypes from the two major traded coffee species: the allopolyploid Coffea arabica (Icatu) and its diploid parent, C. canephora (CL153). While Icatu expressed more genes than CL153, a higher number of differentially expressed genes were found in CL153 as a response to eCO2. Although many genes were found to be commonly expressed by the two genotypes under eCO2, unique genes and pathways differed between them, with CL153 showing more enriched GO terms and metabolic pathways than Icatu. Divergent functional categories and significantly enriched pathways were found in these genotypes, which altogether supports contrasting responses to eCO2. A considerable number of genes linked to coffee physiological and biochemical responses were found to be affected by eCO2 with the significant upregulation of photosynthetic, antioxidant, and lipidic genes. This supports the absence of photosynthesis down-regulation and, therefore, the maintenance of increased photosynthetic potential promoted by eCO2 in these coffee genotypes.
Collapse
Affiliation(s)
- Isabel Marques
- Plant-Environment Interactions and Biodiversity Lab (PlantStress & Biodiversity), Forest Research Centre (CEF), Instituto Superior de Agronomia (ISA), Universidade de Lisboa, 2784-505 Oeiras and Tapada da Ajuda, 1349-017 Lisboa, Portugal
- Computational Biology and Population Genomics Group, Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal; (I.F.); (P.H.D.); (O.S.P.)
- Correspondence: (I.M.); (J.C.R.); (A.I.R.-B.)
| | - Isabel Fernandes
- Computational Biology and Population Genomics Group, Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal; (I.F.); (P.H.D.); (O.S.P.)
| | - Pedro H.C. David
- Computational Biology and Population Genomics Group, Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal; (I.F.); (P.H.D.); (O.S.P.)
| | - Octávio S. Paulo
- Computational Biology and Population Genomics Group, Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal; (I.F.); (P.H.D.); (O.S.P.)
| | - Luis F. Goulao
- Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia (ISA), Universidade de Lisboa (ULisboa), Tapada da Ajuda, 1349-017 Lisboa, Portugal;
| | - Ana S. Fortunato
- GREEN-IT—Bioresources for Sustainability, Instituto de Tecnologia Química e Biológica António Xavier (ITQB), Universidade NOVA de Lisboa (UNL), Av. da República, 2780-157 Oeiras, Portugal;
| | - Fernando C. Lidon
- GeoBioSciences, GeoTechnologies and GeoEngineering (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), 2829-516 Monte de Caparica, Portugal;
| | - Fábio M. DaMatta
- Departamento de Biologia Vegetal, Universidade Federal Viçosa (UFV), Viçosa 36570-900 (MG), Brazil;
| | - José C. Ramalho
- Plant-Environment Interactions and Biodiversity Lab (PlantStress & Biodiversity), Forest Research Centre (CEF), Instituto Superior de Agronomia (ISA), Universidade de Lisboa, 2784-505 Oeiras and Tapada da Ajuda, 1349-017 Lisboa, Portugal
- GeoBioSciences, GeoTechnologies and GeoEngineering (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), 2829-516 Monte de Caparica, Portugal;
- Correspondence: (I.M.); (J.C.R.); (A.I.R.-B.)
| | - Ana I. Ribeiro-Barros
- Plant-Environment Interactions and Biodiversity Lab (PlantStress & Biodiversity), Forest Research Centre (CEF), Instituto Superior de Agronomia (ISA), Universidade de Lisboa, 2784-505 Oeiras and Tapada da Ajuda, 1349-017 Lisboa, Portugal
- GeoBioSciences, GeoTechnologies and GeoEngineering (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), 2829-516 Monte de Caparica, Portugal;
- Correspondence: (I.M.); (J.C.R.); (A.I.R.-B.)
| |
Collapse
|
11
|
Genome-Wide Screening and Characterization of Non-Coding RNAs in Coffea canephora. Noncoding RNA 2020; 6:ncrna6030039. [PMID: 32932872 PMCID: PMC7549347 DOI: 10.3390/ncrna6030039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/02/2020] [Accepted: 09/08/2020] [Indexed: 12/25/2022] Open
Abstract
Coffea canephora grains are highly traded commodities worldwide. Non-coding RNAs (ncRNAs) are transcriptional products involved in genome regulation, environmental responses, and plant development. There is not an extensive genome-wide analysis that uncovers the ncRNA portion of the C. canephora genome. This study aimed to provide a curated characterization of six ncRNA classes in the Coffea canephora genome. For this purpose, we employed a combination of similarity-based and structural-based computational approaches with stringent curation. Candidate ncRNA loci had expression evidence analyzed using sRNA-seq libraries. We identified 7455 ncRNA loci (6976 with transcriptional evidence) in the C. canephora genome. This comprised of total 115 snRNAs, 1031 snoRNAs, 92 miRNA precursors, 602 tRNAs, 72 rRNAs, and 5064 lncRNAs. For miRNAs, we identified 159 putative high-confidence targets. This study was the most extensive genomic catalog of curated ncRNAs in the Coffea genus. This data might help elaborating more robust hypotheses in future comparative genomic studies as well as gene regulation and genome dynamics, helping to understand the molecular basis of domestication, environmental adaptation, resistance to pests and diseases, and coffee productivity.
Collapse
|
12
|
Campbell LG, Dufresne J, Sabatinos SA. Cannabinoid Inheritance Relies on Complex Genetic Architecture. Cannabis Cannabinoid Res 2020; 5:105-116. [PMID: 32322682 PMCID: PMC7173683 DOI: 10.1089/can.2018.0015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Introduction: Understanding the inheritance of cannabinoid compounds in Cannabis sativa will facilitate effective crop breeding and careful regulation of controlled substances. The production of two key cannabinoids, Δ-9-tetrahydrocannabinol (THC) and cannabidiol (CBD), is partially controlled by two additive loci. Here, we present the first study to search for evidence of alternate genetic models describing the inheritance and expression of cannabinoids. Materials and Methods: Using an information-theoretic approach, we estimated composite genetic effects (CGEs) of four cultivars with pure CBD or pure THC chemotypes, their F1 and F2 hybrid progeny, to identify genetic models that explain cannabinoid inheritance patterns. We also estimated the effective number of genetic factors that control differences in cannabinoid concentration (THC, CBD, and cannabichromene [CBC]). Results: Unlike previous research, we note nonadditive components of cannabinoid inheritance. Concentration of THC is a polygenic trait (three to four genetic factors). Both additive and dominance CGEs best explained THC expression patterns. In contrast, cytoplasmic genomes and additive genes may influence CBD concentration. Maternal additive effects and additive genetic effects apparently influence CBC expression. Conclusions: Cannabinoid inheritance is more complex than previously appreciated; among other genetic effects, cytogenetic and maternal contributions may be undervalued influences on cannabinoid ratios and concentrations. Further research on the environmental sensitivity of cannabinoid production is advised.
Collapse
Affiliation(s)
- Lesley G. Campbell
- Department of Chemistry and Biology, Ryerson University, Toronto, Canada
| | - Jaimie Dufresne
- Department of Chemistry and Biology, Ryerson University, Toronto, Canada
| | - Sarah A. Sabatinos
- Department of Chemistry and Biology, Ryerson University, Toronto, Canada
| |
Collapse
|
13
|
Baba VY, Braghini MT, Dos Santos TB, de Carvalho K, Soares JDM, Ivamoto-Suzuki ST, Maluf MP, Padilha L, Paccola-Meirelles LD, Pereira LF, Domingues DS. Transcriptional patterns of Coffea arabica L. nitrate reductase, glutamine and asparagine synthetase genes are modulated under nitrogen suppression and coffee leaf rust. PeerJ 2020; 8:e8320. [PMID: 31915587 PMCID: PMC6944126 DOI: 10.7717/peerj.8320] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 11/30/2019] [Indexed: 11/24/2022] Open
Abstract
This study evaluated the transcriptional profile of genes related to nitrogen (N) assimilation in coffee plants susceptible and resistant to rust fungi under N sufficiency and N suppression. For this purpose, we inoculated young coffee leaves with Hemileia vastatrix uredospores and collected them at 0, 12, 24 and 48 hours post-inoculation (HPI) to evaluate the relative expressions of genes encoding cytosolic glutamine synthetase (CaGS1), plastid glutamine synthetase (CaGS2), nitrate reductase (CaNR), and asparagine synthetase (CaAS). The genes exhibited distinct patterns of transcriptional modulation for the different genotypes and N nutritional regimes. The resistant genotype (I59) presented high levels of transcription in response to pathogen inoculation for CaNR and CaGS1 genes, evaluated under N sufficiency in the initial moments of infection (12 HPI). The gene CaGS1 also showed a peak at 48 HPI. The susceptible genotype (CV99) showed increased transcript rates of CaNR at 12 and 24 HPI in response to rust inoculation. The transcriptional patterns observed for CV99, under N suppression, were high levels for CaAS and CaGS2 at all post-inoculation times in response to coffee leaf rust disease. In addition, CaGS1 was up-regulated at 48 HPI for CV99. Cultivar I59 showed high transcript levels at 12 HPI for CaAS and peaks at 24 and 48 HPI for CaGS2 in inoculated samples. Consequently, total chlorophyl concentration was influenced by N suppression and by rust infection. Regarding enzyme activities in vitro for glutamine synthetase and CaNR, there was an increase in infected coffee leaves (I59) and under N sufficiency. Moreover, CV99 was modulated in both N nutritional regimes for GS activity in response to rust. Our results indicate that N transport genes trigger a differential modulation between genotypes through the action of rust disease.
Collapse
Affiliation(s)
- Viviane Yumi Baba
- Department of Agronomy, Universidade Estadual de Londrina, Londrina, Paraná, Brazil.,Plant Biotechnology Laboratory, Instituto Agronômico do Paraná, Londrina, Paraná, Brazil
| | - Masako Toma Braghini
- Centro de Análise e Pesquisa Tecnológica do Agronegócio do Café "Alcides Carvalho," Instituto Agronômico de Campinas, Campinas, São Paulo, Brazil
| | - Tiago Benedito Dos Santos
- Plant Biotechnology Laboratory, Instituto Agronômico do Paraná, Londrina, Paraná, Brazil.,Programa de Pós-Graduação em Agronomia, Universidade do Oeste Paulista, Presidente Prudente, São Paulo, Brazil
| | - Kenia de Carvalho
- Plant Biotechnology Laboratory, Instituto Agronômico do Paraná, Londrina, Paraná, Brazil.,Plant Biotechnology Laboratory, Embrapa Soja, Londrina, Paraná, Brazil
| | | | - Suzana Tiemi Ivamoto-Suzuki
- Plant Biotechnology Laboratory, Instituto Agronômico do Paraná, Londrina, Paraná, Brazil.,Department of Botany, Instituto de Biociências, São Paulo State University, UNESP, Rio Claro, São Paulo, Brazil
| | - Mirian P Maluf
- Centro de Análise e Pesquisa Tecnológica do Agronegócio do Café "Alcides Carvalho," Instituto Agronômico de Campinas, Campinas, São Paulo, Brazil.,Plant Breeding, Embrapa Café, Brasília-DF, Brazil
| | - Lilian Padilha
- Centro de Análise e Pesquisa Tecnológica do Agronegócio do Café "Alcides Carvalho," Instituto Agronômico de Campinas, Campinas, São Paulo, Brazil.,Plant Breeding, Embrapa Café, Brasília-DF, Brazil
| | - Luzia D Paccola-Meirelles
- Department of Agronomy, Universidade Estadual de Londrina, Londrina, Paraná, Brazil.,Department of Agronomy, Universidade Paranaense, Umuarama, Paraná, Brazil
| | - Luiz Filipe Pereira
- Plant Biotechnology Laboratory, Instituto Agronômico do Paraná, Londrina, Paraná, Brazil.,Plant Breeding, Embrapa Café, Brasília-DF, Brazil
| | - Douglas S Domingues
- Plant Biotechnology Laboratory, Instituto Agronômico do Paraná, Londrina, Paraná, Brazil.,Department of Botany, Instituto de Biociências, São Paulo State University, UNESP, Rio Claro, São Paulo, Brazil
| |
Collapse
|
14
|
Liao B, Lee SY, Meng K, Yin Q, Huang C, Fan Q, Liao W, Chen S. Characterization and novel Est-SSR marker development of an important Chinese medicinal plant, Morinda officinalis How (Rubiaceae). BIOTECHNOL BIOTEC EQ 2019. [DOI: 10.1080/13102818.2019.1664322] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Boyong Liao
- State Key Laboratory of Bio-control, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Shiou Yih Lee
- State Key Laboratory of Bio-control, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Kaikai Meng
- State Key Laboratory of Bio-control, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Qianyi Yin
- State Key Laboratory of Bio-control, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Cuiying Huang
- State Key Laboratory of Bio-control, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Qiang Fan
- State Key Laboratory of Bio-control, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Wenbo Liao
- State Key Laboratory of Bio-control, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Sufang Chen
- State Key Laboratory of Bio-control, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| |
Collapse
|
15
|
Homeologous regulation of Frigida-like genes provides insights on reproductive development and somatic embryogenesis in the allotetraploid Coffea arabica. Sci Rep 2019; 9:8446. [PMID: 31186437 PMCID: PMC6560031 DOI: 10.1038/s41598-019-44666-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 05/22/2019] [Indexed: 01/10/2023] Open
Abstract
Coffea arabica is an allotetraploid of high economic importance. C. arabica transcriptome is a combination of the transcripts of two parental genomes (C. eugenioides and C. canephora) that gave rise to the homeologous genes of the species. Previous studies have reported the transcriptional dynamics of C. arabica. In these reports, the ancestry of homeologous genes was identified and the overall regulation of homeologous differential expression (HDE) was explored. One of these genes is part of the FRIGIDA-like family (FRL), which includes the Arabidopsis thaliana flowering-time regulation protein, FRIGIDA (FRI). As nonfunctional FRI proteins give rise to rapid-cycling summer annual ecotypes instead of vernalization-responsive winter-annuals, allelic variation in FRI can modulate flowering time in A. thaliana. Using bioinformatics, genomic analysis, and the evaluation of gene expression of homeologs, we characterized the FRL gene family in C. arabica. Our findings indicate that C. arabica expresses 10 FRL homeologs, and that, throughout flower and fruit development, these genes are differentially transcribed. Strikingly, in addition to confirming the expression of FRL genes during zygotic embryogenesis, we detected FRL expression during direct somatic embryogenesis, a novel finding regarding the FRL gene family. The HDE profile of FRL genes suggests an intertwined homeologous gene regulation. Furthermore, we observed that FLC gene of C. arabica has an expression profile similar to that of CaFRL genes.
Collapse
|
16
|
Kakegawa H, Shitan N, Kusano H, Ogita S, Yazaki K, Sugiyama A. Uptake of adenine by purine permeases of Coffea canephora. Biosci Biotechnol Biochem 2019; 83:1300-1305. [PMID: 30999827 DOI: 10.1080/09168451.2019.1606698] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Purine permeases (PUPs) mediate the proton-coupled uptake of nucleotide bases and their derivatives into cytosol. PUPs facilitate uptake of adenine, cytokinins and nicotine. Caffeine, a purine alkaloid derived from xanthosine, occurs in only a few eudicot species, including coffee, cacao, and tea. Although caffeine is not an endogenous metabolite in Arabidopsis and rice, AtPUP1 and OsPUP7 were suggested to transport caffeine. In this study, we identified 15 PUPs in the genome of Coffea canephora. Direct uptake measurements in yeast demonstrated that CcPUP1 and CcPUP5 facilitate adenine - but not caffeine - transport. Adenine uptake was pH-dependent, with increased activity at pH 3 and 4, and inhibited by nigericin, a potassium-proton ionophore, suggesting that CcPUP1 and CcPUP5 function as proton-symporters. Furthermore, adenine uptake was not competitively inhibited by an excess amount of caffeine, which implies that PUPs of C. canephora have evolved to become caffeine-insensitive to promote efficient uptake of adenine into cytosol.
Collapse
Affiliation(s)
- Hirofumi Kakegawa
- a Research Institute for Sustainable Humanosphere, Kyoto University , Uji , Japan
| | - Nobukazu Shitan
- b Laboratory of Medicinal Cell Biology , Kobe Pharmaceutical University , Kobe , Japan
| | - Hiroaki Kusano
- a Research Institute for Sustainable Humanosphere, Kyoto University , Uji , Japan
| | - Shinjiro Ogita
- c Faculty of Life and Environmental Sciences , Prefectural University of Hiroshima , Shobara, Hiroshima , Japan
| | - Kazufumi Yazaki
- a Research Institute for Sustainable Humanosphere, Kyoto University , Uji , Japan
| | - Akifumi Sugiyama
- a Research Institute for Sustainable Humanosphere, Kyoto University , Uji , Japan
| |
Collapse
|
17
|
Dos Santos TB, Soares JDM, Lima JE, Silva JC, Ivamoto ST, Baba VY, Souza SGH, Lorenzetti APR, Paschoal AR, Meda AR, Nishiyama Júnior MY, de Oliveira ÚC, Mokochinski JB, Guyot R, Junqueira-de-Azevedo ILM, Figueira AVO, Mazzafera P, Júnior OR, Vieira LGE, Pereira LFP, Domingues DS. An integrated analysis of mRNA and sRNA transcriptional profiles in Coffea arabica L. roots: insights on nitrogen starvation responses. Funct Integr Genomics 2018; 19:151-169. [PMID: 30196429 DOI: 10.1007/s10142-018-0634-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 08/21/2018] [Accepted: 08/28/2018] [Indexed: 01/09/2023]
Abstract
Coffea arabica L. is an important agricultural commodity, accounting for 60% of traded coffee worldwide. Nitrogen (N) is a macronutrient that is usually limiting to plant yield; however, molecular mechanisms of plant acclimation to N limitation remain largely unknown in tropical woody crops. In this study, we investigated the transcriptome of coffee roots under N starvation, analyzing poly-A+ libraries and small RNAs. We also evaluated the concentration of selected amino acids and N-source preferences in roots. Ammonium was preferentially taken up over nitrate, and asparagine and glutamate were the most abundant amino acids observed in coffee roots. We obtained 34,654 assembled contigs by mRNA sequencing, and validated the transcriptional profile of 12 genes by RT-qPCR. Illumina small RNA sequencing yielded 8,524,332 non-redundant reads, resulting in the identification of 86 microRNA families targeting 253 genes. The transcriptional pattern of eight miRNA families was also validated. To our knowledge, this is the first catalog of differentially regulated amino acids, N sources, mRNAs, and sRNAs in Arabica coffee roots.
Collapse
Affiliation(s)
- Tiago Benedito Dos Santos
- Laboratório de Biotecnologia Vegetal, Instituto Agronômico do Paraná, Londrina, 86047-902, Brazil. .,Universidade do Oeste Paulista, Rodovia Raposo Tavares Km 572, Presidente Prudente, 19067-175, Brazil.
| | - João D M Soares
- Laboratório de Biotecnologia Vegetal, Instituto Agronômico do Paraná, Londrina, 86047-902, Brazil
| | - Joni E Lima
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, 13400-970, Brazil.,Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Juliana C Silva
- Laboratório de Biotecnologia Vegetal, Instituto Agronômico do Paraná, Londrina, 86047-902, Brazil.,Programa de pós-graduação em Bioinformática, Universidade Tecnológica Federal do Paraná, Cornélio Procópio, 86300-000, Brazil
| | - Suzana T Ivamoto
- Laboratório de Biotecnologia Vegetal, Instituto Agronômico do Paraná, Londrina, 86047-902, Brazil.,Departamento de Botânica, Instituto de Biociências de Rio Claro, Universidade Estadual Paulista, Rio Claro, 13506-900, Brazil
| | - Viviane Y Baba
- Laboratório de Biotecnologia Vegetal, Instituto Agronômico do Paraná, Londrina, 86047-902, Brazil
| | - Silvia G H Souza
- Laboratório de Biologia Molecular, Universidade Paranaense, Umuarama, 87502-210, Brazil
| | - Alan P R Lorenzetti
- Programa de Pós-graduação em Genética e Biologia Molecular, Universidade Estadual de Londrina, Londrina, 86057-970, Brazil
| | - Alexandre R Paschoal
- Programa de pós-graduação em Bioinformática, Universidade Tecnológica Federal do Paraná, Cornélio Procópio, 86300-000, Brazil
| | - Anderson R Meda
- Laboratório de Biotecnologia Vegetal, Instituto Agronômico do Paraná, Londrina, 86047-902, Brazil
| | | | - Úrsula C de Oliveira
- Laboratório Especial de Toxinologia Aplicada, Instituto Butantan, São Paulo, 05503-900, Brazil
| | - João B Mokochinski
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, 13083-970, Brazil
| | - Romain Guyot
- IRD, UMR IPME, COFFEEADAPT, BP 64501, 34394, Montpellier Cedex 5, France
| | | | - Antônio V O Figueira
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, 13400-970, Brazil
| | - Paulo Mazzafera
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, 13083-970, Brazil
| | - Osvaldo R Júnior
- Life Sciences Core Facility (LaCTAD), Universidade Estadual de Campinas, Campinas, 13083-886, Brazil
| | - Luiz G E Vieira
- Universidade do Oeste Paulista, Rodovia Raposo Tavares Km 572, Presidente Prudente, 19067-175, Brazil
| | - Luiz F P Pereira
- Laboratório de Biotecnologia Vegetal, Instituto Agronômico do Paraná, Londrina, 86047-902, Brazil.,Embrapa Café, Brasília, 70770-901, Brazil
| | - Douglas S Domingues
- Laboratório de Biotecnologia Vegetal, Instituto Agronômico do Paraná, Londrina, 86047-902, Brazil.,Departamento de Botânica, Instituto de Biociências de Rio Claro, Universidade Estadual Paulista, Rio Claro, 13506-900, Brazil
| |
Collapse
|
18
|
Cheng B, Furtado A, Henry RJ. Long-read sequencing of the coffee bean transcriptome reveals the diversity of full-length transcripts. Gigascience 2018; 6:1-13. [PMID: 29048540 PMCID: PMC5737654 DOI: 10.1093/gigascience/gix086] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 08/23/2017] [Indexed: 11/20/2022] Open
Abstract
Polyploidization contributes to the complexity of gene expression, resulting in numerous related but different transcripts. This study explored the transcriptome diversity and complexity of the tetraploid Arabica coffee (Coffea arabica) bean. Long-read sequencing (LRS) by Pacbio Isoform sequencing (Iso-seq) was used to obtain full-length transcripts without the difficulty and uncertainty of assembly required for reads from short-read technologies. The tetraploid transcriptome was annotated and compared with data from the sub-genome progenitors. Caffeine and sucrose genes were targeted for case analysis. An isoform-level tetraploid coffee bean reference transcriptome with 95 995 distinct transcripts (average 3236 bp) was obtained. A total of 88 715 sequences (92.42%) were annotated with BLASTx against NCBI non-redundant plant proteins, including 34 719 high-quality annotations. Further BLASTn analysis against NCBI non-redundant nucleotide sequences, Coffea canephora coding sequences with UTR, C. arabica ESTs, and Rfam resulted in 1213 sequences without hits, were potential novel genes in coffee. Longer UTRs were captured, especially in the 5΄UTRs, facilitating the identification of upstream open reading frames. The LRS also revealed more and longer transcript variants in key caffeine and sucrose metabolism genes from this polyploid genome. Long sequences (>10 kilo base) were poorly annotated. LRS technology shows the limitation of previous studies. It provides an important tool to produce a reference transcriptome including more of the diversity of full-length transcripts to help understand the biology and support the genetic improvement of polyploid species such as coffee.
Collapse
Affiliation(s)
- Bing Cheng
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Agnelo Furtado
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Robert J Henry
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
19
|
Ramalho JC, Rodrigues AP, Lidon FC, Marques LMC, Leitão AE, Fortunato AS, Pais IP, Silva MJ, Scotti-Campos P, Lopes A, Reboredo FH, Ribeiro-Barros AI. Stress cross-response of the antioxidative system promoted by superimposed drought and cold conditions in Coffea spp. PLoS One 2018; 13:e0198694. [PMID: 29870563 PMCID: PMC5988331 DOI: 10.1371/journal.pone.0198694] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 05/23/2018] [Indexed: 12/18/2022] Open
Abstract
The understanding of acclimation strategies to low temperature and water availability is decisive to ensure coffee crop sustainability, since these environmental conditions determine the suitability of cultivation areas. In this context, the impacts of single and combined exposure to drought and cold were evaluated in three genotypes of the two major cropped species, Coffea arabica cv. Icatu, Coffea canephora cv. Apoatã, and the hybrid Obatã. Crucial traits of plant resilience to environmental stresses have been examined: photosynthesis, lipoperoxidation and the antioxidant response. Drought and/or cold promoted leaf dehydration, which was accompanied by stomatal and mesophyll limitations that impaired leaf C-assimilation in all genotypes. However, Icatu showed a lower impact upon stress exposure and a faster and complete photosynthetic recovery. Although lipoperoxidation was increased by drought (Icatu) and cold (all genotypes), it was greatly reduced by stress interaction, especially in Icatu. In fact, although the antioxidative system was reinforced under single drought and cold exposure (e.g., activity of enzymes as Cu,Zn-superoxide dismutase, ascorbate peroxidase, APX, glutathione reductase and catalase, CAT), the stronger increases were observed upon the simultaneous exposure to both stresses, which was accompanied with a transcriptional response of some genes, namely related to APX. Complementary, non-enzyme antioxidant molecules were promoted mostly by cold and the stress interaction, including α-tocopherol (in C. arabica plants), ascorbate (ASC), zeaxanthin, and phenolic compounds (all genotypes). In general, drought promoted antioxidant enzymes activity, whereas cold enhanced the synthesis of both enzyme and non-enzyme antioxidants, the latter likely related to a higher need of antioxidative capability when enzyme reactions were probably quite repressed by low temperature. Icatu showed the wider antioxidative capability, with the triggering of all studied antioxidative molecules by drought (except CAT), cold, and, particularly, stress interaction (except ASC), revealing a clear stress cross-tolerance. This justified the lower impacts on membrane lipoperoxidation and photosynthetic capacity under stress interaction conditions, related to a better ROS control. These findings are also relevant to coffee water management, showing that watering in the cold season should be largely avoided.
Collapse
Affiliation(s)
- José C. Ramalho
- Plant-Environment Interactions & Biodiversity Lab (PlantStress&Biodiversity), Linking Landscape, Environment, Agriculture and Food Unit (LEAF), Dept. Recursos Naturais, Ambiente e Território (DRAT), Instituto Superior de Agronomia (ISA), Universidade de Lisboa (ULisboa), Oeiras, Portugal
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Caparica, Portugal
| | - Ana P. Rodrigues
- Plant-Environment Interactions & Biodiversity Lab (PlantStress&Biodiversity), Linking Landscape, Environment, Agriculture and Food Unit (LEAF), Dept. Recursos Naturais, Ambiente e Território (DRAT), Instituto Superior de Agronomia (ISA), Universidade de Lisboa (ULisboa), Oeiras, Portugal
| | - Fernando C. Lidon
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Caparica, Portugal
| | - Luís M. C. Marques
- Colóides Polimeros e Superficies, Instituto de Tecnologia Química e Biológica (ITQB), Universidade NOVA de Lisboa (UNL), Oeiras, Portugal
| | - A. Eduardo Leitão
- Plant-Environment Interactions & Biodiversity Lab (PlantStress&Biodiversity), Linking Landscape, Environment, Agriculture and Food Unit (LEAF), Dept. Recursos Naturais, Ambiente e Território (DRAT), Instituto Superior de Agronomia (ISA), Universidade de Lisboa (ULisboa), Oeiras, Portugal
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Caparica, Portugal
| | - Ana S. Fortunato
- Plant-Environment Interactions & Biodiversity Lab (PlantStress&Biodiversity), Linking Landscape, Environment, Agriculture and Food Unit (LEAF), Dept. Recursos Naturais, Ambiente e Território (DRAT), Instituto Superior de Agronomia (ISA), Universidade de Lisboa (ULisboa), Oeiras, Portugal
| | - Isabel P. Pais
- Unid. Investigação em Biotecnologia e Recursos Genéticos, Instituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV), Oeiras, Portugal
| | - Maria J. Silva
- Plant-Environment Interactions & Biodiversity Lab (PlantStress&Biodiversity), Linking Landscape, Environment, Agriculture and Food Unit (LEAF), Dept. Recursos Naturais, Ambiente e Território (DRAT), Instituto Superior de Agronomia (ISA), Universidade de Lisboa (ULisboa), Oeiras, Portugal
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Caparica, Portugal
| | - Paula Scotti-Campos
- Unid. Investigação em Biotecnologia e Recursos Genéticos, Instituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV), Oeiras, Portugal
| | - António Lopes
- Colóides Polimeros e Superficies, Instituto de Tecnologia Química e Biológica (ITQB), Universidade NOVA de Lisboa (UNL), Oeiras, Portugal
| | - F. H. Reboredo
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Caparica, Portugal
| | - Ana I. Ribeiro-Barros
- Plant-Environment Interactions & Biodiversity Lab (PlantStress&Biodiversity), Linking Landscape, Environment, Agriculture and Food Unit (LEAF), Dept. Recursos Naturais, Ambiente e Território (DRAT), Instituto Superior de Agronomia (ISA), Universidade de Lisboa (ULisboa), Oeiras, Portugal
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Caparica, Portugal
| |
Collapse
|
20
|
Sousa LPD, da Silva MJD, Mondego JMC. Leaf-associated bacterial microbiota of coffee and its correlation with manganese and calcium levels on leaves. Genet Mol Biol 2018; 41:455-465. [PMID: 29782032 PMCID: PMC6082234 DOI: 10.1590/1678-4685-gmb-2017-0255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 10/14/2017] [Indexed: 01/16/2023] Open
Abstract
Coffee is one of the most valuable agricultural commodities and the plants’
leaves are the primary site of infection for most coffee diseases, such as the
devastating coffee leaf rust. Therefore, the use of bacterial microbiota that
inhabits coffee leaves to fight infections could be an alternative agricultural
method to protect against coffee diseases. Here, we report the leaf-associated
bacteria in three coffee genotypes over the course of a year, with the aim to
determine the diversity of bacterial microbiota. The results indicate a
prevalence of Enterobacteriales in Coffea canephora,
Pseudomonadales in C. arabica ‘Obatã’, and an intriguing lack
of bacterial dominance in C. arabica ‘Catuaí’. Using PERMANOVA
analyses, we assessed the association between bacterial abundance in the coffee
genotypes and environmental parameters such as temperature, precipitation, and
mineral nutrients in the leaves. We detected a close relationship between the
amount of Mn and the abundance of Pseudomonadales in ‘Obatã’ and the amount of
Ca and the abundance of Enterobacteriales in C. canephora. We
suggest that mineral nutrients can be key drivers that shape leaf microbial
communities.
Collapse
Affiliation(s)
- Leandro Pio de Sousa
- Instituto Agronômico, Campinas, SP, Brazil.,Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia Universidade de Campinas (UNICAMP), Campinas, SP, Brazil.,Programa de Pós Graduação em Genética e Biologia Molecular, Instituto de Biologia, Universidade de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Marcio José da da Silva
- Centro de Biologia Molecular e Engenharia Genética (CBMEG), Universidade de Campinas (UNICAMP), Campinas, SP, Brazil
| | | |
Collapse
|
21
|
dos Santos TB, Lima JE, Felicio MS, Soares JDM, Domingues DS. Genome-wide identification, classification and transcriptional analysis of nitrate and ammonium transporters in Coffea. Genet Mol Biol 2017; 40:346-359. [PMID: 28399192 PMCID: PMC5452133 DOI: 10.1590/1678-4685-gmb-2016-0041] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 02/21/2017] [Indexed: 11/21/2022] Open
Abstract
Nitrogen (N) is quantitatively the main nutrient required by coffee plants, with acquisition mainly by the roots and mostly exported to coffee beans. Nitrate (NO3-) and ammonium (NH4+) are the most important inorganic sources for N uptake. Several N transporters encoded by different gene families mediate the uptake of these compounds. They have an important role in source preference for N uptake in the root system. In this study, we performed a genome-wide analysis, including in silico expression and phylogenetic analyses of AMT1, AMT2, NRT1/PTR, and NRT2 transporters in the recently sequenced Coffea canephora genome. We analyzed the expression of six selected transporters in Coffea arabica roots submitted to N deficiency. N source preference was also analyzed in C. arabica using isotopes. C. canephora N transporters follow the patterns observed for most eudicots, where each member of the AMT and NRT families has a particular role in N mobilization, and where some of these are modulated by N deficiency. Despite the prevalence of putative nitrate transporters in the Coffea genome, ammonium was the preferential inorganic N source for N-starved C. arabica roots. This data provides an important basis for fundamental and applied studies to depict molecular mechanisms involved in N uptake in coffee trees.
Collapse
Affiliation(s)
- Tiago Benedito dos Santos
- Laboratório de Biotecnologia Vegetal, Instituto Agronômico do Paraná,
Londrina, PR, Brazil
- Programa de pós-graduação em Agronomia, Universidade do Oeste
Paulista (UNOESTE), Presidente Prudente, SP, Brazil
| | - Joni Esrom Lima
- Departamento de Botânica, Instituto de Ciências Biológicas,
Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
- Centro de Energia Nuclear na Agricultura (CENA), Escola Superior de
Agricultura “Luiz de Queiroz” (ESALQ), Universidade de São Paulo (USP), Piracicaba.
SP, Brazil
| | - Mariane Silva Felicio
- Laboratório de Biotecnologia Vegetal, Instituto Agronômico do Paraná,
Londrina, PR, Brazil
| | | | - Douglas Silva Domingues
- Laboratório de Biotecnologia Vegetal, Instituto Agronômico do Paraná,
Londrina, PR, Brazil
- Departamento de Botânica, Instituto de Biociências de Rio Claro,
Universidade Estadual Paulista “Júlio Mesquita Filho” (UNESP), Rio Claro, SP,
Brazil
| |
Collapse
|
22
|
Livramento KGD, Borém FM, José AC, Santos AV, Livramento DED, Alves JD, Paiva LV. Proteomic analysis of coffee grains exposed to different drying process. Food Chem 2017; 221:1874-1882. [DOI: 10.1016/j.foodchem.2016.10.069] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 10/13/2016] [Accepted: 10/16/2016] [Indexed: 10/20/2022]
|
23
|
Djami-Tchatchou AT, Sanan-Mishra N, Ntushelo K, Dubery IA. Functional Roles of microRNAs in Agronomically Important Plants-Potential as Targets for Crop Improvement and Protection. FRONTIERS IN PLANT SCIENCE 2017; 8:378. [PMID: 28382044 PMCID: PMC5360763 DOI: 10.3389/fpls.2017.00378] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 03/06/2017] [Indexed: 05/18/2023]
Abstract
MicroRNAs (miRNAs) are a class of small non-coding RNAs that have recently emerged as important regulators of gene expression, mainly through cleavage and/or translation inhibition of the target mRNAs during or after transcription. miRNAs play important roles by regulating a multitude of biological processes in plants which include maintenance of genome integrity, development, metabolism, and adaptive responses toward environmental stresses. The increasing population of the world and their food demands requires focused efforts for the improvement of crop plants to ensure sustainable food production. Manipulation of mRNA transcript abundance via miRNA control provides a unique strategy for modulating differential plant gene expression and miRNAs are thus emerging as the next generation targets for genetic engineering for improvement of the agronomic properties of crops. However, a deeper understanding of its potential and the mechanisms involved will facilitate the design of suitable strategies to obtain the desirable traits with minimum trade-offs in the modified crops. In this regard, this review highlights the diverse roles of conserved and newly identified miRNAs in various food and industrial crops and recent advances made in the uses of miRNAs to improve plants of agronomically importance so as to significantly enhance crop yields and increase tolerance to various environmental stress agents of biotic-or abiotic origin.
Collapse
Affiliation(s)
- Arnaud T. Djami-Tchatchou
- Department of Agriculture and Animal Health, University of South Africa (Florida Campus)Pretoria, South Africa
| | - Neeti Sanan-Mishra
- Plant RNAi Biology Group, International Centre for Genetic Engineering and BiotechnologyNew Delhi, India
| | - Khayalethu Ntushelo
- Department of Agriculture and Animal Health, University of South Africa (Florida Campus)Pretoria, South Africa
| | - Ian A. Dubery
- Department of Biochemistry, University of Johannesburg (Auckland Park Kingsway Campus)Johannesburg, South Africa
| |
Collapse
|
24
|
Ivamoto ST, Reis O, Domingues DS, dos Santos TB, de Oliveira FF, Pot D, Leroy T, Vieira LGE, Carazzolle MF, Pereira GAG, Pereira LFP. Transcriptome Analysis of Leaves, Flowers and Fruits Perisperm of Coffea arabica L. Reveals the Differential Expression of Genes Involved in Raffinose Biosynthesis. PLoS One 2017; 12:e0169595. [PMID: 28068432 PMCID: PMC5221826 DOI: 10.1371/journal.pone.0169595] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Accepted: 12/17/2016] [Indexed: 11/20/2022] Open
Abstract
Coffea arabica L. is an important crop in several developing countries. Despite its economic importance, minimal transcriptome data are available for fruit tissues, especially during fruit development where several compounds related to coffee quality are produced. To understand the molecular aspects related to coffee fruit and grain development, we report a large-scale transcriptome analysis of leaf, flower and perisperm fruit tissue development. Illumina sequencing yielded 41,881,572 high-quality filtered reads. De novo assembly generated 65,364 unigenes with an average length of 1,264 bp. A total of 24,548 unigenes were annotated as protein coding genes, including 12,560 full-length sequences. In the annotation process, we identified nine candidate genes related to the biosynthesis of raffinose family oligossacarides (RFOs). These sugars confer osmoprotection and are accumulated during initial fruit development. Four genes from this pathway had their transcriptional pattern validated by quantitative reverse transcription polymerase chain reaction (qRT-PCR). Furthermore, we identified ~24,000 putative target sites for microRNAs (miRNAs) and 134 putative transcriptionally active transposable elements (TE) sequences in our dataset. This C. arabica transcriptomic atlas provides an important step for identifying candidate genes related to several coffee metabolic pathways, especially those related to fruit chemical composition and therefore beverage quality. Our results are the starting point for enhancing our knowledge about the coffee genes that are transcribed during the flowering and initial fruit development stages.
Collapse
Affiliation(s)
- Suzana Tiemi Ivamoto
- Programa de Pós-Graduação em Genética e Biologia Molecular, Centro de Ciências Biológicas, Universidade Estadual de Londrina (UEL), Londrina, Brazil
- Laboratório de Biotecnologia Vegetal, Instituto Agronômico do Paraná (IAPAR), Londrina, Brazil
| | - Osvaldo Reis
- Laboratório de Genômica e Expressão, Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Douglas Silva Domingues
- Departamento de Botânica, Instituto de Biociências de Rio Claro, Universidade Estadual Paulista (UNESP), Rio Claro, Brazil
| | | | | | - David Pot
- Centre de Coopération Internationale en Recherche Agronomique Pour le Développement, (CIRAD), UMR AGAP, Montpellier, France
| | - Thierry Leroy
- Centre de Coopération Internationale en Recherche Agronomique Pour le Développement, (CIRAD), UMR AGAP, Montpellier, France
| | - Luiz Gonzaga Esteves Vieira
- Programa de Pós Graduação em Agronomia, Universidade do Oeste Paulista (UNOESTE), Presidente Prudente, Brazil
| | - Marcelo Falsarella Carazzolle
- Laboratório de Genômica e Expressão, Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Gonçalo Amarante Guimarães Pereira
- Laboratório de Genômica e Expressão, Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Luiz Filipe Protasio Pereira
- Laboratório de Biotecnologia Vegetal, Instituto Agronômico do Paraná (IAPAR), Londrina, Brazil
- Empresa Brasileira de Pesquisa Agropecuária (Embrapa Café), Brasília, Brazil
| |
Collapse
|
25
|
Martins MQ, Fortunato AS, Rodrigues WP, Partelli FL, Campostrini E, Lidon FC, DaMatta FM, Ramalho JC, Ribeiro-Barros AI. Selection and Validation of Reference Genes for Accurate RT-qPCR Data Normalization in Coffea spp. under a Climate Changes Context of Interacting Elevated [CO 2] and Temperature. FRONTIERS IN PLANT SCIENCE 2017; 8:307. [PMID: 28326094 PMCID: PMC5339599 DOI: 10.3389/fpls.2017.00307] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 02/20/2017] [Indexed: 05/12/2023]
Abstract
World coffee production has faced increasing challenges associated with ongoing climatic changes. Several studies, which have been almost exclusively based on temperature increase, have predicted extensive reductions (higher than half by 2,050) of actual coffee cropped areas. However, recent studies showed that elevated [CO2] can strongly mitigate the negative impacts of heat stress at the physiological and biochemical levels in coffee leaves. In addition, it has also been shown that coffee genotypes can successfully cope with temperatures above what has been traditionally accepted. Altogether, this information suggests that the real impact of climate changes on coffee growth and production could be significantly lower than previously estimated. Gene expression studies are an important tool to unravel crop acclimation ability, demanding the use of adequate reference genes. We have examined the transcript stability of 10 candidate reference genes to normalize RT-qPCR expression studies using a set of 24 cDNAs from leaves of three coffee genotypes (CL153, Icatu, and IPR108), grown under 380 or 700 μL CO2 L-1, and submitted to increasing temperatures from 25/20°C (day/night) to 42/34°C. Samples were analyzed according to genotype, [CO2], temperature, multiple stress interaction ([CO2], temperature) and total stress interaction (genotype, [CO2], and temperature). The transcript stability of each gene was assessed through a multiple analytical approach combining the Coeficient of Variation method and three algorithms (geNorm, BestKeeper, NormFinder). The transcript stability varied according to the type of stress for most genes, but the consensus ranking obtained with RefFinder, classified MDH as the gene with the highest mRNA stability to a global use, followed by ACT and S15, whereas α-TUB and CYCL showed the least stable mRNA contents. Using the coffee expression profiles of the gene encoding the large-subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (RLS), results from the in silico aggregation and experimental validation of the best number of reference genes showed that two reference genes are adequate to normalize RT-qPCR data. Altogether, this work highlights the importance of an adequate selection of reference genes for each single or combined experimental condition and constitutes the basis to accurately study molecular responses of Coffea spp. in a context of climate changes and global warming.
Collapse
Affiliation(s)
- Madlles Q. Martins
- Plant-Environment Interactions and Biodiversity Lab (PlantStress&Biodiversity), Linking Landscape, Environment, Agriculture and Food, Departmento de Recursos Naturais, Ambiente e Território, Instituto Superior de Agronomia, Universidade de Lisboa (ULisboa)Oeiras, Portugal
- Programa de Pós-Graduação em Genética e Melhoramento, Centro de Ciências Agrárias e Engenharias, Universidade Federal do Espírito SantoAlegre, Brazil
| | - Ana S. Fortunato
- Plant-Environment Interactions and Biodiversity Lab (PlantStress&Biodiversity), Linking Landscape, Environment, Agriculture and Food, Departmento de Recursos Naturais, Ambiente e Território, Instituto Superior de Agronomia, Universidade de Lisboa (ULisboa)Oeiras, Portugal
| | - Weverton P. Rodrigues
- Plant-Environment Interactions and Biodiversity Lab (PlantStress&Biodiversity), Linking Landscape, Environment, Agriculture and Food, Departmento de Recursos Naturais, Ambiente e Território, Instituto Superior de Agronomia, Universidade de Lisboa (ULisboa)Oeiras, Portugal
- Setor Fisiologia Vegetal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual Norte Fluminense-Darcy RibeiroRio de Janeiro, Brazil
| | - Fábio L. Partelli
- Departmento de Ciências Agrárias e Biológicas, Centro Universitário Norte do Espírito Santo, Universidade Federal Espírito SantoSão Mateus, Brazil
| | - Eliemar Campostrini
- Setor Fisiologia Vegetal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual Norte Fluminense-Darcy RibeiroRio de Janeiro, Brazil
| | - Fernando C. Lidon
- GeoBioTec, Departmento de Ciências da Terra, Faculdade de Ciências e Tecnologia, Universidade NOVA de LisboaMonte da Caparica, Portugal
| | - Fábio M. DaMatta
- Departmento de Biologia Vegetal, Universidade Federal ViçosaViçosa, Brazil
| | - José C. Ramalho
- Plant-Environment Interactions and Biodiversity Lab (PlantStress&Biodiversity), Linking Landscape, Environment, Agriculture and Food, Departmento de Recursos Naturais, Ambiente e Território, Instituto Superior de Agronomia, Universidade de Lisboa (ULisboa)Oeiras, Portugal
- GeoBioTec, Departmento de Ciências da Terra, Faculdade de Ciências e Tecnologia, Universidade NOVA de LisboaMonte da Caparica, Portugal
- *Correspondence: José C. Ramalho ;
| | - Ana I. Ribeiro-Barros
- Plant-Environment Interactions and Biodiversity Lab (PlantStress&Biodiversity), Linking Landscape, Environment, Agriculture and Food, Departmento de Recursos Naturais, Ambiente e Território, Instituto Superior de Agronomia, Universidade de Lisboa (ULisboa)Oeiras, Portugal
- GeoBioTec, Departmento de Ciências da Terra, Faculdade de Ciências e Tecnologia, Universidade NOVA de LisboaMonte da Caparica, Portugal
| |
Collapse
|
26
|
Nguyen Dinh S, Sai TZT, Nawaz G, Lee K, Kang H. Abiotic stresses affect differently the intron splicing and expression of chloroplast genes in coffee plants (Coffea arabica) and rice (Oryza sativa). JOURNAL OF PLANT PHYSIOLOGY 2016; 201:85-94. [PMID: 27448724 DOI: 10.1016/j.jplph.2016.07.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 07/05/2016] [Accepted: 07/05/2016] [Indexed: 06/06/2023]
Abstract
Despite the increasing understanding of the regulation of chloroplast gene expression in plants, the importance of intron splicing and processing of chloroplast RNA transcripts under stress conditions is largely unknown. Here, to understand how abiotic stresses affect the intron splicing and expression patterns of chloroplast genes in dicots and monocots, we carried out a comprehensive analysis of the intron splicing and expression patterns of chloroplast genes in the coffee plant (Coffea arabica) as a dicot and rice (Oryza sativa) as a monocot under abiotic stresses, including drought, cold, or combined drought and heat stresses. The photosynthetic activity of both coffee plants and rice seedlings was significantly reduced under all stress conditions tested. Analysis of the transcript levels of chloroplast genes revealed that the splicing of tRNAs and mRNAs in coffee plants and rice seedlings were significantly affected by abiotic stresses. Notably, abiotic stresses affected differently the splicing of chloroplast tRNAs and mRNAs in coffee plants and rice seedlings. The transcript levels of most chloroplast genes were markedly downregulated in both coffee plants and rice seedlings upon stress treatment. Taken together, these results suggest that coffee and rice plants respond to abiotic stresses via regulating the intron splicing and expression of different sets of chloroplast genes.
Collapse
Affiliation(s)
- Sy Nguyen Dinh
- Department of Plant Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757, Republic of Korea; Institute of Environment and Biotechnology, Taynguyen University, 567 Le Duan Street, Buon Ma Thuot City, Daklak Province, Viet Nam
| | - Than Zaw Tun Sai
- Department of Plant Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Ghazala Nawaz
- Department of Plant Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Kwanuk Lee
- Department of Plant Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Hunseung Kang
- Department of Plant Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757, Republic of Korea.
| |
Collapse
|
27
|
Tran HT, Lee LS, Furtado A, Smyth H, Henry RJ. Advances in genomics for the improvement of quality in coffee. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:3300-3312. [PMID: 26919810 DOI: 10.1002/jsfa.7692] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Revised: 02/08/2016] [Accepted: 02/23/2016] [Indexed: 06/05/2023]
Abstract
Coffee is an important crop that provides a livelihood to millions of people living in developing countries. Production of genotypes with improved coffee quality attributes is a primary target of coffee genetic improvement programmes. Advances in genomics are providing new tools for analysis of coffee quality at the molecular level. The recent report of a genomic sequence for robusta coffee, Coffea canephora, is a major development. However, a reference genome sequence for the genetically more complex arabica coffee (C. arabica) will also be required to fully define the molecular determinants controlling quality in coffee produced from this high quality coffee species. Genes responsible for control of the levels of the major biochemical components in the coffee bean that are known to be important in determining coffee quality can now be identified by association analysis. However, the narrow genetic base of arabica coffee suggests that genomics analysis of the wild relatives of coffee (Coffea spp.) may be required to find the phenotypic diversity required for effective association genetic analysis. The genomic resources available for the study of coffee quality are described and the potential for the application of next generation sequencing and association genetic analysis to advance coffee quality research are explored. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hue Tm Tran
- Queensland Alliance for Agri culture and Food Innovation (QAAFI), The University of Queensland, St Lucia, Queensland, Australia
- Western Highlands Agriculture & Forestry Science Institute (WASI), Daklak, Vietnam
| | - L Slade Lee
- Southern Cross University, East Lismore, NSW 2480, Australia
| | - Agnelo Furtado
- Queensland Alliance for Agri culture and Food Innovation (QAAFI), The University of Queensland, St Lucia, Queensland, Australia
| | - Heather Smyth
- Queensland Alliance for Agri culture and Food Innovation (QAAFI), The University of Queensland, St Lucia, Queensland, Australia
| | - Robert J Henry
- Queensland Alliance for Agri culture and Food Innovation (QAAFI), The University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
28
|
Mofatto LS, Carneiro FDA, Vieira NG, Duarte KE, Vidal RO, Alekcevetch JC, Cotta MG, Verdeil JL, Lapeyre-Montes F, Lartaud M, Leroy T, De Bellis F, Pot D, Rodrigues GC, Carazzolle MF, Pereira GAG, Andrade AC, Marraccini P. Identification of candidate genes for drought tolerance in coffee by high-throughput sequencing in the shoot apex of different Coffea arabica cultivars. BMC PLANT BIOLOGY 2016; 16:94. [PMID: 27095276 PMCID: PMC4837521 DOI: 10.1186/s12870-016-0777-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 04/13/2016] [Indexed: 05/10/2023]
Abstract
BACKGROUND Drought is a widespread limiting factor in coffee plants. It affects plant development, fruit production, bean development and consequently beverage quality. Genetic diversity for drought tolerance exists within the coffee genus. However, the molecular mechanisms underlying the adaptation of coffee plants to drought are largely unknown. In this study, we compared the molecular responses to drought in two commercial cultivars (IAPAR59, drought-tolerant and Rubi, drought-susceptible) of Coffea arabica grown in the field under control (irrigation) and drought conditions using the pyrosequencing of RNA extracted from shoot apices and analysing the expression of 38 candidate genes. RESULTS Pyrosequencing from shoot apices generated a total of 34.7 Mbp and 535,544 reads enabling the identification of 43,087 clusters (41,512 contigs and 1,575 singletons). These data included 17,719 clusters (16,238 contigs and 1,575 singletons) exclusively from 454 sequencing reads, along with 25,368 hybrid clusters assembled with 454 sequences. The comparison of DNA libraries identified new candidate genes (n = 20) presenting differential expression between IAPAR59 and Rubi and/or drought conditions. Their expression was monitored in plagiotropic buds, together with those of other (n = 18) candidates genes. Under drought conditions, up-regulated expression was observed in IAPAR59 but not in Rubi for CaSTK1 (protein kinase), CaSAMT1 (SAM-dependent methyltransferase), CaSLP1 (plant development) and CaMAS1 (ABA biosynthesis). Interestingly, the expression of lipid-transfer protein (nsLTP) genes was also highly up-regulated under drought conditions in IAPAR59. This may have been related to the thicker cuticle observed on the abaxial leaf surface in IAPAR59 compared to Rubi. CONCLUSIONS The full transcriptome assembly of C. arabica, followed by functional annotation, enabled us to identify differentially expressed genes related to drought conditions. Using these data, candidate genes were selected and their differential expression profiles were confirmed by qPCR experiments in plagiotropic buds of IAPAR59 and Rubi under drought conditions. As regards the genes up-regulated under drought conditions, specifically in the drought-tolerant IAPAR59, several corresponded to orphan genes but also to genes coding proteins involved in signal transduction pathways, as well as ABA and lipid metabolism, for example. The identification of these genes should help advance our understanding of the genetic determinism of drought tolerance in coffee.
Collapse
Affiliation(s)
- Luciana Souto Mofatto
- />Laboratório de Genômica e Expressão (LGE), Departamento de Genética e Evolução, Instituto de Biologia/UNICAMP, Cidade Universitária Zeferino Vaz, 13083-970 Campinas, SP Brazil
| | - Fernanda de Araújo Carneiro
- />Embrapa Recursos Genéticos e Biotecnologia (LGM-NTBio), Parque Estação Biológica, CP 02372, 70770-917, Brasilia, DF Brazil
| | - Natalia Gomes Vieira
- />Embrapa Recursos Genéticos e Biotecnologia (LGM-NTBio), Parque Estação Biológica, CP 02372, 70770-917, Brasilia, DF Brazil
| | - Karoline Estefani Duarte
- />Embrapa Recursos Genéticos e Biotecnologia (LGM-NTBio), Parque Estação Biológica, CP 02372, 70770-917, Brasilia, DF Brazil
| | - Ramon Oliveira Vidal
- />Laboratório de Genômica e Expressão (LGE), Departamento de Genética e Evolução, Instituto de Biologia/UNICAMP, Cidade Universitária Zeferino Vaz, 13083-970 Campinas, SP Brazil
| | - Jean Carlos Alekcevetch
- />Embrapa Recursos Genéticos e Biotecnologia (LGM-NTBio), Parque Estação Biológica, CP 02372, 70770-917, Brasilia, DF Brazil
| | - Michelle Guitton Cotta
- />Embrapa Recursos Genéticos e Biotecnologia (LGM-NTBio), Parque Estação Biológica, CP 02372, 70770-917, Brasilia, DF Brazil
| | | | | | | | | | | | - David Pot
- />CIRAD UMR AGAP, F-34398 Montpellier, France
| | - Gustavo Costa Rodrigues
- />Embrapa Informática Agropecuária, UNICAMP, Av. André Tosello n° 209, CP 6041, 13083-886 Campinas, SP Brazil
| | - Marcelo Falsarella Carazzolle
- />Laboratório de Genômica e Expressão (LGE), Departamento de Genética e Evolução, Instituto de Biologia/UNICAMP, Cidade Universitária Zeferino Vaz, 13083-970 Campinas, SP Brazil
| | - Gonçalo Amarante Guimarães Pereira
- />Laboratório de Genômica e Expressão (LGE), Departamento de Genética e Evolução, Instituto de Biologia/UNICAMP, Cidade Universitária Zeferino Vaz, 13083-970 Campinas, SP Brazil
| | - Alan Carvalho Andrade
- />Embrapa Recursos Genéticos e Biotecnologia (LGM-NTBio), Parque Estação Biológica, CP 02372, 70770-917, Brasilia, DF Brazil
- />present address: Embrapa Café, INOVACAFÉ, Campus UFLA, 37200-000 Lavras, MG Brazil
| | - Pierre Marraccini
- />Embrapa Recursos Genéticos e Biotecnologia (LGM-NTBio), Parque Estação Biológica, CP 02372, 70770-917, Brasilia, DF Brazil
- />CIRAD UMR AGAP, F-34398 Montpellier, France
| |
Collapse
|
29
|
Alves LC, Magalhães DMD, Labate MTV, Guidetti-Gonzalez S, Labate CA, Domingues DS, Sera T, Vieira LGE, Pereira LFP. Differentially Accumulated Proteins in Coffea arabica Seeds during Perisperm Tissue Development and Their Relationship to Coffee Grain Size. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:1635-1647. [PMID: 26809209 DOI: 10.1021/acs.jafc.5b04376] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Coffee is one of the most important crops for developing countries. Coffee classification for trading is related to several factors, including grain size. Larger grains have higher market value then smaller ones. Coffee grain size is determined by the development of the perisperm, a transient tissue with a highly active metabolism, which is replaced by the endosperm during seed development. In this study, a proteomics approach was used to identify differentially accumulated proteins during perisperm development in two genotypes with regular (IPR59) and large grain sizes (IPR59-Graudo) in three developmental stages. Twenty-four spots were identified by MALDI-TOF/TOF-MS, corresponding to 15 proteins. We grouped them into categories as follows: storage (11S), methionine metabolism, cell division and elongation, metabolic processes (mainly redox), and energy. Our data enabled us to show that perisperm metabolism in IPR59 occurs at a higher rate than in IPR59-Graudo, which is supported by the accumulation of energy and detoxification-related proteins. We hypothesized that grain and fruit size divergences between the two coffee genotypes may be due to the comparatively earlier triggering of seed development processes in IPR59. We also demonstrated for the first time that the 11S protein is accumulated in the coffee perisperm.
Collapse
Affiliation(s)
- Leonardo Cardoso Alves
- Biotechnology Laboratory, Instituto Agronomico do Parana , Londrina, Parana 86047-902, Brazil
- Department of Biochemistry and Biotechnology, Universidade Estadual de Londrina , P.O. Box 6001, Londrina, Parana 86051-990, Brazil
| | | | | | - Simone Guidetti-Gonzalez
- Max Feffer Plant Genetics Laboratory, ESALQ, Universidade de Sao Paulo , Piracicaba, Sao Paulo, Brazil
| | - Carlos Alberto Labate
- Max Feffer Plant Genetics Laboratory, ESALQ, Universidade de Sao Paulo , Piracicaba, Sao Paulo, Brazil
| | - Douglas Silva Domingues
- Biotechnology Laboratory, Instituto Agronomico do Parana , Londrina, Parana 86047-902, Brazil
| | - Tumoru Sera
- Biotechnology Laboratory, Instituto Agronomico do Parana , Londrina, Parana 86047-902, Brazil
| | | | - Luiz Filipe Protasio Pereira
- Biotechnology Laboratory, Instituto Agronomico do Parana , Londrina, Parana 86047-902, Brazil
- EMBRAPA Café , Brasilia, DF, Brazil
| |
Collapse
|
30
|
Transcriptome analysis in Coffea eugenioides, an Arabica coffee ancestor, reveals differentially expressed genes in leaves and fruits. Mol Genet Genomics 2015; 291:323-36. [PMID: 26334613 DOI: 10.1007/s00438-015-1111-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 08/24/2015] [Indexed: 10/23/2022]
Abstract
Studies in diploid parental species of polyploid plants are important to understand their contributions to the formation of plant and species evolution. Coffea eugenioides is a diploid species that is considered to be an ancestor of allopolyploid Coffea arabica together with Coffea canephora. Despite its importance in the evolutionary history of the main economic species of coffee, no study has focused on C. eugenioides molecular genetics. RNA-seq creates the possibility to generate reference transcriptomes and identify coding genes and potential candidates related to important agronomic traits. Therefore, the main objectives were to obtain a global overview of transcriptionally active genes in this species using next-generation sequencing and to analyze specific genes that were highly expressed in leaves and fruits with potential exploratory characteristics for breeding and understanding the evolutionary biology of coffee. A de novo assembly generated 36,935 contigs that were annotated using eight databases. We observed a total of ~5000 differentially expressed genes between leaves and fruits. Several genes exclusively expressed in fruits did not exhibit similarities with sequences in any database. We selected ten differentially expressed unigenes in leaves and fruits to evaluate transcriptional profiles using qPCR. Our study provides the first gene catalog for C. eugenioides and enhances the knowledge concerning the mechanisms involved in the C. arabica homeologous. Furthermore, this work will open new avenues for studies into specific genes and pathways in this species, especially related to fruit, and our data have potential value in assisted breeding applications.
Collapse
|
31
|
James P, Baby B, Charles S, Nair LS, Nazeem PA. Computer aided gene mining for gingerol biosynthesis. Bioinformation 2015; 11:316-21. [PMID: 26229293 PMCID: PMC4512007 DOI: 10.6026/97320630011316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 06/15/2015] [Accepted: 06/16/2015] [Indexed: 11/23/2022] Open
Abstract
Inspite of the large body of genomic data obtained from the transcriptome of Zingiber officinale, very few studies have focused on the identification and characterization of miRNAs in gingerol biosynthesis. Zingiber officinale transcriptome was analyzed using EST dataset (38169 total) deposited in public domains. In this paper computational functional annotation of the available ESTs and identification of genes which play a significant role in gingerol biosynthesis are described. Zingiber officinale transcriptome was analyzed using EST dataset (38169 total) from ncbi. ESTs were clustered and assembled, resulting in 8624 contigs and 8821 singletons. Assembled dataset was then submitted to the EST functional annotation workflow including blast, gene ontology (go) analysis, and pathway enrichment by kyoto encyclopedia of genes and genomes (kegg) and interproscan. The unigene datasets were further exploited to identify simple sequence repeats that enable linkage mapping. A total of 409 simple sequence repeats were identified from the contigs. Furthermore we examined the existence of novel miRNAs from the ESTs in rhizome, root and leaf tissues. EST analysis revealed the presence of single hypothetical miRNA in rhizome tissue. The hypothetical miRNA is warranted to play an important role in controlling genes involved in gingerol biosynthesis and hence demands experimental validation. The assembly and associated information of transcriptome data provides a comprehensive functional and evolutionary characterization of genomics of Zingiber officinale. As an effort to make the genomic and transcriptomic data widely available to the public domain, the results were integrated into a web-based Ginger EST database which is freely accessible at http://www.kaubic.in/gingerest/.
Collapse
Affiliation(s)
- Priyanka James
- Bioinformatics Centre (DIC), College of Horticulture, Kerala Agricultural University, Vellanikkara, 680 656, Thrissur, Kerala, India
| | - Bincy Baby
- Bioinformatics Centre (DIC), College of Horticulture, Kerala Agricultural University, Vellanikkara, 680 656, Thrissur, Kerala, India
| | - SonaSona Charles
- Bioinformatics Centre (DIC), College of Horticulture, Kerala Agricultural University, Vellanikkara, 680 656, Thrissur, Kerala, India
| | - Lekshmysree Saraschandran Nair
- Bioinformatics Centre (DIC), College of Horticulture, Kerala Agricultural University, Vellanikkara, 680 656, Thrissur, Kerala, India
| | - Puthiyaveetil Abdulla Nazeem
- Bioinformatics Centre (DIC), College of Horticulture, Kerala Agricultural University, Vellanikkara, 680 656, Thrissur, Kerala, India
| |
Collapse
|
32
|
Santos TBD, de Lima RB, Nagashima GT, Petkowicz CLDO, Carpentieri-Pípolo V, Pereira LFP, Domingues DS, Vieira LGE. Galactinol synthase transcriptional profile in two genotypes of Coffea canephora with contrasting tolerance to drought. Genet Mol Biol 2015; 38:182-90. [PMID: 26273221 PMCID: PMC4530651 DOI: 10.1590/s1415-475738220140171] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 11/07/2014] [Indexed: 12/03/2022] Open
Abstract
Increased synthesis of galactinol and raffinose family oligosaccharides (RFOs) has been reported in vegetative tissues in response to a range of abiotic stresses. In this work, we evaluated the transcriptional profile of a Coffea canephora galactinol synthase gene (CcGolS1) in two clones that differed in tolerance to water deficit in order to assess the contribution of this gene to drought tolerance. The expression of CcGolS1 in leaves was differentially regulated by water deficit, depending on the intensity of stress and the genotype. In clone 109A (drought-susceptible), the abundance of CcGolS1 transcripts decreased upon exposure to drought, reaching minimum values during recovery from severe water deficit and stress. In contrast, CcGolS1 gene expression in clone 14 (drought-tolerant) was stimulated by water deficit. Changes in galactinol and RFO content did not correlate with variation in the steady-state transcript level. However, the magnitude of increase in RFO accumulation was higher in the tolerant cultivar, mainly under severe water deficit. The finding that the drought-tolerant coffee clone showed enhanced accumulation of CcGolS1 transcripts and RFOs under water deficit suggests the possibility of using this gene to improve drought tolerance in this important crop.
Collapse
Affiliation(s)
- Tiago Benedito Dos Santos
- Laboratório de Biotecnologia Vegetal, Instituto Agronômico do Paraná, Londrina, PR, Brazil ; Programa de Pós-Graduação em Agronomia, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | - Rogério Barbosa de Lima
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | | | | | | | - Luiz Filipe Protasio Pereira
- Laboratório de Biotecnologia Vegetal, Instituto Agronômico do Paraná, Londrina, PR, Brazil ; Embrapa Café, Brasília, DF, Brazil
| | | | | |
Collapse
|
33
|
Loss-Morais G, Ferreira DCR, Margis R, Alves-Ferreira M, Corrêa RL. Identification of novel and conserved microRNAs in Coffea canephora and Coffea arabica. Genet Mol Biol 2014; 37:671-82. [PMID: 25505842 PMCID: PMC4261967 DOI: 10.1590/s1415-47572014005000020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 08/29/2014] [Indexed: 02/05/2023] Open
Abstract
As microRNAs (miRNAs) are important regulators of many biological processes, a series of small RNAomes from plants have been produced in the last decade. However, miRNA data from several groups of plants are still lacking, including some economically important crops. Here microRNAs from Coffea canephora leaves were profiled and 58 unique sequences belonging to 33 families were found, including two novel microRNAs that have never been described before in plants. Some of the microRNA sequences were also identified in Coffea arabica that, together with C. canephora, correspond to the two major sources of coffee production in the world. The targets of almost all miRNAs were also predicted on coffee expressed sequences. This is the first report of novel miRNAs in the genus Coffea, and also the first in the plant order Gentianales. The data obtained establishes the basis for the understanding of the complex miRNA-target network on those two important crops.
Collapse
Affiliation(s)
| | - Daniela C R Ferreira
- Departamento de Genética , Universidade Federal de Rio de Janeiro , Rio de Janeiro, RJ , Brazil . ; Programa de Biotecnologia Vegetal , Universidade Federal de Rio de Janeiro , Rio de Janeiro, RJ , Brazil
| | - Rogério Margis
- Departamento de Biofísica , Universidade Federal de Rio Grande do Sul , Porto Alegre, RS , Brazil
| | - Márcio Alves-Ferreira
- Departamento de Genética , Universidade Federal de Rio de Janeiro , Rio de Janeiro, RJ , Brazil . ; Programa de Biotecnologia Vegetal , Universidade Federal de Rio de Janeiro , Rio de Janeiro, RJ , Brazil
| | - Régis L Corrêa
- Departamento de Genética , Universidade Federal de Rio de Janeiro , Rio de Janeiro, RJ , Brazil
| |
Collapse
|
34
|
Homeologous genes involved in mannitol synthesis reveal unequal contributions in response to abiotic stress in Coffea arabica. Mol Genet Genomics 2014; 289:951-63. [PMID: 24861101 DOI: 10.1007/s00438-014-0864-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 05/06/2014] [Indexed: 01/10/2023]
Abstract
Polyploid plants can exhibit transcriptional modulation in homeologous genes in response to abiotic stresses. Coffea arabica, an allotetraploid, accounts for 75% of the world's coffee production. Extreme temperatures, salinity and drought limit crop productivity, which includes coffee plants. Mannitol is known to be involved in abiotic stress tolerance in higher plants. This study aimed to investigate the transcriptional responses of genes involved in mannitol biosynthesis and catabolism in C. arabica leaves under water deficit, salt stress and high temperature. Mannitol concentration was significantly increased in leaves of plants under drought and salinity, but reduced by heat stress. Fructose content followed the level of mannitol only in heat-stressed plants, suggesting the partitioning of the former into other metabolites during drought and salt stress conditions. Transcripts of the key enzymes involved in mannitol biosynthesis, CaM6PR, CaPMI and CaMTD, were modulated in distinct ways depending on the abiotic stress. Our data suggest that changes in mannitol accumulation during drought and salt stress in leaves of C. arabica are due, at least in part, to the increased expression of the key genes involved in mannitol biosynthesis. In addition, the homeologs of the Coffea canephora subgenome did not present the same pattern of overall transcriptional response, indicating differential regulation of these genes by the same stimulus. In this way, this study adds new information on the differential expression of C. arabica homeologous genes under adverse environmental conditions showing that abiotic stresses can influence the homeologous gene regulation pattern, in this case, mainly on those involved in mannitol pathway.
Collapse
|
35
|
Cotta MG, Barros LMG, de Almeida JD, de Lamotte F, Barbosa EA, Vieira NG, Alves GSC, Vinecky F, Andrade AC, Marraccini P. Lipid transfer proteins in coffee: isolation of Coffea orthologs, Coffea arabica homeologs, expression during coffee fruit development and promoter analysis in transgenic tobacco plants. PLANT MOLECULAR BIOLOGY 2014; 85:11-31. [PMID: 24469961 DOI: 10.1007/s11103-013-0166-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 12/06/2013] [Indexed: 06/03/2023]
Abstract
The aim of the present study was to perform a genomic analysis of non-specific lipid-transfer proteins (nsLTPs) in coffee. Several nsLTPs-encoding cDNA and gene sequences were cloned from Coffea arabica and Coffea canephora species. In this work, their analyses revealed that coffee nsLTPs belong to Type II LTP characterized under their mature forms by a molecular weight of around 7.3 kDa, a basic isoelectric points of 8.5 and the presence of typical CXC pattern, with X being an hydrophobic residue facing towards the hydrophobic cavity. Even if several single nucleotide polymorphisms were identified in these nsLTP-coding sequences, 3D predictions showed that they do not have a significant impact on protein functions. Northern blot and RT-qPCR experiments revealed specific expression of Type II nsLTPs-encoding genes in coffee fruits, mainly during the early development of endosperm of both C. arabica and C. canephora. As part of our search for tissue-specific promoters in coffee, an nsLTP promoter region of around 1.2 kb was isolated. It contained several DNA repeats including boxes identified as essential for grain specific expression in other plants. The whole fragment, and a series of 5' deletions, were fused to the reporter gene β-glucuronidase (uidA) and analyzed in transgenic Nicotiana tabacum plants. Histochemical and fluorimetric GUS assays showed that the shorter (345 bp) and medium (827 bp) fragments of nsLTP promoter function as grain-specific promoters in transgenic tobacco plants.
Collapse
Affiliation(s)
- Michelle G Cotta
- Embrapa Genetic Resources and Biotechnology, Parque Estação Biológica, CP 02372, Brasília, DF, 70770-917, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Ramalho JC, DaMatta FM, Rodrigues AP, Scotti-Campos P, Pais I, Batista-Santos P, Partelli FL, Ribeiro A, Lidon FC, Leitão AE. Cold impact and acclimation response of Coffea spp. plants. THEORETICAL AND EXPERIMENTAL PLANT PHYSIOLOGY 2014; 26:5-18. [PMID: 0 DOI: 10.1007/s40626-014-0001-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
|
37
|
Transcriptional activity, chromosomal distribution and expression effects of transposable elements in Coffea genomes. PLoS One 2013; 8:e78931. [PMID: 24244387 PMCID: PMC3823963 DOI: 10.1371/journal.pone.0078931] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 09/17/2013] [Indexed: 12/16/2022] Open
Abstract
Plant genomes are massively invaded by transposable elements (TEs), many of which are located near host genes and can thus impact gene expression. In flowering plants, TE expression can be activated (de-repressed) under certain stressful conditions, both biotic and abiotic, as well as by genome stress caused by hybridization. In this study, we examined the effects of these stress agents on TE expression in two diploid species of coffee, Coffea canephora and C. eugenioides, and their allotetraploid hybrid C. arabica. We also explored the relationship of TE repression mechanisms to host gene regulation via the effects of exonized TE sequences. Similar to what has been seen for other plants, overall TE expression levels are low in Coffea plant cultivars, consistent with the existence of effective TE repression mechanisms. TE expression patterns are highly dynamic across the species and conditions assayed here are unrelated to their classification at the level of TE class or family. In contrast to previous results, cell culture conditions per se do not lead to the de-repression of TE expression in C. arabica. Results obtained here indicate that differing plant drought stress levels relate strongly to TE repression mechanisms. TEs tend to be expressed at significantly higher levels in non-irrigated samples for the drought tolerant cultivars but in drought sensitive cultivars the opposite pattern was shown with irrigated samples showing significantly higher TE expression. Thus, TE genome repression mechanisms may be finely tuned to the ideal growth and/or regulatory conditions of the specific plant cultivars in which they are active. Analysis of TE expression levels in cell culture conditions underscored the importance of nonsense-mediated mRNA decay (NMD) pathways in the repression of Coffea TEs. These same NMD mechanisms can also regulate plant host gene expression via the repression of genes that bear exonized TE sequences.
Collapse
|
38
|
de Carvalho K, Bespalhok Filho JC, dos Santos TB, de Souza SGH, Vieira LGE, Pereira LFP, Domingues DS. Nitrogen starvation, salt and heat stress in coffee (Coffea arabica L.): identification and validation of new genes for qPCR normalization. Mol Biotechnol 2013; 53:315-25. [PMID: 22421886 DOI: 10.1007/s12033-012-9529-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Abiotic stresses are among the most important factors that affect food production. One important step to face these environmental challenges is the transcriptional modulation. Quantitative real-time PCR is a rapid, sensitive, and reliable method for the detection of mRNAs and it has become a powerful tool to mitigate plant stress tolerance; however, suitable reference genes are required for data normalization. Reference genes for coffee plants during nitrogen starvation, salinity and heat stress have not yet been reported. We evaluated the expression stability of ten candidate reference genes using geNorm PLUS, NormFinder, and BestKeeper softwares, in plants submitted to nitrogen starvation, salt and heat stress. EF1, EF1α, GAPDH, MDH, and UBQ10 were ranked as the most stable genes in all stresses and software analyses, while RPL39 and RPII were classified as the less reliable references. For reference gene validation, the transcriptional pattern of a Coffea non-symbiotic hemoglobin (CaHb1) was analyzed using the two new recommended and the most unstable gene references for normalization. The most unstable gene may lead to incorrect interpretation of CaHb1 transcriptional analysis. Here, we recommend two new reference genes in Coffea for use in data normalization in abiotic stresses: MDH and EF1.
Collapse
Affiliation(s)
- Kenia de Carvalho
- Laboratório de Biotecnologia Vegetal, Instituto Agronômico do Paraná, Londrina, PR, Brazil.
| | | | | | | | | | | | | |
Collapse
|
39
|
Nic-Can GI, López-Torres A, Barredo-Pool F, Wrobel K, Loyola-Vargas VM, Rojas-Herrera R, De-la-Peña C. New insights into somatic embryogenesis: leafy cotyledon1, baby boom1 and WUSCHEL-related homeobox4 are epigenetically regulated in Coffea canephora. PLoS One 2013; 8:e72160. [PMID: 23977240 PMCID: PMC3748027 DOI: 10.1371/journal.pone.0072160] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 07/07/2013] [Indexed: 01/09/2023] Open
Abstract
Plant cells have the capacity to generate a new plant without egg fertilization by a process known as somatic embryogenesis (SE), in which differentiated somatic cells can form somatic embryos able to generate a functional plant. Although there have been advances in understanding the genetic basis of SE, the epigenetic mechanism that regulates this process is still unknown. Here, we show that the embryogenic development of Coffea canephora proceeds through a crosstalk between DNA methylation and histone modifications during the earliest embryogenic stages of SE. We found that low levels of DNA methylation, histone H3 lysine 9 dimethylation (H3K9me2) and H3K27me3 change according to embryo development. Moreover, the expression of LEAFY cotyledon1 (LEC1) and BABY BOOM1 (BBM1) are only observed after SE induction, whereas WUSCHEL-related homeobox4 (WOX4) decreases its expression during embryo maturation. Using a pharmacological approach, it was found that 5-Azacytidine strongly inhibits the embryogenic response by decreasing both DNA methylation and gene expression of LEC1 and BBM1. Therefore, in order to know whether these genes were epigenetically regulated, we used Chromatin Immunoprecipitation (ChIP) assays. It was found that WOX4 is regulated by the repressive mark H3K9me2, while LEC1 and BBM1 are epigenetically regulated by H3K27me3. We conclude that epigenetic regulation plays an important role during somatic embryogenic development, and a molecular mechanism for SE is proposed.
Collapse
Affiliation(s)
- Geovanny I. Nic-Can
- Campus de Ciencias Exactas e Ingeniería, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | | | - Felipe Barredo-Pool
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Mérida, Yucatán, México
| | - Kazimierz Wrobel
- Facultad de Química, Universidad de Guanajuato, Guanajuato, México
| | - Víctor M. Loyola-Vargas
- Centro de Investigación Científica de Yucatán, Unidad de Bioquímica y Biología Molecular de Plantas, Mérida, Yucatán, México
| | - Rafael Rojas-Herrera
- Campus de Ciencias Exactas e Ingeniería, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | - Clelia De-la-Peña
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Mérida, Yucatán, México
| |
Collapse
|
40
|
Vojdani A, Tarash I. Cross-Reaction between Gliadin and Different Food and Tissue Antigens. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/fns.2013.41005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
41
|
Kim J, Park JH, Lim CJ, Lim JY, Ryu JY, Lee BW, Choi JP, Kim WB, Lee HY, Choi Y, Kim D, Hur CG, Kim S, Noh YS, Shin C, Kwon SY. Small RNA and transcriptome deep sequencing proffers insight into floral gene regulation in Rosa cultivars. BMC Genomics 2012; 13:657. [PMID: 23171001 PMCID: PMC3527192 DOI: 10.1186/1471-2164-13-657] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 10/22/2012] [Indexed: 12/21/2022] Open
Abstract
Background Roses (Rosa sp.), which belong to the family Rosaceae, are the most economically important ornamental plants—making up 30% of the floriculture market. However, given high demand for roses, rose breeding programs are limited in molecular resources which can greatly enhance and speed breeding efforts. A better understanding of important genes that contribute to important floral development and desired phenotypes will lead to improved rose cultivars. For this study, we analyzed rose miRNAs and the rose flower transcriptome in order to generate a database to expound upon current knowledge regarding regulation of important floral characteristics. A rose genetic database will enable comprehensive analysis of gene expression and regulation via miRNA among different Rosa cultivars. Results We produced more than 0.5 million reads from expressed sequences, totalling more than 110 million bp. From these, we generated 35,657, 31,434, 34,725, and 39,722 flower unigenes from Rosa hybrid: ‘Vital’, ‘Maroussia’, and ‘Sympathy’ and Rosa rugosa Thunb. , respectively. The unigenes were assigned functional annotations, domains, metabolic pathways, Gene Ontology (GO) terms, Plant Ontology (PO) terms, and MIPS Functional Catalogue (FunCat) terms. Rose flower transcripts were compared with genes from whole genome sequences of Rosaceae members (apple, strawberry, and peach) and grape. We also produced approximately 40 million small RNA reads from flower tissue for Rosa, representing 267 unique miRNA tags. Among identified miRNAs, 25 of them were novel and 242 of them were conserved miRNAs. Statistical analyses of miRNA profiles revealed both shared and species-specific miRNAs, which presumably effect flower development and phenotypes. Conclusions In this study, we constructed a Rose miRNA and transcriptome database, and we analyzed the miRNAs and transcriptome generated from the flower tissues of four Rosa cultivars. The database provides a comprehensive genetic resource which can be used to better understand rose flower development and to identify candidate genes for important phenotypes.
Collapse
Affiliation(s)
- Jungeun Kim
- Green Bio Research Center, 125 Gwahak-ro, Yuseong-gu, Daejeon 305-806, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Cação SMB, Leite TF, Budzinski IGF, dos Santos TB, Scholz MBS, Carpentieri-Pipolo V, Domingues DS, Vieira LGE, Pereira LFP. Gene expression and enzymatic activity of pectin methylesterase during fruit development and ripening in Coffea arabica L. GENETICS AND MOLECULAR RESEARCH 2012; 11:3186-97. [PMID: 23007997 DOI: 10.4238/2012.september.3.7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Coffee quality is directly related to the harvest and post harvest conditions. Non-uniform maturation of coffee fruits, combined with inadequate harvest, negatively affects the final quality of the product. Pectin methylesterase (PME) plays an important role in fruit softening due to the hydrolysis of methylester groups in cell wall pectins. In order to characterize the changes occurring during coffee fruit maturation, the enzymatic activity of PME was measured during different stages of fruit ripening. PME activity progressively increased from the beginning of the ripening process to the cherry fruit stage. In silico analysis of expressed sequence tags of the Brazilian Coffee Genome Project database identified 5 isoforms of PME. We isolated and cloned a cDNA homolog of PME for further characterization. CaPME4 transcription was analyzed in pericarp, perisperm, and endosperm tissues during fruit development and ripening as well as in other plant tissues. Northern blot analysis revealed increased transcription of CaPME4 in the pericarp 300 days after flowering. Low levels of CaPME4 mRNAs were observed in the endosperm 270 days after flowering. Expression of CaPME4 transcripts was strong in the branches and lower in root and flower tissues. We showed that CaPME4 acts specifically during the later stages of fruit ripening and possibly contributes to the softening of coffee fruit, thus playing a significant role in pectin degradation in the fruit pericarp.
Collapse
Affiliation(s)
- S M B Cação
- Laboratório de Biotecnologia Vegetal, Instituto Agronômico do Paraná, Londrina, PR, Brasil
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Severino FE, Brandalise M, Costa CS, Wilcken SRS, Maluf MP, Gonçalves W, Maia IG. CaPrx, a Coffea arabica gene encoding a putative class III peroxidase induced by root-knot nematode infection. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 191-192:35-42. [PMID: 22682563 DOI: 10.1016/j.plantsci.2012.04.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 04/18/2012] [Accepted: 04/21/2012] [Indexed: 06/01/2023]
Abstract
Class III peroxidases (Prxs) are enzymes involved in a multitude of physiological and stress-related processes in plants. Here, we report on the characterization of a putative peroxidase-encoding gene from Coffea arabica (CaPrx) that is expressed in early stages of root-knot nematode (RKN) infection. CaPrx showed enhanced expression in coffee roots inoculated with RKN (at 12 h post-inoculation), but no significant difference in expression was observed between susceptible and resistant plants. Assays using transgenic tobacco plants harboring a promoter-β-glucuronidase (GUS) fusion revealed that the CaPrx promoter was exclusively active in the galls induced by RKN. In cross sections of galls, GUS staining was predominantly localized in giant cells. Up-regulation of GUS expression in roots of transgenic plants following RKN inoculation was observed within 16 h. Moreover, no increase in GUS expression after treatment with jasmonic acid was detected. Altogether, these results point to a putative role of this peroxidase in the general coffee response to RKN infection.
Collapse
Affiliation(s)
- Fábio E Severino
- UNESP, Instituto de Biociências, Departamento de Genética, Botucatu, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
44
|
Marraccini P, Vinecky F, Alves GS, Ramos HJ, Elbelt S, Vieira NG, Carneiro FA, Sujii PS, Alekcevetch JC, Silva VA, DaMatta FM, Ferrão MA, Leroy T, Pot D, Vieira LG, da Silva FR, Andrade AC. Differentially expressed genes and proteins upon drought acclimation in tolerant and sensitive genotypes of Coffea canephora. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:4191-212. [PMID: 22511801 PMCID: PMC3398449 DOI: 10.1093/jxb/ers103] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The aim of this study was to investigate the molecular mechanisms underlying drought acclimation in coffee plants by the identification of candidate genes (CGs) using different approaches. The first approach used the data generated during the Brazilian Coffee expressed sequence tag (EST) project to select 13 CGs by an in silico analysis (electronic northern). The second approach was based on screening macroarrays spotted with plasmid DNA (coffee ESTs) with separate hybridizations using leaf cDNA probes from drought-tolerant and susceptible clones of Coffea canephora var. Conilon, grown under different water regimes. This allowed the isolation of seven additional CGs. The third approach used two-dimensional gel electrophoresis to identify proteins displaying differential accumulation in leaves of drought-tolerant and susceptible clones of C. canephora. Six of them were characterized by MALDI-TOF-MS/MS (matrix-assisted laser desorption-time of flight-tandem mass spectrometry) and the corresponding proteins were identified. Finally, additional CGs were selected from the literature, and quantitative real-time polymerase chain reaction (qPCR) was performed to analyse the expression of all identified CGs. Altogether, >40 genes presenting differential gene expression during drought acclimation were identified, some of them showing different expression profiles between drought-tolerant and susceptible clones. Based on the obtained results, it can be concluded that factors involved a complex network of responses probably involving the abscisic signalling pathway and nitric oxide are major molecular determinants that might explain the better efficiency in controlling stomata closure and transpiration displayed by drought-tolerant clones of C. canephora.
Collapse
Affiliation(s)
- Pierre Marraccini
- EMBRAPA Recursos Genéticos e Biotecnologia (LGM), Parque EB, CP 02372, 70770-917 Brasilia, DF, Brazil
- CIRAD, UMR AGAP, Avenue d’Agropolis, F 34398 Montpellier, France
| | - Felipe Vinecky
- EMBRAPA Recursos Genéticos e Biotecnologia (LGM), Parque EB, CP 02372, 70770-917 Brasilia, DF, Brazil
| | - Gabriel S.C. Alves
- EMBRAPA Recursos Genéticos e Biotecnologia (LGM), Parque EB, CP 02372, 70770-917 Brasilia, DF, Brazil
| | | | - Sonia Elbelt
- EMBRAPA Recursos Genéticos e Biotecnologia (LGM), Parque EB, CP 02372, 70770-917 Brasilia, DF, Brazil
- CIRAD, UMR AGAP, Avenue d’Agropolis, F 34398 Montpellier, France
| | - Natalia G. Vieira
- EMBRAPA Recursos Genéticos e Biotecnologia (LGM), Parque EB, CP 02372, 70770-917 Brasilia, DF, Brazil
| | - Fernanda A. Carneiro
- EMBRAPA Recursos Genéticos e Biotecnologia (LGM), Parque EB, CP 02372, 70770-917 Brasilia, DF, Brazil
| | - Patricia S. Sujii
- EMBRAPA Recursos Genéticos e Biotecnologia (LGM), Parque EB, CP 02372, 70770-917 Brasilia, DF, Brazil
| | - Jean C. Alekcevetch
- EMBRAPA Recursos Genéticos e Biotecnologia (LGM), Parque EB, CP 02372, 70770-917 Brasilia, DF, Brazil
| | - Vânia A. Silva
- UFV, Departamento de Biologia Vegetal, 36570-000 Viçosa, MG, Brazil
| | - Fábio M. DaMatta
- UFV, Departamento de Biologia Vegetal, 36570-000 Viçosa, MG, Brazil
| | - Maria A.G. Ferrão
- INCAPER/EMBRAPA CAFÉ, Rod. BR 363, km 94, 29375-000 Domingos Martins, ES, Brazil
| | - Thierry Leroy
- CIRAD, UMR AGAP, Avenue d’Agropolis, F 34398 Montpellier, France
| | - David Pot
- CIRAD, UMR AGAP, Avenue d’Agropolis, F 34398 Montpellier, France
| | - Luiz G.E. Vieira
- INCAPER/EMBRAPA CAFÉ, Rod. BR 363, km 94, 29375-000 Domingos Martins, ES, Brazil
| | - Felipe R. da Silva
- EMBRAPA Recursos Genéticos e Biotecnologia (LGM), Parque EB, CP 02372, 70770-917 Brasilia, DF, Brazil
| | - Alan C. Andrade
- EMBRAPA Recursos Genéticos e Biotecnologia (LGM), Parque EB, CP 02372, 70770-917 Brasilia, DF, Brazil
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
45
|
Tiski I, Marraccini P, Pot D, Vieira LGE, Pereira LFP. Characterization and expression of two cDNA encoding 3-Hydroxy-3-methylglutaryl coenzyme A reductase isoforms in coffee (Coffea arabica L.). OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2011; 15:719-27. [PMID: 21751872 DOI: 10.1089/omi.2010.0140] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In higher plants there are two independent pathways for isoprenoid biosynthesis, located in the cytosol (mevalonic acid or MVA pathway) or in the plastids [methylerythritol phosphate (MEP) pathway]. The 3-hydroxy-3-methyglutaryl-CoA reductase (HMGR) is the first committed step in the MVA pathway. Using the information available from the Brazilian Coffee Genome Project, we found 13 ESTs that originated two isoforms, CaHMGR1 and CaHMGR2, for the enzyme HMGR of Coffea arabica. A complementary DNA encoding the isoform CaHMGR1 was cloned, and its complete nucleotide sequence determined. The full-length cDNA of CaHMGR1 was 2,242 bp containing a 1,812-bp ORF encoding 604 amino acids. Bioinformatic analyses revealed that the deduced CaHMGR1 had extensive homology with other plant HMGRs and contained two transmembrane domains and two putative HMGR binding sites and two NADP(H)-binding sites. Under normal growth conditions, transcripts of isoform CaHMRG1 were detected in fruit tissues (pulp, perisperm, and endosperm) only at the initial stages of development, flower buds and leaves. CaHMRG2 was expressed in all tissues and during all fruit development stages examined. These results suggest a constitutive expression of isoform CaHMGR2, while the isoform CaHMGR1 shows temporal and tissue-specific transcriptional activation.
Collapse
Affiliation(s)
- Iris Tiski
- Biotechnology Graduation Program-UEL, Londrina, PR, Brazil
| | | | | | | | | |
Collapse
|