1
|
Zhang FJ, Li ZY, Zhang DE, Ma N, Wang YX, Zhang TT, Zhao Q, Zhang Z, You CX, Lu XY. Identification of Hsp20 gene family in Malus domestica and functional characterization of Hsp20 class I gene MdHsp18.2b. PHYSIOLOGIA PLANTARUM 2024; 176:e14288. [PMID: 38644531 DOI: 10.1111/ppl.14288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/23/2024] [Indexed: 04/23/2024]
Abstract
Heat shock protein 20 (Hsp20) is a small molecule heat shock protein that plays an important role in plant growth, development, and stress resistance. Little is known about the function of Hsp20 family genes in apple (Malus domestica). Here, we performed a genome-wide analysis of the apple Hsp20 gene family, and a total of 49 Hsp20s genes were identified from the apple genome. Phylogenetic analysis revealed that the 49 genes were divided into 11 subfamilies, and MdHsp18.2b, a member located in the CI branch, was selected as a representative member for functional characterization. Treatment with NaCl and Botryosphaeria dothidea (B. dothidea), the causal agent of apple ring rot disease, significantly induced MdHsp18.2b transcription level. Further analysis revealed that overexpressing MdHsp18.2b reduced the resistance to salt stress but enhanced the resistance to B. dothidea infection in apple calli. Moreover, MdHsp18.2b positively regulated anthocyanin accumulation in apple calli. Physiology assays revealed that MdHsp18.2b promoted H2O2 production, even in the absence of stress factors, which might contribute to its functions in response to NaCl and B. dothidea infection. Hsps usually function as homo- or heterooligomers, and we found that MdHsp18.2b could form a heterodimer with MdHsp17.9a and MdHsp17.5, two members from the same branch with MdHsp18.2b in the phylogenetic tree. Therefore, we identified 49 Hsp20s genes from the apple genome and found that MdHsp18.2b was involved in regulating plant resistance to salt stress and B. dothidea infection, as well as in regulating anthocyanin accumulation in apple calli.
Collapse
Affiliation(s)
- Fu-Jun Zhang
- Department of Horticulture, College of Agriculture, Key Laboratory of Special Fruits & Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Construction Group, Shihezi University, Shihezi, Xinjiang, China
- College of Horticultural Science and Engineering, National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, Shandong, China
| | - Zhao-Yang Li
- College of Horticultural Science and Engineering, National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, Shandong, China
| | - De-En Zhang
- Department of Horticulture, College of Agriculture, Key Laboratory of Special Fruits & Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Construction Group, Shihezi University, Shihezi, Xinjiang, China
| | - Ning Ma
- College of Horticultural Science and Engineering, National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, Shandong, China
| | - Yong-Xu Wang
- Department of Horticulture, College of Agriculture, Key Laboratory of Special Fruits & Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Construction Group, Shihezi University, Shihezi, Xinjiang, China
- College of Horticultural Science and Engineering, National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, Shandong, China
| | - Ting-Ting Zhang
- Department of Horticulture, College of Agriculture, Key Laboratory of Special Fruits & Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Construction Group, Shihezi University, Shihezi, Xinjiang, China
- College of Horticultural Science and Engineering, National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, Shandong, China
| | - Qiang Zhao
- College of Horticulture, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Zhenlu Zhang
- College of Horticultural Science and Engineering, National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, Shandong, China
| | - Chun-Xiang You
- College of Horticultural Science and Engineering, National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, Shandong, China
| | - Xiao-Yan Lu
- Department of Horticulture, College of Agriculture, Key Laboratory of Special Fruits & Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Construction Group, Shihezi University, Shihezi, Xinjiang, China
| |
Collapse
|
2
|
Wang P, Zhang T, Li Y, Zhao X, Liu W, Hu Y, Wang J, Zhou Y. Comprehensive analysis of Dendrobium catenatum HSP20 family genes and functional characterization of DcHSP20-12 in response to temperature stress. Int J Biol Macromol 2024; 258:129001. [PMID: 38158058 DOI: 10.1016/j.ijbiomac.2023.129001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
Heat shock proteins (HSPs) are a class of protective proteins in response to abiotic stress in plants, and HSP20 plays an essential role in response to temperature stress. However, there are few studies on HSP20 in Dendrobium catenatum. In this study, 18 DcHSP20 genes were identified from the D. catenatum genome. Phylogenetic analysis showed that DcHSP20s could be classified into six subgroups, each member of which has similar conserved motifs and gene structures. Gene expression analysis of 18 DcHSP20 genes revealed that they exhibited variable expression patterns in different plant tissues. Meanwhile, all 18 DcHSP20 genes were induced to be up-regulated under high temperature, while six genes (DcHSP20-2/9/10/12/16/17) were significantly up-regulated under low temperature. Moreover, combining gene expression under high and low temperature stress, the DcHSP20-12 gene was cloned for functional analysis. The germination ratios, fresh weights, root lengths of two DcHSP20-12-overexpressing transgenic Arabidopsis thaliana lines were significantly higher, but MDA contents were lower than that of wild-type (WT) plants under heat and cold stresses, displayed enhanced thermotolerance and cold-resistance. These results lay a foundation for the functional characterization of DcHSP20s and provide a candidate gene, DcHSP20-12, for improving the tolerance of D. catenatum to temperature stress in the future.
Collapse
Affiliation(s)
- Peng Wang
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, Hainan, China; Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Haikou 570228, Hainan, China
| | - Tingting Zhang
- Xiangyang Academy of Agricultural Sciences, Xiangyang 441057, Hubei, China
| | - Yuxin Li
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Haikou 570228, Hainan, China
| | - Xi Zhao
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Haikou 570228, Hainan, China
| | - Wen Liu
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, Hainan, China; Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Haikou 570228, Hainan, China
| | - Yanping Hu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Haikou 570228, Hainan, China; Key Laboratory of Vegetable Biology of Hainan Province, Hainan Vegetable Breeding Engineering Technology Research Center, The Institute of Vegetables, Hainan Academy of Agricultural Sciences, Haikou 571199, Hainan, China
| | - Jian Wang
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, Hainan, China; Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Haikou 570228, Hainan, China
| | - Yang Zhou
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, Hainan, China; Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Haikou 570228, Hainan, China.
| |
Collapse
|
3
|
Ding X, Lv M, Liu Y, Guo Q, Gai J, Yang S. A small heat shock protein GmHSP18.5a improves the male fertility restorability of cytoplasmic male sterility-based restorer line under high temperature stress in soybean. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 337:111867. [PMID: 37741497 DOI: 10.1016/j.plantsci.2023.111867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/25/2023]
Abstract
Small heat shock protein (sHSP) is involved in high temperature (HT) stress response. However, the function of sHSPs in regulating male fertility of soybean under HT stress remains largely unknown. Here, we identified a sHSP gene, GmHSP18.5a, which was responded to HT stress during flowering in cytoplasmic male sterility (CMS)-based restorer line of soybean. Moreover, GmHSFA6b turned out to directly activated the expression of GmHSP18.5a by binding to the heat shock cis-element in its promoter. Overexpression of GmHSP18.5a increased male fertility in transgenic Arabidopsis, soybean CMS-based restorer line and its hybrid F1 with CMS line under HT stress. Reactive oxygen species (ROS) content detection revealed that GmHSP18.5a promoted the ROS scavenging ability of Arabidopsis inflorescence and soybean flower bud under HT stress. Enzyme activity assay and gene expression analysis indicated that GmHS18.5a mainly increased the activity of antioxidant enzymes and the expression level of ROS metabolism-related genes under HT stress. Our results indicated that GmHSP18.5a improved the male fertility restorability of CMS-based restorer line in soybean by regulating ROS metabolic pathway and reducing ROS accumulation. Our findings not only revealed the molecular mechanism of sHSP regulating the male fertility of soybean under HT stress, but also provided a theoretical basis for creating strong restorer line with thermotolerance.
Collapse
Affiliation(s)
- Xianlong Ding
- Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture and Rural Affairs of the People's Republic of China), MOE National Innovation Platform for Soybean Bio-breeding Industry and Education Integration, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Menglin Lv
- Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture and Rural Affairs of the People's Republic of China), MOE National Innovation Platform for Soybean Bio-breeding Industry and Education Integration, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Ying Liu
- Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture and Rural Affairs of the People's Republic of China), MOE National Innovation Platform for Soybean Bio-breeding Industry and Education Integration, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Qingling Guo
- Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture and Rural Affairs of the People's Republic of China), MOE National Innovation Platform for Soybean Bio-breeding Industry and Education Integration, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Junyi Gai
- Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture and Rural Affairs of the People's Republic of China), MOE National Innovation Platform for Soybean Bio-breeding Industry and Education Integration, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Shouping Yang
- Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture and Rural Affairs of the People's Republic of China), MOE National Innovation Platform for Soybean Bio-breeding Industry and Education Integration, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
4
|
Malambane G, Madumane K, Sewelo LT, Batlang U. Drought stress tolerance mechanisms and their potential common indicators to salinity, insights from the wild watermelon (Citrullus lanatus): A review. FRONTIERS IN PLANT SCIENCE 2023; 13:1074395. [PMID: 36815012 PMCID: PMC9939662 DOI: 10.3389/fpls.2022.1074395] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/25/2022] [Indexed: 06/18/2023]
Abstract
Climate change has escalated the effect of drought on crop production as it has negatively altered the environmental condition. Wild watermelon grows abundantly in the Kgalagadi desert even though the environment is characterized by minimal rainfall, high temperatures and intense sunshine during growing season. This area is also characterized by sandy soils with low water holding capacity, thus bringing about drought stress. Drought stress affects crop productivity through its effects on development and physiological functions as dictated by molecular responses. Not only one or two physiological process or genes are responsible for drought tolerance, but a combination of various factors do work together to aid crop tolerance mechanism. Various studies have shown that wild watermelon possess superior qualities that aid its survival in unfavorable conditions. These mechanisms include resilient root growth, timely stomatal closure, chlorophyll fluorescence quenching under water deficit as key physiological responses. At biochemical and molecular level, the crop responds through citrulline accumulation and expression of genes associated with drought tolerance in this species and other plants. Previous salinity stress studies involving other plants have identified citrulline accumulation and expression of some of these genes (chloroplast APX, Type-2 metallothionein), to be associated with tolerance. Emerging evidence indicates that the upstream of functional genes are the transcription factor that regulates drought and salinity stress responses as well as adaptation. In this review we discuss the drought tolerance mechanisms in watermelons and some of its common indicators to salinity at physiological, biochemical and molecular level.
Collapse
|
5
|
Chaudhry S, Sidhu GPS. Climate change regulated abiotic stress mechanisms in plants: a comprehensive review. PLANT CELL REPORTS 2022; 41:1-31. [PMID: 34351488 DOI: 10.1007/s00299-021-02759-5] [Citation(s) in RCA: 120] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 07/18/2021] [Indexed: 05/20/2023]
Abstract
Global climate change is identified as a major threat to survival of natural ecosystems. Climate change is a dynamic, multifaceted system of alterations in environmental conditions that affect abiotic and biotic components of the world. It results in alteration in environmental conditions such as heat waves, intensity of rainfall, CO2 concentration and temperature that lead to rise in new pests, weeds and pathogens. Climate change is one of the major constraints limiting plant growth and development worldwide. It impairs growth, disturbs photosynthesis, and reduces physiological responses in plants. The variations in global climate have gained the attention of researchers worldwide, as these changes negatively affect the agriculture by reducing crop productivity and food security. With this background, this review focuses on the effects of elevated atmospheric CO2 concentration, temperature, drought and salinity on the morphology, physiology and biochemistry of plants. Furthermore, this paper outlines an overview on the reactive oxygen species (ROS) production and their impact on the biochemical and molecular status of plants with increased climatic variations. Also additionally, different tolerance strategies adopted by plants to combat environmental adversities have been discussed.
Collapse
Affiliation(s)
- Smita Chaudhry
- Institute of Environmental Studies, Kurukshetra University, Kurukshetra, Haryana, 136119, India
- Centre for Applied Biology in Environment Sciences, Kurukshetra University, Kurukshetra, Haryana, 136119, India
| | - Gagan Preet Singh Sidhu
- Centre for Applied Biology in Environment Sciences, Kurukshetra University, Kurukshetra, Haryana, 136119, India.
| |
Collapse
|
6
|
Koochak H, Ludwig-Müller J. Physcomitrium patens Mutants in Auxin Conjugating GH3 Proteins Show Salt Stress Tolerance but Auxin Homeostasis Is Not Involved in Regulation of Oxidative Stress Factors. PLANTS 2021; 10:plants10071398. [PMID: 34371602 PMCID: PMC8309278 DOI: 10.3390/plants10071398] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 11/23/2022]
Abstract
Salt stress is among the most challenging abiotic stress situations that a plant can experience. High salt levels do not only occur in areas with obvious salty water, but also during drought periods where salt accumulates in the soil. The moss Physcomitrium patens became a model for studying abiotic stress in non-vascular plants. Here, we show that high salt concentrations can be tolerated in vitro, and that auxin homeostasis is connected to the performance of P. patens under these stress conditions. The auxin levels can be regulated by conjugating IAA to amino acids by two members of the family of GH3 protein auxin amino acid-synthetases that are present in P. patens. Double GH3 gene knock-out mutants were more tolerant to high salt concentrations. Furthermore, free IAA levels were differentially altered during the time points investigated. Since, among the mutant lines, an increase in IAA on at least one NaCl concentration tested was observed, we treated wild type (WT) plants concomitantly with NaCl and IAA. This experiment showed that the salt tolerance to 100 mM NaCl together with 1 and 10 µM IAA was enhanced during the earlier time points. This is an additional indication that the high IAA levels in the double GH3-KO lines could be responsible for survival in high salt conditions. While the high salt concentrations induced several selected stress metabolites including phenols, flavonoids, and enzymes such as peroxidase and superoxide dismutase, the GH3-KO genotype did not generally participate in this upregulation. While we showed that the GH3 double KO mutants were more tolerant of high (250 mM) NaCl concentrations, the altered auxin homeostasis was not directly involved in the upregulation of stress metabolites.
Collapse
Affiliation(s)
- Haniyeh Koochak
- Institut für Botanik, Technische Universität Dresden, 01062 Dresden, Germany;
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164-5910, USA
| | - Jutta Ludwig-Müller
- Institut für Botanik, Technische Universität Dresden, 01062 Dresden, Germany;
- Correspondence:
| |
Collapse
|
7
|
Marchetti F, Cainzos M, Cascallares M, Distéfano AM, Setzes N, López GA, Zabaleta E, Pagnussat GC. Heat stress in Marchantia polymorpha: Sensing and mechanisms underlying a dynamic response. PLANT, CELL & ENVIRONMENT 2021; 44:2134-2149. [PMID: 33058168 DOI: 10.1111/pce.13914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/04/2020] [Indexed: 06/11/2023]
Abstract
Sensing and response to high temperatures are crucial to prevent heat-related damage and to preserve cellular and metabolic functions. The response to heat stress is a complex and coordinated process that involves several subcellular compartments and multi-level regulatory networks that are synchronized to avoid cell damage while maintaining cellular homeostasis. In this review, we provide an insight into the most recent advances in elucidating the molecular mechanisms involved in heat stress sensing and response in Marchantia polymorpha. Based on the signaling pathways and genes that were identified in Marchantia, our analyses indicate that although with specific particularities, the core components of the heat stress response seem conserved in bryophytes and angiosperms. Liverworts not only constitute a powerful tool to study heat stress response and signaling pathways during plant evolution, but also provide key and simple mechanisms to cope with extreme temperatures. Given the increasing prevalence of high temperatures around the world as a result of global warming, this knowledge provides a new set of molecular tools with potential agronomical applications.
Collapse
Affiliation(s)
- Fernanda Marchetti
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Maximiliano Cainzos
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Milagros Cascallares
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Ayelén Mariana Distéfano
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Nicolás Setzes
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Gabriel Alejandro López
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Eduardo Zabaleta
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Gabriela Carolina Pagnussat
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| |
Collapse
|
8
|
Linking diverse salinity responses of 14 almond rootstocks with physiological, biochemical, and genetic determinants. Sci Rep 2020; 10:21087. [PMID: 33273661 PMCID: PMC7712888 DOI: 10.1038/s41598-020-78036-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 11/13/2020] [Indexed: 01/13/2023] Open
Abstract
Fourteen commercial almond rootstocks were tested under five types of irrigation waters to understand the genetic, physiological, and biochemical bases of salt-tolerance mechanisms. Treatments included control (T1) and four saline water treatments dominant in sodium-sulfate (T2), sodium-chloride (T3), sodium-chloride/sulfate (T4), and calcium/magnesium-chloride/sulfate (T5). T3 caused the highest reduction in survival rate and trunk diameter, followed by T4 and T2, indicating that Na and, to a lesser extent, Cl were the most toxic ions to almond rootstocks. Peach hybrid (Empyrean 1) and peach-almond hybrids (Cornerstone, Bright’s Hybrid 5, and BB 106) were the most tolerant to salinity. Rootstock’s performance under salinity correlated highly with its leaf Na and Cl concentrations, indicating that Na+ and Cl- exclusion is crucial for salinity tolerance in Prunus. Photosynthetic rate correlated with trunk diameter and proline leaf ratio (T3/T1) significantly correlated with the exclusion of Na+ and Cl-, which directly affected the survival rate. Expression analyses of 23 genes involved in salinity stress revealed that the expression differences among genotypes were closely associated with their performance under salinity. Our genetic, molecular, and biochemical analyses allowed us to characterize rootstocks based on component traits of the salt-tolerance mechanisms, which may facilitate the development of highly salt-tolerant rootstocks.
Collapse
|
9
|
Ruibal C, Castro A, Fleitas AL, Quezada J, Quero G, Vidal S. A Chloroplast COR413 Protein From Physcomitrella patens Is Required for Growth Regulation Under High Light and ABA Responses. FRONTIERS IN PLANT SCIENCE 2020; 11:845. [PMID: 32636864 PMCID: PMC7317016 DOI: 10.3389/fpls.2020.00845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 05/26/2020] [Indexed: 05/17/2023]
Abstract
COR413 genes belong to a poorly characterized group of plant-specific cold-regulated genes initially identified as part of the transcriptional activation machinery of plants during cold acclimation. They encode multispanning transmembrane proteins predicted to target the plasma membrane or the chloroplast inner membrane. Despite being ubiquitous throughout the plant kingdom, little is known about their biological function. In this study, we used reverse genetics to investigate the relevance of a predicted chloroplast localized COR413 protein (PpCOR413im) from the moss Physcomitrella patens in developmental and abiotic stress responses. Expression of PpCOR413im was strongly induced by abscisic acid (ABA) and by various environmental stimuli, including low temperature, hyperosmosis, salinity and high light. In vivo subcellular localization of PpCOR413im-GFP fusion protein revealed that this protein is localized in chloroplasts, confirming the in silico predictions. Loss-of-function mutants of PpCOR413im exhibited growth and developmental alterations such as growth retardation, reduced caulonema formation and hypersensitivity to ABA. Mutants also displayed altered photochemistry under various abiotic stresses, including dehydration and low temperature, and exhibited a dramatic growth inhibition upon exposure to high light. Disruption of PpCOR413im also caused altered chloroplast ultrastructure, increased ROS accumulation, and enhanced starch and sucrose levels under high light or after ABA treatment. In addition, loss of PpCOR413im affected both nuclear and chloroplast gene expression in response to ABA and high light, suggesting a role for this gene downstream of ABA in the regulation of growth and environmental stress responses. Developmental alterations exhibited by PpCOR413im knockout mutants had remarkable similarities to those exhibited by hxk1, a mutant lacking a major chloroplastic hexokinase, an enzyme involved in energy homeostasis. Based on these findings, we propose that PpCOR413im is involved in coordinating energy metabolism with ABA-mediated growth and developmental responses.
Collapse
Affiliation(s)
- Cecilia Ruibal
- Laboratorio de Biología Molecular Vegetal, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Alexandra Castro
- Laboratorio de Biología Molecular Vegetal, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Andrea L. Fleitas
- Laboratorio de Biología Molecular Vegetal, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Jorge Quezada
- Unidad de Biotecnología Vegetal, Instituto de Biología Molecular y Biotecnología, Carrera de Biología – Facultad de Ciencias Puras y Naturales, Universidad Mayor de San Andrés, La Paz, Bolivia
| | - Gastón Quero
- Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la República, Montevideo, Uruguay
| | - Sabina Vidal
- Laboratorio de Biología Molecular Vegetal, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
10
|
Deng H, Chen S, Zhou Z, Li X, Chen S, Hu J, Lai Z, Sun Y. Transcriptome analysis reveals the effect of short-term sunlight on aroma metabolism in postharvest leaves of oolong tea(Camellia sinensis). Food Res Int 2020; 137:109347. [PMID: 33233053 DOI: 10.1016/j.foodres.2020.109347] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 11/25/2022]
Abstract
Tea (Camellia sinensis (L.)) is an important economic plant. Light is the earliest external signal factor during the postharvest processing of oolong tea, and the solar withering is an indispensable process for aroma formation. In this study, Tieguanyin was used to analyze the effect of sunlight on aroma metabolism, which indicated that the main aroma compounds were significantly increased during solar withering for 15 min compared to the indoor withering. In addition, differentially expressed genes related to aroma metabolism were identified and quantified using the high-throughput Illumina RNA-Seq technology. The expression levels of key regulatory genes were consistent with the results from the gas chromatography-time of flight mass spectrometry (GC-TOF-MS) analysis, especially in terpenoid metabolic pathway, which showed that aroma metabolism could significantly respond to the short-term light, while its expression level was easily inhibited by the up-regulation of heat shock protein. Taken together, those data provides further insights into the mechanisms, contributing to aroma metabolism of tea plant.
Collapse
Affiliation(s)
- Huili Deng
- Key Laboratory of Tea Science in Fujian Province, College of Horticulture Fujian Agriculture and Forestry University, Fuzhou, PR China; Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, PR China; Public Basic Department, Minjiang Teachers College, Fuzhou, PR China
| | - Shousong Chen
- Key Laboratory of Tea Science in Fujian Province, College of Horticulture Fujian Agriculture and Forestry University, Fuzhou, PR China
| | - Ziwei Zhou
- Key Laboratory of Tea Science in Fujian Province, College of Horticulture Fujian Agriculture and Forestry University, Fuzhou, PR China; Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, PR China
| | - Xinlei Li
- Key Laboratory of Tea Science in Fujian Province, College of Horticulture Fujian Agriculture and Forestry University, Fuzhou, PR China
| | - Si Chen
- Key Laboratory of Tea Science in Fujian Province, College of Horticulture Fujian Agriculture and Forestry University, Fuzhou, PR China; FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, PR China
| | - Juan Hu
- Key Laboratory of Tea Science in Fujian Province, College of Horticulture Fujian Agriculture and Forestry University, Fuzhou, PR China; Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, PR China
| | - Zhongxiong Lai
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, PR China
| | - Yun Sun
- Key Laboratory of Tea Science in Fujian Province, College of Horticulture Fujian Agriculture and Forestry University, Fuzhou, PR China.
| |
Collapse
|
11
|
Ali M, Muhammad I, ul Haq S, Alam M, Khattak AM, Akhtar K, Ullah H, Khan A, Lu G, Gong ZH. The CaChiVI2 Gene of Capsicum annuum L. Confers Resistance Against Heat Stress and Infection of Phytophthora capsici. FRONTIERS IN PLANT SCIENCE 2020; 11:219. [PMID: 32174952 PMCID: PMC7057250 DOI: 10.3389/fpls.2020.00219] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 02/12/2020] [Indexed: 05/08/2023]
Abstract
Extreme environmental conditions seriously affect crop growth and development, resulting in substantial reduction in yield and quality. However, chitin-binding proteins (CBP) family member CaChiVI2 plays a crucial role in eliminating the impact of adverse environmental conditions, such as cold and salt stress. Here, for the first time it was discovered that CaChiVI2 (Capana08g001237) gene of pepper (Capsicum annuum L.) had a role in resistance to heat stress and physiological processes. The full-length open-reading frame (ORF) of CaChiVI2 (606-bp, encoding 201-amino acids), was cloned into TRV2:CaChiVI2 vector for silencing. The CaChiVI2 gene carries heat shock elements (HSE, AAAAAATTTC) in the upstream region, and thereby shows sensitivity to heat stress at the transcriptional level. The silencing effect of CaChiVI2 in pepper resulted in increased susceptibility to heat and Phytophthora capsici infection. This was evident from the severe symptoms on leaves, the increase in superoxide (O2 -) and hydrogen peroxide (H2O2) accumulation, higher malondialdehyde (MDA), relative electrolyte leakage (REL) and lower proline contents compared with control plants. Furthermore, the transcript level of other resistance responsive genes was also altered. In addition, the CaChiIV2-overexpression in Arabidopsis thaliana showed mild heat and drought stress symptoms and increased transcript level of a defense-related gene (AtHSA32), indicating its role in the co-regulation network of the plant. The CaChiVI2-overexpressed plants also showed a decrease in MDA contents and an increase in antioxidant enzyme activity and proline accumulation. In conclusion, the results suggest that CaChiVI2 gene plays a decisive role in heat and drought stress tolerance, as well as, provides resistance against P. capsici by reducing the accumulation of reactive oxygen species (ROS) and modulating the expression of defense-related genes. The outcomes obtained here suggest that further studies should be conducted on plants adaptation mechanisms in variable environments.
Collapse
Affiliation(s)
- Muhammad Ali
- College of Horticulture, Northwest A&F University, Yangling, China
- Department of Horticulture, Zhejiang University, Hangzhou, China
| | - Izhar Muhammad
- College of Agronomy, Northwest A&F University, Yangling, China
| | - Saeed ul Haq
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Mukhtar Alam
- Department of Agriculture, The University of Swabi, Khyber Pakhtunkhwa, Pakistan
| | - Abdul Mateen Khattak
- Department of Horticulture, The University of Agriculture, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Kashif Akhtar
- Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Hidayat Ullah
- Department of Agriculture, The University of Swabi, Khyber Pakhtunkhwa, Pakistan
| | - Abid Khan
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Gang Lu
- Department of Horticulture, Zhejiang University, Hangzhou, China
| | - Zhen-Hui Gong
- College of Horticulture, Northwest A&F University, Yangling, China
| |
Collapse
|
12
|
Elzanati O, Mouzeyar S, Roche J. Dynamics of the Transcriptome Response to Heat in the Moss, Physcomitrella patens. Int J Mol Sci 2020; 21:E1512. [PMID: 32098429 PMCID: PMC7073223 DOI: 10.3390/ijms21041512] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/10/2020] [Accepted: 02/19/2020] [Indexed: 01/07/2023] Open
Abstract
Thermal stress negatively impacts crop yields, and as the overall temperature of the earth's atmosphere is gradually increasing, the identification of the temperature transduction pathway of the heat signal is essential in developing new strategies in order to adapt plant breeding to warmer climates. Heat stress damages the molecular structures and physiological processes in plants in proportion to the level and duration of the stress, which leads to different types of responses. In general, plants respond more efficiently when they are first subjected to a moderate temperature increase before being subjected to a higher temperature stress. This adaptive response is called the acclimation period and has been investigated in several plant species. However, there is a lack of information on the dynamic of the Heat Shock Response (HSR) over a continuous period of temperature rise without an acclimation period. In this paper, we investigated the effects of mild (30 °C) and high (37 °C) continuous heat stress over a 24-h period. Through RNA-Seq analysis, we assessed the remodeling of the transcriptome in the moss Physcomitrella patens. Our results showed that the 30 °C treatment particularly affected the expression of a few genes at 1 and 24 h, suggesting a biphasic response. Up-regulated genes at 1 h encode mainly HSR proteins (protein folding and endoplasmic reticulum stress), indicating an early heat response; while the up-regulated genes at 24 h belong to the thiamine biosynthesis pathway. In contrast, the genes involved in photosynthesis and carbon partitioning were repressed by this treatment. Under a higher temperature stress (37 °C), the induction of the HSR occurred rapidly (1 h) and was then attenuated throughout the time points investigated. A network approach (Weighted Gene Correlation Network Analysis, WGCNA) was used to identify the groups of genes expressing similar profiles, highlighting a HsfA1E binding motif within the promoters of some unrelated genes which displayed rapid and transient heat-activation. Therefore, it could be suggested that these genes could be direct targets of activation by a HsfA1E transcription factors.
Collapse
Affiliation(s)
| | | | - Jane Roche
- Université Clermont Auvergne, INRAE, GDEC, Campus Universitaire des Cézeaux, 1 Impasse Amélie Murat, TSA 60026, CEDEX 63178 Aubiere, France; (O.E.); (S.M.)
| |
Collapse
|
13
|
Feng XH, Zhang HX, Ali M, Gai WX, Cheng GX, Yu QH, Yang SB, Li XX, Gong ZH. A small heat shock protein CaHsp25.9 positively regulates heat, salt, and drought stress tolerance in pepper (Capsicum annuum L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 142:151-162. [PMID: 31284139 DOI: 10.1016/j.plaphy.2019.07.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 06/22/2019] [Accepted: 07/01/2019] [Indexed: 05/21/2023]
Abstract
Extreme environmental conditions seriously affect crop growth and development, resulting in a decrease in crop yield and quality. However, small heat shock proteins (Hsp20s) play an important role in helping plants to avoid these negative impacts. In this study, we identified the expression pattern of the CaHsp25.9 gene in a thermo-tolerance pepper line R9 and thermo-sensitive line B6. The transcription of CaHsp25.9 was strongly induced by heat stress in both R9 and B6. The expression of CaHsp25.9 was induced by salt and drought stress in R9. Additionally, the CaHsp25.9 protein was localized in the cell membrane and cytoplasm. When silencing the CaHsp25.9 gene in the R9 line, the accumulation of malonaldehyde (MDA), relative electrolytic leakage, hydrogen peroxide, superoxide anion were increased, while total chlorophyll decreased under heat, salt, and drought stress. Over-expression of CaHsp25.9 in Arabidopsis resulted in decreased MDA, while proline, superoxide dismutase activity, germination, and root length increased under heat, salt, and drought stress. However, peroxidase activity was higher in drought stress but lower in heat and salt stress in transgenic Arabidopsis compared to the wild type (WT). Furthermore, the transcription of stress related genes was more highly induced in transgenic lines than WT. Our results indicated that CaHsp25.9 confers heat, salt, and drought stress tolerance to plants by reducing the accumulation of reactive oxygen species, enhancing the activity of antioxidant enzymes, and regulating the expression of stress-related genes. Therefore, these results may provide insight into plant adaption mechanisms developed in variable environments.
Collapse
Affiliation(s)
- Xiao-Hui Feng
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Huai-Xia Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Muhammad Ali
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Wen-Xian Gai
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Guo-Xin Cheng
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Qing-Hui Yu
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, PR China
| | - Sheng-Bao Yang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, PR China
| | - Xi-Xuan Li
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Zhen-Hui Gong
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China.
| |
Collapse
|
14
|
Wang M, Zhang X, Li Q, Chen X, Li X. Comparative transcriptome analysis to elucidate the enhanced thermotolerance of tea plants (Camellia sinensis) treated with exogenous calcium. PLANTA 2019; 249:775-786. [PMID: 30392143 DOI: 10.1007/s00425-018-3039-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 10/31/2018] [Indexed: 05/21/2023]
Abstract
The molecular mechanisms regulating calcium-mediated thermotolerance in Camellia sinensis were revealed by RNA-Sequencing. Heat stress is one of the most remarkable abiotic factors limiting the growth and productivity of Camellia sinensis plants. Calcium helps regulate plant responses to various adverse environmental conditions, including heat stress. In this study, the effects of exogenous calcium on the physiological characteristics of heat-stressed C. sinensis were investigated. A calcium pretreatment increased the proline, soluble sugar, Ca2+, and chlorophyll contents, but decreased the malondialdehyde content and relative electrical conductivity in C. sinensis leaves under heat stress. Further analysis of the ultra-structure of chloroplasts indicated that heat stress induced accumulation of starch granules and destruction of the stroma lamella in C. sinensis. However, calcium pretreatment counteracted the adverse effects of heat stress on the structure of the photosynthetic apparatus. These results imply that the calcium pretreatment increased C. sinensis thermotolerance. Moreover, RNA-sequencing was applied to characterize the calcium-mediated transcript-level responses to heat stress. A total of 923 differentially expressed genes (DEGs) including 299 up-regulated and 624 down-regulated genes were identified. Functional annotations indicated that these DEGs were primarily related to signal transduction, transcriptional regulation, and post-translational modification. In addition, a C. sinensis gene [CsCML45 (GenBank: KY652927)] encoding a calmodulin-like protein was isolated. The heterologous expression of CsCML45 enhanced the thermotolerance of transgenic Arabidopsis thaliana plants. These results may be useful for characterizing the calcium-mediated molecular mechanism responsible for C. sinensis thermotolerance.
Collapse
Affiliation(s)
- Mingle Wang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Xuyang Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Qinghui Li
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Xuan Chen
- Tea Research Institute, College of Horticulture, Nanjing Agricultural University, Weigang No. 1, Nanjing, 210095, People's Republic of China
| | - Xinghui Li
- Tea Research Institute, College of Horticulture, Nanjing Agricultural University, Weigang No. 1, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
15
|
Huang LJ, Cheng GX, Khan A, Wei AM, Yu QH, Yang SB, Luo DX, Gong ZH. CaHSP16.4, a small heat shock protein gene in pepper, is involved in heat and drought tolerance. PROTOPLASMA 2019; 256:39-51. [PMID: 29946904 DOI: 10.1007/s00709-018-1280-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 06/18/2018] [Indexed: 05/08/2023]
Abstract
Environmental stress affects growth and development of crops, and reduces yield and quality of crops. To cope with environmental stressors, plants have sophisticated defense mechanisms, including the HSF/HSP pathway. Here, we identify the expression pattern of CaHSP16.4 in thermo-tolerant and thermo-sensitive pepper (Capsicum annuum L.) lines. Under heat stress, R9 thermo-tolerant line had higher CaHSP16.4 expression level than the B6 thermo-sensitive line. Under drought stress, expression pattern of CaHSP16.4 was dynamic. Initially, CaHSP16.4 was downregulated then CaHSP16.4 significantly increased. Subcellular localization assay showed that CaHSP16.4 localizes in cytoplasm and nucleus. In the R9 line, silencing of CaHSP16.4 resulted in a significant increase in malonaldehyde content and a significant reduction in total chlorophyll content, suggesting that silencing of CaHSP16.4 reduces heat and drought stresses tolerance. Overexpression of CaHSP16.4 enhances tolerance to heat stress in Arabidopsis. Under heat stress, the survival rate of CaHSP16.4 overexpression lines was significantly higher than wild type. Furthermore, under heat, drought, and combined stress conditions, the CaHSP16.4-overexpression lines had lower relative electrolytic leakage and malonaldehyde content, higher total chlorophyll content, and higher activity levels of superoxide dismutase, catalase, ascorbic acid peroxidase, and glutathione peroxidase compared to wild type. Furthermore, the expression levels of the stress response genes in the overexpression lines were higher than the wild type. These results indicate that the overexpression of CaHSP16.4 enhances the ability of reactive oxygen species scavenging under heat and drought stress.
Collapse
Affiliation(s)
- Liu-Jun Huang
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Guo-Xin Cheng
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Abid Khan
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Ai-Min Wei
- Tianjin Vegetable Research Center, Tianjin, 300192, People's Republic of China
| | - Qing-Hui Yu
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, People's Republic of China
| | - Sheng-Bao Yang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, People's Republic of China
| | - De-Xu Luo
- Xuhuai Region Huaiyin Institute of Agricultural Sciences, Huai'an, 223001, Jiangsu, People's Republic of China
| | - Zhen-Hui Gong
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.
| |
Collapse
|
16
|
Hantke I, Schäfer H, Janczikowski A, Turgay K. YocM a small heat shock protein can protect Bacillus subtilis cells during salt stress. Mol Microbiol 2018; 111:423-440. [PMID: 30431188 DOI: 10.1111/mmi.14164] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2018] [Indexed: 12/17/2022]
Abstract
Small heat shock proteins (sHsp) occur in all domains of life. By interacting with misfolded or aggregated proteins these chaperones fulfill a protective role in cellular protein homeostasis. Here, we demonstrate that the sHsp YocM of the Gram-positive model organism Bacillus subtilis is part of the cellular protein quality control system with a specific role in salt stress response. In the absence of YocM the survival of salt shocked cells is impaired, and increased levels of YocM protect B. subtilis exposed to heat or salt. We observed a salt and heat stress-induced localization of YocM to intracellular protein aggregates. Interestingly, purified YocM appears to accelerate protein aggregation of different model substrates in vitro. In addition, the combined presence of YocM and chemical chaperones, which accumulate in salt stressed cells, can facilitate in vitro a synergistic protective effect on protein misfolding. Therefore, the beneficial role of YocM during salt stress could be related to a mutual functional relationship with chemical chaperones and adds a new possible functional aspect to sHsp chaperone activities.
Collapse
Affiliation(s)
- Ingo Hantke
- Institut für Mikrobiologie der Universität Hannover, Leibniz-Universität Hannover, Hannover, Germany
| | - Heinrich Schäfer
- Institut für Mikrobiologie der Universität Hannover, Leibniz-Universität Hannover, Hannover, Germany
| | - Armgard Janczikowski
- Institut für Mikrobiologie der Universität Hannover, Leibniz-Universität Hannover, Hannover, Germany
| | - Kürşad Turgay
- Institut für Mikrobiologie der Universität Hannover, Leibniz-Universität Hannover, Hannover, Germany
| |
Collapse
|
17
|
Wang X, Zhang H, Shao LY, Yan X, Peng H, Ouyang JX, Li SB. Expression and function analysis of a rice OsHSP40 gene under salt stress. Genes Genomics 2018; 41:175-182. [PMID: 30298358 DOI: 10.1007/s13258-018-0749-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 09/27/2018] [Indexed: 10/28/2022]
Abstract
Heat shock proteins (HSPs) play essential roles in both plant growth and abiotic stress tolerance. In rice, OsHSP40 was recently reported to regulate programmed cell death (PCD) of suspension cells under high temperature. However, the expression and functions of OsHSP40 under normal growth or other abiotic stress conditions is still unknown. We reported the expression and function of a rice OsHSP40 gene under salt stress. Homologous proteins of OsHSP40 were collected from the NCBI database and constructed the neighbor-joining (NJ) phylogenetic tree. The expression pattern of OsHSP40 was detected by qRT-PCR under NaCl (150 mM) treatment. Then, identified a rice T-DNA insertion mutant oshsp40. At last, we compared and analyzed the phenotypes of oshsp40 and wild type under salt stress. OsHSP40 was a constitutively expressed small HSP (sHSP) gene and was close related to other plant sHSPs. Moreover, the expression of OsHSP40 was regulated by salt, varying across time points and tissues. Furthermore, the growth of T-DNA insertion mutant of OsHSP40 (designated as oshsp40) was suppressed by NaCl (150 mM) compared with that of the WT at seedling stage. Detailed measurement showed root and shoot length of the oshsp40 seedlings were significantly shorter than those of the WT seedlings under NaCl stress. In addition, the pot experiment results revealed that seedlings of oshsp40 withered more seriously compared with those of WT after NaCl treatment and recovery, and that survival rate and fresh weight of oshsp40 seedlings were significantly reduced. Taken together, these data suggested that OsHSP40 had multiple functions in rice normal growth and abiotic stress tolerance.
Collapse
Affiliation(s)
- Xin Wang
- Key Laboratory of Molecular Biology and Gene Engineering of Jiangxi Province, School of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Huan Zhang
- Key Laboratory of Molecular Biology and Gene Engineering of Jiangxi Province, School of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Lu-Yuan Shao
- Key Laboratory of Molecular Biology and Gene Engineering of Jiangxi Province, School of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Xin Yan
- Key Laboratory of Molecular Biology and Gene Engineering of Jiangxi Province, School of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Hui Peng
- College of Life Sciences, Guangxi Normal University, Guilin, 541004, China.,Hunan Hi-Tech Bio-Agro Co., Ltd, Yueyang, 414400, China
| | - Jie-Xiu Ouyang
- Key Laboratory of Molecular Biology and Gene Engineering of Jiangxi Province, School of Life Sciences, Nanchang University, Nanchang, 330031, China. .,Medical Laboratory Education Center, Nanchang University, Nanchang, 330031, China.
| | - Shao-Bo Li
- Key Laboratory of Molecular Biology and Gene Engineering of Jiangxi Province, School of Life Sciences, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
18
|
Zhang L, Hu W, Gao Y, Pan H, Zhang Q. A cytosolic class II small heat shock protein, PfHSP17.2, confers resistance to heat, cold, and salt stresses in transgenic Arabidopsis. Genet Mol Biol 2018; 41:649-660. [PMID: 30235397 PMCID: PMC6136373 DOI: 10.1590/1678-4685-gmb-2017-0206] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 01/11/2018] [Indexed: 11/22/2022] Open
Abstract
We cloned and characterized the full-length coding sequence of a small heat shock (sHSP) gene, PfHSP17.2, from Primula forrestii leaves following heat stress treatment. Homology and phylogenetic analysis suggested that PfHSP17.2 is a cytosolic class II sHSP, which was further supported by the cytosolic localization of transient expression of PfHSP17.2 fused with green fluorescent protein reporter. Expression analysis showed that PfHSP17.2 was highly inducible by heat stress in almost all the vegetative and generative tissues and was expressed under salt, cold, and oxidative stress conditions as well. Moreover, the expression of PfHSP17.2 in P. forrestii was detected in certain developmental growth stages. Transgenic Arabidopsis thaliana constitutively expressing PfHSP17.2 displayed increased thermotolerance and higher resistance to salt and cold compared with wild type plants. It is suggested that PfHSP17.2 plays a key role in heat and other abiotic stresses.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Landscape Architecture, School of Civil Engineering and Architecture, Zhejiang Sci-Tech University, Hangzhou, Zhejiang Province, China.,College of Landscape Architecture, Beijing Forestry University, China National Engineering Research Center for Floriculture, Beijing, China
| | - Weijuan Hu
- College of Landscape Architecture, Beijing Forestry University, China National Engineering Research Center for Floriculture, Beijing, China
| | - Yike Gao
- College of Landscape Architecture, Beijing Forestry University, China National Engineering Research Center for Floriculture, Beijing, China
| | - Huitang Pan
- College of Landscape Architecture, Beijing Forestry University, China National Engineering Research Center for Floriculture, Beijing, China
| | - Qixiang Zhang
- College of Landscape Architecture, Beijing Forestry University, China National Engineering Research Center for Floriculture, Beijing, China
| |
Collapse
|
19
|
Li Y, Xu X, Qu R, Zhang G, Rajoka MSR, Shao D, Jiang C, Shi J. Heterologous expression of Oenococcus oeni sHSP20 confers temperature stress tolerance in Escherichia coli. Cell Stress Chaperones 2018; 23:653-662. [PMID: 29359265 PMCID: PMC6045537 DOI: 10.1007/s12192-018-0874-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 12/19/2017] [Accepted: 01/03/2018] [Indexed: 12/11/2022] Open
Abstract
Small heat shock proteins (sHSPs) are heat shock proteins sized 12-43 kDa that can protect proteins from denaturation, particularly under high temperature; sHSPs thus increase the heat tolerance capability of an organisms enabling survival in adverse climates. sHSP20 is overexpressed in Oenococcus oeni in response to low temperatures. However, we found that overexpression of sHSP20 in Escherichia coli BL21 increased the microbial survival ratio at 50 °C by almost 2 h. Adding sHSP20 to the glutamate dehydrogenase solution significantly increased the stability of the enzyme at high temperature (especially at 60-70 °C), low pH values (especially below 6.0), and high concentration of metal ions of Ga2+, Zn2+, Mn2+, and Fe3+. Notably, the coexpression of sHSP20 significantly enhanced soluble expression of laccase from Phomopsis sp. XP-8 (CCTCCM209291) in E. coli without codon optimization, as well as the activity and heat stability of the expressed enzyme. In addition to the chaperone activity of sHSP20 in the gene containing host in vivo and the enzyme heat stability in vitro, our study indicated the capability of coexpression of sHSP20 to increase the efficiency of prokaryotic expression of fungal genes and the activity of expressed enzymes. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Yan Li
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, 710072 Shaanxi People’s Republic of China
| | - Xiaoguang Xu
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, 710072 Shaanxi People’s Republic of China
| | - Rui Qu
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, 710072 Shaanxi People’s Republic of China
| | - Guoqiang Zhang
- College of Food Science, Agricultural and Animal Husbandry College of Tibet University, Linzhi, 860000 Xi Zang People’s Republic of China
| | - Muhammad Shahid Riaz Rajoka
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, 710072 Shaanxi People’s Republic of China
| | - Dongyan Shao
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, 710072 Shaanxi People’s Republic of China
| | - Chunmei Jiang
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, 710072 Shaanxi People’s Republic of China
| | - Junling Shi
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, 710072 Shaanxi People’s Republic of China
| |
Collapse
|
20
|
Mishra D, Shekhar S, Singh D, Chakraborty S, Chakraborty N. Heat Shock Proteins and Abiotic Stress Tolerance in Plants. REGULATION OF HEAT SHOCK PROTEIN RESPONSES 2018. [DOI: 10.1007/978-3-319-74715-6_3] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
21
|
Jin Y, Yang S, Im S, Jeong WJ, Park E, Choi DW. Overexpression of the Small Heat Shock Protein, PtsHSP19.3 from Marine Red Algae, Pyropia tenera (Bangiales, Rhodophyta) Enhances Abiotic Stress Tolerance in Chlamydomonas. ACTA ACUST UNITED AC 2017. [DOI: 10.5010/jpb.2017.44.3.287] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Yujin Jin
- Department of Biology Education and Kumho Life Science Laboratory, Chonnam National University, Gwangju, 61186, Korea
| | - Sungwhan Yang
- Department of Biology Education and Kumho Life Science Laboratory, Chonnam National University, Gwangju, 61186, Korea
| | - Sungoh Im
- Department of Biology Education and Kumho Life Science Laboratory, Chonnam National University, Gwangju, 61186, Korea
| | - Won-Joong Jeong
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Korea
| | - EunJeong Park
- Seaweed Research Center, National Fisheries Research and Development Institute, Mokpo, 58746, Korea
| | - Dong-Woog Choi
- Department of Biology Education and Kumho Life Science Laboratory, Chonnam National University, Gwangju, 61186, Korea
| |
Collapse
|
22
|
Wang M, Zou Z, Li Q, Sun K, Chen X, Li X. The CsHSP17.2 molecular chaperone is essential for thermotolerance in Camellia sinensis. Sci Rep 2017; 7:1237. [PMID: 28450727 PMCID: PMC5430664 DOI: 10.1038/s41598-017-01407-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 03/28/2017] [Indexed: 11/25/2022] Open
Abstract
Small heat shock proteins (sHSPs) play important roles in responses to heat stress. However, the functions of sHSPs in tea plants (Camellia sinensis) remain uncharacterized. A novel sHSP gene, designated CsHSP17.2, was isolated from tea plants. Subcellular localization analyses indicated that the CsHSP17.2 protein was present in the cytosol and the nucleus. CsHSP17.2 expression was significantly up-regulated by heat stress but was unaffected by low temperature. The CsHSP17.2 transcript levels increased following salt and polyethylene glycol 6000 treatments but decreased in the presence of abscisic acid. The molecular chaperone activity of CsHSP17.2 was demonstrated in vitro. Transgenic Escherichia coli and Pichia pastoris expressing CsHSP17.2 exhibited enhanced thermotolerance. The transgenic Arabidopsis thaliana exhibited higher maximum photochemical efficiencies, greater soluble protein proline contents, higher germination rates and higher hypocotyl elongation length than the wild-type controls. The expression levels of several HS-responsive genes increased in transgenic A. thaliana plants. Additionally, the CsHSP17.2 promoter is highly responsive to high-temperature stress in A. thaliana. Our results suggest that CsHSP17.2 may act as a molecular chaperone to mediate heat tolerance by maintaining maximum photochemical efficiency and protein synthesis, enhancing the scavenging of reactive oxygen species and inducing the expression of HS-responsive genes.
Collapse
Affiliation(s)
- Mingle Wang
- Tea Research Institute, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhongwei Zou
- Department of Plant Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Qinghui Li
- Tea Research Institute, Nanjing Agricultural University, Nanjing, 210095, China
| | - Kang Sun
- Tea Research Institute, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xuan Chen
- Tea Research Institute, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xinghui Li
- Tea Research Institute, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
23
|
Variable salinity responses of 12 alfalfa genotypes and comparative expression analyses of salt-response genes. Sci Rep 2017; 7:42958. [PMID: 28225027 PMCID: PMC5320470 DOI: 10.1038/srep42958] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 01/17/2017] [Indexed: 01/22/2023] Open
Abstract
Twelve alfalfa genotypes that were selected for biomass under salinity, differences in Na and Cl concentrations in shoots and K/Na ratio were evaluated in this long-term salinity experiment. The selected plants were cloned to reduce genetic variability within each genotype. Salt tolerance (ST) index of the genotypes ranged from 0.39 to 1. The most salt-tolerant genotypes SISA14-1 (G03) and AZ-90ST (G10), the top performers for biomass, exhibited the least effect on shoot number and height. SISA14-1 (G03) accumulated low Na and Cl under salinity. Most genotypes exhibited a net reduction in shoot Ca, Mg, P, Fe, and Cu, while Mn and Zn increased under salinity. Salinity reduced foliar area and stomatal conductance; while net photosynthetic rate and transpiration were not affected. Interestingly, salinity increased chlorophyll and antioxidant capacity in most genotypes; however neither parameter correlated well to ST index. Salt-tolerant genotypes showed upregulation of the SOS1, SOS2, SOS3, HKT1, AKT1, NHX1, P5CS1, HSP90.7, HSP81.2, HSP71.1, HSPC025, OTS1, SGF29 and SAL1 genes. Gene expression analyses allowed us to classify genotypes based on their ability to regulate different components of the salt tolerance mechanism. Pyramiding different components of the salt tolerance mechanism may lead to superior salt-tolerant alfalfa genotypes.
Collapse
|
24
|
Yang M, Zhang Y, Zhang H, Wang H, Wei T, Che S, Zhang L, Hu B, Long H, Song W, Yu W, Yan G. Identification of MsHsp20 Gene Family in Malus sieversii and Functional Characterization of MsHsp16.9 in Heat Tolerance. FRONTIERS IN PLANT SCIENCE 2017; 8:1761. [PMID: 29163556 PMCID: PMC5672332 DOI: 10.3389/fpls.2017.01761] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 09/26/2017] [Indexed: 05/20/2023]
Abstract
Heat shock proteins (Hsps) are common molecular chaperones present in all plants that accumulate in response to abiotic stress. Small heat shock proteins (sHsps) play important roles in alleviating diverse abiotic stresses, especially heat stress. However, very little is known about the MsHsp20 gene family in the wild apple Malus sieversii, a precious germplasm resource with excellent resistance characteristics. In this study, 12 putative M. sieversii Hsp20 genes were identified from RNA-Seq data and analyzed in terms of gene structure and phylogenetic relationships. A new Hsp20 gene, MsHsp16.9, was cloned and its function studied in response to stress. MsHsp16.9 expression was strongly induced by heat, and transgenic Arabidopsis plants overexpressing MsHsp16.9 displayed improved heat resistance, enhanced antioxidant enzyme activity, and decreased peroxide content. Overexpression of MsHsp16.9 did not alter the growth or development under normal conditions, or the hypersensitivity to exogenous ABA. Gene expression analysis indicated that MsHsp16.9 mainly modulates the expression of proteins involved in antioxidant enzyme synthesis, as well as ABA-independent stress signaling in 35S:MsHsp16.9-L11. However, MsHsp16.9 could activate ABA-dependent signaling pathways in all transgenic plants. Additionally, MsHsp16.9 may function alongside AtHsp70 to maintain protein homeostasis and protect against cell damage. Our results suggest that MsHsp16.9 is a protein chaperone that positively regulates antioxidant enzyme activity and ABA-dependent and independent signaling pathway to attenuate plant responses to severe stress. Transgenic plants exhibited luxuriant growth in high temperature environments.
Collapse
Affiliation(s)
- Meiling Yang
- Department of Genetics, College of Life Sciences, Nankai University, Tianjin, China
- Department of Pomology, College of Horticulture and Landscape, Tianjin Agricultural University, Tianjin, China
| | - Yunxiu Zhang
- Department of Pomology, College of Horticulture and Landscape, Tianjin Agricultural University, Tianjin, China
| | - Huanhuan Zhang
- Department of Genetics, College of Life Sciences, Nankai University, Tianjin, China
| | - Hongbin Wang
- Department of Genetics, College of Life Sciences, Nankai University, Tianjin, China
| | - Tao Wei
- Department of Genetics, College of Life Sciences, Nankai University, Tianjin, China
| | - Shiyou Che
- Department of Genetics, College of Life Sciences, Nankai University, Tianjin, China
| | - Lipeng Zhang
- Department of Genetics, College of Life Sciences, Nankai University, Tianjin, China
| | - Baoquan Hu
- Department of Pomology, College of Horticulture and Landscape, Tianjin Agricultural University, Tianjin, China
| | - Hong Long
- Department of Pomology, College of Horticulture and Landscape, Tianjin Agricultural University, Tianjin, China
| | - Wenqin Song
- Department of Genetics, College of Life Sciences, Nankai University, Tianjin, China
- *Correspondence: Wenqin Song
| | - Weiwei Yu
- Department of Pomology, College of Horticulture and Landscape, Tianjin Agricultural University, Tianjin, China
- Weiwei Yu
| | - Guorong Yan
- Department of Pomology, College of Horticulture and Landscape, Tianjin Agricultural University, Tianjin, China
- Guorong Yan
| |
Collapse
|
25
|
Li J, Zhang J, Jia H, Li Y, Xu X, Wang L, Lu M. The Populus trichocarpa PtHSP17.8 involved in heat and salt stress tolerances. PLANT CELL REPORTS 2016; 35:1587-99. [PMID: 27021382 DOI: 10.1007/s00299-016-1973-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 03/21/2016] [Indexed: 05/24/2023]
Abstract
PtHSP17.8 was regulated by various abiotic stresses. Overexpression of PtHSP17.8 enhanced the tolerance to heat and salt stresses through maintain ROS homeostasis and cooperate with stress-related genes in Arabidopsis. Small heat shock proteins (sHSPs) play important roles in response to diverse biotic and abiotic stresses, especially in heat tolerance. However, limited information is available on the stress tolerance roles of sHSPs in woody species. To explore the function of sHSPs in poplar, we isolated and characterized PtHSP17.8 from Populus trichocarpa. Phylogenetic analysis and subcellular localization revealed that PtHSP17.8 was a cytosolic class I sHSP. The gene expression profile of PtHSP17.8 in various tissues showed that it was significantly accumulated in stem and root, which was consistent with the GUS expression pattern driven by promoter of PtHSP17.8. The expression of PtHSP17.8 could be induced by various abiotic stresses and significantly activated by heat stress. Overexpression of PtHSP17.8 enhanced the tolerance to heat and salt stresses in Arabidopsis. The seedling survival rate, root length, relative water content, antioxidative enzyme activities, proline, and soluble sugar content were increased in transgenic Arabidopsis under heat and salt stresses, but not in normal condition. The co-expression network of PtHSP17.8 were constructed and demonstrated many stress responsive genes included. The stress-related genes in the co-expression network were up-regulated in the PtHSP17.8 overexpression seedlings. These results suggest that PtHSP17.8 confers heat and salt tolerances in plants.
Collapse
Affiliation(s)
- Jianbo Li
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Jin Zhang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.
- Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.
| | - Huixia Jia
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
- Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Yu Li
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Xiangdong Xu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Lijuan Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Mengzhu Lu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.
- Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
26
|
Liu CH, Lu RJ, Guo GM, He T, Li YB, Xu HW, Gao RH, Chen ZW, Huang JH. Transcriptome analysis reveals translational regulation in barley microspore-derived embryogenic callus under salt stress. PLANT CELL REPORTS 2016; 35:1719-1728. [PMID: 27137210 DOI: 10.1007/s00299-016-1986-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 04/20/2016] [Indexed: 06/05/2023]
Abstract
Transcriptome analysis of barley embryogenic callus from isolated microspore culture under salt stress uncovered a role of translation inhibition and selective activation of stress-specific proteins in cellular defense. Soil salinity is one of the major abiotic stresses which constrains the plant growth and reduces the productivity of field crops. In this study, it was observed that the salt stress in barley isolated microspore culture impacted not only on the quantity of embryogenic callus but also on the quality for later differentiation. The barley microspore-derived embryogenic callus, a transient intermediate form linked cells and plants, was employed for a global transcriptome analysis by RNA sequencing to provide new insights into the cellular adaptation or acclimation to stress. A total of 596 differentially expressed genes (DEGs) were identified, in which 123 DEGs were up-regulated and 473 DEGs were down-regulated in the embryogenic callus produced from microspore culture under salt stress as compared to the control conditions. KEGG pathway analysis identified 'translation' (27 DEGs; 12.56 %) as the largest group and followed by 'folding, sorting and degradation' (25 DEGs; 11.63 %) in 215 mapped metabolic pathways. The results of RNA-Seq data and quantitative real-time polymerase chain reaction validation showed that the genes related to translation regulation (such as eIF1A, RPLP0, RPLP2, VARS) were down-regulated to control general protein synthesis, and the genes related to endoplasmic reticulum stress response (such as small heat shock protein genes) were selectively up-regulated against protein denaturing during microspore embryogenesis under continuous salt stress. These transcriptional remodeling might affect the essential protein synthesis for the cell development to fulfill totipotency under salt stress.
Collapse
Affiliation(s)
- Cheng-Hong Liu
- Biotech Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai, 201106, China
| | - Rui-Ju Lu
- Biotech Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai, 201106, China
| | - Gui-Mei Guo
- Biotech Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai, 201106, China
| | - Ting He
- Biotech Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai, 201106, China
| | - Ying-Bo Li
- Biotech Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai, 201106, China
| | - Hong-Wei Xu
- Biotech Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai, 201106, China
| | - Run-Hong Gao
- Biotech Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai, 201106, China
| | - Zhi-Wei Chen
- Biotech Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai, 201106, China
| | - Jian-Hua Huang
- Biotech Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China.
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai, 201106, China.
| |
Collapse
|
27
|
Li ZY, Long RC, Zhang TJ, Yang QC, Kang JM. Molecular cloning and characterization of the MsHSP17.7 gene from Medicago sativa L. Mol Biol Rep 2016; 43:815-26. [PMID: 27193169 PMCID: PMC4947596 DOI: 10.1007/s11033-016-4008-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 05/12/2016] [Indexed: 12/23/2022]
Abstract
Heat shock proteins (HSPs) are ubiquitous protective proteins that play crucial roles in plant development and adaptation to stress, and the aim of this study is to characterize the HSP gene in alfalfa. Here we isolated a small heat shock protein gene (MsHSP17.7) from alfalfa by homology-based cloning. MsHSP17.7 contains a 477-bp open reading frame and encodes a protein of 17.70-kDa. The amino acid sequence shares high identity with MtHSP (93.98 %), PsHSP17.1 (83.13 %), GmHSP17.9 (74.10 %) and SlHSP17.6 (79.25 %). Phylogenetic analysis revealed that MsHSP17.7 belongs to the group of cytosolic class II small heat shock proteins (sHSP), and likely localizes to the cytoplasm. Quantitative RT-PCR indicated that MsHSP17.7 was induced by heat shock, high salinity, peroxide and drought stress. Prokaryotic expression indicated that the salt and peroxide tolerance of Escherichia coli was remarkably enhanced. Transgenic Arabidopsis plants overexpressing MsHSP17.7 exhibited increased root length of transgenic Arabidopsis lines under salt stress compared to the wild-type line. The malondialdehyde (MDA) levels in the transgenic lines were significantly lower than in wild-type, although proline levels were similar between transgenic and wild-type lines. MsHSP17.7 was induced by heat shock, high salinity, oxidative stress and drought stress. Overexpression analysis suggests that MsHSP17.7 might play a key role in response to high salinity stress.
Collapse
Affiliation(s)
- Zhen-Yi Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Rui-Cai Long
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Tie-Jun Zhang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Qing-Chuan Yang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Jun-Mei Kang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China.
| |
Collapse
|
28
|
Hoernstein SNW, Mueller SJ, Fiedler K, Schuelke M, Vanselow JT, Schuessele C, Lang D, Nitschke R, Igloi GL, Schlosser A, Reski R. Identification of Targets and Interaction Partners of Arginyl-tRNA Protein Transferase in the Moss Physcomitrella patens. Mol Cell Proteomics 2016; 15:1808-22. [PMID: 27067052 DOI: 10.1074/mcp.m115.057190] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Indexed: 12/15/2022] Open
Abstract
Protein arginylation is a posttranslational modification of both N-terminal amino acids of proteins and sidechain carboxylates and can be crucial for viability and physiology in higher eukaryotes. The lack of arginylation causes severe developmental defects in moss, affects the low oxygen response in Arabidopsis thaliana and is embryo lethal in Drosophila and in mice. Although several studies investigated impact and function of the responsible enzyme, the arginyl-tRNA protein transferase (ATE) in plants, identification of arginylated proteins by mass spectrometry was not hitherto achieved. In the present study, we report the identification of targets and interaction partners of ATE in the model plant Physcomitrella patens by mass spectrometry, employing two different immuno-affinity strategies and a recently established transgenic ATE:GUS reporter line (Schuessele et al., 2016 New Phytol. , DOI: 10.1111/nph.13656). Here we use a commercially available antibody against the fused reporter protein (β-glucuronidase) to pull down ATE and its interacting proteins and validate its in vivo interaction with a class I small heatshock protein via Förster resonance energy transfer (FRET). Additionally, we apply and modify a method that already successfully identified arginylated proteins from mouse proteomes by using custom-made antibodies specific for N-terminal arginine. As a result, we identify four arginylated proteins from Physcomitrella patens with high confidence.Data are available via ProteomeXchange with identifier PXD003228 and PXD003232.
Collapse
Affiliation(s)
- Sebastian N W Hoernstein
- From the ‡Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104 Freiburg, Germany
| | - Stefanie J Mueller
- From the ‡Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104 Freiburg, Germany
| | - Kathrin Fiedler
- From the ‡Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104 Freiburg, Germany
| | - Marc Schuelke
- From the ‡Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104 Freiburg, Germany
| | - Jens T Vanselow
- §Rudolf Virchow Center for Experimental Biomedicine, University of Wuerzburg, Josef-Schneider-Str. 2, 97080 Wuerzburg, Germany
| | - Christian Schuessele
- From the ‡Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104 Freiburg, Germany
| | - Daniel Lang
- From the ‡Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104 Freiburg, Germany
| | - Roland Nitschke
- ¶ZBSA - Centre for Biological Systems Analysis, Life Imaging Center, University Freiburg, Habsburgerstr. 49, 79104 Freiburg, Germany; ‡‡BIOSS - Centre for Biological Signalling Studies, 79104 Freiburg, Germany
| | - Gabor L Igloi
- ‖Institute of Biology 3, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104 Freiburg, Germany
| | - Andreas Schlosser
- §Rudolf Virchow Center for Experimental Biomedicine, University of Wuerzburg, Josef-Schneider-Str. 2, 97080 Wuerzburg, Germany
| | - Ralf Reski
- From the ‡Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104 Freiburg, Germany; ¶ZBSA - Centre for Biological Systems Analysis, Life Imaging Center, University Freiburg, Habsburgerstr. 49, 79104 Freiburg, Germany; **FRIAS - Freiburg Institute for Advanced Studies, 79104 Freiburg, Germany; ‡‡BIOSS - Centre for Biological Signalling Studies, 79104 Freiburg, Germany
| |
Collapse
|
29
|
Arya D, Kapoor S, Kapoor M. Physcomitrella patens DNA methyltransferase 2is required for recovery from salt and osmotic stress. FEBS J 2016; 283:556-70. [DOI: 10.1111/febs.13611] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 11/06/2015] [Accepted: 11/25/2015] [Indexed: 01/22/2023]
Affiliation(s)
- Deepshikha Arya
- University School of Biotechnology; Guru Gobind Singh Indraprastha University; New Delhi India
| | - Sanjay Kapoor
- Department of Plant Molecular Biology; Interdisciplinary Centre for Plant Genomics; University of Delhi; India
| | - Meenu Kapoor
- University School of Biotechnology; Guru Gobind Singh Indraprastha University; New Delhi India
| |
Collapse
|
30
|
Paul A, Rao S, Mathur S. The α-Crystallin Domain Containing Genes: Identification, Phylogeny and Expression Profiling in Abiotic Stress, Phytohormone Response and Development in Tomato (Solanum lycopersicum). FRONTIERS IN PLANT SCIENCE 2016; 7:426. [PMID: 27066058 PMCID: PMC4814718 DOI: 10.3389/fpls.2016.00426] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 03/18/2016] [Indexed: 05/19/2023]
Abstract
The α-crystallin domain (ACD) is an ancient domain conserved among all kingdoms. Plant ACD proteins have roles in abiotic stresses, transcriptional regulation, inhibiting virus movement, and DNA demethylation. An exhaustive in-silico analysis using Hidden Markov Model-based conserved motif search of the tomato proteome yielded a total of 50 ACD proteins that belonged to four groups, sub-divided further into 18 classes. One of these groups belongs to the small heat shock protein (sHSP) class of proteins, molecular chaperones implicated in heat tolerance. Both tandem and segmental duplication events appear to have shaped the expansion of this gene family with purifying selection being the primary driving force for evolution. The expression profiling of the Acd genes in two different heat stress regimes suggested that their transcripts are differentially regulated with roles in acclimation and adaptive response during recovery. The co-expression of various genes in response to different abiotic stresses (heat, low temperature, dehydration, salinity, and oxidative stress) and phytohormones (abscisic acid and salicylic acid) suggested possible cross-talk between various members to combat a myriad of stresses. Further, several genes were highly expressed in fruit, root, and flower tissues as compared to leaf signifying their importance in plant development too. Evaluation of the expression of this gene family in field grown tissues highlighted the prominent role they have in providing thermo-tolerance during daily temperature variations. The function of three putative sHSPs was established as holdase chaperones as evidenced by protection to malate-dehydrogenase against heat induced protein-aggregation. This study provides insights into the characterization of the Acd genes in tomato and forms the basis for further functional validation in-planta.
Collapse
|
31
|
Castro A, Vidal S, Ponce de León I. Moss Pathogenesis-Related-10 Protein Enhances Resistance to Pythium irregulare in Physcomitrella patens and Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2016; 7:580. [PMID: 27200053 PMCID: PMC4850436 DOI: 10.3389/fpls.2016.00580] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 04/14/2016] [Indexed: 05/09/2023]
Abstract
Plants respond to pathogen infection by activating signaling pathways leading to the accumulation of proteins with diverse roles in defense. Here, we addressed the functional role of PpPR-10, a pathogenesis-related (PR)-10 gene, of the moss Physcomitrella patens, in response to biotic stress. PpPR-10 belongs to a multigene family and encodes a protein twice the usual size of PR-10 proteins due to the presence of two Bet v1 domains. Moss PR-10 genes are differentially regulated during development and inoculation with the fungal pathogen Botrytis cinerea. Specifically, PpPR-10 transcript levels increase significantly by treatments with elicitors of Pectobacterium carotovorum subsp. carotovorum, spores of B. cinerea, and the defense hormone salicylic acid. To characterize the role of PpPR-10 in plant defense against pathogens, we conducted overexpression analysis in P. patens and in Arabidopsis thaliana. We demonstrate that constitutive expression of PpPR-10 in moss tissues increased resistance against the oomycete Pythium irregulare. PpPR-10 overexpressing moss plants developed less symptoms and decreased mycelium growth than wild type plants. In addition, PpPR-10 overexpressing plants constitutively produced cell wall depositions in protonemal tissue. Ectopic expression of PpPR-10 in Arabidopsis resulted in increased resistance against P. irregulare as well, evidenced by smaller lesions and less cellular damage compared to wild type plants. These results indicate that PpPR-10 is functionally active in the defense against the pathogen P. irregulare, in both P. patens and Arabidopsis, two evolutionary distant plants. Thus, P. patens can serve as an interesting source of genes to improve resistance against pathogen infection in flowering plants.
Collapse
Affiliation(s)
- Alexandra Castro
- Departamento de Biología Molecular, Instituto de Investigaciones Biológicas Clemente EstableMontevideo, Uruguay
- Laboratorio de Biología Molecular Vegetal, Facultad de Ciencias, Universidad de la RepúblicaMontevideo, Uruguay
| | - Sabina Vidal
- Laboratorio de Biología Molecular Vegetal, Facultad de Ciencias, Universidad de la RepúblicaMontevideo, Uruguay
| | - Inés Ponce de León
- Departamento de Biología Molecular, Instituto de Investigaciones Biológicas Clemente EstableMontevideo, Uruguay
- *Correspondence: Inés Ponce de León,
| |
Collapse
|
32
|
Mittag J, Gabrielyan A, Ludwig-Müller J. Knockout of GH3 genes in the moss Physcomitrella patens leads to increased IAA levels at elevated temperature and in darkness. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2015; 97:339-49. [PMID: 26520677 DOI: 10.1016/j.plaphy.2015.10.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 10/05/2015] [Accepted: 10/07/2015] [Indexed: 05/21/2023]
Abstract
Two proteins of the GRETCHEN HAGEN3 (GH3) family of acyl acid amido synthetases from the moss Physcomitrella patens conjugate indole-3-acetic acid (IAA) to a series of amino acids. The possible function of altered auxin levels in the moss in response to two different growth perturbations, elevated temperatures and darkness, was analyzed using a) the recently described double knockout lines in both P. patens GH3 genes (GH3-doKO) and b) a previously characterized line harboring an auxin-inducible soybean GH3 promoter::reporter fused to β-glucuronidase (G1-GUS). The GUS activity as marker of the auxin response increased at higher temperatures and after cultivation in the darkness for a period of up to four weeks. Generally, the double knockout plants grew more slowly than the wild type (WT). The altered growth conditions influenced the phenotypes of the double knockout lines differently from that of WT moss. Higher temperatures negatively affected GH3-doKO plants compared to WT which was shown by stronger loss of chlorophyll. On the other hand, a positive effect was found on the concentrations of free IAA which increased at 28 °C in the GH3-doKO lines compared to WT plants. A different factor, namely darkness vs. a light/dark cycle caused the adverse phenotype concerning chlorophyll concentrations. Mutant moss plants showed higher chlorophyll concentrations than WT and these correlated with higher free IAA in the plant population that was classified as green. Our data show that growth perturbations result in higher free IAA levels in the GH3-doKO mutants, but in one case - growth in darkness - the mutants could cope better with the condition, whereas at elevated temperatures the mutants were more sensitive than WT. Thus, GH3 function in P. patens WT could lie in the regulation of IAA concentrations under unfavorable environmental conditions.
Collapse
Affiliation(s)
- Jennifer Mittag
- Institute of Botany, Technische Universität Dresden, 01062 Dresden, Germany
| | | | - Jutta Ludwig-Müller
- Institute of Botany, Technische Universität Dresden, 01062 Dresden, Germany.
| |
Collapse
|
33
|
Kumari P, Mahapatro GK, Banerjee N, Sarin NB. Ectopic expression of GroEL from Xenorhabdus nematophila in tomato enhances resistance against Helicoverpa armigera and salt and thermal stress. Transgenic Res 2015; 24:859-73. [PMID: 25958082 DOI: 10.1007/s11248-015-9881-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 04/29/2015] [Indexed: 11/25/2022]
Abstract
The GroEL homolog XnGroEL protein of Xenorhabdus nematophila belongs to a highly conserved family of molecular chaperones/heat shock proteins (Hsps). XnGroEL was shown to possess oral insecticidal activity against a major crop pest Helicoverpa armigera. Under normal conditions, the Hsps/chaperones facilitate folding, assembly, and translocation of cellular proteins, while in stress conditions they protect proteins from denaturation. In this study, we describe generation of transgenic tomato plants overexpressing insecticidal XnGroEL protein and their tolerance to biotic and abiotic stresses. Presence of XnGroEL in the transgenic tomato lines conferred resistance against H. armigera showing 100% (p ≤ 0.001) mortality of neonates. In addition, XnGroEL provided thermotolerance and protection against high salt concentration to the tomato plants. Expression of XnGroEL minimized photo-oxidation of chlorophyll and reduced oxidative damage of cell membrane system of the plants under heat and salt stress. The enhanced tolerance to abiotic stresses correlated with increase in the anti-oxidative enzyme activity and reduced H2O2 accumulation in transgenic tomato plants. The variety of beneficial properties displayed by XnGroEL protein provides an opportunity for value addition and improvement of crop productivity.
Collapse
Affiliation(s)
- Punam Kumari
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Gagan Kumar Mahapatro
- Division of Entomology, Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Nirupama Banerjee
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| | - Neera Bhalla Sarin
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
34
|
Lavania D, Dhingra A, Siddiqui MH, Al-Whaibi MH, Grover A. Current status of the production of high temperature tolerant transgenic crops for cultivation in warmer climates. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2015; 86:100-108. [PMID: 25438142 DOI: 10.1016/j.plaphy.2014.11.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 11/20/2014] [Indexed: 05/19/2023]
Abstract
Climate change is resulting in heightened incidences of plant heat stress episodes. Production of transgenic crops with enhanced heat stress tolerance is a highly desired agronomic trait for the sustainability of food production in 21st century. We review the current status of our understanding of the high temperature stress response of plants. We specifically deliberate on the progress made in altering levels of heat shock proteins (Hsp100, Hsp70/Hsp40 and sHsps), heat shock factors and specific metabolic proteins in improving plant tolerance to heat stress by transgenic approach.
Collapse
Affiliation(s)
- Dhruv Lavania
- Department of Plant Molecular Biology, University of Delhi, South Campus, New Delhi 110021, India.
| | - Anuradha Dhingra
- Department of Plant Molecular Biology, University of Delhi, South Campus, New Delhi 110021, India.
| | - Manzer H Siddiqui
- Department of Botany and Microbiology, King Saud University, Riyadh, Saudi Arabia.
| | - Mohamed H Al-Whaibi
- Department of Botany and Microbiology, King Saud University, Riyadh, Saudi Arabia.
| | - Anil Grover
- Department of Plant Molecular Biology, University of Delhi, South Campus, New Delhi 110021, India.
| |
Collapse
|
35
|
|