1
|
Gao J, Zhuang S, Zhang W. Advances in Plant Auxin Biology: Synthesis, Metabolism, Signaling, Interaction with Other Hormones, and Roles under Abiotic Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:2523. [PMID: 39274009 PMCID: PMC11397301 DOI: 10.3390/plants13172523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/16/2024]
Abstract
Auxin is a key hormone that regulates plant growth and development, including plant shape and sensitivity to environmental changes. Auxin is biosynthesized and metabolized via many parallel pathways, and it is sensed and transduced by both normal and atypical pathways. The production, catabolism, and signal transduction pathways of auxin primarily govern its role in plant growth and development, and in the response to stress. Recent research has discovered that auxin not only responds to intrinsic developmental signals, but also mediates various environmental signals (e.g., drought, heavy metals, and temperature stresses) and interacts with hormones such as cytokinin, abscisic acid, gibberellin, and ethylene, all of which are involved in the regulation of plant growth and development, as well as the maintenance of homeostatic equilibrium in plant cells. In this review, we discuss the latest research on auxin types, biosynthesis and metabolism, polar transport, signaling pathways, and interactions with other hormones. We also summarize the important role of auxin in plants under abiotic stresses. These discussions provide new perspectives to understand the molecular mechanisms of auxin's functions in plant development.
Collapse
Affiliation(s)
- Jianshuang Gao
- State Key Lab of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- School of Economic Geography, Hunan University of Finance and Economics, Changsha 410205, China
| | - Shunyao Zhuang
- State Key Lab of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Weiwei Zhang
- State Key Lab of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
2
|
Živanović BD, Ullrich K, Spasić SZ, Galland P. Auxin- and pH-induced guttation in Phycomyces sporangiophores: relation between guttation and diminished elongation growth. PROTOPLASMA 2023; 260:1109-1133. [PMID: 36622433 DOI: 10.1007/s00709-022-01833-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 12/22/2022] [Indexed: 06/07/2023]
Abstract
Guttation, the formation of exudation water, is widespread among plants and fungi, yet the underlying mechanisms remain largely unknown. We describe the conditions for inducing guttation in sporangiophores of the mucoracean fungus, Phycomyces blakesleeanus. Cultivation on peptone-enriched potato dextrose agar elicits vigorous guttation mainly below the apical growing zone, while sporangiophores raised on a glucose-mineral medium manifest only moderate guttation. Mycelia do not guttate irrespective of the employed media. The topology of guttation droplets allows identifying the non-growing part of the sporangiophore as a guttation zone, which responds to humidity and medium composition in ways that become relevant for turgor homeostasis and thus the sensor physiology of the growing zone. Apparently, the entire sporangiophore, rather than exclusively the growing zone, participates in signal reception and integration to generate a common growth output. Exogenous auxin applied to the growing zones elicits two correlated responses: (i) formation of guttation droplets in the growing and transition zones below the sporangium and (ii) a diminution of the growth rate. In sporangiophore populations, guttation-induction by exogenous control buffer occurs at low frequencies; the bias for guttation increases with increasing auxin concentration. Synthetic auxins and the transport inhibitor NPA suppress guttation completely, but leave growth rates largely unaffected. Mutants C2 carA and C148 carA madC display higher sensitivities for auxin-induced guttation compared to wild type. A working model for guttation includes aquaporins and mechanosensitive ion channels that we identified in Phycomyces by sequence domain searches.
Collapse
Affiliation(s)
- Branka D Živanović
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030, Belgrade, Serbia.
| | - Kristian Ullrich
- Max Planck Institute for Evolutionary Biology, Department of Evolutionary Biology, August Thienemann Str. 2, 24306, Plön, Germany
| | - Sladjana Z Spasić
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030, Belgrade, Serbia
- Singidunum University, Danijelova 32, 11010, Belgrade, Serbia
| | - Paul Galland
- Faculty of Biology, Philipps-University Marburg, Karl-Von-Frisch Str. 8, 35032, Marburg, Germany
| |
Collapse
|
3
|
Dong J, Wang Y, Xu L, Li B, Wang K, Ying J, He Q, Liu L. RsCLE22a regulates taproot growth through an auxin signaling-related pathway in radish (Raphanus sativus L.). JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:233-250. [PMID: 36239471 DOI: 10.1093/jxb/erac406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
CLAVATA3/EMBRYO SURROUNDING REGION-related (CLE) peptides are a class of small molecules involved in plant growth and development. Although radish (Raphanus sativus) is an important root vegetable crop worldwide, the functions of CLE peptides in its taproot formation remain elusive. Here, a total of 48 RsCLE genes were identified from the radish genome. RNA in situ hybridization showed that RsCLE22a gene was highly expressed in the vascular cambium. Overexpression of RsCLE22a inhibited root growth by impairing stem cell proliferation in Arabidopsis, and radish plants with exogenous supplementation of RsCLE22 peptide (CLE22p) showed a similar phenotype. The vascular cambial activity was increased in RsCLE22a-silenced plants. Transcriptome analysis revealed that CLE22p altered the expression of several genes involved in meristem development and hormone signal transduction in radish. Immunolocalization results showed that CLE22p increased auxin accumulation in vascular cambium. Yeast one-hybrid and dual-luciferase assays showed that the WUSCHEL-RELATED HOMEOBOX 4 (RsWOX4) binds to RsCLE22a promoter and activates its transcription. The expression level of RsWOX4 was related to vascular cambial activity and was regulated by auxin. Furthermore, a RsCLE22a-RsWOX4 module is proposed to regulate taproot vascular cambium activity through an auxin signaling-related pathway in radish. These findings provide novel insights into the regulation of root growth in a horticultural crop.
Collapse
Affiliation(s)
- Junhui Dong
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yan Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Liang Xu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Bingshuang Li
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Kai Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiali Ying
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Qing He
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Liwang Liu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
4
|
Wang H, Ouyang Q, Yang C, Zhang Z, Hou D, Liu H, Xu H. Mutation of OsPIN1b by CRISPR/Cas9 Reveals a Role for Auxin Transport in Modulating Rice Architecture and Root Gravitropism. Int J Mol Sci 2022; 23:ijms23168965. [PMID: 36012245 PMCID: PMC9409181 DOI: 10.3390/ijms23168965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 11/20/2022] Open
Abstract
The distribution and content of auxin within plant tissues affect a variety of important growth and developmental processes. Polar auxin transport (PAT), mainly mediated by auxin influx and efflux transporters, plays a vital role in determining auxin maxima and gradients in plants. The auxin efflux carrier PIN-FORMED (PIN) family is one of the major protein families involved in PAT. Rice (Oryza sativa L.) genome possesses 12 OsPIN genes. However, the detailed functions of OsPIN genes involved in regulating the rice architecture and gravity response are less well understood. In the present study, OsPIN1b was disrupted by CRISPR/Cas9 technology, and its roles in modulating rice architecture and root gravitropism were investigated. Tissue-specific analysis showed that OsPIN1b was mainly expressed in roots, stems and sheaths at the seedling stage, and the transcript abundance was progressively decreased during the seedling stages. Expression of OsPIN1b could be quickly and greatly induced by NAA, indicating that OsPIN1b played a vital role in PAT. IAA homeostasis was disturbed in ospin1b mutants, as evidenced by the changed sensitivity of shoot and root to NAA and NPA treatment, respectively. Mutation of OsPIN1b resulted in pleiotropic phenotypes, including decreased growth of shoots and primary roots, reduced adventitious root number in rice seedlings, as well as shorter and narrower leaves, increased leaf angle, more tiller number and decreased plant height and panicle length at the late developmental stage. Moreover, ospin1b mutants displayed a curly root phenotype cultured with tap water regardless of lighting conditions, while nutrient solution culture could partially rescue the curly root phenotype in light and almost completely abolish this phenotype in darkness, indicating the involvement of the integration of light and nutrient signals in root gravitropism regulation. Additionally, amyloplast sedimentation was impaired in the peripheral tiers of the ospin1b root cap columella cell, while it was not the main contributor to the abnormal root gravitropism. These data suggest that OsPIN1b not only plays a vital role in regulating rice architecture but also functions in regulating root gravitropism by the integration of light and nutrient signals.
Collapse
Affiliation(s)
- Huihui Wang
- College of Agriculture, Henan University of Science and Technology, Luoyang 471000, China
| | - Qiqi Ouyang
- College of Agriculture, Henan University of Science and Technology, Luoyang 471000, China
| | - Chong Yang
- College of Agriculture, Henan University of Science and Technology, Luoyang 471000, China
| | - Zhuoyan Zhang
- College of Agriculture, Henan University of Science and Technology, Luoyang 471000, China
| | - Dianyun Hou
- College of Agriculture, Henan University of Science and Technology, Luoyang 471000, China
| | - Hao Liu
- College of Agriculture, Henan University of Science and Technology, Luoyang 471000, China
| | - Huawei Xu
- College of Agriculture, Henan University of Science and Technology, Luoyang 471000, China
| |
Collapse
|
5
|
Abstract
Molecular genetic and structural studies have revealed the mechanisms of fundamental components of key auxin regulatory pathways consisting of auxin biosynthesis, transport, and signaling. Chemical biology methods applied in auxin research have been greatly expanded through the understanding of auxin regulatory pathways. Many small-molecule modulators of auxin metabolism, transport, and signaling have been generated on the basis of the outcomes of genetic and structural studies on auxin regulatory pathways. These chemical modulators are now widely used as essential tools for dissecting auxin biology in diverse plants. This review covers the structures, primary targets, modes of action, and applications of chemical tools in auxin biosynthesis, transport, and signaling.
Collapse
Affiliation(s)
- Ken-Ichiro Hayashi
- Department of Biochemistry, Okayama University of Science, Okayama City 700-0005, Japan
| |
Collapse
|
6
|
Semeradova H, Montesinos JC, Benkova E. All Roads Lead to Auxin: Post-translational Regulation of Auxin Transport by Multiple Hormonal Pathways. PLANT COMMUNICATIONS 2020; 1:100048. [PMID: 33367243 PMCID: PMC7747973 DOI: 10.1016/j.xplc.2020.100048] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/26/2020] [Accepted: 04/18/2020] [Indexed: 05/03/2023]
Abstract
Auxin is a key hormonal regulator, that governs plant growth and development in concert with other hormonal pathways. The unique feature of auxin is its polar, cell-to-cell transport that leads to the formation of local auxin maxima and gradients, which coordinate initiation and patterning of plant organs. The molecular machinery mediating polar auxin transport is one of the important points of interaction with other hormones. Multiple hormonal pathways converge at the regulation of auxin transport and form a regulatory network that integrates various developmental and environmental inputs to steer plant development. In this review, we discuss recent advances in understanding the mechanisms that underlie regulation of polar auxin transport by multiple hormonal pathways. Specifically, we focus on the post-translational mechanisms that contribute to fine-tuning of the abundance and polarity of auxin transporters at the plasma membrane and thereby enable rapid modification of the auxin flow to coordinate plant growth and development.
Collapse
Affiliation(s)
- Hana Semeradova
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | | | - Eva Benkova
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| |
Collapse
|
7
|
Sun L, Feraru E, Feraru MI, Waidmann S, Wang W, Passaia G, Wang ZY, Wabnik K, Kleine-Vehn J. PIN-LIKES Coordinate Brassinosteroid Signaling with Nuclear Auxin Input in Arabidopsis thaliana. Curr Biol 2020; 30:1579-1588.e6. [PMID: 32169207 PMCID: PMC7198975 DOI: 10.1016/j.cub.2020.02.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 12/12/2019] [Accepted: 02/03/2020] [Indexed: 11/15/2022]
Abstract
Auxin and brassinosteroids (BR) are crucial growth regulators and display overlapping functions during plant development. Here, we reveal an alternative phytohormone crosstalk mechanism, revealing that BR signaling controls PIN-LIKES (PILS)-dependent nuclear abundance of auxin. We performed a forward genetic screen for imperial pils (imp) mutants that enhance the overexpression phenotypes of PILS5 putative intracellular auxin transport facilitator. Here, we report that the imp1 mutant is defective in the BR-receptor BRASSINOSTEROID INSENSITIVE 1 (BRI1). Our set of data reveals that BR signaling transcriptionally and post-translationally represses the accumulation of PILS proteins at the endoplasmic reticulum, thereby increasing nuclear abundance and signaling of auxin. We demonstrate that this alternative phytohormonal crosstalk mechanism integrates BR signaling into auxin-dependent organ growth rates and likely has widespread importance for plant development.
Collapse
Affiliation(s)
- Lin Sun
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, Vienna 1190, Austria
| | - Elena Feraru
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, Vienna 1190, Austria
| | - Mugurel I Feraru
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, Vienna 1190, Austria
| | - Sascha Waidmann
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, Vienna 1190, Austria
| | - Wenfei Wang
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA; Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University (FAFU), Fuzhou 350002, China
| | - Gisele Passaia
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Zhi-Yong Wang
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Krzysztof Wabnik
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA) Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo-UPM, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Jürgen Kleine-Vehn
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, Vienna 1190, Austria.
| |
Collapse
|
8
|
Zhang ML, Huang PP, Ji Y, Wang S, Wang SS, Li Z, Guo Y, Ding Z, Wu WH, Wang Y. KUP9 maintains root meristem activity by regulating K + and auxin homeostasis in response to low K. EMBO Rep 2020; 21:e50164. [PMID: 32250038 DOI: 10.15252/embr.202050164] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 02/23/2020] [Accepted: 03/10/2020] [Indexed: 12/18/2022] Open
Abstract
Potassium (K) is essential for plant growth and development. Here, we show that the KUP/HAK/KT K+ transporter KUP9 controls primary root growth in Arabidopsis thaliana. Under low-K+ conditions, kup9 mutants displayed a short-root phenotype that resulted from reduced numbers of root cells. KUP9 was highly expressed in roots and specifically expressed in quiescent center (QC) cells in root tips. The QC acts to maintain root meristem activity, and low-K+ conditions induced QC cell division in kup9 mutants, resulting in impaired root meristem activity. The short-root phenotype and enhanced QC cell division in kup9 mutants could be rescued by exogenous auxin treatment or by specifically increasing auxin levels in QC cells, suggesting that KUP9 affects auxin homeostasis in QC cells. Further studies showed that KUP9 mainly localized to the endoplasmic reticulum (ER), where it mediated K+ and auxin efflux from the ER lumen to the cytoplasm in QC cells under low-K+ conditions. These results demonstrate that KUP9 maintains Arabidopsis root meristem activity and root growth by regulating K+ and auxin homeostasis in response to low-K+ stress.
Collapse
Affiliation(s)
- Mei-Ling Zhang
- State Key Laboratory of Plant Physiology and Biochemistry (SKLPPB), College of Biological Sciences, China Agricultural University, Beijing, China
| | - Pan-Pan Huang
- State Key Laboratory of Plant Physiology and Biochemistry (SKLPPB), College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yun Ji
- State Key Laboratory of Plant Physiology and Biochemistry (SKLPPB), College of Biological Sciences, China Agricultural University, Beijing, China
| | - Shuwei Wang
- State Key Laboratory of Plant Physiology and Biochemistry (SKLPPB), College of Biological Sciences, China Agricultural University, Beijing, China
| | - Shao-Shuai Wang
- State Key Laboratory of Plant Physiology and Biochemistry (SKLPPB), College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zhen Li
- State Key Laboratory of Plant Physiology and Biochemistry (SKLPPB), College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yan Guo
- State Key Laboratory of Plant Physiology and Biochemistry (SKLPPB), College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zhaojun Ding
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, College of Life Sciences, Shandong University, Qingdao, China
| | - Wei-Hua Wu
- State Key Laboratory of Plant Physiology and Biochemistry (SKLPPB), College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yi Wang
- State Key Laboratory of Plant Physiology and Biochemistry (SKLPPB), College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
9
|
Müller K, Hošek P, Laňková M, Vosolsobě S, Malínská K, Čarná M, Fílová M, Dobrev PI, Helusová M, Hoyerová K, Petrášek J. Transcription of specific auxin efflux and influx carriers drives auxin homeostasis in tobacco cells. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:627-640. [PMID: 31349380 DOI: 10.1111/tpj.14474] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/08/2019] [Accepted: 07/12/2019] [Indexed: 06/10/2023]
Abstract
Auxin concentration gradients are informative for the transduction of many developmental cues, triggering downstream gene expression and other responses. The generation of auxin gradients depends significantly on cell-to-cell auxin transport, which is supported by the activities of auxin efflux and influx carriers. However, at the level of individual plant cell, the co-ordination of auxin efflux and influx largely remains uncharacterized. We addressed this issue by analyzing the contribution of canonical PIN-FORMED (PIN) proteins to the carrier-mediated auxin efflux in Nicotiana tabacum L., cv. Bright Yellow (BY-2) tobacco cells. We show here that a majority of canonical NtPINs are transcribed in cultured cells and in planta. Cloning of NtPIN genes and their inducible overexpression in tobacco cells uncovered high auxin efflux activity of NtPIN11, accompanied by auxin starvation symptoms. Auxin transport parameters after NtPIN11 overexpression were further assessed using radiolabelled auxin accumulation and mathematical modelling. Unexpectedly, these experiments showed notable stimulation of auxin influx, which was accompanied by enhanced transcript levels of genes for a specific auxin influx carrier and by decreased transcript levels of other genes for auxin efflux carriers. A similar transcriptional response was observed upon removal of auxin from the culture medium, which resulted in decreased auxin efflux. Overall, our results revealed an auxin transport-based homeostatic mechanism for the maintenance of endogenous auxin levels. OPEN RESEARCH BADGES: This article has earned an Open Data Badge for making publicly available the digitally-shareable data necessary to reproduce the reported results. The data is available at http://osf.io/ka97b/.
Collapse
Affiliation(s)
- Karel Müller
- The Czech Academy of Sciences, Institute of Experimental Botany, Rozvojová 263, 165 02 Prague 6, Czech Republic
| | - Petr Hošek
- The Czech Academy of Sciences, Institute of Experimental Botany, Rozvojová 263, 165 02 Prague 6, Czech Republic
| | - Martina Laňková
- The Czech Academy of Sciences, Institute of Experimental Botany, Rozvojová 263, 165 02 Prague 6, Czech Republic
| | - Stanislav Vosolsobě
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague 2, Czech Republic
| | - Kateřina Malínská
- The Czech Academy of Sciences, Institute of Experimental Botany, Rozvojová 263, 165 02 Prague 6, Czech Republic
| | - Mária Čarná
- The Czech Academy of Sciences, Institute of Experimental Botany, Rozvojová 263, 165 02 Prague 6, Czech Republic
| | - Markéta Fílová
- The Czech Academy of Sciences, Institute of Experimental Botany, Rozvojová 263, 165 02 Prague 6, Czech Republic
| | - Petre I Dobrev
- The Czech Academy of Sciences, Institute of Experimental Botany, Rozvojová 263, 165 02 Prague 6, Czech Republic
| | - Michaela Helusová
- The Czech Academy of Sciences, Institute of Experimental Botany, Rozvojová 263, 165 02 Prague 6, Czech Republic
| | - Klára Hoyerová
- The Czech Academy of Sciences, Institute of Experimental Botany, Rozvojová 263, 165 02 Prague 6, Czech Republic
| | - Jan Petrášek
- The Czech Academy of Sciences, Institute of Experimental Botany, Rozvojová 263, 165 02 Prague 6, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague 2, Czech Republic
| |
Collapse
|
10
|
Béziat C, Kleine-Vehn J. The Road to Auxin-Dependent Growth Repression and Promotion in Apical Hooks. Curr Biol 2019; 28:R519-R525. [PMID: 29689235 DOI: 10.1016/j.cub.2018.01.069] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The phytohormone auxin controls growth rates within plant tissues, but the underlying mechanisms are still largely enigmatic. The apical hook is a superb model to understand differential growth, because it displays both auxin-dependent growth repression and promotion. In this special issue on membranes, we illustrate how the distinct utilization of vesicle trafficking contributes to the spatial control of polar auxin transport, thereby pinpointing the site of growth repression in apical hooks. We moreover highlight that the transition to growth promotion is achieved by balancing inter- and intracellular auxin transport. We emphasize here that the apical hook development is a suitable model to further advance our mechanistic knowledge on plant growth regulation.
Collapse
Affiliation(s)
- Chloé Béziat
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190 Vienna, Austria
| | - Jürgen Kleine-Vehn
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190 Vienna, Austria.
| |
Collapse
|
11
|
Comparative Analysis of the PIN Auxin Transporter Gene Family in Different Plant Species: A Focus on Structural and Expression Profiling of PINs in Solanum tuberosum. Int J Mol Sci 2019; 20:ijms20133270. [PMID: 31277248 PMCID: PMC6650889 DOI: 10.3390/ijms20133270] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 06/21/2019] [Accepted: 06/27/2019] [Indexed: 12/19/2022] Open
Abstract
Plant growth and morphogenesis largely benefit from cell elongation and expansion and are normally regulated by environmental stimuli and endogenous hormones. Auxin, as one of the most significant plant growth regulators, controls various phases of plant growth and development. The PIN-FORMED (PIN) gene family of trans-membrane proteins considered as auxin efflux carriers plays a pivotal role in polar auxin transport and then mediates the growth of different plant tissues. In this study, the phylogenetic relationship and structural compositions of the PIN gene family in 19 plant species covering plant major lineages from algae to angiosperms were identified and analyzed by employing multiple bioinformatics methods. A total of 155 PIN genes were identified in these species and found that representative of the PIN gene family in algae came into existence and rapidly expanded in angiosperms (seed plants). The phylogenetic analysis indicated that the PIN proteins could be divided into 14 distinct clades, and the origin of PIN proteins could be traced back to the common ancestor of green algae. The structural analysis revealed that two putative types (canonical and noncanonical PINs) existed among the PIN proteins according to the length and the composition of the hydrophilic domain of the protein. The expression analysis of the PIN genes exhibited inordinate responsiveness to auxin (IAA) and ABA both in shoots and roots of Solanum tuberosum. While the majority of the StPINs were up-regulated in shoot and down-regulated in root by the two hormones. The majority of PIN genes had one or more putative auxin responses and ABA-inducible response elements in their promoter regions, respectively, implying that these phytohormones regulated the expression of StPIN genes. Our study emphasized the origin and expansion of the PIN gene family and aimed at providing useful insights for further structural and functional exploration of the PIN gene family in the future.
Collapse
|
12
|
Feraru E, Feraru MI, Barbez E, Waidmann S, Sun L, Gaidora A, Kleine-Vehn J. PILS6 is a temperature-sensitive regulator of nuclear auxin input and organ growth in Arabidopsis thaliana. Proc Natl Acad Sci U S A 2019; 116:3893-3898. [PMID: 30755525 PMCID: PMC6397578 DOI: 10.1073/pnas.1814015116] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Temperature modulates growth and development throughout the entire lifecycle of a plant. High temperature (HT) triggers the auxin biosynthesis-dependent growth in aerial tissues. On the other hand, the contribution of auxin to HT-induced root growth is currently under debate. Here we show that the putative intracellular auxin carrier PIN-LIKES 6 (PILS6) is a negative regulator of organ growth and that its abundance is highly sensitive to HT. PILS6 localizes to the endoplasmic reticulum and limits the nuclear availability of auxin, consequently reducing the auxin signaling output. HT represses the PILS6 protein abundance, which impacts on PILS6-dependent auxin signaling in roots and root expansion. Accordingly, we hypothesize that PILS6 is part of an alternative mechanism linking HT to auxin responses in roots.
Collapse
Affiliation(s)
- Elena Feraru
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| | - Mugurel I Feraru
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| | - Elke Barbez
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| | - Sascha Waidmann
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| | - Lin Sun
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| | - Angelika Gaidora
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| | - Jürgen Kleine-Vehn
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| |
Collapse
|
13
|
Béziat C, Barbez E, Feraru MI, Lucyshyn D, Kleine-Vehn J. Light triggers PILS-dependent reduction in nuclear auxin signalling for growth transition. NATURE PLANTS 2017; 3:17105. [PMID: 28714973 PMCID: PMC5524181 DOI: 10.1038/nplants.2017.105] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 06/12/2017] [Indexed: 05/20/2023]
Abstract
The phytohormone auxin induces or represses growth depending on its concentration and the underlying tissue type. However, it remains unknown how auxin signalling is modulated to allow tissues transiting between repression and promotion of growth. Here, we used apical hook development as a model for growth transitions in plants. A PIN-FORMED (PIN)-dependent intercellular auxin transport module defines an auxin maximum that is causal for growth repression during the formation of the apical hook. Our data illustrate that growth transition for apical hook opening is largely independent of this PIN module, but requires the PIN-LIKES (PILS) putative auxin carriers at the endoplasmic reticulum. PILS proteins reduce nuclear auxin signalling in the apical hook, leading to the de-repression of growth and the onset of hook opening. We also show that the phytochrome (phy) B-reliant light-signalling pathway directly regulates PILS gene activity, thereby enabling light perception to repress nuclear auxin signalling and to control growth. We propose a novel mechanism, in which PILS proteins allow external signals to alter tissue sensitivity to auxin, defining differential growth rates.
Collapse
Affiliation(s)
- Chloé Béziat
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190 Vienna, Austria
- Department of Plant Systems Biology, VIB and Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052 Gent, Belgium
| | - Elke Barbez
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190 Vienna, Austria
- Department of Plant Systems Biology, VIB and Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052 Gent, Belgium
| | - Mugurel I. Feraru
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190 Vienna, Austria
| | - Doris Lucyshyn
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190 Vienna, Austria
| | - Jürgen Kleine-Vehn
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190 Vienna, Austria
- Department of Plant Systems Biology, VIB and Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052 Gent, Belgium
- Correspondence should be addressed to Jürgen Kleine-Vehn ()
| |
Collapse
|
14
|
Abstract
The history of auxin and cytokinin biology including the initial discoveries by father-son duo Charles Darwin and Francis Darwin (1880), and Gottlieb Haberlandt (1919) is a beautiful demonstration of unceasing continuity of research. Novel findings are integrated into existing hypotheses and models and deepen our understanding of biological principles. At the same time new questions are triggered and hand to hand with this new methodologies are developed to address these new challenges.
Collapse
Affiliation(s)
- Andrej Hurný
- Institute of Science and Technology, Am Campus 1, 3400, Klosterneuburg, Austria
| | - Eva Benková
- Institute of Science and Technology, Am Campus 1, 3400, Klosterneuburg, Austria.
| |
Collapse
|
15
|
Armengot L, Marquès-Bueno MM, Jaillais Y. Regulation of polar auxin transport by protein and lipid kinases. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:4015-4037. [PMID: 27242371 PMCID: PMC4968656 DOI: 10.1093/jxb/erw216] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The directional transport of auxin, known as polar auxin transport (PAT), allows asymmetric distribution of this hormone in different cells and tissues. This system creates local auxin maxima, minima, and gradients that are instrumental in both organ initiation and shape determination. As such, PAT is crucial for all aspects of plant development but also for environmental interaction, notably in shaping plant architecture to its environment. Cell to cell auxin transport is mediated by a network of auxin carriers that are regulated at the transcriptional and post-translational levels. Here we review our current knowledge on some aspects of the 'non-genomic' regulation of auxin transport, placing an emphasis on how phosphorylation by protein and lipid kinases controls the polarity, intracellular trafficking, stability, and activity of auxin carriers. We describe the role of several AGC kinases, including PINOID, D6PK, and the blue light photoreceptor phot1, in phosphorylating auxin carriers from the PIN and ABCB families. We also highlight the function of some receptor-like kinases (RLKs) and two-component histidine kinase receptors in PAT, noting that there are probably RLKs involved in co-ordinating auxin distribution yet to be discovered. In addition, we describe the emerging role of phospholipid phosphorylation in polarity establishment and intracellular trafficking of PIN proteins. We outline these various phosphorylation mechanisms in the context of primary and lateral root development, leaf cell shape acquisition, as well as root gravitropism and shoot phototropism.
Collapse
Affiliation(s)
- Laia Armengot
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342, Lyon, France
| | - Maria Mar Marquès-Bueno
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342, Lyon, France
| | - Yvon Jaillais
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342, Lyon, France
- Correspondence to:
| |
Collapse
|
16
|
Laňková M, Humpolíčková J, Vosolsobě S, Cit Z, Lacek J, Čovan M, Čovanová M, Hof M, Petrášek J. Determination of Dynamics of Plant Plasma Membrane Proteins with Fluorescence Recovery and Raster Image Correlation Spectroscopy. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2016; 22:290-9. [PMID: 27041337 DOI: 10.1017/s1431927616000568] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A number of fluorescence microscopy techniques are described to study dynamics of fluorescently labeled proteins, lipids, nucleic acids, and whole organelles. However, for studies of plant plasma membrane (PM) proteins, the number of these techniques is still limited because of the high complexity of processes that determine the dynamics of PM proteins and the existence of cell wall. Here, we report on the usage of raster image correlation spectroscopy (RICS) for studies of integral PM proteins in suspension-cultured tobacco cells and show its potential in comparison with the more widely used fluorescence recovery after photobleaching method. For RICS, a set of microscopy images is obtained by single-photon confocal laser scanning microscopy (CLSM). Fluorescence fluctuations are subsequently correlated between individual pixels and the information on protein mobility are extracted using a model that considers processes generating the fluctuations such as diffusion and chemical binding reactions. As we show here using an example of two integral PM transporters of the plant hormone auxin, RICS uncovered their distinct short-distance lateral mobility within the PM that is dependent on cytoskeleton and sterol composition of the PM. RICS, which is routinely accessible on modern CLSM instruments, thus represents a valuable approach for studies of dynamics of PM proteins in plants.
Collapse
Affiliation(s)
- Martina Laňková
- 1Institute of Experimental Botany,Academy of Sciences of the Czech Republic,Rozvojová 263,165 02 Prague 6,Czech Republic
| | - Jana Humpolíčková
- 2J. Heyrovský Institute of Physical Chemistry,Academy of Sciences of the Czech Republic,Dolejškova 2155/3,182 23 Prague 8,Czech Republic
| | - Stanislav Vosolsobě
- 3Department of Experimental Plant Biology, Faculty of Science,Charles University,Viničná 5,128 44 Prague 2,Czech Republic
| | - Zdeněk Cit
- 1Institute of Experimental Botany,Academy of Sciences of the Czech Republic,Rozvojová 263,165 02 Prague 6,Czech Republic
| | - Jozef Lacek
- 1Institute of Experimental Botany,Academy of Sciences of the Czech Republic,Rozvojová 263,165 02 Prague 6,Czech Republic
| | - Martin Čovan
- 1Institute of Experimental Botany,Academy of Sciences of the Czech Republic,Rozvojová 263,165 02 Prague 6,Czech Republic
| | - Milada Čovanová
- 1Institute of Experimental Botany,Academy of Sciences of the Czech Republic,Rozvojová 263,165 02 Prague 6,Czech Republic
| | - Martin Hof
- 2J. Heyrovský Institute of Physical Chemistry,Academy of Sciences of the Czech Republic,Dolejškova 2155/3,182 23 Prague 8,Czech Republic
| | - Jan Petrášek
- 1Institute of Experimental Botany,Academy of Sciences of the Czech Republic,Rozvojová 263,165 02 Prague 6,Czech Republic
| |
Collapse
|
17
|
ER network homeostasis is critical for plant endosome streaming and endocytosis. Cell Discov 2015; 1:15033. [PMID: 27462431 PMCID: PMC4860783 DOI: 10.1038/celldisc.2015.33] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Accepted: 09/20/2015] [Indexed: 12/21/2022] Open
Abstract
Eukaryotic cells internalize cargo at the plasma membrane via endocytosis, a vital process that is accomplished through a complex network of endosomal organelles. In mammalian cells, the ER is in close association with endosomes and regulates their fission. Nonetheless, the physiological role of such interaction on endocytosis is yet unexplored. Here, we probed the existence of ER–endosome association in plant cells and assayed its physiological role in endocytosis. Through live-cell imaging and electron microscopy studies, we established that endosomes are extensively associated with the plant ER, supporting conservation of interaction between heterotypic organelles in evolutionarily distant kingdoms. Furthermore, by analyzing ER–endosome dynamics in genetic backgrounds with defects in ER structure and movement, we also established that the ER network integrity is necessary for homeostasis of the distribution and streaming of various endosome populations as well as for efficient endocytosis. These results support a novel model that endocytosis homeostasis depends on a spatiotemporal control of the endosome dynamics dictated by the ER membrane network.
Collapse
|
18
|
Luo CJ, Wightman R, Meyerowitz E, Smoukov SK. A 3-dimensional fibre scaffold as an investigative tool for studying the morphogenesis of isolated plant pells. BMC PLANT BIOLOGY 2015; 15:211. [PMID: 26310239 PMCID: PMC4550058 DOI: 10.1186/s12870-015-0581-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 07/24/2015] [Indexed: 05/08/2023]
Abstract
BACKGROUND Cell culture methods allow the detailed observations of individual plant cells and their internal processes. Whereas cultured cells are more amenable to microscopy, they have had limited use when studying the complex interactions between cell populations and responses to external signals associated with tissue and whole plant development. Such interactions result in the diverse range of cell shapes observed in planta compared to the simple polygonal or ovoid shapes in vitro. Microfluidic devices can isolate the dynamics of single plant cells but have restricted use for providing a tissue-like and fibrous extracellular environment for cells to interact. A gap exists, therefore, in the understanding of spatiotemporal interactions of single plant cells interacting with their three-dimensional (3D) environment. A model system is needed to bridge this gap. For this purpose we have borrowed a tool, a 3D nano- and microfibre tissue scaffold, recently used in biomedical engineering of animal and human tissue physiology and pathophysiology in vitro. RESULTS We have developed a method of 3D cell culture for plants, which mimics the plant tissue environment, using biocompatible scaffolds similar to those used in mammalian tissue engineering. The scaffolds provide both developmental cues and structural stability to isolated callus-derived cells grown in liquid culture. The protocol is rapid, compared to the growth and preparation of whole plants for microscopy, and provides detailed subcellular information on cells interacting with their local environment. We observe cell shapes never observed for individual cultured cells. Rather than exhibiting only spheroid or ellipsoidal shapes, the cells adapt their shape to fit the local space and are capable of growing past each other, taking on growth and morphological characteristics with greater complexity than observed even in whole plants. Confocal imaging of transgenic Arabidopsis thaliana lines containing fluorescent microtubule and actin reporters enables further study of the effects of interactions and complex morphologies upon cytoskeletal organisation both in 3D and in time (4D). CONCLUSIONS The 3D culture within the fibre scaffolds permits cells to grow freely within a matrix containing both large and small spaces, a technique that is expected to add to current lithographic technologies, where growth is carefully controlled and constricted. The cells, once seeded in the scaffolds, can adopt a variety of morphologies, demonstrating that they do not need to be part of a tightly packed tissue to form complex shapes. This points to a role of the immediate nano- and micro-topography in plant cell morphogenesis. This work defines a new suite of techniques for exploring cell-environment interactions.
Collapse
Affiliation(s)
- C J Luo
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, UK.
| | - Raymond Wightman
- Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge, CB2 1LR, UK.
| | - Elliot Meyerowitz
- Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge, CB2 1LR, UK.
- Division of Biology and Biological Engineering, and Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA, 91125, USA.
| | - Stoyan K Smoukov
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, UK.
| |
Collapse
|
19
|
Lee HS, Kim Y, Pham G, Kim JW, Song JH, Lee Y, Hwang YS, Roux SJ, Kim SH. Brassinazole resistant 1 (BZR1)-dependent brassinosteroid signalling pathway leads to ectopic activation of quiescent cell division and suppresses columella stem cell differentiation. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:4835-49. [PMID: 26136267 PMCID: PMC4507784 DOI: 10.1093/jxb/erv316] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Previous publications have shown that BRI1 EMS suppressor 1 (BES1), a positive regulator of the brassinosteroid (BR) signalling pathway, enhances cell divisions in the quiescent centre (QC) and stimulates columella stem cell differentiation. Here, it is demonstrated that BZR1, a BES1 homologue, also promotes cell divisions in the QC, but it suppresses columella stem cell differentiation, opposite to the action of BES1. In addition, BR and its BZR1-mediated signalling pathway are shown to alter the expression/subcellular distribution of pin-formed (PINs), which may result in changes in auxin movement. BR promotes intense nuclear accumulation of BZR1 in the root tip area, and the binding of BZR1 to the promoters of several root development-regulating genes, modulating their expression in the root stem cell niche area. These BZR1-mediated signalling cascades may account for both the ectopic activation of QC cell divisions as well as the suppression of the columella stem cell differentiation. They could also inhibit auxin-dependent distal stem cell differentiation by antagonizing the auxin/WOX5-dependent pathway. In conclusion, BZR1-/BES1-mediated BR signalling pathways show differential effects on the maintenance of root apical meristem activities: they stimulate ectopic QC division while they show opposite effects on the differentiation of distal columella stem cells in a BR concentration- and BZR1-/BES1-dependent manner.
Collapse
Affiliation(s)
- Hak-Soo Lee
- Division of Biological Science and Technology, Yonsei University, Wonju, 220-710, Republic of Korea
| | - Yoon Kim
- Division of Biological Science and Technology, Yonsei University, Wonju, 220-710, Republic of Korea
| | - Giang Pham
- Division of Biological Science and Technology, Yonsei University, Wonju, 220-710, Republic of Korea
| | - Ju Won Kim
- Division of Biological Science and Technology, Yonsei University, Wonju, 220-710, Republic of Korea
| | - Ji-Hye Song
- Division of Biological Science and Technology, Yonsei University, Wonju, 220-710, Republic of Korea
| | - Yew Lee
- Division of Biological Science and Technology, Yonsei University, Wonju, 220-710, Republic of Korea Department of Life Science, Hanyang University, Seoul, 133-791, Republic of Korea
| | - Yong-Sic Hwang
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Republic of Korea
| | - Stanley J Roux
- Department of Molecular Biosciences, University of Texas, Austin, TX 78712, USA
| | - Soo-Hwan Kim
- Division of Biological Science and Technology, Yonsei University, Wonju, 220-710, Republic of Korea
| |
Collapse
|
20
|
Adamowski M, Friml J. PIN-dependent auxin transport: action, regulation, and evolution. THE PLANT CELL 2015; 27:20-32. [PMID: 25604445 PMCID: PMC4330589 DOI: 10.1105/tpc.114.134874] [Citation(s) in RCA: 492] [Impact Index Per Article: 54.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 12/01/2014] [Accepted: 01/05/2015] [Indexed: 05/18/2023]
Abstract
Auxin participates in a multitude of developmental processes, as well as responses to environmental cues. Compared with other plant hormones, auxin exhibits a unique property, as it undergoes directional, cell-to-cell transport facilitated by plasma membrane-localized transport proteins. Among them, a prominent role has been ascribed to the PIN family of auxin efflux facilitators. PIN proteins direct polar auxin transport on account of their asymmetric subcellular localizations. In this review, we provide an overview of the multiple developmental roles of PIN proteins, including the atypical endoplasmic reticulum-localized members of the family, and look at the family from an evolutionary perspective. Next, we cover the cell biological and molecular aspects of PIN function, in particular the establishment of their polar subcellular localization. Hormonal and environmental inputs into the regulation of PIN action are summarized as well.
Collapse
Affiliation(s)
- Maciek Adamowski
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Jiří Friml
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| |
Collapse
|
21
|
Auxin transport sites are visualized in planta using fluorescent auxin analogs. Proc Natl Acad Sci U S A 2014; 111:11557-62. [PMID: 25049419 DOI: 10.1073/pnas.1408960111] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The plant hormone auxin is a key morphogenetic signal that controls many aspects of plant growth and development. Cellular auxin levels are coordinately regulated by multiple processes, including auxin biosynthesis and the polar transport and metabolic pathways. The auxin concentration gradient determines plant organ positioning and growth responses to environmental cues. Auxin transport systems play crucial roles in the spatiotemporal regulation of the auxin gradient. This auxin gradient has been analyzed using SCF-type E3 ubiquitin-ligase complex-based auxin biosensors in synthetic auxin-responsive reporter lines. However, the contributions of auxin biosynthesis and metabolism to the auxin gradient have been largely elusive. Additionally, the available information on subcellular auxin localization is still limited. Here we designed fluorescently labeled auxin analogs that remain active for auxin transport but are inactive for auxin signaling and metabolism. Fluorescent auxin analogs enable the selective visualization of the distribution of auxin by the auxin transport system. Together with auxin biosynthesis inhibitors and an auxin biosensor, these analogs indicated a substantial contribution of local auxin biosynthesis to the formation of auxin maxima at the root apex. Moreover, fluorescent auxin analogs mainly localized to the endoplasmic reticulum in cultured cells and roots, implying the presence of a subcellular auxin gradient in the cells. Our work not only provides a useful tool for the plant chemical biology field but also demonstrates a new strategy for imaging the distribution of small-molecule hormones.
Collapse
|
22
|
Ganguly A, Park M, Kesawat MS, Cho HT. Functional Analysis of the Hydrophilic Loop in Intracellular Trafficking of Arabidopsis PIN-FORMED Proteins. THE PLANT CELL 2014; 26:1570-1585. [PMID: 24692422 PMCID: PMC4036572 DOI: 10.1105/tpc.113.118422] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 03/03/2014] [Accepted: 03/18/2014] [Indexed: 05/18/2023]
Abstract
Different PIN-FORMED proteins (PINs) contribute to intercellular and intracellular auxin transport, depending on their distinctive subcellular localizations. Arabidopsis thaliana PINs with a long hydrophilic loop (HL) (PIN1 to PIN4 and PIN7; long PINs) localize predominantly to the plasma membrane (PM), whereas short PINs (PIN5 and PIN8) localize predominantly to internal compartments. However, the subcellular localization of the short PINs has been observed mostly for PINs ectopically expressed in different cell types, and the role of the HL in PIN trafficking remains unclear. Here, we tested whether a long PIN-HL can provide its original molecular cues to a short PIN by transplanting the HL. The transplanted long PIN2-HL was sufficient for phosphorylation and PM trafficking of the chimeric PIN5:PIN2-HL but failed to provide the characteristic polarity of PIN2. Unlike previous observations, PIN5 showed clear PM localization in diverse cell types where PIN5 is natively or ectopically expressed and even polar PM localization in one cell type. Furthermore, in the root epidermis, the subcellular localization of PIN5 switched from PM to internal compartments according to the developmental stage. Our results suggest that the long PIN-HL is partially modular for the trafficking behavior of PINs and that the intracellular trafficking of PIN is plastic depending on cell type and developmental stage.
Collapse
Affiliation(s)
- Anindya Ganguly
- Department of Biological Sciences and Plant Genomics and Breeding Institute, Seoul National University, Seoul 151-742, Korea
| | - Minho Park
- Department of Biological Sciences and Plant Genomics and Breeding Institute, Seoul National University, Seoul 151-742, Korea
| | - Mahipal Singh Kesawat
- Department of Biological Sciences and Plant Genomics and Breeding Institute, Seoul National University, Seoul 151-742, Korea
| | - Hyung-Taeg Cho
- Department of Biological Sciences and Plant Genomics and Breeding Institute, Seoul National University, Seoul 151-742, Korea
| |
Collapse
|
23
|
Canalization: what the flux? Trends Genet 2013; 30:41-8. [PMID: 24296041 DOI: 10.1016/j.tig.2013.11.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 10/29/2013] [Accepted: 11/01/2013] [Indexed: 01/06/2023]
Abstract
Polarized transport of the hormone auxin plays crucial roles in many processes in plant development. A self-organizing pattern of auxin transport--canalization--is thought to be responsible for vascular patterning and shoot branching regulation in flowering plants. Mathematical modeling has demonstrated that membrane localization of PIN-FORMED (PIN)-family auxin efflux carriers in proportion to net auxin flux can plausibly explain canalization and possibly other auxin transport phenomena. Other plausible models have also been proposed, and there has recently been much interest in producing a unified model of all auxin transport phenomena. However, it is our opinion that lacunae in our understanding of auxin transport biology are now limiting progress in developing the next generation of models. Here we examine several key areas where significant experimental advances are necessary to address both biological and theoretical aspects of auxin transport, including the possibility of a unified transport model.
Collapse
|
24
|
A quantitative ratiometric sensor for time-resolved analysis of auxin dynamics. Sci Rep 2013; 3:2052. [PMID: 23787479 PMCID: PMC3689175 DOI: 10.1038/srep02052] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 06/06/2013] [Indexed: 12/23/2022] Open
Abstract
Time-resolved quantitative analysis of auxin-mediated processes in plant cells is as of yet limited. By applying a synergistic mammalian and plant synthetic biology approach, we have developed a novel ratiometric luminescent biosensor with wide applicability in the study of auxin metabolism, transport, and signalling. The sensitivity and kinetic properties of our genetically encoded biosensor open new perspectives for the analysis of highly complex auxin dynamics in plant growth and development.
Collapse
|