1
|
Wang W, Xie Y, Liu L, King GJ, White P, Ding G, Wang S, Cai H, Wang C, Xu F, Shi L. Genetic Control of Seed Phytate Accumulation and the Development of Low-Phytate Crops: A Review and Perspective. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:3375-3390. [PMID: 35275483 DOI: 10.1021/acs.jafc.1c06831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Breeding low phytic acid (lpa) crops is a strategy that has potential to both improve the nutritional quality of food and feed and contribute to the sustainability of agriculture. Here, we review the lipid-independent and -dependent pathways of phytate synthesis and their regulatory mechanisms in plants. We compare the genetic variation of the phytate concentration and distribution in seeds between dicot and monocot species as well as the associated temporal and spatial expression patterns of the genes involved in phytate synthesis and transport. Quantitative trait loci or significant single nucleotide polymorphisms for the seed phytate concentration have been identified in different plant species by linkage and association mapping, and some genes have been cloned from lpa mutants. We summarize the effects of various lpa mutations on important agronomic traits in crop plants and propose SULTR3;3 and SULTR3;4 as optimal target genes for lpa crop breeding.
Collapse
Affiliation(s)
- Wei Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
- Microelement Research Center, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Yiwen Xie
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
- Microelement Research Center, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Lei Liu
- Southern Cross Plant Science, Southern Cross University, Lismore New South Wales 2480, Australia
| | - Graham J King
- Southern Cross Plant Science, Southern Cross University, Lismore New South Wales 2480, Australia
| | - Philip White
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom
| | - Guangda Ding
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
- Microelement Research Center, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Sheliang Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
- Microelement Research Center, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Hongmei Cai
- Microelement Research Center, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Chuang Wang
- Microelement Research Center, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Fangsen Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
- Microelement Research Center, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Lei Shi
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
- Microelement Research Center, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| |
Collapse
|
2
|
Solovyeva AE, Shelenga TV, Shavarda AL, Burlyaeva MO. Comparative analysis of wild and cultivated Lathyrus L. species to assess their content of sugars, polyols, free fatty acids, and phytosterols. Vavilovskii Zhurnal Genet Selektsii 2021; 24:730-737. [PMID: 33738389 PMCID: PMC7960445 DOI: 10.18699/vj20.667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Under the condition of climate change, the need for crops resistant to abiotic and biotic stresses is increasing.
Lathyrus spp. are characterized by a high nutritional value of their green biomass. The grass pea is one of
the most resistant to drought, waterlogging, cold, salinity, diseases and pests among cultivated legumes, and it is
grown at minimal cost. The creation of new Lathyrus L. sorts with an improved nutrient composition of nutrients
will allow to obtain high-quality feed in areas with extremely unstable weather conditions. In this connection, we
studied the patterns of variability in the parameters of the carbohydrate complex (sugars, their lactone and methyl
forms), polyols (including phenol-containing alcohols), phytosterols, free fatty acids (FFA) and acylglycerols in the
green mass of 32 samples of Lathyrus sativus L., L. tuberosus L., L. sylvestris L., L. vernus (L.) Bernh., L. latifolius L.,
L. linifolius (Reichard) Bassler. from the VIR collection, reproduced in the Leningrad region in contrasting conditions
2012, 2013.The content of identified compounds varied depending on the genotype, species, and weather
conditions. High temperatures and high level of precipitation in 2013 contributed to the accumulation of monosaccharides,
in more colder and drier conditions in 2012 – oligosaccharides, most of polyols and FFA. The cultivated
species (L. sativus) was distinguished by its high sugar content, and the wild species as follows: L. latifolius by FFA;
L. linifolius by ononitol, myo-inositol, and glycerol 3-phosphate; L. vernus by MAG and methylpentofuranoside. The
species cultivated in culture (L. sativus) was distinguished by a high sugar content, wild species: L. latifolius – by FFA,
L. linifolius – ononitol, myo-inositol and glycerol-3-phosphate, L. vernus – MAG and methylpentofuranoside. According
to our results, the studied samples are promising for the selection of Lathyrus varieties with high nutrition
quality and stress-resistant.
Collapse
Affiliation(s)
- A E Solovyeva
- Federal Research Center the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), St. Petersburg, Russia
| | - T V Shelenga
- Federal Research Center the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), St. Petersburg, Russia
| | - A L Shavarda
- Federal Research Center the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), St. Petersburg, Russia St. Petersburg State University, St. Petersburg, Russia V.L. Komarov Botanical Institute of the Russian Academy of Sciences, St. Petersburg, Russia
| | - M O Burlyaeva
- Federal Research Center the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), St. Petersburg, Russia
| |
Collapse
|
3
|
Pramitha JL, Rana S, Aggarwal PR, Ravikesavan R, Joel AJ, Muthamilarasan M. Diverse role of phytic acid in plants and approaches to develop low-phytate grains to enhance bioavailability of micronutrients. ADVANCES IN GENETICS 2020; 107:89-120. [PMID: 33641749 DOI: 10.1016/bs.adgen.2020.11.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Natural or synthetic compounds that interfere with the bioavailability of nutrients are called antinutrients. Phytic acid (PA) is one of the major antinutrients present in the grains and acts as a chelator of micronutrients. The presence of six reactive phosphate groups in PA hinders the absorption of micronutrients in the gut of non-ruminants. Consumption of PA-rich diet leads to deficiency of minerals such as iron and zinc among human population. On the contrary, PA is a natural antioxidant, and PA-derived molecules function in various signal transduction pathways. Therefore, optimal concentration of PA needs to be maintained in plants to avoid adverse pleiotropic effects, as well as to ensure micronutrient bioavailability in the diets. Given this, the chapter enumerates the structure, biosynthesis, and accumulation of PA in food grains followed by their roles in growth, development, and stress responses. Further, the chapter elaborates on the antinutritional properties of PA and explains the conventional breeding and transgene-based approaches deployed to develop low-PA varieties. Studies have shown that conventional breeding methods could develop low-PA lines; however, the pleiotropic effects of these methods viz. reduced yield, embryo abnormalities, and poor seed quality hinder the use of breeding strategies. Overexpression of phytase in the endosperm and RNAi-mediated silencing of genes involved in myo-inositol biosynthesis overcome these constraints. Next-generation genome editing approaches, including CRISPR-Cas9 enable the manipulation of more than one gene involved in PA biosynthesis pathway through multiplex editing, and scope exists to deploy such tools in developing varieties with optimal PA levels.
Collapse
Affiliation(s)
- J Lydia Pramitha
- Department of Millets, Center for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Sumi Rana
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Pooja Rani Aggarwal
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Rajasekaran Ravikesavan
- Department of Millets, Center for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India.
| | - A John Joel
- Tamil Nadu Rice Research Institute, Tamil Nadu Agricultural University, Aduthurai, Tamil Nadu, India
| | - Mehanathan Muthamilarasan
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India.
| |
Collapse
|
4
|
Yin P, Jia A, Heimann K, Zhang M, Liu X, Zhang W, Liu C. Hot water pretreatment-induced significant metabolite changes in the sea cucumber Apostichopus japonicus. Food Chem 2020; 314:126211. [PMID: 31982856 DOI: 10.1016/j.foodchem.2020.126211] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 12/19/2019] [Accepted: 01/12/2020] [Indexed: 12/27/2022]
Abstract
Hot water pretreatment of sea cucumbers potentially changes nutritional benefits. This study aimed to quantify hot water pretreatment-induced changes in metabolite profiles of sea cucumber body walls. ICP-OES, GC-MS, and LC-MS analyses of untreated- (UT-BW), hot water-treated body walls (HW-BW) of Apostichopus japonicus, and the hot water extract (HW-E) determined significant losses of minerals (25-50% w/w), protein (~11% w/w), carbohydrate (33% w/w), saponins (~41% w/w), and spermidine (100%), a potential antipsychotic from hot water-treated samples. Multivariate comparisons of HW-BW with UT-BW and HW-BW with HW-E showed increases in amino acids and fatty acids, suggesting hot water-induced degradation or transformation or easier extraction of protein, lipid or other components. Presence of 80 to 88.5% of compounds in the HW-E and lower DHA, EPA and glycerophospholipids levels in HW-BW suggested extraction of these metabolites. These data indicate that novel processing technologies are required to preserve the full nutritional benefits of sea cucumbers.
Collapse
Affiliation(s)
- Peipei Yin
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250103, China; China-Australia Joint Laboratory for Native Bioresource Industry Innovation, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250103, China
| | - Airong Jia
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250103, China; China-Australia Joint Laboratory for Native Bioresource Industry Innovation, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250103, China.
| | - Kirsten Heimann
- China-Australia Joint Laboratory for Native Bioresource Industry Innovation, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250103, China; Centre for Marine Bioproducts Development, College of Medicine and Public Health, Flinders University, Adelaide, SA 5042, Australia
| | - Miansong Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250103, China; China-Australia Joint Laboratory for Native Bioresource Industry Innovation, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250103, China
| | - Xin Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250103, China; China-Australia Joint Laboratory for Native Bioresource Industry Innovation, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250103, China
| | - Wei Zhang
- China-Australia Joint Laboratory for Native Bioresource Industry Innovation, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250103, China; Centre for Marine Bioproducts Development, College of Medicine and Public Health, Flinders University, Adelaide, SA 5042, Australia.
| | - Changheng Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250103, China; China-Australia Joint Laboratory for Native Bioresource Industry Innovation, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250103, China
| |
Collapse
|
5
|
Pandey V, Krishnan V, Basak N, Marathe A, Thimmegowda V, Dahuja A, Jolly M, Sachdev A. Molecular modeling and in silico characterization of GmABCC5: a phytate transporter and potential target for low-phytate crops. 3 Biotech 2018; 8:54. [PMID: 29354365 DOI: 10.1007/s13205-017-1053-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 12/17/2017] [Indexed: 02/06/2023] Open
Abstract
Designing low-phytate crops without affecting the developmental process in plants had led to the identification of ABCC5 gene in soybean. The GmABCC5 gene was identified and a partial gene sequence was cloned from popular Indian soybean genotype Pusa16. Conserved domains and motifs unique to ABC transporters were identified in the 30 homologous sequences retrieved by BLASTP analysis. The homologs were analyzed for their evolutionary relationship and physiochemical properties. Conserved domains, transmembrane architecture and secondary structure of GmABCC5 were predicted with the aid of computational tools. Analysis identified 53 alpha helices and 31 beta strands, predicting 60% residues in alpha conformation. A three-dimensional (3D) model for GmABCC5 was developed based on 5twv.1.B (Homo sapiens) template homology to gain better insight into its molecular mechanism of transport and sequestration. Spatio-temporal real-time PCR analysis identified mid-to-late seed developmental stages as the time window for the maximum GmABCC5 gene expression, a potential target stage for phytate reduction. Results of this study provide valuable insights into the structural and functional characteristics of GmABCC5, which may be further utilized for the development of nutritionally enriched low-phytate soybean with improved mineral bioavailability.
Collapse
Affiliation(s)
- Vanita Pandey
- 1Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
- Quality and Basic Sciences, ICAR-Indian Institute of Wheat and Barley Research, Karnal, New Delhi 132 001 India
| | - Veda Krishnan
- 1Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Nabaneeta Basak
- 1Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
- Crop Physiology and Biochemistry, ICAR-National Rice Research Institute, Cuttack, 753006 India
| | - Ashish Marathe
- 1Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Vinutha Thimmegowda
- 1Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Anil Dahuja
- 1Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Monica Jolly
- 1Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Archana Sachdev
- 1Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| |
Collapse
|
6
|
The integration of GC–MS and LC–MS to assay the metabolomics profiling in Panax ginseng and Panax quinquefolius reveals a tissue- and species-specific connectivity of primary metabolites and ginsenosides accumulation. J Pharm Biomed Anal 2017; 135:176-185. [DOI: 10.1016/j.jpba.2016.12.026] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 12/19/2016] [Accepted: 12/21/2016] [Indexed: 11/18/2022]
|
7
|
Wang L, Nägele T, Doerfler H, Fragner L, Chaturvedi P, Nukarinen E, Bellaire A, Huber W, Weiszmann J, Engelmeier D, Ramsak Z, Gruden K, Weckwerth W. System level analysis of cacao seed ripening reveals a sequential interplay of primary and secondary metabolism leading to polyphenol accumulation and preparation of stress resistance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 87:318-32. [PMID: 27136060 DOI: 10.1111/tpj.13201] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 03/04/2016] [Accepted: 04/22/2016] [Indexed: 05/19/2023]
Abstract
Theobroma cacao and its popular product, chocolate, are attracting attention due to potential health benefits including antioxidative effects by polyphenols, anti-depressant effects by high serotonin levels, inhibition of platelet aggregation and prevention of obesity-dependent insulin resistance. The development of cacao seeds during fruit ripening is the most crucial process for the accumulation of these compounds. In this study, we analyzed the primary and the secondary metabolome as well as the proteome during Theobroma cacao cv. Forastero seed development by applying an integrative extraction protocol. The combination of multivariate statistics and mathematical modelling revealed a complex consecutive coordination of primary and secondary metabolism and corresponding pathways. Tricarboxylic acid (TCA) cycle and aromatic amino acid metabolism dominated during the early developmental stages (stages 1 and 2; cell division and expansion phase). This was accompanied with a significant shift of proteins from phenylpropanoid metabolism to flavonoid biosynthesis. At stage 3 (reserve accumulation phase), metabolism of sucrose switched from hydrolysis into raffinose synthesis. Lipids as well as proteins involved in lipid metabolism increased whereas amino acids and N-phenylpropenoyl amino acids decreased. Purine alkaloids, polyphenols, and raffinose as well as proteins involved in abiotic and biotic stress accumulated at stage 4 (maturation phase) endowing cacao seeds the characteristic astringent taste and resistance to stress. In summary, metabolic key points of cacao seed development comprise the sequential coordination of primary metabolites, phenylpropanoid, N-phenylpropenoyl amino acid, serotonin, lipid and polyphenol metabolism thereby covering the major compound classes involved in cacao aroma and health benefits.
Collapse
Affiliation(s)
- Lei Wang
- Department of Ecogenomics and Systems Biology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Thomas Nägele
- Department of Ecogenomics and Systems Biology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
- Vienna Metabolomics Center (VIME); University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Hannes Doerfler
- Department of Ecogenomics and Systems Biology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Lena Fragner
- Department of Ecogenomics and Systems Biology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Palak Chaturvedi
- Department of Ecogenomics and Systems Biology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Ella Nukarinen
- Department of Ecogenomics and Systems Biology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Anke Bellaire
- Department of Ecogenomics and Systems Biology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030, Vienna, Austria
| | - Werner Huber
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030, Vienna, Austria
| | - Jakob Weiszmann
- Department of Ecogenomics and Systems Biology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Doris Engelmeier
- Department of Ecogenomics and Systems Biology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Ziva Ramsak
- Department of Systems Biology and Biotechnology, National Institute of Biology, Vecna pot 111, 1000, Ljubljana, Slovenia
| | - Kristina Gruden
- Department of Systems Biology and Biotechnology, National Institute of Biology, Vecna pot 111, 1000, Ljubljana, Slovenia
| | - Wolfram Weckwerth
- Department of Ecogenomics and Systems Biology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria.
- Vienna Metabolomics Center (VIME); University of Vienna, Althanstrasse 14, 1090, Vienna, Austria.
| |
Collapse
|
8
|
Sparvoli F, Cominelli E. Seed Biofortification and Phytic Acid Reduction: A Conflict of Interest for the Plant? PLANTS 2015; 4:728-55. [PMID: 27135349 PMCID: PMC4844270 DOI: 10.3390/plants4040728] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 11/13/2015] [Indexed: 02/03/2023]
Abstract
Most of the phosphorus in seeds is accumulated in the form of phytic acid (myo-inositol-1,2,3,4,5,6-hexakisphosphate, InsP6). This molecule is a strong chelator of cations important for nutrition, such as iron, zinc, magnesium, and calcium. For this reason, InsP6 is considered an antinutritional factor. In recent years, efforts to biofortify seeds through the generation of low phytic acid (lpa) mutants have been noteworthy. Moreover, genes involved in the biosynthesis and accumulation of this molecule have been isolated and characterized in different species. Beyond its role in phosphorus storage, phytic acid is a very important signaling molecule involved in different regulatory processes during plant development and responses to different stimuli. Consequently, many lpa mutants show different negative pleitotropic effects. The strength of these pleiotropic effects depends on the specific mutated gene, possible functional redundancy, the nature of the mutation, and the spatio-temporal expression of the gene. Breeding programs or transgenic approaches aimed at development of new lpa mutants must take into consideration these different aspects in order to maximize the utility of these mutants.
Collapse
Affiliation(s)
- Francesca Sparvoli
- Institute of Agricultural Biology and Biotechnology, CNR, Via Bassini 15, 20133 Milan, Italy.
| | - Eleonora Cominelli
- Institute of Agricultural Biology and Biotechnology, CNR, Via Bassini 15, 20133 Milan, Italy.
| |
Collapse
|
9
|
Shunmugam ASK, Bock C, Arganosa GC, Georges F, Gray GR, Warkentin TD. Accumulation of Phosphorus-Containing Compounds in Developing Seeds of Low-Phytate Pea (Pisum sativum L.) Mutants. PLANTS (BASEL, SWITZERLAND) 2014; 4:1-26. [PMID: 27135314 PMCID: PMC4844337 DOI: 10.3390/plants4010001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 12/17/2014] [Indexed: 11/16/2022]
Abstract
Low phytic acid (lpa) crops are low in phytic acid and high in inorganic phosphorus (Pi). In this study, two lpa pea genotypes, 1-150-81, 1-2347-144, and their progenitor CDC Bronco were grown in field trials for two years. The lpa genotypes were lower in IP₆ and higher in Pi when compared to CDC Bronco. The total P concentration was similar in lpa genotypes and CDC Bronco throughout the seed development. The action of myo-inositol phosphate synthase (MIPS) (EC 5.5.1.4) is the first and rate-limiting step in the phytic acid biosynthesis pathway. Aiming at understanding the genetic basis of the lpa mutation in the pea, a 1530 bp open reading frame of MIPS was amplified from CDC Bronco and the lpa genotypes. Sequencing results showed no difference in coding sequence in MIPS between CDC Bronco and lpa genotypes. Transcription levels of MIPS were relatively lower at 49 days after flowering (DAF) than at 14 DAF for CDC Bronco and lpa lines. This study elucidated the rate and accumulation of phosphorus compounds in lpa genotypes. The data also demonstrated that mutation in MIPS was not responsible for the lpa trait in these pea lines.
Collapse
Affiliation(s)
- Arun S K Shunmugam
- Crop Development Centre, Department of Plant Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada.
| | - Cheryl Bock
- National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9, Canada.
| | - Gene C Arganosa
- Crop Development Centre, Department of Plant Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada.
| | - Fawzy Georges
- National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9, Canada.
| | - Gordon R Gray
- Crop Development Centre, Department of Plant Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada.
| | - Thomas D Warkentin
- Crop Development Centre, Department of Plant Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada.
| |
Collapse
|
10
|
|