1
|
Xu Y, Yu F, Feng W, Wei J, Su S, Li J, Hua G, Li W, Tang Y. Genetic variation mining of the Chinese mitten crab (Eriocheir sinensis) based on transcriptome data from public databases. Brief Funct Genomics 2024:elae030. [PMID: 38984674 DOI: 10.1093/bfgp/elae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/02/2024] [Accepted: 06/25/2024] [Indexed: 07/11/2024] Open
Abstract
At present, public databases house an extensive repository of transcriptome data, with the volume continuing to grow at an accelerated pace. Utilizing these data effectively is a shared interest within the scientific community. In this study, we introduced a novel strategy that harnesses SNPs and InDels identified from transcriptome data, combined with sample metadata from databases, to effectively screen for molecular markers correlated with traits. We utilized 228 transcriptome datasets of Eriocheir sinensis from the NCBI database and employed the Genome Analysis Toolkit software to identify 96 388 SNPs and 20 645 InDels. Employing the genome-wide association study analysis, in conjunction with the gender information from databases, we identified 3456 sex-biased SNPs and 639 sex-biased InDels. The KOG and KEGG annotations of the sex-biased SNPs and InDels revealed that these genes were primarily involved in the metabolic processes of E. sinensis. Combined with SnpEff annotation and PCR experimental validation, a highly sex-biased SNP located in the Kelch domain containing 4 (Klhdc4) gene, CHR67-6415071, was found to alter the splicing sites of Klhdc4, generating two splice variants, Klhdc4_a and Klhdc4_b. Additionally, Klhdc4 exhibited robust expression across the ovaries, testes, and accessory glands. The sex-biased SNPs and InDels identified in this study are conducive to the development of unisexual cultivation methods for E. sinensis, and the alternative splicing event caused by the sex-biased SNP in Klhdc4 may serve as a potential mechanism for sex regulation in E. sinensis. The analysis strategy employed in this study represents a new direction for the rational exploitation and utilization of transcriptome data in public databases.
Collapse
Affiliation(s)
- Yuanfeng Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214128, China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Fan Yu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214128, China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Wenrong Feng
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214128, China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Jia Wei
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214128, China
| | - Shengyan Su
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214128, China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Jianlin Li
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214128, China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Guoan Hua
- Jiangsu Haorun Biological Industry Group Co., Ltd, Taizhou 225309, China
| | - Wenjing Li
- Jiangsu Haorun Biological Industry Group Co., Ltd, Taizhou 225309, China
| | - Yongkai Tang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214128, China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| |
Collapse
|
2
|
Pahal S, Srivastava H, Saxena S, Tribhuvan KU, Kaila T, Sharma S, Grewal S, Singh NK, Gaikwad K. Comparative transcriptome analysis of two contrasting genotypes provides new insights into the drought response mechanism in pigeon pea (Cajanus cajan L. Millsp.). Genes Genomics 2024; 46:65-94. [PMID: 37985548 DOI: 10.1007/s13258-023-01460-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 10/01/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND Despite plant's ability to adapt and withstand challenging environments, drought poses a severe threat to their growth and development. Although pigeon pea is already quite resistant to drought, the prolonged dehydration induced by the aberrant climate poses a serious threat to their survival and productivity. OBJECTIVE Comparative physiological and transcriptome analyses of drought-tolerant (CO5) and drought-sensitive (CO1) pigeon pea genotypes subjected to drought stress were carried out in order to understand the molecular basis of drought tolerance in pigeon pea. METHODS The transcriptomic analysis allowed us to examine how drought affects the gene expression of C. cajan. Using bioinformatics tools, the unigenes were de novo assembled, annotated, and functionally evaluated. Additionally, a homology-based sequence search against the droughtDB database was performed to identify the orthologs of the DEGs. RESULTS 1102 potential drought-responsive genes were found to be differentially expressed genes (DEGs) between drought-tolerant and drought-sensitive genotypes. These included Abscisic acid insensitive 5 (ABI5), Nuclear transcription factor Y subunit A-7 (NF-YA7), WD40 repeat-containing protein 55 (WDR55), Anthocyanidin reductase (ANR) and Zinc-finger homeodomain protein 6 (ZF-HD6) and were highly expressed in the tolerant genotype. Further, GO analysis revealed that the most enriched classes belonged to biosynthetic and metabolic processes in the biological process category, binding and catalytic activity in the molecular function category and nucleus and protein-containing complex in the cellular component category. Results of KEGG pathway analysis revealed that the DEGs were significantly abundant in signalling pathways such as plant hormone signal transduction and MAPK signalling pathways. Consequently, in our investigation, we have identified and validated by qPCR a group of genes involved in signal reception and propagation, stress-specific TFs, and basal regulatory genes associated with drought response. CONCLUSION In conclusion, our comprehensive transcriptome dataset enabled the discovery of candidate genes connected to pathways involved in pigeon pea drought response. Our research uncovered a number of unidentified genes and transcription factors that could be used to understand and improve susceptibility to drought.
Collapse
Affiliation(s)
- Suman Pahal
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
- Department of Bio and Nanotechnology, Guru Jambheshwar University of Science and Technology, Hisar, India
| | | | - Swati Saxena
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
| | | | - Tanvi Kaila
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
| | - Sandhya Sharma
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
| | - Sapna Grewal
- Department of Bio and Nanotechnology, Guru Jambheshwar University of Science and Technology, Hisar, India.
| | - Nagendra K Singh
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
| | - Kishor Gaikwad
- ICAR-National Institute for Plant Biotechnology, New Delhi, India.
| |
Collapse
|
3
|
Hu F, Zhang Y, Guo J. Effects of drought stress on photosynthetic physiological characteristics, leaf microstructure, and related gene expression of yellow horn. PLANT SIGNALING & BEHAVIOR 2023; 18:2215025. [PMID: 37243677 DOI: 10.1080/15592324.2023.2215025] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/28/2023] [Accepted: 05/01/2023] [Indexed: 05/29/2023]
Abstract
Yellow horn grows in northern China and has a high tolerance to drought and poor soil. Improving photosynthetic efficiency and increasing plant growth and yield under drought conditions have become important research content for researchers worldwide. Our study goal is to provide comprehensive information on photosynthesis and some candidate genes breeding of yellow horn under drought stress. In this study, seedlings' stomatal conductance, chlorophyll content, and fluorescence parameters decreased under drought stress, but non-photochemical quenching increased. The leaf microstructure showed that stomata underwent a process from opening to closing, guard cells from complete to dry, and surrounding leaf cells from smooth to severe shrinkage. The chloroplast ultrastructure showed that the changes of starch granules were different under different drought stress, while plastoglobules increased and expanded continuously. In addition, we found some differentially expressed genes related to photosystem, electron transport component, oxidative phosphate ATPase, stomatal closure, and chloroplast ultrastructure. These results laid a foundation for further genetic improvement and deficit resistance breeding of yellow horn under drought stress.
Collapse
Affiliation(s)
- Fang Hu
- College of Forestry, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Yunxiang Zhang
- College of Forestry, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Jinping Guo
- College of Forestry, Shanxi Agricultural University, Jinzhong, Shanxi, China
| |
Collapse
|
4
|
Singh A, Pandey H, Pandey S, Lal D, Chauhan D, Aparna, Antre SH, B S, Kumar A. Drought stress in maize: stress perception to molecular response and strategies for its improvement. Funct Integr Genomics 2023; 23:296. [PMID: 37697159 DOI: 10.1007/s10142-023-01226-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 09/13/2023]
Abstract
Given the future demand for food crops, increasing crop productivity in drought-prone rainfed areas has become essential. Drought-tolerant varieties are warranted to solve this problem in major crops, with drought tolerance as a high-priority trait for future research. Maize is one such crop affected by drought stress, which limits production, resulting in substantial economic losses. It became a more serious issue due to global climate change. The most drought sensitive among all stages of maize is the reproductive stages and the most important for overall maize production. The exact molecular basis of reproductive drought sensitivity remains unclear due to genes' complex regulation of drought stress. Understanding the molecular biology and signaling of the unexplored area of reproductive drought tolerance will provide an opportunity to develop climate-smart drought-tolerant next-generation maize cultivars. In recent decades, significant progress has been made in maize to understand the drought tolerance mechanism. However, improving maize drought tolerance through breeding is ineffective due to the complex nature and multigenic control of drought traits. With the help of advanced breeding techniques, molecular genetics, and a precision genome editing approach like CRISPR-Cas, candidate genes for drought-tolerant maize can be identified and targeted. This review summarizes the effects of drought stress on each growth stage of maize, potential genes, and transcription factors that determine drought tolerance. In addition, we discussed drought stress sensing, its molecular mechanisms, different approaches to developing drought-resistant maize varieties, and how molecular breeding and genome editing will help with the current unpredictable climate change.
Collapse
Affiliation(s)
- Ashutosh Singh
- Centre for Advanced Studies On Climate Change, Dr. Rajendra Prasad Central Agricultural University, Pusa, Samastipur, Bihar, 848125, India.
| | | | - Saurabh Pandey
- Department of Agriculture, Guru Nanak Dev University, Amritsar, Punjab, 143005, India.
| | - Dalpat Lal
- College of Agriculture, Jodhpur Agriculture University, Jodhpur, Rajasthan, 342304, India
| | - Divya Chauhan
- Banasthali University, Radha Kishanpura, Rajasthan, 304022, India
| | - Aparna
- Departments of Agriculture, Jagan Nath University, Jaipur, Rajasthan, 303901, India
| | - Suresh H Antre
- Advanced Centre of Plant Biotechnology, UAS, GKVK, Bangalore, Karnataka, 560065, India
| | - Santhosh B
- Centre for Advanced Studies On Climate Change, Dr. Rajendra Prasad Central Agricultural University, Pusa, Samastipur, Bihar, 848125, India
| | - Amarjeet Kumar
- Department of Genetics and Plant Breeding, MTTC & VTC, Selesih, CAU, Imphal, 795001, India
| |
Collapse
|
5
|
Li Y, Liu Y, Gao Z, Wang F, Xu T, Qi M, Liu Y, Li T. MicroRNA162 regulates stomatal conductance in response to low night temperature stress via abscisic acid signaling pathway in tomato. FRONTIERS IN PLANT SCIENCE 2023; 14:1045112. [PMID: 36938045 PMCID: PMC10019595 DOI: 10.3389/fpls.2023.1045112] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
MicroRNAs (miRNAs) mediate the degradation of target mRNA and inhibit mRNA translation to regulate gene expression at the transcriptional and post-transcriptional levels in response to environmental stress in plants. We characterized the post-transcriptional mechanism by deep sequencing small RNA (sRNA) to examine how miRNAs were involved in low night temperature (LNT) stress in tomato and whether the molecular mechanism depended on the abscisic acid (ABA) signaling pathway. We annotated conserved miRNAs and novel miRNAs with four sRNA libraries composed of wild-type (WT) tomato plants and ABA-deficient mutant (sit) plants under normal growth and LNT stress conditions. Reverse genetics analysis suggested that miR162 participated in LNT resistance and the ABA-dependent signaling pathway in tomato. miR162-overexpressing (pRI-miR162) and miR162-silenced (pRNAi-miR162) transgenic tomato plants were generated to evaluate miR162 functions in response to LNT stress. miR162 deficiency exhibited high photosynthetic capacity and regulated stomatal opening, suggesting negative regulation of miR162 in the ABA-dependent signaling pathway in response to LNT stress. As feedback regulation, miR162 positively regulated ABA to maintain homeostasis of tomato under diverse abiotic stresses. The mRNA of DICER-LIKE1 (DCL1) was targeted by miR162, and miR162 inhibited DCL1 cleavage in LNT response, including the regulation of miRNA160/164/171a and their targets. The DCL1-deficient mutants (dcl1) with CRISPR/Cas9 prevented stomatal opening to influence photosynthesis in the ABA signaling pathway under LNT stress. Finally, we established the regulatory mechanism of ABA-miR162-DCL1, which systematically mediated cold tolerance in tomato. This study suggests that post-transcriptional modulators acted as systemic signal responders via the stress hormone signaling pathway, and the model at the post-transcriptional level presents a new direction for research in plant abiotic stress resistance.
Collapse
Affiliation(s)
- Yangyang Li
- Department of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang, China
- Collaborative Innovation Center of Protected Vegetable Surrounds Bohai Gulf Region, Shenyang, China
| | - Yang Liu
- Department of Horticulture, Shenyang Agricultural University, Shenyang, China
- Tongliao Agricultural Technology Extension Center, Tongliao, China
| | - Zhenhua Gao
- Department of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang, China
- Collaborative Innovation Center of Protected Vegetable Surrounds Bohai Gulf Region, Shenyang, China
| | - Feng Wang
- Department of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang, China
- Collaborative Innovation Center of Protected Vegetable Surrounds Bohai Gulf Region, Shenyang, China
| | - Tao Xu
- Department of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang, China
- Collaborative Innovation Center of Protected Vegetable Surrounds Bohai Gulf Region, Shenyang, China
| | - Mingfang Qi
- Department of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang, China
- Collaborative Innovation Center of Protected Vegetable Surrounds Bohai Gulf Region, Shenyang, China
| | - Yufeng Liu
- Department of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang, China
- Collaborative Innovation Center of Protected Vegetable Surrounds Bohai Gulf Region, Shenyang, China
| | - Tianlai Li
- Department of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang, China
- Collaborative Innovation Center of Protected Vegetable Surrounds Bohai Gulf Region, Shenyang, China
| |
Collapse
|
6
|
Wen YJ, Wu X, Wang S, Han L, Shen B, Wang Y, Zhang J. Identification of QTN-by-environment interactions for yield related traits in maize under multiple abiotic stresses. FRONTIERS IN PLANT SCIENCE 2023; 14:1050313. [PMID: 36875585 PMCID: PMC9975332 DOI: 10.3389/fpls.2023.1050313] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Quantitative trait nucleotide (QTN)-by-environment interactions (QEIs) play an increasingly essential role in the genetic dissection of complex traits in crops as global climate change accelerates. The abiotic stresses, such as drought and heat, are the major constraints on maize yields. Multi-environment joint analysis can improve statistical power in QTN and QEI detection, and further help us to understand the genetic basis and provide implications for maize improvement. METHODS In this study, 3VmrMLM was applied to identify QTNs and QEIs for three yield-related traits (grain yield, anthesis date, and anthesis-silking interval) of 300 tropical and subtropical maize inbred lines with 332,641 SNPs under well-watered and drought and heat stresses. RESULTS Among the total 321 genes around 76 QTNs and 73 QEIs identified in this study, 34 known genes were reported in previous maize studies to be truly associated with these traits, such as ereb53 (GRMZM2G141638) and thx12 (GRMZM2G016649) associated with drought stress tolerance, and hsftf27 (GRMZM2G025685) and myb60 (GRMZM2G312419) associated with heat stress. In addition, among 127 homologs in Arabidopsis out of 287 unreported genes, 46 and 47 were found to be significantly and differentially expressed under drought vs well-watered treatments, and high vs. normal temperature treatments, respectively. Using functional enrichment analysis, 37 of these differentially expressed genes were involved in various biological processes. Tissue-specific expression and haplotype difference analysis further revealed 24 candidate genes with significantly phenotypic differences across gene haplotypes under different environments, of which the candidate genes GRMZM2G064159, GRMZM2G146192, and GRMZM2G114789 around QEIs may have gene-by-environment interactions for maize yield. DISCUSSION All these findings may provide new insights for breeding in maize for yield-related traits adapted to abiotic stresses.
Collapse
Affiliation(s)
- Yang-Jun Wen
- College of Science, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Xinyi Wu
- College of Science, Nanjing Agricultural University, Nanjing, China
| | - Shengmeng Wang
- College of Science, Nanjing Agricultural University, Nanjing, China
| | - Le Han
- College of Science, Nanjing Agricultural University, Nanjing, China
| | - Bolin Shen
- College of Science, Nanjing Agricultural University, Nanjing, China
| | - Yuan Wang
- College of Science, Nanjing Agricultural University, Nanjing, China
| | - Jin Zhang
- College of Science, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
7
|
Feng X, Jia L, Cai Y, Guan H, Zheng D, Zhang W, Xiong H, Zhou H, Wen Y, Hu Y, Zhang X, Wang Q, Wu F, Xu J, Lu Y. ABA-inducible DEEPER ROOTING 1 improves adaptation of maize to water deficiency. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:2077-2088. [PMID: 35796628 PMCID: PMC9616520 DOI: 10.1111/pbi.13889] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/31/2022] [Accepted: 07/03/2022] [Indexed: 05/26/2023]
Abstract
Root architecture remodelling is critical for forage moisture in water-limited soil. DEEPER ROOTING 1 (DRO1) in Oryza, Arabidopsis, and Prunus has been reported to improve drought avoidance by promoting roots to grow downward and acquire water from deeper soil. In the present study, we found that ZmDRO1 responded more strongly to abscisic acid (ABA)/drought induction in Zea mays ssp. mexicana, an ancestral species of cultivated maize, than in B73. It was proposed that this is one of the reasons why Zea mays ssp. mexicana has a more noticeable change in the downward direction angle of the root and fewer biomass penalties under water-deficient conditions. Thus, a robust, synthetic ABA/drought-inducible promoter was used to control the expression of ZmDRO1B73 in Arabidopsis and cultivated maize for drought-resistant breeding. Interestingly, ABA-inducible ZmDRO1 promoted a larger downward root angle and improved grain yield by more than 40% under water-limited conditions. Collectively, these results revealed that different responses to ABA/drought induction of ZmDRO1 confer different drought avoidance abilities, and we demonstrated the application of ZmDRO1 via an ABA-inducible strategy to alter the root architecture of modern maize to improve drought adaptation in the field.
Collapse
Affiliation(s)
- Xuanjun Feng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaWenjingChina
- Maize Research Institute, Sichuan Agricultural UniversityWenjingChina
| | - Li Jia
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaWenjingChina
| | - Yunting Cai
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaWenjingChina
| | - Huarui Guan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaWenjingChina
| | - Dan Zheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaWenjingChina
| | - Weixiao Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaWenjingChina
| | - Hao Xiong
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaWenjingChina
| | - Hanmei Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaWenjingChina
| | - Ying Wen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaWenjingChina
| | - Yue Hu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaWenjingChina
| | - Xuemei Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaWenjingChina
| | - Qingjun Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaWenjingChina
| | - Fengkai Wu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaWenjingChina
| | - Jie Xu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaWenjingChina
| | - Yanli Lu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaWenjingChina
- Maize Research Institute, Sichuan Agricultural UniversityWenjingChina
| |
Collapse
|
8
|
Identification of Heat-Tolerant Genes in Non-Reference Sequences in Rice by Integrating Pan-Genome, Transcriptomics, and QTLs. Genes (Basel) 2022; 13:genes13081353. [PMID: 36011264 PMCID: PMC9407402 DOI: 10.3390/genes13081353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 01/04/2023] Open
Abstract
The availability of large-scale genomic data resources makes it very convenient to mine and analyze genes that are related to important agricultural traits in rice. Pan-genomes have been constructed to provide insight into the genome diversity and functionality of different plants, which can be used in genome-assisted crop improvement. Thus, a pan-genome comprising all genetic elements is crucial for comprehensive variation study among the heat-resistant and -susceptible rice varieties. In this study, a rice pan-genome was firstly constructed by using 45 heat-tolerant and 15 heat-sensitive rice varieties. A total of 38,998 pan-genome genes were identified, including 37,859 genes in the reference and 1141 in the non-reference contigs. Genomic variation analysis demonstrated that a total of 76,435 SNPs were detected and identified as the heat-tolerance-related SNPs, which were specifically present in the highly heat-resistant rice cultivars and located in the genic regions or within 2 kbp upstream and downstream of the genes. Meanwhile, 3214 upregulated and 2212 downregulated genes with heat stress tolerance-related SNPs were detected in one or multiple RNA-seq datasets of rice under heat stress, among which 24 were located in the non-reference contigs of the rice pan-genome. We then mapped the DEGs with heat stress tolerance-related SNPs to the heat stress-resistant QTL regions. A total of 1677 DEGs, including 990 upregulated and 687 downregulated genes, were mapped to the 46 heat stress-resistant QTL regions, in which 2 upregulated genes with heat stress tolerance-related SNPs were identified in the non-reference sequences. This pan-genome resource is an important step towards the effective and efficient genetic improvement of heat stress resistance in rice to help meet the rapidly growing needs for improved rice productivity under different environmental stresses. These findings provide further insight into the functional validation of a number of non-reference genes and, especially, the two genes identified in the heat stress-resistant QTLs in rice.
Collapse
|
9
|
Elucidation of drought tolerance potential of horsegram (Macrotyloma uniflorum Var.) germplasm using genome wide association studies. Gene 2022; 819:146241. [PMID: 35114281 DOI: 10.1016/j.gene.2022.146241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 12/07/2021] [Accepted: 01/18/2022] [Indexed: 11/22/2022]
Abstract
Horsegram [Macrotyloma uniflorum Lam (Verdc.)] is an undervalued and under studied legume though is a good source of proteins, carbohydrates and energy. Drought is an abiotic stress that effects plant development and ecosystem sustainability. Drought is expected to become more common in the future as a result of climate change. Horsegram is known to withstand drought, salt and heavy metal stress. In the past few decades application of genome-wide association studies (GWAS) to explore complex traits has risen in popularity. Considering the above mentioned factors drought tolerance ability of horsegram germplasm was investigated in 96 diverse horsegram lines with GWAS by exploring 20241 SNPs. Highest number of SNPs were found to be located in intergenic regions (43.8%) followed by intronic SNPs (21.6%). In this investigation three drought tolerant representing parameters were selected for QTL identification. In the present study, we identified different SNPs associated with QTLs governing these traits, which involved in drought stress response of horsegram plant. Seven QTLs were found to be associated with relative water content in horsegram whereas for root volume and root length 4 and 8 QTLs were found respectively. By using horsegram database of Kazusa DNA research institute Japan, we identify the genes present on these marker sites which were found to be involved in many biochemical pathways related to plant abiotic stresses. Many of these genes were previously characterized and few uncharacterized genes were also found controlling these traits. These findings will help in identifying new mechanisms responsible for plant drought stress tolerance in future.
Collapse
|
10
|
Sadessa K, Beyene Y, Ifie BE, Suresh LM, Olsen MS, Ogugo V, Wegary D, Tongoona P, Danquah E, Offei SK, Prasanna BM, Gowda M. Identification of Genomic Regions Associated with Agronomic and Disease Resistance Traits in a Large Set of Multiple DH Populations. Genes (Basel) 2022; 13:genes13020351. [PMID: 35205395 PMCID: PMC8872035 DOI: 10.3390/genes13020351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/08/2022] [Accepted: 02/08/2022] [Indexed: 11/17/2022] Open
Abstract
Breeding maize lines with the improved level of desired agronomic traits under optimum and drought conditions as well as increased levels of resistance to several diseases such as maize lethal necrosis (MLN) is one of the most sustainable approaches for the sub-Saharan African region. In this study, 879 doubled haploid (DH) lines derived from 26 biparental populations were evaluated under artificial inoculation of MLN, as well as under well-watered (WW) and water-stressed (WS) conditions for grain yield and other agronomic traits. All DH lines were used for analyses of genotypic variability, association studies, and genomic predictions for the grain yield and other yield-related traits. Genome-wide association study (GWAS) using a mixed linear FarmCPU model identified SNPs associated with the studied traits i.e., about seven and eight SNPs for the grain yield; 16 and 12 for anthesis date; seven and eight for anthesis silking interval; 14 and 5 for both ear and plant height; and 15 and 5 for moisture under both WW and WS environments, respectively. Similarly, about 13 and 11 SNPs associated with gray leaf spot and turcicum leaf blight were identified. Eleven SNPs associated with senescence under WS management that had depicted drought-stress-tolerant QTLs were identified. Under MLN artificial inoculation, a total of 12 and 10 SNPs associated with MLN disease severity and AUDPC traits, respectively, were identified. Genomic prediction under WW, WS, and MLN disease artificial inoculation revealed moderate-to-high prediction accuracy. The findings of this study provide useful information on understanding the genetic basis for the MLN resistance, grain yield, and other agronomic traits under MLN artificial inoculation, WW, and WS conditions. Therefore, the obtained information can be used for further validation and developing functional molecular markers for marker-assisted selection and for implementing genomic prediction to develop superior elite lines.
Collapse
Affiliation(s)
- Kassahun Sadessa
- Ethiopian Institute of Agricultural Research (EIAR), Ambo Agricultural Research Center, Ambo P.O. Box 37, West Shoa, Ethiopia;
- International Maize and Wheat Improvement Center (CIMMYT), ICRAF House, P.O. Box 1041-00621, Nairobi 00100, Kenya; (Y.B.); (L.M.S.); (M.S.O.); (V.O.); (B.M.P.)
- International Maize and Wheat Improvement Center (CIMMYT), 12.5 KM Peg, Harare P.O. Box MP163, Zimbabwe;
- West Africa Centre for Crop Improvement (WACCI), College of Basic and Applied Sciences, University of Ghana, Legon, P.O. Box LG23, Accra 00233, Ghana; (B.E.I.); (P.T.); (E.D.); (S.K.O.)
| | - Yoseph Beyene
- International Maize and Wheat Improvement Center (CIMMYT), ICRAF House, P.O. Box 1041-00621, Nairobi 00100, Kenya; (Y.B.); (L.M.S.); (M.S.O.); (V.O.); (B.M.P.)
| | - Beatrice E. Ifie
- West Africa Centre for Crop Improvement (WACCI), College of Basic and Applied Sciences, University of Ghana, Legon, P.O. Box LG23, Accra 00233, Ghana; (B.E.I.); (P.T.); (E.D.); (S.K.O.)
| | - L. M. Suresh
- International Maize and Wheat Improvement Center (CIMMYT), ICRAF House, P.O. Box 1041-00621, Nairobi 00100, Kenya; (Y.B.); (L.M.S.); (M.S.O.); (V.O.); (B.M.P.)
| | - Michael S. Olsen
- International Maize and Wheat Improvement Center (CIMMYT), ICRAF House, P.O. Box 1041-00621, Nairobi 00100, Kenya; (Y.B.); (L.M.S.); (M.S.O.); (V.O.); (B.M.P.)
| | - Veronica Ogugo
- International Maize and Wheat Improvement Center (CIMMYT), ICRAF House, P.O. Box 1041-00621, Nairobi 00100, Kenya; (Y.B.); (L.M.S.); (M.S.O.); (V.O.); (B.M.P.)
| | - Dagne Wegary
- International Maize and Wheat Improvement Center (CIMMYT), 12.5 KM Peg, Harare P.O. Box MP163, Zimbabwe;
| | - Pangirayi Tongoona
- West Africa Centre for Crop Improvement (WACCI), College of Basic and Applied Sciences, University of Ghana, Legon, P.O. Box LG23, Accra 00233, Ghana; (B.E.I.); (P.T.); (E.D.); (S.K.O.)
| | - Eric Danquah
- West Africa Centre for Crop Improvement (WACCI), College of Basic and Applied Sciences, University of Ghana, Legon, P.O. Box LG23, Accra 00233, Ghana; (B.E.I.); (P.T.); (E.D.); (S.K.O.)
| | - Samuel Kwame Offei
- West Africa Centre for Crop Improvement (WACCI), College of Basic and Applied Sciences, University of Ghana, Legon, P.O. Box LG23, Accra 00233, Ghana; (B.E.I.); (P.T.); (E.D.); (S.K.O.)
| | - Boddupalli M. Prasanna
- International Maize and Wheat Improvement Center (CIMMYT), ICRAF House, P.O. Box 1041-00621, Nairobi 00100, Kenya; (Y.B.); (L.M.S.); (M.S.O.); (V.O.); (B.M.P.)
| | - Manje Gowda
- International Maize and Wheat Improvement Center (CIMMYT), ICRAF House, P.O. Box 1041-00621, Nairobi 00100, Kenya; (Y.B.); (L.M.S.); (M.S.O.); (V.O.); (B.M.P.)
- Correspondence: ; Tel.: +254-727019454
| |
Collapse
|
11
|
Zenda T, Liu S, Dong A, Li J, Wang Y, Liu X, Wang N, Duan H. Omics-Facilitated Crop Improvement for Climate Resilience and Superior Nutritive Value. FRONTIERS IN PLANT SCIENCE 2021; 12:774994. [PMID: 34925418 PMCID: PMC8672198 DOI: 10.3389/fpls.2021.774994] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/08/2021] [Indexed: 05/17/2023]
Abstract
Novel crop improvement approaches, including those that facilitate for the exploitation of crop wild relatives and underutilized species harboring the much-needed natural allelic variation are indispensable if we are to develop climate-smart crops with enhanced abiotic and biotic stress tolerance, higher nutritive value, and superior traits of agronomic importance. Top among these approaches are the "omics" technologies, including genomics, transcriptomics, proteomics, metabolomics, phenomics, and their integration, whose deployment has been vital in revealing several key genes, proteins and metabolic pathways underlying numerous traits of agronomic importance, and aiding marker-assisted breeding in major crop species. Here, citing several relevant examples, we appraise our understanding on the recent developments in omics technologies and how they are driving our quest to breed climate resilient crops. Large-scale genome resequencing, pan-genomes and genome-wide association studies are aiding the identification and analysis of species-level genome variations, whilst RNA-sequencing driven transcriptomics has provided unprecedented opportunities for conducting crop abiotic and biotic stress response studies. Meanwhile, single cell transcriptomics is slowly becoming an indispensable tool for decoding cell-specific stress responses, although several technical and experimental design challenges still need to be resolved. Additionally, the refinement of the conventional techniques and advent of modern, high-resolution proteomics technologies necessitated a gradual shift from the general descriptive studies of plant protein abundances to large scale analysis of protein-metabolite interactions. Especially, metabolomics is currently receiving special attention, owing to the role metabolites play as metabolic intermediates and close links to the phenotypic expression. Further, high throughput phenomics applications are driving the targeting of new research domains such as root system architecture analysis, and exploration of plant root-associated microbes for improved crop health and climate resilience. Overall, coupling these multi-omics technologies to modern plant breeding and genetic engineering methods ensures an all-encompassing approach to developing nutritionally-rich and climate-smart crops whose productivity can sustainably and sufficiently meet the current and future food, nutrition and energy demands.
Collapse
Affiliation(s)
- Tinashe Zenda
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, China
- Department of Crop Science, Faculty of Agriculture and Environmental Science, Bindura University of Science Education, Bindura, Zimbabwe
| | - Songtao Liu
- Academy of Agriculture and Forestry Sciences, Hebei North University, Zhangjiakou, China
| | - Anyi Dong
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Jiao Li
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Yafei Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Xinyue Liu
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Nan Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Huijun Duan
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, China
| |
Collapse
|
12
|
Gelaw TA, Sanan-Mishra N. Non-Coding RNAs in Response to Drought Stress. Int J Mol Sci 2021; 22:12519. [PMID: 34830399 PMCID: PMC8621352 DOI: 10.3390/ijms222212519] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/11/2021] [Accepted: 11/15/2021] [Indexed: 02/06/2023] Open
Abstract
Drought stress causes changes in the morphological, physiological, biochemical and molecular characteristics of plants. The response to drought in different plants may vary from avoidance, tolerance and escape to recovery from stress. This response is genetically programmed and regulated in a very complex yet synchronized manner. The crucial genetic regulations mediated by non-coding RNAs (ncRNAs) have emerged as game-changers in modulating the plant responses to drought and other abiotic stresses. The ncRNAs interact with their targets to form potentially subtle regulatory networks that control multiple genes to determine the overall response of plants. Many long and small drought-responsive ncRNAs have been identified and characterized in different plant varieties. The miRNA-based research is better documented, while lncRNA and transposon-derived RNAs are relatively new, and their cellular role is beginning to be understood. In this review, we have compiled the information on the categorization of non-coding RNAs based on their biogenesis and function. We also discuss the available literature on the role of long and small non-coding RNAs in mitigating drought stress in plants.
Collapse
Affiliation(s)
- Temesgen Assefa Gelaw
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India;
- Department of Biotechnology, College of Natural and Computational Science, Debre Birhan University, Debre Birhan P.O. Box 445, Ethiopia
| | - Neeti Sanan-Mishra
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India;
| |
Collapse
|
13
|
Sun J, Wang J, Guo W, Yin T, Zhang S, Wang L, Xie D, Zou D. Identification of alkali-tolerant candidate genes using the NGS-assisted BSA strategy in rice. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2021; 41:44. [PMID: 37309384 PMCID: PMC10236117 DOI: 10.1007/s11032-021-01228-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 05/03/2021] [Indexed: 06/14/2023]
Abstract
Rice (Oryza sativa L.) is a saline-alkali-sensitive crop. Saline-alkali environments can seriously affect the growth, development, and yield of rice. The mechanisms of salt tolerance and alkali tolerance in rice are different; thus, it is very important to study and explore the alkali-tolerant gene loci to improve the saline-alkali tolerance of rice varieties. In this study, the japonica rice varieties Dongnong 425 (DN425) and Changbai 10 (CB10) and a hybridized recombinant inbred line (RIL) population were used as materials to be irrigated with Na2CO3 solution under field test conditions. A resistant pool (R-pool) and a sensitive pool (S-pool) were constructed by selecting the lines with extremely high and extremely low 1000-grain weight (TGW), respectively, from the RIL population under alkali treatment. Four candidate TGW regions on chromosomes (Chr.) 2 and 3 were associated using the bulked segregant analysis (BSA) strategy assisted by next-generation sequencing (NGS) technology (NGS-assisted BSA). Using the linkage analysis, QTL-qATGW2-2 in the candidate region was mapped within a range of 116 Kb between the SSR marker RM13592 and the Indel marker Indel3 of Chr. 2, which contained 18 predictive genes. The BSA sequencing results showed that Os02g39884 contained a nonsynonymous substitution mutation SNP (nsSNP), leading to the transformation of a residue from arginine (cGg) to glutamine (cAg); thus, Os02g39884 was inferred to be the candidate gene of qATGW2-2. The results of the qRT-PCR analysis also confirmed this. This paper provides important information for the rapid and accurate identification of the alkali-tolerant gene loci in rice. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-021-01228-x.
Collapse
Affiliation(s)
- Jian Sun
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Chinese Ministry of Education (Northeast Agricultural University), Harbin, 150030 China
| | - Jingguo Wang
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Chinese Ministry of Education (Northeast Agricultural University), Harbin, 150030 China
| | - Wei Guo
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Chinese Ministry of Education (Northeast Agricultural University), Harbin, 150030 China
| | - Tianjiao Yin
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Chinese Ministry of Education (Northeast Agricultural University), Harbin, 150030 China
| | - Shuli Zhang
- Biotechnology Institute of Heilongjiang Academy of Agricultural Sciences, Harbin, 150086 China
| | - Liang Wang
- Kunming Tobacco Company of Yunnan Province, Kunming, 650051 China
| | - Dongwei Xie
- School of Life Sciences, Nantong University, Nantong, 226019 China
| | - Detang Zou
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Chinese Ministry of Education (Northeast Agricultural University), Harbin, 150030 China
| |
Collapse
|
14
|
Sáenz Rodríguez MN, Cassab GI. Primary Root and Mesocotyl Elongation in Maize Seedlings: Two Organs with Antagonistic Growth below the Soil Surface. PLANTS (BASEL, SWITZERLAND) 2021; 10:1274. [PMID: 34201525 PMCID: PMC8309072 DOI: 10.3390/plants10071274] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/06/2021] [Accepted: 05/10/2021] [Indexed: 11/16/2022]
Abstract
Maize illustrates one of the most complex cases of embryogenesis in higher plants that results in the development of early embryo with distinctive organs such as the mesocotyl, seminal and primary roots, coleoptile, and plumule. After seed germination, the elongation of root and mesocotyl follows opposite directions in response to specific tropisms (positive and negative gravitropism and hydrotropism). Tropisms represent the differential growth of an organ directed toward several stimuli. Although the life cycle of roots and mesocotyl takes place in darkness, their growth and functions are controlled by different mechanisms. Roots ramify through the soil following the direction of the gravity vector, spreading their tips into new territories looking for water; when water availability is low, the root hydrotropic response is triggered toward the zone with higher moisture. Nonetheless, there is a high range of hydrotropic curvatures (angles) in maize. The processes that control root hydrotropism and mesocotyl elongation remain unclear; however, they are influenced by genetic and environmental cues to guide their growth for optimizing early seedling vigor. Roots and mesocotyls are crucial for the establishment, growth, and development of the plant since both help to forage water in the soil. Mesocotyl elongation is associated with an ancient agriculture practice known as deep planting. This tradition takes advantage of residual soil humidity and continues to be used in semiarid regions of Mexico and USA. Due to the genetic diversity of maize, some lines have developed long mesocotyls capable of deep planting while others are unable to do it. Hence, the genetic and phenetic interaction of maize lines with a robust hydrotropic response and higher mesocotyl elongation in response to water scarcity in time of global heating might be used for developing more resilient maize plants.
Collapse
Affiliation(s)
- Mery Nair Sáenz Rodríguez
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de Mexico, Av. Universidad 2001, Col. Chamilpa, Morelos, Cuernavaca 62210, Mexico;
| | | |
Collapse
|
15
|
Bhat MA, Mir RA, Kumar V, Shah AA, Zargar SM, Rahman S, Jan AT. Mechanistic insights of CRISPR/Cas-mediated genome editing towards enhancing abiotic stress tolerance in plants. PHYSIOLOGIA PLANTARUM 2021; 172:1255-1268. [PMID: 33576013 DOI: 10.1111/ppl.13359] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 01/21/2021] [Accepted: 02/01/2021] [Indexed: 05/28/2023]
Abstract
Abiotic stresses such as temperature (high/low), drought, salinity, and others make the environment hostile to plants. Abiotic stressors adversely affect plant growth and development; and thereby makes a direct impact on overall plant productivity. Plants confront stress by developing an internal defense system orchestrated by compatible solutes, reactive oxygen species scavengers and phytohormones. However, routine exposure to unpredictable environmental stressors makes it essential to equip plants with a system that contributes to sustainable agricultural productivity, besides imparting multi-stress tolerance. The sustainable approach against abiotic stress is accomplished through breeding of tolerant cultivars. Though eco-friendly, tedious screening and crossing protocol limits its usage to overcome stress and in attaining the goal of global food security. Advancement on the technological front has enabled adoption of genomic engineering approaches to perform site-specific modification in the plant genome for improving adaptability, increasing the yield and in attributing resilience against different stressors. Of the different genome editing approaches, CRISPR/Cas has revolutionized biological research with wider applicability to crop plants. CRISPR/Cas emerged as a versatile tool in editing genomes for desired traits in highly accurate and precise manner. The present study summarizes advancement of the CRISPR/Cas genome editing tool in its adoption to manipulate plant genomes for novel traits towards developing high-yielding and climate-resilient crop varieties.
Collapse
Affiliation(s)
- Mujtaba Aamir Bhat
- Department of Botany, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, India
| | - Rakeeb Ahmad Mir
- Department of Biotechnology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, India
| | - Vijay Kumar
- Department of Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Ali Asghar Shah
- Department of Biotechnology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, India
| | - Sajad Majeed Zargar
- Proteomics Lab., Division of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-K), Shalimar, Kashmir, India
| | - Safikur Rahman
- Department of Botany, MS College, BR Ambedkar Bihar University, Muzaffarpur, India
| | - Arif Tasleem Jan
- Department of Botany, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, India
| |
Collapse
|
16
|
Singh RK, Muthamilarasan M, Prasad M. Biotechnological approaches to dissect climate-resilient traits in millets and their application in crop improvement. J Biotechnol 2021; 327:64-73. [PMID: 33422569 DOI: 10.1016/j.jbiotec.2021.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/21/2020] [Accepted: 01/02/2021] [Indexed: 10/22/2022]
Abstract
'Small millets' is a generic term that includes all the millets except pearl millet and sorghum. These small or minor millets constitute eleven species that are marginally cultivated and consumed worldwide. These small millets possess excellent agronomic-, climate-resilient, and nutritional traits, although they lack popularity. Small millets withstand a broad spectrum of environmental stresses and possess better water-use and nitrogen-use efficiencies. Of note, small millets are five- to seven-fold nutritionally rich in terms of protein, bioactive compounds, micro- and macro-nutrients as compared to major cereals. Irrespective of these merits, small millets have received little research attention compared to major millets and cereals. However, the knowledge generated from such studies is significant for the improvement of millets per se and for translating the information to improve major cereals through breeding and transgene-based approaches. Given this, the review enumerates the efforts invested in dissecting the climate-resilient traits in small millets and provides a roadmap for deploying the information in crop improvement of millets as well as cereals in the scenario of climate change.
Collapse
Affiliation(s)
| | - Mehanathan Muthamilarasan
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Manoj Prasad
- National Institute of Plant Genome Research, New Delhi 110067, India.
| |
Collapse
|
17
|
Rosero A, Granda L, Berdugo-Cely JA, Šamajová O, Šamaj J, Cerkal R. A Dual Strategy of Breeding for Drought Tolerance and Introducing Drought-Tolerant, Underutilized Crops into Production Systems to Enhance Their Resilience to Water Deficiency. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1263. [PMID: 32987964 PMCID: PMC7600178 DOI: 10.3390/plants9101263] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/19/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023]
Abstract
Water scarcity is the primary constraint on crop productivity in arid and semiarid tropical areas suffering from climate alterations; in accordance, agricultural systems have to be optimized. Several concepts and strategies should be considered to improve crop yield and quality, particularly in vulnerable regions where such environmental changes cause a risk of food insecurity. In this work, we review two strategies aiming to increase drought stress tolerance: (i) the use of natural genes that have evolved over time and are preserved in crop wild relatives and landraces for drought tolerance breeding using conventional and molecular methods and (ii) exploiting the reservoir of neglected and underutilized species to identify those that are known to be more drought-tolerant than conventional staple crops while possessing other desired agronomic and nutritive characteristics, as well as introducing them into existing cropping systems to make them more resilient to water deficiency conditions. In the past, the existence of drought tolerance genes in crop wild relatives and landraces was either unknown or difficult to exploit using traditional breeding techniques to secure potential long-term solutions. Today, with the advances in genomics and phenomics, there are a number of new tools available that facilitate the discovery of drought resistance genes in crop wild relatives and landraces and their relatively easy transfer into advanced breeding lines, thus accelerating breeding progress and creating resilient varieties that can withstand prolonged drought periods. Among those tools are marker-assisted selection (MAS), genomic selection (GS), and targeted gene editing (clustered regularly interspaced short palindromic repeat (CRISPR) technology). The integration of these two major strategies, the advances in conventional and molecular breeding for the drought tolerance of conventional staple crops, and the introduction of drought-tolerant neglected and underutilized species into existing production systems has the potential to enhance the resilience of agricultural production under conditions of water scarcity.
Collapse
Affiliation(s)
- Amparo Rosero
- Corporación Colombiana de Investigación Agropecuaria–AGROSAVIA, Centro de Investigación Turipaná, Km 13 vía Montería, 250047 Cereté, Colombia;
| | - Leiter Granda
- Department of Crop Science, Breeding and Plant Medicine, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic; (L.G.); (R.C.)
| | - Jhon A. Berdugo-Cely
- Corporación Colombiana de Investigación Agropecuaria–AGROSAVIA, Centro de Investigación Turipaná, Km 13 vía Montería, 250047 Cereté, Colombia;
| | - Olga Šamajová
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic; (O.Š.); (J.Š.)
| | - Jozef Šamaj
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic; (O.Š.); (J.Š.)
| | - Radim Cerkal
- Department of Crop Science, Breeding and Plant Medicine, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic; (L.G.); (R.C.)
| |
Collapse
|
18
|
Singh RK, Prasad A, Muthamilarasan M, Parida SK, Prasad M. Breeding and biotechnological interventions for trait improvement: status and prospects. PLANTA 2020; 252:54. [PMID: 32948920 PMCID: PMC7500504 DOI: 10.1007/s00425-020-03465-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 09/12/2020] [Indexed: 05/06/2023]
Abstract
Present review describes the molecular tools and strategies deployed in the trait discovery and improvement of major crops. The prospects and challenges associated with these approaches are discussed. Crop improvement relies on modulating the genes and genomic regions underlying key traits, either directly or indirectly. Direct approaches include overexpression, RNA interference, genome editing, etc., while breeding majorly constitutes the indirect approach. With the advent of latest tools and technologies, these strategies could hasten the improvement of crop species. Next-generation sequencing, high-throughput genotyping, precision editing, use of space technology for accelerated growth, etc. had provided a new dimension to crop improvement programmes that work towards delivering better varieties to cope up with the challenges. Also, studies have widened from understanding the response of plants to single stress to combined stress, which provides insights into the molecular mechanisms regulating tolerance to more than one stress at a given point of time. Altogether, next-generation genetics and genomics had made tremendous progress in delivering improved varieties; however, the scope still exists to expand its horizon to other species that remain underutilized. In this context, the present review systematically analyses the different genomics approaches that are deployed for trait discovery and improvement in major species that could serve as a roadmap for executing similar strategies in other crop species. The application, pros, and cons, and scope for improvement of each approach have been discussed with examples, and altogether, the review provides comprehensive coverage on the advances in genomics to meet the ever-growing demands for agricultural produce.
Collapse
Affiliation(s)
- Roshan Kumar Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Ashish Prasad
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Mehanathan Muthamilarasan
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500046, India
| | - Swarup K Parida
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Manoj Prasad
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
19
|
Muñoz-Espinoza C, Di Genova A, Sánchez A, Correa J, Espinoza A, Meneses C, Maass A, Orellana A, Hinrichsen P. Identification of SNPs and InDels associated with berry size in table grapes integrating genetic and transcriptomic approaches. BMC PLANT BIOLOGY 2020; 20:365. [PMID: 32746778 PMCID: PMC7397606 DOI: 10.1186/s12870-020-02564-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 07/21/2020] [Indexed: 05/08/2023]
Abstract
BACKGROUND Berry size is considered as one of the main selection criteria in table grapes breeding programs, due to the consumer preferences. However, berry size is a complex quantitive trait under polygenic control, and its genetic determination of berry weight is not yet fully understood. The aim of this work was to perform marker discovery using a transcriptomic approach, in order to identify and characterize SNP and InDel markers associated with berry size in table grapes. We used an integrative analysis based on RNA-Seq, SNP/InDel search and validation on table grape segregants and varieties with different genetic backgrounds. RESULTS Thirty SNPs and eight InDels were identified using a transcriptomic approach (RNA-Seq). These markers were selected from SNP/InDel found among segregants from a Ruby x Sultanina population with contrasting phenotypes for berry size. The set of 38 SNP and InDel markers was distributed in eight chromosomes. Genotype-phenotype association analyses were performed using a set of 13 RxS segregants and 41 table grapes varieties with different genetic backgrounds during three seasons. The results showed several degrees of association of these markers with berry size (10.2 to 30.7%) as other berry-related traits such as length and width. The co-localization of SNP and /or InDel markers and previously reported QTLs and candidate genes associated with berry size were analysed. CONCLUSIONS We identified a set of informative and transferable SNP and InDel markers associated with berry size. Our results suggest the suitability of SNPs and InDels as candidate markers for berry weight in seedless table grape breeding. The identification of genomic regions associated with berry weight in chromosomes 8, 15 and 17 was achieved with supporting evidence derived from a transcriptome experiment focused on SNP/InDel search, as well as from a QTL-linkage mapping approach. New regions possibly associated with berry weight in chromosomes 3, 6, 9 and 14 were identified.
Collapse
Affiliation(s)
- Claudia Muñoz-Espinoza
- Instituto de Investigaciones Agropecuarias, INIA-La Platina, Santa Rosa 11610, Santiago, Chile
- Centro de Biotecnología Vegetal, Universidad Andrés Bello, Av. República 330, 3rd floor, Santiago, Chile
| | - Alex Di Genova
- Center for Mathematical Modeling (UMI2807-CNRS) and Department of Mathematical Engineering, Faculty of Mathematical and Physical Sciences, Universidad de Chile, Av. Blanco Encalada 2120, 7th floor, Santiago, Chile
| | - Alicia Sánchez
- Instituto de Investigaciones Agropecuarias, INIA-La Platina, Santa Rosa 11610, Santiago, Chile
| | - José Correa
- Instituto de Investigaciones Agropecuarias, INIA-La Platina, Santa Rosa 11610, Santiago, Chile
| | - Alonso Espinoza
- Centro de Biotecnología Vegetal, Universidad Andrés Bello, Av. República 330, 3rd floor, Santiago, Chile
| | - Claudio Meneses
- Centro de Biotecnología Vegetal, Universidad Andrés Bello, Av. República 330, 3rd floor, Santiago, Chile
- Center for Genome Regulation, Av. Blanco Encalada 2085, 3rd floor, Santiago, Chile
| | - Alejandro Maass
- Center for Mathematical Modeling (UMI2807-CNRS) and Department of Mathematical Engineering, Faculty of Mathematical and Physical Sciences, Universidad de Chile, Av. Blanco Encalada 2120, 7th floor, Santiago, Chile
- Center for Genome Regulation, Av. Blanco Encalada 2085, 3rd floor, Santiago, Chile
| | - Ariel Orellana
- Centro de Biotecnología Vegetal, Universidad Andrés Bello, Av. República 330, 3rd floor, Santiago, Chile
- Center for Genome Regulation, Av. Blanco Encalada 2085, 3rd floor, Santiago, Chile
| | - Patricio Hinrichsen
- Instituto de Investigaciones Agropecuarias, INIA-La Platina, Santa Rosa 11610, Santiago, Chile
| |
Collapse
|
20
|
Badr A, El-Shazly HH, Tarawneh RA, Börner A. Screening for Drought Tolerance in Maize ( Zea mays L.) Germplasm Using Germination and Seedling Traits under Simulated Drought Conditions. PLANTS (BASEL, SWITZERLAND) 2020; 9:E565. [PMID: 32365550 PMCID: PMC7284379 DOI: 10.3390/plants9050565] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 04/19/2020] [Accepted: 04/21/2020] [Indexed: 11/17/2022]
Abstract
Maize is known to be susceptible to drought stress, which negatively affects vegetative growth and biomass production, as well as the formation of reproductive organs and yield parameters. In this study, 27 responsive traits of germination (G) and seedlings growth were evaluated for 40 accessions of the Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) germplasm collection, under no stress and simulated drought stress treatments by 10%, 15%, and 20% of polyethylene glycol (PEG). The three treatments significantly reduced G% and retarded seedlings growth, particularly the 15% and 20% PEG treatments; these two treatments also resulted in a significant increase of abnormal seedlings (AS). The heritability (H2) and correlations of the traits were estimated, and drought tolerance indices (DTIs) were calculated for traits and accessions. The H2 of G% values were reduced, and H2 for AS% increased as the PEG stress increased. Positive correlations were found between most trait pairs, particularly shoot and root traits, with 48 highly significant correlations under no stress and 25 highly significant correlations under the 10% PEG treatments, particularly for shoot and root traits. The medium to high heritability of shoot and root seedling traits provides a sound basis for further genetic analyses. PCA analysis clearly grouped accessions with high DTIs together and the accessions with low DTIs together, indicating that the DTI indicates the stress tolerance level of maize germplasm. However, the resemblance in DTI values does not clearly reflect the origin or taxonomic assignments to subspecies and varieties of the examined accessions.
Collapse
Affiliation(s)
- Abdelfattah Badr
- Botany and Microbiology Department, Faculty of Science, Helwan University, Cairo 11790, Egypt
| | - Hanaa H. El-Shazly
- Biological and Geological Sciences Department, Faculty of Education, Ain Shams University, Cairo 11341, Egypt;
| | - Rasha A. Tarawneh
- Gene Bank Department, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Corrensstr. 3, D-06466 Seeland, OT Gatersleben, Germany;
| | - Andreas Börner
- Gene Bank Department, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Corrensstr. 3, D-06466 Seeland, OT Gatersleben, Germany;
| |
Collapse
|
21
|
Ren R, Xu J, Zhang M, Liu G, Yao X, Zhu L, Hou Q. Identification and Molecular Mapping of a Gummy Stem Blight Resistance Gene in Wild Watermelon ( Citrullus amarus) Germplasm PI 189225. PLANT DISEASE 2020; 104:16-24. [PMID: 31730411 DOI: 10.1094/pdis-04-19-0753-re] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Gummy stem blight (GSB), caused by Stagonosporopsis cucurbitacearum (syn. Didymella bryoniae), is a destructive foliar disease of watermelon in areas with hot and humid climates. The wild watermelon germplasm PI 189225 is a known source of resistance to GSB. The identification and use of molecular markers linked to resistance genes in the wild-type germplasm will speed up the introgression of GSB resistance into new watermelon varieties. An F2 segregating population was obtained from a cross between the resistant wild watermelon genotype PI 189225 and the susceptible genotype K3. The F2-derived F3 families were inoculated with a single isolate of S. cucurbitacearum (JS002) from Jiangsu Academy of Agricultural Sciences. The results of the genetic analysis demonstrated that GSB resistance in PI 189225 was controlled by a major quantitative trait locus (QTL), temporarily designated Qgsb8.1. Based on the results of bulk sergeant analysis and sequencing, one associated region spanning 5.7 Mb (10,358,659 to 16,101,517) on chromosome 8 was identified as responsible for the resistance to GSB using the Δ(single-nucleotide polymorphism [SNP]-index) method. The result of a QTL linkage analysis with Kompetitive allele-specific PCR (KASP) SNP markers further mapped the GSB resistance locus between the SNP markers KASP_JS9383 and KASP_JS9168 in a region of 571.27 kb on chromosome 8. According to the watermelon gene annotation database, the region contains approximately 19 annotated genes and, of these 19 genes, 2 are disease resistance gene analogs: Cla001017 (coiled-coil nucleotide-binding site leucine-rich repeat resistance protein) and Cla001019 (pathogenesis related). Reverse-transcription quantitative PCR demonstrated that the expression of the two genes changed following S. cucurbitacearum infection, suggesting that they play important roles in GSB resistance in watermelon. This result will facilitate fine mapping and cloning of the Qgsb8.1 locus, and the linked markers will further provide a useful tool for marker-assisted selection of this locus in watermelon breeding programs.
Collapse
Affiliation(s)
- Runsheng Ren
- Jiangsu Key Laboratory for Horticultural Crop Genetic, Improvement/Institute of Vegetable, Jiangsu, Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Jinhua Xu
- Jiangsu Key Laboratory for Horticultural Crop Genetic, Improvement/Institute of Vegetable, Jiangsu, Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Man Zhang
- Jiangsu Key Laboratory for Horticultural Crop Genetic, Improvement/Institute of Vegetable, Jiangsu, Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Guang Liu
- Jiangsu Key Laboratory for Horticultural Crop Genetic, Improvement/Institute of Vegetable, Jiangsu, Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Xiefeng Yao
- Jiangsu Key Laboratory for Horticultural Crop Genetic, Improvement/Institute of Vegetable, Jiangsu, Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Lingli Zhu
- Jiangsu Key Laboratory for Horticultural Crop Genetic, Improvement/Institute of Vegetable, Jiangsu, Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Qian Hou
- Jiangsu Key Laboratory for Horticultural Crop Genetic, Improvement/Institute of Vegetable, Jiangsu, Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| |
Collapse
|
22
|
Yang Y, Dong A, Zenda T, Liu S, Liu X, Wang Y, Li J, Duan H. DIA (Data Independent Acquisition) proteomic based study on maize filling-kernel stage drought stress-responsive proteins and metabolic pathways. BIOTECHNOL BIOTEC EQ 2020. [DOI: 10.1080/13102818.2020.1827981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Affiliation(s)
- Yatong Yang
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, Hebei, PR China
- North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, Hebei Agricultural University, Baoding, Hebei, PR China
| | - Anyi Dong
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, Hebei, PR China
- North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, Hebei Agricultural University, Baoding, Hebei, PR China
| | - Tinashe Zenda
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, Hebei, PR China
- North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, Hebei Agricultural University, Baoding, Hebei, PR China
| | - Songtao Liu
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, Hebei, PR China
- North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, Hebei Agricultural University, Baoding, Hebei, PR China
| | - Xinyue Liu
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, Hebei, PR China
- North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, Hebei Agricultural University, Baoding, Hebei, PR China
| | - Yafei Wang
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, Hebei, PR China
- North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, Hebei Agricultural University, Baoding, Hebei, PR China
| | - Jiao Li
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, Hebei, PR China
- North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, Hebei Agricultural University, Baoding, Hebei, PR China
| | - Huijun Duan
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, Hebei, PR China
- North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, Hebei Agricultural University, Baoding, Hebei, PR China
| |
Collapse
|
23
|
Al-Arjani ABF, Hashem A, Abd_Allah EF. Arbuscular mycorrhizal fungi modulates dynamics tolerance expression to mitigate drought stress in Ephedra foliata Boiss. Saudi J Biol Sci 2020; 27:380-394. [PMID: 31889861 PMCID: PMC6933241 DOI: 10.1016/j.sjbs.2019.10.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/13/2019] [Accepted: 10/20/2019] [Indexed: 01/19/2023] Open
Abstract
Arbuscular mycorrhizal fungi (AMF) are one of the most important drivers of soil ecosystem dynamics. AMF have the potential to improve plant growth and development by modulating key hormonal pathways, which result in decreasing the adverse impact of abiotic stress, such as drought. Pot experiments were conducted in this study to investigate the ability of AMF to ameliorate the adverse impact of drought in Ephedra foliate. Non-inoculated AMF E. foliate (Ef) plants, exhibited reduced growth in response to drought stress with a concomitant lowering of chlorophyll pigments, relative to non-stressed and AMF inoculated plant. AMF inoculated E. foliate showed improved nitrogen metabolism by positively regulating nitrate and nitrite reductase activity which results in greater ammonium availability for the synthesis of amino acids. Inoculation with AMF also increased antioxidant enzyme activity, ascorbic acid contents, and reduction in glutathione level. This resulted in significant amelioration of oxidative damage to plant membranes by restricting the excess generation of reactive oxygen species (ROS), such as hydrogen peroxide. Greater content of proline, glucose, and total soluble protein in AMF-inoculated plants provided further benefit to E. foliate plants and their ability to withstand drought stress, and also evident by a greater level of sucrose phosphate synthase activity. AMF significantly enhanced the uptake of essential nutrients like K, Mg, and Ca. Importantly, higher concentrations of plant hormones, including indole acetic acid (IAA), indole butyric acid (IBA), gibberellic acid (GA), and abscisic acid (ABA), were maintained in AMF-inoculated Ef plants. AMF inoculation also boosted phosphorous metabolism by increasing alkaline and acid phosphatase enzyme activity. In summary, AMF-inoculation of Ef plants significantly reduced the deleterious effect of drought stress by up-regulating the antioxidant defense system, synthesis of osmolytes, and maintaining phytohormone levels.
Collapse
Affiliation(s)
- Al-Bandari Fahad Al-Arjani
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Abeer Hashem
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
- Mycology and Plant Disease Survey Department, Plant Pathology Research Institute, ARC, Giza 12511, Egypt
| | - Elsayed Fathi Abd_Allah
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| |
Collapse
|
24
|
Huang BL, Li X, Liu P, Ma L, Wu W, Zhang X, Li Z, Huang B. Transcriptomic analysis of Eruca vesicaria subs. sativa lines with contrasting tolerance to polyethylene glycol-simulated drought stress. BMC PLANT BIOLOGY 2019; 19:419. [PMID: 31604421 PMCID: PMC6787972 DOI: 10.1186/s12870-019-1997-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 08/29/2019] [Indexed: 05/09/2023]
Abstract
BACKGROUND Eruca vesicaria subsp. sativa is one of the Cruciferae species most tolerant to drought stress. In our previous study some extremely drought-tolerant/sensitive Eruca lines were obtained. However little is known about the mechanism for drought tolerance in Eruca. METHODS In this study two E. vesicaria subs. sativa lines with contrasting drought tolerance were treated with liquid MS/PEG solution. Total RNA was isolated from 7-day old whole seedlings and then applied to Illumina sequencing platform for high-throughput transcriptional sequencing. RESULTS KEGG pathway analysis indicated that differentially expressed genes (DEGs) involved in alpha-Linolenic acid metabolism, Tyrosine metabolism, Phenylalanine, Tyrosine and tryptophan biosynthesis, Galactose metabolism, Isoquinoline alkaloid biosynthesis, Tropane, Piperidine and pyridine alkaloid biosynthesis, Mineral absorption, were all up-regulated specifically in drought-tolerant (DT) Eruca line under drought stress, while DEGs involved in ribosome, ribosome biogenesis, Pyrimidine metabolism, RNA degradation, Glyoxylate and dicarboxylate metabolism, Aminoacyl-tRNA biosynthesis, Citrate cycle, Methane metabolism, Carbon fixation in photosynthetic organisms, were all down-regulated. 51 DEGs were found to be most significantly up-regulated (log2 ratio ≥ 8) specifically in the DT line under PEG treatment, including those for ethylene-responsive transcription factors, WRKY and bHLH transcription factors, calmodulin-binding transcription activator, cysteine-rich receptor-like protein kinase, mitogen-activated protein kinase kinase, WD repeat-containing protein, OPDA reductase, allene oxide cyclase, aquaporin, O-acyltransferase WSD1, C-5 sterol desaturase, sugar transporter ERD6-like 12, trehalose-phosphate phosphatase and galactinol synthase 4. Eight of these 51 DEGs wre enriched in 8 COG and 17 KEGG pathways. CONCLUSIONS DEGs that were found to be most significantly up-regulated specifically in the DT line under PEG treatment, up-regulation of DEGs involved in Arginine and proline metabolism, alpha-linolenic acid metabolism and down-regulation of carbon fixation and protein synthesis might be critical for the drought tolerance in Eruca. These results will be valuable for revealing mechanism of drought tolerance in Eruca and also for genetic engineering to improve drought tolerance in crops.
Collapse
Affiliation(s)
- Bang-Lian Huang
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Science, Hubei University, Wuhan, 430062, China
- Jiangsu Microbe Biological & Environmental Engineering Co., Ltd, Wuxi, 214122, China
| | - Xuan Li
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Science, Hubei University, Wuhan, 430062, China
| | - Pei Liu
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Science, Hubei University, Wuhan, 430062, China
| | - Lan Ma
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Science, Hubei University, Wuhan, 430062, China
| | - Wenhua Wu
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Science, Hubei University, Wuhan, 430062, China
| | - Xuekun Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Zaiyun Li
- National Key Lab of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bangquan Huang
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Science, Hubei University, Wuhan, 430062, China.
| |
Collapse
|
25
|
Wen X, Wang J, Zhang D, Wang Y. A Gene Regulatory Network Controlled by BpERF2 and BpMYB102 in Birch under Drought Conditions. Int J Mol Sci 2019; 20:ijms20123071. [PMID: 31234595 PMCID: PMC6627136 DOI: 10.3390/ijms20123071] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/18/2019] [Accepted: 06/21/2019] [Indexed: 12/14/2022] Open
Abstract
Gene expression profiles are powerful tools for investigating mechanisms of plant stress tolerance. Betula platyphylla (birch) is a widely distributed tree, but its drought-tolerance mechanism has been little studied. Using RNA-Seq, we identified 2917 birch genes involved in its response to drought stress. These drought-responsive genes include the late embryogenesis abundant (LEA) family, heat shock protein (HSP) family, water shortage-related and ROS-scavenging proteins, and many transcription factors (TFs). Among the drought-induced TFs, the ethylene responsive factor (ERF) and myeloblastosis oncogene (MYB) families were the most abundant. BpERF2 and BpMYB102, which were strongly induced by drought and had high transcription levels, were selected to study their regulatory networks. BpERF2 and BpMYB102 both played roles in enhancing drought tolerance in birch. Chromatin immunoprecipitation combined with qRT-PCR indicated that BpERF2 regulated genes such as those in the LEA and HSP families, while BpMYB102 regulated genes such as Pathogenesis-related Protein 1 (PRP1) and 4-Coumarate:Coenzyme A Ligase 10 (4CL10). Multiple genes were regulated by both BpERF2 and BpMYB102. We further characterized the function of some of these genes, and the genes that encode Root Primordium Defective 1 (RPD1), PRP1, 4CL10, LEA1, SOD5, and HSPs were found to be involved in drought tolerance. Therefore, our results suggest that BpERF2 and BpMYB102 serve as transcription factors that regulate a series of drought-tolerance genes in B. platyphylla to improve drought tolerance.
Collapse
Affiliation(s)
- Xuejing Wen
- CAS Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Urumqi 830011, China.
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan 838008, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jingxin Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China.
| | - Daoyuan Zhang
- CAS Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Urumqi 830011, China.
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan 838008, China.
| | - Yucheng Wang
- CAS Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Urumqi 830011, China.
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan 838008, China.
| |
Collapse
|
26
|
Nadeem M, Li J, Yahya M, Sher A, Ma C, Wang X, Qiu L. Research Progress and Perspective on Drought Stress in Legumes: A Review. Int J Mol Sci 2019; 20:E2541. [PMID: 31126133 PMCID: PMC6567229 DOI: 10.3390/ijms20102541] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/11/2019] [Accepted: 05/22/2019] [Indexed: 12/16/2022] Open
Abstract
Climate change, food shortage, water scarcity, and population growth are some of the threatening challenges being faced in today's world. Drought stress (DS) poses a constant challenge for agricultural crops and has been considered a severe constraint for global agricultural productivity; its intensity and severity are predicted to increase in the near future. Legumes demonstrate high sensitivity to DS, especially at vegetative and reproductive stages. They are mostly grown in the dry areas and are moderately drought tolerant, but severe DS leads to remarkable production losses. The most prominent effects of DS are reduced germination, stunted growth, serious damage to the photosynthetic apparatus, decrease in net photosynthesis, and a reduction in nutrient uptake. To curb the catastrophic effect of DS in legumes, it is imperative to understand its effects, mechanisms, and the agronomic and genetic basis of drought for sustainable management. This review highlights the impact of DS on legumes, mechanisms, and proposes appropriate management approaches to alleviate the severity of water stress. In our discussion, we outline the influence of water stress on physiological aspects (such as germination, photosynthesis, water and nutrient uptake), growth parameters and yield. Additionally, mechanisms, various management strategies, for instance, agronomic practices (planting time and geometry, nutrient management), plant growth-promoting Rhizobacteria and arbuscular mycorrhizal fungal inoculation, quantitative trait loci (QTLs), functional genomics and advanced strategies (CRISPR-Cas9) are also critically discussed. We propose that the integration of several approaches such as agronomic and biotechnological strategies as well as advanced genome editing tools is needed to develop drought-tolerant legume cultivars.
Collapse
Affiliation(s)
- Muhammad Nadeem
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China.
| | - Jiajia Li
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China.
| | - Muhammad Yahya
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| | - Alam Sher
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China.
| | - Chuanxi Ma
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China.
| | - Xiaobo Wang
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China.
| | - Lijuan Qiu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
27
|
Yuan Y, Cairns JE, Babu R, Gowda M, Makumbi D, Magorokosho C, Zhang A, Liu Y, Wang N, Hao Z, San Vicente F, Olsen MS, Prasanna BM, Lu Y, Zhang X. Genome-Wide Association Mapping and Genomic Prediction Analyses Reveal the Genetic Architecture of Grain Yield and Flowering Time Under Drought and Heat Stress Conditions in Maize. FRONTIERS IN PLANT SCIENCE 2019; 9:1919. [PMID: 30761177 PMCID: PMC6363715 DOI: 10.3389/fpls.2018.01919] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 12/10/2018] [Indexed: 05/20/2023]
Abstract
Drought stress (DS) is a major constraint to maize yield production. Heat stress (HS) alone and in combination with DS are likely to become the increasing constraints. Association mapping and genomic prediction (GP) analyses were conducted in a collection of 300 tropical and subtropical maize inbred lines to reveal the genetic architecture of grain yield and flowering time under well-watered (WW), DS, HS, and combined DS and HS conditions. Out of the 381,165 genotyping-by-sequencing SNPs, 1549 SNPs were significantly associated with all the 12 trait-environment combinations, the average PVE (phenotypic variation explained) by these SNPs was 4.33%, and 541 of them had a PVE value greater than 5%. These significant associations were clustered into 446 genomic regions with a window size of 20 Mb per region, and 673 candidate genes containing the significantly associated SNPs were identified. In addition, 33 hotspots were identified for 12 trait-environment combinations and most were located on chromosomes 1 and 8. Compared with single SNP-based association mapping, the haplotype-based associated mapping detected fewer number of significant associations and candidate genes with higher PVE values. All the 688 candidate genes were enriched into 15 gene ontology terms, and 46 candidate genes showed significant differential expression under the WW and DS conditions. Association mapping results identified few overlapped significant markers and candidate genes for the same traits evaluated under different managements, indicating the genetic divergence between the individual stress tolerance and the combined drought and HS tolerance. The GP accuracies obtained from the marker-trait associated SNPs were relatively higher than those obtained from the genome-wide SNPs for most of the target traits. The genetic architecture information of the grain yield and flowering time revealed in this study, and the genomic regions identified for the different trait-environment combinations are useful in accelerating the efforts on rapid development of the stress-tolerant maize germplasm through marker-assisted selection and/or genomic selection.
Collapse
Affiliation(s)
- Yibing Yuan
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, China
- International Maize and Wheat Improvement Center, Texcoco, Mexico
| | - Jill E. Cairns
- International Maize and Wheat Improvement Center, Harare, Zimbabwe
| | - Raman Babu
- International Maize and Wheat Improvement Center, Texcoco, Mexico
| | - Manje Gowda
- International Maize and Wheat Improvement Center, Nairobi, Kenya
| | - Dan Makumbi
- International Maize and Wheat Improvement Center, Nairobi, Kenya
| | | | - Ao Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Yubo Liu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Nan Wang
- International Maize and Wheat Improvement Center, Texcoco, Mexico
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhuanfang Hao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | | | - Michael S. Olsen
- International Maize and Wheat Improvement Center, Nairobi, Kenya
| | | | - Yanli Lu
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, China
| | - Xuecai Zhang
- International Maize and Wheat Improvement Center, Texcoco, Mexico
| |
Collapse
|
28
|
Abstract
Understanding how crop plants evolved from their wild relatives and spread around the world can inform about the origins of agriculture. Here, we review how the rapid development of genomic resources and tools has made it possible to conduct genetic mapping and population genetic studies to unravel the molecular underpinnings of domestication and crop evolution in diverse crop species. We propose three future avenues for the study of crop evolution: establishment of high-quality reference genomes for crops and their wild relatives; genomic characterization of germplasm collections; and the adoption of novel methodologies such as archaeogenetics, epigenomics, and genome editing.
Collapse
Affiliation(s)
- Mona Schreiber
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstraße 3, 06466, Seeland, Germany
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstraße 3, 06466, Seeland, Germany
| | - Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstraße 3, 06466, Seeland, Germany.
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany.
| |
Collapse
|
29
|
Obala J, Saxena RK, Singh VK, Kumar CVS, Saxena KB, Tongoona P, Sibiya J, Varshney RK. Development of sequence-based markers for seed protein content in pigeonpea. Mol Genet Genomics 2018; 294:57-68. [PMID: 30173295 DOI: 10.1007/s00438-018-1484-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 08/22/2018] [Indexed: 12/30/2022]
Abstract
Pigeonpea is an important source of dietary protein to over a billion people globally, but genetic enhancement of seed protein content (SPC) in the crop has received limited attention for a long time. Use of genomics-assisted breeding would facilitate accelerating genetic gain for SPC. However, neither genetic markers nor genes associated with this important trait have been identified in this crop. Therefore, the present study exploited whole genome re-sequencing (WGRS) data of four pigeonpea genotypes (~ 12X coverage) to identify sequence-based markers and associated candidate genes for SPC. By combining a common variant filtering strategy on available WGRS data with knowledge of gene functions in relation to SPC, 108 sequence variants from 57 genes were identified. These genes were assigned to 19 GO molecular function categories with 56% belonging to only two categories. Furthermore, Sanger sequencing confirmed presence of 75.4% of the variants in 37 genes. Out of 30 sequence variants converted into CAPS/dCAPS markers, 17 showed high level of polymorphism between low and high SPC genotypes. Assay of 16 of the polymorphic CAPS/dCAPS markers on an F2 population of the cross ICP 5529 (high SPC) × ICP 11605 (low SPC), resulted in four of the CAPS/dCAPS markers significantly (P < 0.05) co-segregated with SPC. In summary, four markers derived from mutations in four genes will be useful for enhancing/regulating SPC in pigeonpea crop improvement programs.
Collapse
Affiliation(s)
- Jimmy Obala
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324, India
- University of KwaZulu-Natal, African Center for Crop Improvement, Scottsville, Pietermaritzburg, 3209, South Africa
| | - Rachit K Saxena
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324, India
| | - Vikas K Singh
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324, India
| | - C V Sameer Kumar
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324, India
| | - K B Saxena
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324, India
| | - Pangirayi Tongoona
- University of KwaZulu-Natal, African Center for Crop Improvement, Scottsville, Pietermaritzburg, 3209, South Africa
| | - Julia Sibiya
- University of KwaZulu-Natal, African Center for Crop Improvement, Scottsville, Pietermaritzburg, 3209, South Africa
| | - Rajeev K Varshney
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324, India.
| |
Collapse
|
30
|
Dwivedi SL, Siddique KHM, Farooq M, Thornton PK, Ortiz R. Using Biotechnology-Led Approaches to Uplift Cereal and Food Legume Yields in Dryland Environments. FRONTIERS IN PLANT SCIENCE 2018; 9:1249. [PMID: 30210519 PMCID: PMC6120061 DOI: 10.3389/fpls.2018.01249] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 08/06/2018] [Indexed: 05/29/2023]
Abstract
Drought and heat in dryland agriculture challenge the enhancement of crop productivity and threaten global food security. This review is centered on harnessing genetic variation through biotechnology-led approaches to select for increased productivity and stress tolerance that will enhance crop adaptation in dryland environments. Peer-reviewed literature, mostly from the last decade and involving experiments with at least two seasons' data, form the basis of this review. It begins by highlighting the adverse impact of the increasing intensity and duration of drought and heat stress due to global warming on crop productivity and its impact on food and nutritional security in dryland environments. This is followed by (1) an overview of the physiological and molecular basis of plant adaptation to elevated CO2 (eCO2), drought, and heat stress; (2) the critical role of high-throughput phenotyping platforms to study phenomes and genomes to increase breeding efficiency; (3) opportunities to enhance stress tolerance and productivity in food crops (cereals and grain legumes) by deploying biotechnology-led approaches [pyramiding quantitative trait loci (QTL), genomic selection, marker-assisted recurrent selection, epigenetic variation, genome editing, and transgene) and inducing flowering independent of environmental clues to match the length of growing season; (4) opportunities to increase productivity in C3 crops by harnessing novel variations (genes and network) in crops' (C3, C4) germplasm pools associated with increased photosynthesis; and (5) the adoption, impact, risk assessment, and enabling policy environments to scale up the adoption of seed-technology to enhance food and nutritional security. This synthesis of technological innovations and insights in seed-based technology offers crop genetic enhancers further opportunities to increase crop productivity in dryland environments.
Collapse
Affiliation(s)
| | | | - Muhammad Farooq
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
- Department of Crop Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al Khoud, Oman
- University of Agriculture, Faisalabad, Pakistan
| | - Philip K. Thornton
- CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS), International Livestock Research Institute (ILRI), Nairobi, Kenya
| | - Rodomiro Ortiz
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| |
Collapse
|
31
|
Zhang W, Sun P, He Q, Shu F, Deng H. Transcriptome analysis of near-isogenic line provides novel insights into genes associated with panicle traits regulation in rice. PLoS One 2018; 13:e0199077. [PMID: 29924832 PMCID: PMC6010284 DOI: 10.1371/journal.pone.0199077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 05/31/2018] [Indexed: 11/18/2022] Open
Abstract
Panicle traits in rice impact yield and quality. The OsGRF4 gene encodes a growth-regulating factor controlling panicle traits, and was recently cloned. Gene expression profiling analysis can be used to study the molecular mechanisms underlying OsGRF4 regulation. Use of near-isogenic lines (NILs) reduces genetic background noise in omics studies. We compared transcriptome profiling of 7 cm long young panicles of NIL-Osgrf4 and NIL-OsGRF4 using RNAs sequence analyses. Eighty differentially expressed genes (DEGs) were identified. Our target gene OsGRF4 was up-regulated in NIL-OsGRF4 plants, which is consistent with a previous qPCR analysis. Hierarchical cluster analysis showed OsGRF4 is tightly clustered with the up-regulated DEG LOC_Os02g47320. Gene Ontology (GO) and KEGG analysis suggested that DEGs were primarily involved in somatic embryogenesis and chitinase activity. Two up-regulated DEGs, LOC_Os04g41680 and LOC_Os04g41620, were significantly enriched in the top 8 GO terms, and were over_represented in term of seed development, and may play key roles in grain shape regulation. The transcription factor Osmyb1 also exhibited differential expression between NILs, and may be is an important regulator of panicle traits. By searching reported functions of DEGs and by co-localization with previous identified quantitative trait loci (QTL), we determined that the pleiotropic gene OsGRF4 may also be involve in abiotic stress resistance. This study provides new candidates genes for further understanding the molecular mechanisms underlying rice panicle trait regulation.
Collapse
Affiliation(s)
- Wuhan Zhang
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha, China
- Collaborative Innovation Center of Grain and Oil Crops in South China, Changsha, China
- China National Japonica Rice Research and Development Center, Tianjin, China
| | - Pingyong Sun
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Qiang He
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha, China
- Collaborative Innovation Center of Grain and Oil Crops in South China, Changsha, China
| | - Fu Shu
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha, China
- Collaborative Innovation Center of Grain and Oil Crops in South China, Changsha, China
| | - Huafeng Deng
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha, China
- Collaborative Innovation Center of Grain and Oil Crops in South China, Changsha, China
- * E-mail:
| |
Collapse
|
32
|
Next generation crop improvement program: Progress and prospect in tea ( Camellia sinensis (L.) O. Kuntze). ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.aasci.2018.02.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
33
|
Genome-Wide Expression Profiles of Hemp ( Cannabis sativa L.) in Response to Drought Stress. Int J Genomics 2018; 2018:3057272. [PMID: 29862250 PMCID: PMC5976996 DOI: 10.1155/2018/3057272] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 03/07/2018] [Accepted: 04/05/2018] [Indexed: 11/18/2022] Open
Abstract
Drought is the main environmental factor impairing hemp growth and yield. In order to decipher the molecular responses of hemp to drought stress, transcriptome changes of drought-stressed hemp (DS1 and DS2), compared to well-watered control hemp (CK1 and CK2), were studied with RNA-Seq technology. RNA-Seq generated 9.83, 11.30, 11.66, and 11.31 M clean reads in the CK1, CK2, DS1, and DS2 libraries, respectively. A total of 1292 differentially expressed genes (DEGs), including 409 (31.66%) upregulated and 883 (68.34%) downregulated genes, were identified. The expression patterns of 12 selected genes were validated by qRT-PCR, and the results were accordant with Illumina analysis. Gene Ontology (GO) and KEGG analysis illuminated particular important biological processes and pathways, which enriched many candidate genes such as NAC, B3, peroxidase, expansin, and inositol oxygenase that may play important roles in hemp tolerance to drought. Eleven KEGG pathways were significantly influenced, the most influenced being the plant hormone signal transduction pathway with 15 differentially expressed genes. A similar expression pattern of genes involved in the abscisic acid (ABA) pathway under drought, and ABA induction, suggested that ABA is important in the drought stress response of hemp. These findings provide useful insights into the drought stress regulatory mechanism in hemp.
Collapse
|
34
|
Nepolean T, Kaul J, Mukri G, Mittal S. Genomics-Enabled Next-Generation Breeding Approaches for Developing System-Specific Drought Tolerant Hybrids in Maize. FRONTIERS IN PLANT SCIENCE 2018; 9:361. [PMID: 29696027 PMCID: PMC5905169 DOI: 10.3389/fpls.2018.00361] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 03/05/2018] [Indexed: 05/28/2023]
Abstract
Breeding science has immensely contributed to the global food security. Several varieties and hybrids in different food crops including maize have been released through conventional breeding. The ever growing population, decreasing agricultural land, lowering water table, changing climate, and other variables pose tremendous challenge to the researchers to improve the production and productivity of food crops. Drought is one of the major problems to sustain and improve the productivity of food crops including maize in tropical and subtropical production systems. With advent of novel genomics and breeding tools, the way of doing breeding has been tremendously changed in the last two decades. Drought tolerance is a combination of several component traits with a quantitative mode of inheritance. Rapid DNA and RNA sequencing tools and high-throughput SNP genotyping techniques, trait mapping, functional characterization, genomic selection, rapid generation advancement, and other tools are now available to understand the genetics of drought tolerance and to accelerate the breeding cycle. Informatics play complementary role by managing the big-data generated from the large-scale genomics and breeding experiments. Genome editing is the latest technique to alter specific genes to improve the trait expression. Integration of novel genomics, next-generation breeding, and informatics tools will accelerate the stress breeding process and increase the genetic gain under different production systems.
Collapse
Affiliation(s)
- Thirunavukkarsau Nepolean
- Maize Research Lab, Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | | | | |
Collapse
|
35
|
Contributions of biotechnology to meeting future food and environmental security needs. EUROBIOTECH JOURNAL 2018. [DOI: 10.2478/ebtj-2018-0002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Biotechnology, including genetic modifications, can play a vital role in helping to meet future food and environmental security needs for our growing population. The nature and use of biotechnology crops are described and related to aspects of food security. Biotechnological applications for food and animal feed are described, together with trends on global adoption of these crops. The benefits of biotechnology crops through increased yield, reduced pesticide use and decreased environmental damage are discussed. Examples of biotechnology crops which do not involve genetic modification are also described. Applications of biotechnology to drought and salt tolerance, and biofortification in which micronutrient content is enhanced are discussed. Emergent technologies such as RNA spraying technology, use of genome editing in agriculture and future targets for improved food and environmental security are considered.
Collapse
|
36
|
Strategies for identification of mutations induced by carbon-ion beam irradiation in Arabidopsis thaliana by whole genome re-sequencing. Mutat Res 2017; 807:21-30. [PMID: 29268080 DOI: 10.1016/j.mrfmmm.2017.12.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 11/08/2017] [Accepted: 12/06/2017] [Indexed: 12/27/2022]
Abstract
Heavy-ion beam irradiation is a powerful physical mutagen that has been used to create numerous mutant materials in plants. These materials are an essential resource for functional genomics research in the post-genome era. The advent of Next-Generation Sequencing (NGS) technology has promoted the study of functional genomics and molecular breeding. A wealth of information can be gathered from whole genome re-sequencing; however, understanding the molecular mutation profile at genome wide, as well as identifying causal genes for a given phenotype are big challenging issues for researchers. The huge outputs created by NGS make it difficult to capture key information. It is worthy to explore an effective and efficient data-sieving strategy for mutation scanning at whole genome scale. Re-sequencing data from one laboratory wild type (Columbia) and eleven M3Arabidopsis thaliana lines derived from carbon-ion beam irradiation were used in present study. Both the number and different combinations of samples used for analysis affected the sieving results. The result indicated that using six samples was sufficient to filter out the shared mutation (background interference) sites as well as to identify the true mutation sites in the whole genome. The final number of candidate mutation sites could be further narrowed down by combining traditional rough map-based cloning. Our results demonstrated the feasibility of a parallel sequencing analysis as an efficient tool for the identification of mutations induced by carbon-ion beam irradiation. For the first time, we presented different analysis strategies for handling massive parallel sequencing data sets to detect the mutations induced by carbon-ion beam irradiation in Arabidopsis thaliana with low false-positive rate, as well as to identify the causative nucleotide changes responsible for a mutant phenotype.
Collapse
|
37
|
Liu M, Yu H, Zhao G, Huang Q, Lu Y, Ouyang B. Identification of drought-responsive microRNAs in tomato using high-throughput sequencing. Funct Integr Genomics 2017; 18:67-78. [PMID: 28956210 DOI: 10.1007/s10142-017-0575-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 09/12/2017] [Accepted: 09/19/2017] [Indexed: 11/29/2022]
Abstract
Drought is a major abiotic stress affecting crop productivity and quality. As a class of noncoding RNA, microRNA (miRNA) plays important roles in plant growth, development, and stress response. However, their response and roles in tomato drought stress is largely unknown. Here, by using high-throughput sequencing, we compared the miRNA profiles before and after drought treatment in two tomato genotypes: M82, a drought-sensitive cultivated tomato (Solanum lycopersicum), and IL2-5, a drought-tolerant introgression line derived from M82 and the tomato wild species S. pennellii (LA0716). A total of 108 conserved and 208 novel miRNAs were identified, among them, 32 and 68 were significantly changed in expression after stress. Further, 1936 putative target genes were predicted for those differentially-expressed miRNAs. Gene ontology and pathway analysis showed that many of the target genes were involved in stress resistance, such as genes in GO terms including response to stress, defense response, response to stimulus, phosphorylation, and signal transduction. Our results suggested that miRNAs play an essential role in the drought response of tomato. This work will help to further characterize specific miRNAs functioning in drought tolerance.
Collapse
Affiliation(s)
- Minmin Liu
- Key Laboratory of Horticultural Plant Biology (MOE), and Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), MOA, Huazhong Agricultural University, Wuhan, 430070, China
| | - Huiyang Yu
- Key Laboratory of Horticultural Plant Biology (MOE), and Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), MOA, Huazhong Agricultural University, Wuhan, 430070, China
| | - Gangjun Zhao
- Key Laboratory of Horticultural Plant Biology (MOE), and Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), MOA, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qiufeng Huang
- Key Laboratory of Horticultural Plant Biology (MOE), and Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), MOA, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yongen Lu
- Key Laboratory of Horticultural Plant Biology (MOE), and Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), MOA, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bo Ouyang
- Key Laboratory of Horticultural Plant Biology (MOE), and Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), MOA, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
38
|
Genomic-based-breeding tools for tropical maize improvement. Genetica 2017; 145:525-539. [PMID: 28875394 DOI: 10.1007/s10709-017-9981-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 08/14/2017] [Indexed: 10/18/2022]
Abstract
Maize has traditionally been the main staple diet in the Southern Asia and Sub-Saharan Africa and widely grown by millions of resource poor small scale farmers. Approximately, 35.4 million hectares are sown to tropical maize, constituting around 59% of the developing worlds. Tropical maize encounters tremendous challenges besides poor agro-climatic situations with average yields recorded <3 tones/hectare that is far less than the average of developed countries. On the contrary to poor yields, the demand for maize as food, feed, and fuel is continuously increasing in these regions. Heterosis breeding introduced in early 90 s improved maize yields significantly, but genetic gains is still a mirage, particularly for crop growing under marginal environments. Application of molecular markers has accelerated the pace of maize breeding to some extent. The availability of array of sequencing and genotyping technologies offers unrivalled service to improve precision in maize-breeding programs through modern approaches such as genomic selection, genome-wide association studies, bulk segregant analysis-based sequencing approaches, etc. Superior alleles underlying complex traits can easily be identified and introgressed efficiently using these sequence-based approaches. Integration of genomic tools and techniques with advanced genetic resources such as nested association mapping and backcross nested association mapping could certainly address the genetic issues in maize improvement programs in developing countries. Huge diversity in tropical maize and its inherent capacity for doubled haploid technology offers advantage to apply the next generation genomic tools for accelerating production in marginal environments of tropical and subtropical world. Precision in phenotyping is the key for success of any molecular-breeding approach. This article reviews genomic technologies and their application to improve agronomic traits in tropical maize breeding has been reviewed in detail.
Collapse
|
39
|
Xu J, Wang Q, Freeling M, Zhang X, Xu Y, Mao Y, Tang X, Wu F, Lan H, Cao M, Rong T, Lisch D, Lu Y. Natural antisense transcripts are significantly involved in regulation of drought stress in maize. Nucleic Acids Res 2017; 45:5126-5141. [PMID: 28175341 PMCID: PMC5435991 DOI: 10.1093/nar/gkx085] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 01/30/2017] [Indexed: 01/02/2023] Open
Abstract
Natural antisense transcripts (NATs) are a prominent and complex class of regulatory RNAs. Using strand-specific RNA sequencing, we identified 1769 sense and antisense transcript pairs (NAT pairs) in two maize inbreds with different sensitivity to drought, as well as in two derivative recombination inbred lines (RILs). A significantly higher proportion of NATs relative to non-NATs are specifically expressed under water stress (WS). Surprisingly, expression of sense and antisense transcripts produced by NAT pairs is significantly correlated, particularly under WS. We found an unexpected large proportion of NATs with protein coding potential, as estimated by ribosome release scores. Small RNAs significantly accumulate within NAT pairs, with 21 nt smRNA particularly enriched in overlapping regions of these pairs of genes. The abundance of these smRNAs is significantly altered in the leafbladeless1 mutant, suggesting that these genes may be regulated by the tasiRNA pathway. Further, NATs are significantly hypomethylated and include fewer transposable element sequences relative to non-NAT genes. NAT gene regions also exhibit higher levels of H3K36me3, H3K9ac, and H3K4me3, but lower levels of H3K27me3, indicating that NAT gene pairs generally exhibit an open chromatin configuration. Finally, NAT pairs in 368 diverse maize inbreds and 19 segregating populations were specifically enriched for polymorphisms associated with drought tolerance. Taken together, the data highlight the potential impact of that small RNAs and histone modifications have in regulation of NAT expression, and the significance of NATs in response to WS.
Collapse
Affiliation(s)
- Jie Xu
- Maize Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China.,Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, China.,Department of Plant and Microbial Biology, University of California, Berkeley, CA 94703, USA
| | - Qi Wang
- Maize Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China.,Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, China
| | - Micheal Freeling
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94703, USA
| | - Xuecai Zhang
- International Maize and Wheat Improvement Center (CIMMYT), El Batan 56130, Texcoco, Mexico
| | - Yunbi Xu
- International Maize and Wheat Improvement Center (CIMMYT), El Batan 56130, Texcoco, Mexico.,Institute of Crop Science, Chinese Academy of Agricultural Sciences, Haidian, Beijing 100081, China
| | - Yan Mao
- Maize Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China.,Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, China
| | - Xin Tang
- Maize Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China.,Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, China
| | - Fengkai Wu
- Maize Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China.,Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, China
| | - Hai Lan
- Maize Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China.,Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, China
| | - Moju Cao
- Maize Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China.,Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, China
| | - Tingzhao Rong
- Maize Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China.,Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, China
| | - Damon Lisch
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA
| | - Yanli Lu
- Maize Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China.,Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, China
| |
Collapse
|
40
|
Dwivedi SL, Scheben A, Edwards D, Spillane C, Ortiz R. Assessing and Exploiting Functional Diversity in Germplasm Pools to Enhance Abiotic Stress Adaptation and Yield in Cereals and Food Legumes. FRONTIERS IN PLANT SCIENCE 2017; 8:1461. [PMID: 28900432 PMCID: PMC5581882 DOI: 10.3389/fpls.2017.01461] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 08/07/2017] [Indexed: 05/03/2023]
Abstract
There is a need to accelerate crop improvement by introducing alleles conferring host plant resistance, abiotic stress adaptation, and high yield potential. Elite cultivars, landraces and wild relatives harbor useful genetic variation that needs to be more easily utilized in plant breeding. We review genome-wide approaches for assessing and identifying alleles associated with desirable agronomic traits in diverse germplasm pools of cereals and legumes. Major quantitative trait loci and single nucleotide polymorphisms (SNPs) associated with desirable agronomic traits have been deployed to enhance crop productivity and resilience. These include alleles associated with variation conferring enhanced photoperiod and flowering traits. Genetic variants in the florigen pathway can provide both environmental flexibility and improved yields. SNPs associated with length of growing season and tolerance to abiotic stresses (precipitation, high temperature) are valuable resources for accelerating breeding for drought-prone environments. Both genomic selection and genome editing can also harness allelic diversity and increase productivity by improving multiple traits, including phenology, plant architecture, yield potential and adaptation to abiotic stresses. Discovering rare alleles and useful haplotypes also provides opportunities to enhance abiotic stress adaptation, while epigenetic variation has potential to enhance abiotic stress adaptation and productivity in crops. By reviewing current knowledge on specific traits and their genetic basis, we highlight recent developments in the understanding of crop functional diversity and identify potential candidate genes for future use. The storage and integration of genetic, genomic and phenotypic information will play an important role in ensuring broad and rapid application of novel genetic discoveries by the plant breeding community. Exploiting alleles for yield-related traits would allow improvement of selection efficiency and overall genetic gain of multigenic traits. An integrated approach involving multiple stakeholders specializing in management and utilization of genetic resources, crop breeding, molecular biology and genomics, agronomy, stress tolerance, and reproductive/seed biology will help to address the global challenge of ensuring food security in the face of growing resource demands and climate change induced stresses.
Collapse
Affiliation(s)
| | - Armin Scheben
- School of Biological Sciences, Institute of Agriculture, University of Western Australia, PerthWA, Australia
| | - David Edwards
- School of Biological Sciences, Institute of Agriculture, University of Western Australia, PerthWA, Australia
| | - Charles Spillane
- Plant and AgriBiosciences Research Centre, Ryan Institute, National University of Ireland GalwayGalway, Ireland
| | - Rodomiro Ortiz
- Department of Plant Breeding, Swedish University of Agricultural SciencesAlnarp, Sweden
| |
Collapse
|
41
|
Karthikeyan A, Li K, Jiang H, Ren R, Li C, Zhi H, Chen S, Gai J. Inheritance, fine-mapping, and candidate gene analyses of resistance to soybean mosaic virus strain SC5 in soybean. Mol Genet Genomics 2017; 292:811-822. [PMID: 28352959 DOI: 10.1007/s00438-017-1310-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 03/10/2017] [Indexed: 11/26/2022]
Abstract
Soybean mosaic virus (SMV) is one of the most devastating pathogens for soybeans in China. Among the country-wide 22 strains, SC5 dominates in Huang-Huai and Changjiang valleys. For controlling its damage, the resistance gene was searched through Mendelian inheritance study, gene fine-mapping, and candidate gene analysis combined with qRT-PCR (quantitative real-time polymerase chain reaction) analysis. The parents F1, F2, and RILs (recombinant inbred lines) of the cross Kefeng-1 (Resistance, R) × NN1138-2 (Susceptible, S) were used to examine the inheritance of SC5-resistance. The F1 was resistant and the F2 and RILs segregated in a 3R:1S and 1R:1S ratio, respectively, indicating a single dominant gene conferring the Kefeng-1 resistance. Subsequently, the genomic region conferring the resistance was found in "Bin 352-Bin353 with 500 kb" on Chromosome 2 using the phenotyping data of the 427 RILs and a high-density genetic map with 4703 bin markers. In the 500 kb genomic region, 38 putative genes are contained. The association analysis between the SNPs in a putative gene and the resistance phenotype for the 427 RILs prioritized 11 candidate genes using Chi-square criterion. The expression levels of these genes were tested by qRT-PCR. On infection with SC5, 7 out of the 11 genes had differential expression in Kefeng-1 and NN1138-2. Furthermore, integrating SNP-phenotype association analysis with qRT-PCR expression profiling analysis, Glyma02g13495 was found the most possible candidate gene for SC5-resistance. This finding can facilitate the breeding for SC5-resistance through marker-assisted selection and provide a platform to gain a better understanding of SMV-resistance gene system in soybean.
Collapse
Affiliation(s)
- Adhimoolam Karthikeyan
- Soybean Research Institute, Nanjing Agricultural University, Nanjing, 210095, China
- MOA National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, 210095, China
- MOA Key Laboratory of Biology and Genetic Improvement of Soybean, Nanjing Agricultural University, Nanjing, 210095, China
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Kai Li
- Soybean Research Institute, Nanjing Agricultural University, Nanjing, 210095, China
- MOA National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, 210095, China
- MOA Key Laboratory of Biology and Genetic Improvement of Soybean, Nanjing Agricultural University, Nanjing, 210095, China
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Hua Jiang
- Soybean Research Institute, Nanjing Agricultural University, Nanjing, 210095, China
- MOA National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, 210095, China
- MOA Key Laboratory of Biology and Genetic Improvement of Soybean, Nanjing Agricultural University, Nanjing, 210095, China
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Rui Ren
- Soybean Research Institute, Nanjing Agricultural University, Nanjing, 210095, China
- MOA National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, 210095, China
- MOA Key Laboratory of Biology and Genetic Improvement of Soybean, Nanjing Agricultural University, Nanjing, 210095, China
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Cui Li
- Soybean Research Institute, Nanjing Agricultural University, Nanjing, 210095, China
- MOA National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, 210095, China
- MOA Key Laboratory of Biology and Genetic Improvement of Soybean, Nanjing Agricultural University, Nanjing, 210095, China
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Haijian Zhi
- Soybean Research Institute, Nanjing Agricultural University, Nanjing, 210095, China
- MOA National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, 210095, China
- MOA Key Laboratory of Biology and Genetic Improvement of Soybean, Nanjing Agricultural University, Nanjing, 210095, China
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Shouyi Chen
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Junyi Gai
- Soybean Research Institute, Nanjing Agricultural University, Nanjing, 210095, China.
- MOA National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, 210095, China.
- MOA Key Laboratory of Biology and Genetic Improvement of Soybean, Nanjing Agricultural University, Nanjing, 210095, China.
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China.
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| |
Collapse
|
42
|
Singh VK, Khan AW, Saxena RK, Sinha P, Kale SM, Parupalli S, Kumar V, Chitikineni A, Vechalapu S, Sameer Kumar CV, Sharma M, Ghanta A, Yamini KN, Muniswamy S, Varshney RK. Indel-seq: a fast-forward genetics approach for identification of trait-associated putative candidate genomic regions and its application in pigeonpea (Cajanus cajan). PLANT BIOTECHNOLOGY JOURNAL 2017; 15:906-914. [PMID: 28027425 PMCID: PMC5466435 DOI: 10.1111/pbi.12685] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 12/19/2016] [Accepted: 12/20/2016] [Indexed: 05/05/2023]
Abstract
Identification of candidate genomic regions associated with target traits using conventional mapping methods is challenging and time-consuming. In recent years, a number of single nucleotide polymorphism (SNP)-based mapping approaches have been developed and used for identification of candidate/putative genomic regions. However, in the majority of these studies, insertion-deletion (Indel) were largely ignored. For efficient use of Indels in mapping target traits, we propose Indel-seq approach, which is a combination of whole-genome resequencing (WGRS) and bulked segregant analysis (BSA) and relies on the Indel frequencies in extreme bulks. Deployment of Indel-seq approach for identification of candidate genomic regions associated with fusarium wilt (FW) and sterility mosaic disease (SMD) resistance in pigeonpea has identified 16 Indels affecting 26 putative candidate genes. Of these 26 affected putative candidate genes, 24 genes showed effect in the upstream/downstream of the genic region and two genes showed effect in the genes. Validation of these 16 candidate Indels in other FW- and SMD-resistant and FW- and SMD-susceptible genotypes revealed a significant association of five Indels (three for FW and two for SMD resistance). Comparative analysis of Indel-seq with other genetic mapping approaches highlighted the importance of the approach in identification of significant genomic regions associated with target traits. Therefore, the Indel-seq approach can be used for quick and precise identification of candidate genomic regions for any target traits in any crop species.
Collapse
Affiliation(s)
- Vikas K. Singh
- International Crops Research Institute for the Semi‐Arid TropicsPatancheruTelangana StateIndia
| | - Aamir W. Khan
- International Crops Research Institute for the Semi‐Arid TropicsPatancheruTelangana StateIndia
| | - Rachit K. Saxena
- International Crops Research Institute for the Semi‐Arid TropicsPatancheruTelangana StateIndia
| | - Pallavi Sinha
- International Crops Research Institute for the Semi‐Arid TropicsPatancheruTelangana StateIndia
| | - Sandip M. Kale
- International Crops Research Institute for the Semi‐Arid TropicsPatancheruTelangana StateIndia
| | - Swathi Parupalli
- International Crops Research Institute for the Semi‐Arid TropicsPatancheruTelangana StateIndia
| | - Vinay Kumar
- International Crops Research Institute for the Semi‐Arid TropicsPatancheruTelangana StateIndia
| | - Annapurna Chitikineni
- International Crops Research Institute for the Semi‐Arid TropicsPatancheruTelangana StateIndia
| | - Suryanarayana Vechalapu
- International Crops Research Institute for the Semi‐Arid TropicsPatancheruTelangana StateIndia
| | | | - Mamta Sharma
- International Crops Research Institute for the Semi‐Arid TropicsPatancheruTelangana StateIndia
| | - Anuradha Ghanta
- Agricultural Research Station (ARS)‐TandurProfessor Jayashankar Telangana State Agricultural University (PJTSAU)HyderabadTelangana StateIndia
| | - Kalinati Narasimhan Yamini
- Agricultural Research Station (ARS)‐TandurProfessor Jayashankar Telangana State Agricultural University (PJTSAU)HyderabadTelangana StateIndia
| | - Sonnappa Muniswamy
- Agricultural Research Station (ARS)‐GulbargaUniversity of Agricultural Sciences (UAS)RaichurKarnatakaIndia
| | - Rajeev K. Varshney
- International Crops Research Institute for the Semi‐Arid TropicsPatancheruTelangana StateIndia
- School of Plant Biology and Institute of AgricultureThe University of Western AustraliaCrawleyWAAustralia
| |
Collapse
|
43
|
Effects of drought stress on global gene expression profile in leaf and root samples of Dongxiang wild rice ( Oryza rufipogon). Biosci Rep 2017; 37:BSR20160509. [PMID: 28424372 PMCID: PMC6434088 DOI: 10.1042/bsr20160509] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 04/05/2017] [Accepted: 04/19/2017] [Indexed: 11/17/2022] Open
Abstract
Drought is a serious constraint to rice production throughout the world, and although Dongxiang wild rice (Oryza rufipogon, DXWR) possesses a high degree of drought resistance, the underlying mechanisms of this trait remains unclear. In the present study, cDNA libraries were constructed from the leaf and root tissues of drought-stressed and untreated DXWR seedlings, and transcriptome sequencing was performed with the goal of elucidating the molecular mechanisms involved in drought-stress response. The results indicated that 11231 transcripts were differentially expressed in the leaves (4040 up-regulated and 7191 down-regulated) and 7025 transcripts were differentially expressed in the roots (3097 up-regulated and 3928 down-regulated). Among these differentially expressed genes (DEGs), the detection of many transcriptional factors and functional genes demonstrated that multiple regulatory pathways were involved in drought resistance. Meanwhile, the DEGs were also annotated with gene ontology (GO) terms and key pathways via functional classification and Kyoto Encyclopedia of Gene and Genomes (KEGG) pathway mapping, respectively. A set of the most interesting candidate genes was then identified by combining the DEGs with previously identified drought-resistant quantitative trait loci (QTL). The present work provides abundant genomic information for functional dissection of the drought resistance of DXWR, and findings will further help the current understanding of the biological regulatory mechanisms of drought resistance in plants and facilitate the breeding of new drought-resistant rice cultivars.
Collapse
|
44
|
Liu M, Yu H, Zhao G, Huang Q, Lu Y, Ouyang B. Profiling of drought-responsive microRNA and mRNA in tomato using high-throughput sequencing. BMC Genomics 2017; 18:481. [PMID: 28651543 PMCID: PMC5485680 DOI: 10.1186/s12864-017-3869-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 06/19/2017] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Abiotic stresses cause severe loss of crop production. Among them, drought is one of the most frequent environmental stresses, which limits crop growth, development and productivity. Plant drought tolerance is fine-tuned by a complex gene regulatory network. Understanding the molecular regulation of this polygenic trait is crucial for the eventual success to improve plant yield and quality. Recent studies have demonstrated that microRNAs play critical roles in plant drought tolerance. However, little is known about the microRNA in drought response of the model plant tomato. Here, we described the profiling of drought-responsive microRNA and mRNA in tomato using high-throughput next-generation sequencing. RESULTS Drought stress was applied on the seedlings of M82, a drought-sensitive cultivated tomato genotype, and IL9-1, a drought-tolerant introgression line derived from the stress-resistant wild species Solanum pennellii LA0716 and M82. Under drought, IL9-1 performed superior than M82 regarding survival rate, H2O2 elimination and leaf turgor maintenance. A total of four small RNA and eight mRNA libraries were constructed and sequenced using Illumina sequencing technology. 105 conserved and 179 novel microRNAs were identified, among them, 54 and 98 were differentially expressed upon drought stress, respectively. The majority of the differentially-expressed conserved microRNAs was up-regulated in IL9-1 whereas down-regulated in M82. Under drought stress, 2714 and 1161 genes were found to be differentially expressed in M82 and IL9-1, respectively, and many of their homologues are involved in plant stress, such as genes encoding transcription factor and protein kinase. Various pathways involved in abiotic stress were revealed by Gene Ontology and pathway analysis. The mRNA sequencing results indicated that most of the target genes were regulated by their corresponding microRNAs, which suggested that microRNAs may play essential roles in the drought tolerance of tomato. CONCLUSION In this study, numerous microRNAs and mRNAs involved in the drought response of tomato were identified using high-throughput sequencing, which will provide new insights into the complex regulatory network of plant adaption to drought stress. This work will also help to exploit new players functioning in plant drought-stress tolerance.
Collapse
Affiliation(s)
- Minmin Liu
- Key Laboratory of Horticultural Plant Biology (MOE), Huazhong Agricultural University, Wuhan, 430070 China
| | - Huiyang Yu
- Key Laboratory of Horticultural Plant Biology (MOE), Huazhong Agricultural University, Wuhan, 430070 China
| | - Gangjun Zhao
- Key Laboratory of Horticultural Plant Biology (MOE), Huazhong Agricultural University, Wuhan, 430070 China
| | - Qiufeng Huang
- Key Laboratory of Horticultural Plant Biology (MOE), Huazhong Agricultural University, Wuhan, 430070 China
| | - Yongen Lu
- Key Laboratory of Horticultural Plant Biology (MOE), Huazhong Agricultural University, Wuhan, 430070 China
| | - Bo Ouyang
- Key Laboratory of Horticultural Plant Biology (MOE), Huazhong Agricultural University, Wuhan, 430070 China
| |
Collapse
|
45
|
Lee MB, Kim DY, Seo YW. Identification of candidate genes for the seed coat colour change in a Brachypodium distachyon mutant induced by gamma radiation using whole-genome re-sequencing. Genome 2017; 60:581-587. [PMID: 28319670 DOI: 10.1139/gen-2016-0145] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Brachypodium distachyon has been proposed as a model plant for agriculturally important cereal crops such as wheat and barley. Seed coat colour change from brown-red to yellow was observed in a mutant line (142-3) of B. distachyon, which was induced by chronic gamma radiation. In addition, dwarf phenotypes were observed in each of the lines 142-3, 421-2, and 1376-1. To identify causal mutations for the seed coat colour change, the three mutant lines and the wild type were subjected to whole-genome re-sequencing. After removing natural variations, 906, 1057, and 978 DNA polymorphisms were detected in 142-3, 421-2, and 1376-1, respectively. A total of 13 high-risk DNA polymorphisms were identified in mutant 142-3. Based on a comparison with DNA polymorphisms in 421-2 and 1376-1, candidate causal mutations for the seed coat colour change in 142-3 were selected. In the two independent Arabidopsis thaliana lines carrying T-DNA insertions in the AtCHI, seed colour change was observed. We propose a frameshift mutation in BdCHI1 as a causal mutation responsible for seed colour change in 142-3. The DNA polymorphism information for these mutant lines can be utilized for functional genomics in B. distachyon and cereal crops.
Collapse
Affiliation(s)
- Man Bo Lee
- a Department of Biotechnology, College of Life Sciences & Biotechnology, Korea University, Seoul 02841, Korea
| | - Dae Yeon Kim
- b Division of Biotechnology, College of Life Sciences & Biotechnology, Korea University, Seoul 02841, Korea
| | - Yong Weon Seo
- b Division of Biotechnology, College of Life Sciences & Biotechnology, Korea University, Seoul 02841, Korea
| |
Collapse
|
46
|
Song K, Kim HC, Shin S, Kim KH, Moon JC, Kim JY, Lee BM. Transcriptome Analysis of Flowering Time Genes under Drought Stress in Maize Leaves. FRONTIERS IN PLANT SCIENCE 2017; 8:267. [PMID: 28298916 PMCID: PMC5331056 DOI: 10.3389/fpls.2017.00267] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 02/14/2017] [Indexed: 05/20/2023]
Abstract
Flowering time is an important factor determining yield and seed quality in maize. A change in flowering time is a strategy used to survive abiotic stresses. Among abiotic stresses, drought can increase anthesis-silking intervals (ASI), resulting in negative effects on maize yield. We have analyzed the correlation between flowering time and drought stress using RNA-seq and bioinformatics tools. Our results identified a total of 619 genes and 126 transcripts whose expression was altered by drought stress in the maize B73 leaves under short-day condition. Among drought responsive genes, we also identified 20 genes involved in flowering times. Gene Ontology (GO) enrichment analysis was used to predict the functions of the drought-responsive genes and transcripts. GO categories related to flowering time included reproduction, flower development, pollen-pistil interaction, and post-embryonic development. Transcript levels of several genes that have previously been shown to affect flowering time, such as PRR37, transcription factor HY5, and CONSTANS, were significantly altered by drought conditions. Furthermore, we also identified several drought-responsive transcripts containing C2H2 zinc finger, CCCH, and NAC domains, which are frequently involved in transcriptional regulation and may thus have potential to alter gene expression programs to change maize flowering time. Overall, our results provide a genome-wide analysis of differentially expressed genes (DEGs), novel transcripts, and isoform variants expressed during the reproductive stage of maize plants subjected to drought stress and short-day condition. Further characterization of the drought-responsive transcripts identified in this study has the potential to advance our understanding of the mechanisms that regulate flowering time under drought stress.
Collapse
Affiliation(s)
- Kitae Song
- Department of Life Science, Dongguk University-SeoulSeoul, South Korea
| | - Hyo Chul Kim
- Department of Life Science, Dongguk University-SeoulSeoul, South Korea
| | - Seungho Shin
- Department of Life Science, Dongguk University-SeoulSeoul, South Korea
| | - Kyung-Hee Kim
- Department of Life Science, Dongguk University-SeoulSeoul, South Korea
| | - Jun-Cheol Moon
- Agriculture and Life Sciences Research Institute, Kangwon National UniversityChuncheon, South Korea
| | - Jae Yoon Kim
- Department of Plant Resources, College of Industrial Science, Kongju National UniversityYesan, South Korea
| | - Byung-Moo Lee
- Department of Life Science, Dongguk University-SeoulSeoul, South Korea
- *Correspondence: Byung-Moo Lee
| |
Collapse
|
47
|
Mercenaro L, Nieddu G, Porceddu A, Pezzotti M, Camiolo S. Sequence Polymorphisms and Structural Variations among Four Grapevine ( Vitis vinifera L.) Cultivars Representing Sardinian Agriculture. FRONTIERS IN PLANT SCIENCE 2017; 8:1279. [PMID: 28775732 PMCID: PMC5517397 DOI: 10.3389/fpls.2017.01279] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 07/06/2017] [Indexed: 05/04/2023]
Abstract
The genetic diversity among grapevine (Vitis vinifera L.) cultivars that underlies differences in agronomic performance and wine quality reflects the accumulation of single nucleotide polymorphisms (SNPs) and small indels as well as larger genomic variations. A combination of high throughput sequencing and mapping against the grapevine reference genome allows the creation of comprehensive sequence variation maps. We used next generation sequencing and bioinformatics to generate an inventory of SNPs and small indels in four widely cultivated Sardinian grape cultivars (Bovale sardo, Cannonau, Carignano and Vermentino). More than 3,200,000 SNPs were identified with high statistical confidence. Some of the SNPs caused the appearance of premature stop codons and thus identified putative pseudogenes. The analysis of SNP distribution along chromosomes led to the identification of large genomic regions with uninterrupted series of homozygous SNPs. We used a digital comparative genomic hybridization approach to identify 6526 genomic regions with significant differences in copy number among the four cultivars compared to the reference sequence, including 81 regions shared between all four cultivars and 4953 specific to single cultivars (representing 1.2 and 75.9% of total copy number variation, respectively). Reads mapping at a distance that was not compatible with the insert size were used to identify a dataset of putative large deletions with cultivar Cannonau revealing the highest number. The analysis of genes mapping to these regions provided a list of candidates that may explain some of the phenotypic differences among the Bovale sardo, Cannonau, Carignano and Vermentino cultivars.
Collapse
Affiliation(s)
- Luca Mercenaro
- Dipartimento di Agraria, Università degli Studi di SassariSassari, Italy
| | - Giovanni Nieddu
- Dipartimento di Agraria, Università degli Studi di SassariSassari, Italy
| | - Andrea Porceddu
- Dipartimento di Agraria, Università degli Studi di SassariSassari, Italy
| | - Mario Pezzotti
- Dipartimento di Biotecnologie, Università degli Studi di VeronaVerona, Italy
| | - Salvatore Camiolo
- Dipartimento di Agraria, Università degli Studi di SassariSassari, Italy
- *Correspondence: Salvatore Camiolo,
| |
Collapse
|
48
|
Teng C, Du D, Xiao L, Yu Q, Shang G, Zhao Z. Mapping and Identifying a Candidate Gene ( Bnmfs) for Female-Male Sterility through Whole-Genome Resequencing and RNA-Seq in Rapeseed ( Brassica napus L.). FRONTIERS IN PLANT SCIENCE 2017; 8:2086. [PMID: 29326731 PMCID: PMC5733364 DOI: 10.3389/fpls.2017.02086] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 11/22/2017] [Indexed: 05/03/2023]
Abstract
In oilseed crops, carpel and stamen development play vital roles in pollination and rapeseed yield, but the genetic mechanisms underlying carpel and stamen development remain unclear. Herein, a male- and female-sterile mutant was obtained in offspring of a (Brassica napus cv. Qingyou 14) × (Qingyou 14 × B. rapa landrace Dahuang) cross. Subsequently, F2-F9 populations were generated through selfing of the heterozygote plants among the progeny of each generation. The male- and female-sterility exhibited stable inheritance in successive generations and was controlled by a recessive gene. The mutant kept the same chromosome number (2n = 38) as B. napus parent but showed abnormal meiosis for male and female. One candidate gene for the sterility was identified by simple sequence repeat (SSR) and insertion deletion length polymorphism (InDel) markers in F7-F9 plants, and whole-genome resequencing with F8 pools and RNA sequencing with F9 pools. Whole-genome resequencing found three candidate intervals (35.40-35.68, 35.74-35.75, and 45.34-46.45 Mb) on chromosome C3 in B. napus and candidate region for Bnmfs was narrowed to approximately 1.11-Mb (45.34-46.45 M) by combining SSR and InDel marker analyses with whole-genome resequencing. From transcriptome profiling in 0-2 mm buds, all of the genes in the candidate interval were detected, and only two genes with significant differences (BnaC03g56670D and BnaC03g56870D) were revealed. BnaC03g56870D was a candidate gene that shared homology with the CYP86C4 gene of Arabidopsis thaliana. Quantitative reverse transcription (qRT)-PCR analysis showed that Bnmfs primarily functioned in flower buds. Thus, sequencing and expression analyses provided evidence that BnaC03g56870D was the candidate gene for male and female sterility in the B. napus mutant.
Collapse
|
49
|
Tsai KJ, Lu MYJ, Yang KJ, Li M, Teng Y, Chen S, Ku MSB, Li WH. Assembling the Setaria italica L. Beauv. genome into nine chromosomes and insights into regions affecting growth and drought tolerance. Sci Rep 2016; 6:35076. [PMID: 27734962 PMCID: PMC5062080 DOI: 10.1038/srep35076] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 09/23/2016] [Indexed: 12/23/2022] Open
Abstract
The diploid C4 plant foxtail millet (Setaria italica L. Beauv.) is an important crop in many parts of Africa and Asia for the vast consumption of its grain and ability to grow in harsh environments, but remains understudied in terms of complete genomic architecture. To date, there have been only two genome assembly and annotation efforts with neither assembly reaching over 86% of the estimated genome size. We have combined de novo assembly with custom reference-guided improvements on a popular cultivar of foxtail millet and have achieved a genome assembly of 477 Mbp in length, which represents over 97% of the estimated 490 Mbp. The assembly anchors over 98% of the predicted genes to the nine assembled nuclear chromosomes and contains more functional annotation gene models than previous assemblies. Our annotation has identified a large number of unique gene ontology terms related to metabolic activities, a region of chromosome 9 with several growth factor proteins, and regions syntenic with pearl millet or maize genomic regions that have been previously shown to affect growth. The new assembly and annotation for this important species can be used for detailed investigation and future innovations in growth for millet and other grains.
Collapse
Affiliation(s)
- Kevin J. Tsai
- Bioinformatics Program, Taiwan International Graduate Program, Institute of Information Science, Academia Sinica, Taipei, 11574 Taiwan
- Institute of Biomedical Informatics, National Yang-Ming University, Taipei, 11221 Taiwan
- Biodiversity Research Center, Academia Sinica, Taipei, 11574 Taiwan
| | - Mei-Yeh Jade Lu
- Biodiversity Research Center, Academia Sinica, Taipei, 11574 Taiwan
| | - Kai-Jung Yang
- Biodiversity Research Center, Academia Sinica, Taipei, 11574 Taiwan
| | - Mengyun Li
- Biodiversity Research Center, Academia Sinica, Taipei, 11574 Taiwan
| | - Yuchuan Teng
- Biodiversity Research Center, Academia Sinica, Taipei, 11574 Taiwan
| | - Shihmay Chen
- Biodiversity Research Center, Academia Sinica, Taipei, 11574 Taiwan
| | - Maurice S. B. Ku
- Department of Bioagricultural Science, National Chiayi University, Chiayi, 60004 Taiwan
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| | - Wen-Hsiung Li
- Biodiversity Research Center, Academia Sinica, Taipei, 11574 Taiwan
- Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637 USA
| |
Collapse
|
50
|
Forestan C, Aiese Cigliano R, Farinati S, Lunardon A, Sanseverino W, Varotto S. Stress-induced and epigenetic-mediated maize transcriptome regulation study by means of transcriptome reannotation and differential expression analysis. Sci Rep 2016; 6:30446. [PMID: 27461139 PMCID: PMC4962059 DOI: 10.1038/srep30446] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 06/27/2016] [Indexed: 12/25/2022] Open
Abstract
Plant's response and adaptation to abiotic stresses involve sophisticated genetic and epigenetic regulatory systems. To obtain a global view of molecular response to osmotic stresses, including the non-coding portion of genome, we conducted a total leaf transcriptome analysis on maize plants subjected to prolonged drought and salt stresses. Stress application to both B73 wild type and the epiregulator mutant rpd1-1/rmr6 allowed dissection of the epigenetic component of stress response. Coupling total RNA-Seq and transcriptome re-assembly we annotated thousands of new maize transcripts, together with 13,387 lncRNAs that may play critical roles in regulating gene expression. Differential expression analysis revealed hundreds of genes modulated by long-term stress application, including also many lncRNAs and transposons specifically induced by stresses. The amplitude and dynamic of the stress-modulated gene sets are very different between B73 and rpd1-1/rmr6 mutant plants, as result of stress-like effect on genome regulation caused by the mutation itself, which activates many stress-related genes even in control condition. The analyzed extensive set of total RNA-Seq data, together with the improvement of the transcriptome and the identification of the non-coding portion of the transcriptome give a revealing insight into the genetic and epigenetic mechanism responsible for maize molecular response to abiotic stresses.
Collapse
Affiliation(s)
- Cristian Forestan
- Department of Agronomy, Animals, Food, Natural Resources and Environment, University of Padova, Viale dell’Università 16, 35020 Legnaro (PD)-Italy
| | | | - Silvia Farinati
- Department of Agronomy, Animals, Food, Natural Resources and Environment, University of Padova, Viale dell’Università 16, 35020 Legnaro (PD)-Italy
| | - Alice Lunardon
- Department of Biology and Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802 USA
| | | | - Serena Varotto
- Department of Agronomy, Animals, Food, Natural Resources and Environment, University of Padova, Viale dell’Università 16, 35020 Legnaro (PD)-Italy
| |
Collapse
|