1
|
Barthélémy I, Su JB, Cauchois X, Relaix F, Ghaleh B, Blot S. Ambulatory electrocardiographic longitudinal monitoring in a canine model for Duchenne muscular dystrophy identifies decreased very low frequency power as a hallmark of impaired heart rate variability. Sci Rep 2024; 14:8969. [PMID: 38637619 PMCID: PMC11026469 DOI: 10.1038/s41598-024-59196-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/08/2024] [Indexed: 04/20/2024] Open
Abstract
Duchenne muscular dystrophy (DMD) patients exhibit a late left ventricular systolic dysfunction preceded by an occult phase, during which myocardial fibrosis progresses and some early functional impairments can be detected. These latter include electrocardiographic (ECG) and heart rate variability (HRV) abnormalities. This longitudinal study aimed at describing the sequence of ECG and HRV abnormalities, using Holter ECG in the GRMD (Golden retriever muscular dystrophy) dog model, known to develop a DMD-like disease, including cardiomyopathy. Most of the known ECG abnormalities described in DMD patients were also found in GRMD dogs, including increased heart rate, prolonged QT and shortened PR intervals, ventricular arrhythmias, and several of them could be detected months before the decrease of fractional shortening. The HRV was impaired like in DMD patients, one of the earliest evidenced abnormalities being a decrease in the very low frequency (VLF) component of the power spectrum. This decrease was correlated with the further reduction of fractional shortening. Such decreased VLF probably reflects impaired autonomic function and abnormal vasomotor tone. This study provides new insights into the knowledge of the GRMD dog model and DMD cardiomyopathy and emphasizes the interest to monitor the VLF power in DMD patients, still unexplored in this disease, whilst it is highly predictive of deleterious clinical events in many other pathological conditions.
Collapse
Affiliation(s)
- Inès Barthélémy
- "Biology of the Neuromuscular System" Team, U955 IMRB, INSERM, Univ Paris-Est Créteil, 94010, Créteil, France.
- École Nationale Vétérinaire d'Alfort, IMRB, 7 Avenue du Général de Gaulle, 94700, Maisons-Alfort, France.
| | - Jin Bo Su
- Inserm U955-IMRB, UPEC, Ecole Nationale Vétérinaire d'Alfort, Créteil, France
| | - Xavier Cauchois
- "Biology of the Neuromuscular System" Team, U955 IMRB, INSERM, Univ Paris-Est Créteil, 94010, Créteil, France
- École Nationale Vétérinaire d'Alfort, IMRB, 7 Avenue du Général de Gaulle, 94700, Maisons-Alfort, France
| | - Frédéric Relaix
- "Biology of the Neuromuscular System" Team, U955 IMRB, INSERM, Univ Paris-Est Créteil, 94010, Créteil, France
- École Nationale Vétérinaire d'Alfort, IMRB, 7 Avenue du Général de Gaulle, 94700, Maisons-Alfort, France
| | - Bijan Ghaleh
- Inserm U955-IMRB, UPEC, Ecole Nationale Vétérinaire d'Alfort, Créteil, France
| | - Stéphane Blot
- "Biology of the Neuromuscular System" Team, U955 IMRB, INSERM, Univ Paris-Est Créteil, 94010, Créteil, France.
- École Nationale Vétérinaire d'Alfort, IMRB, 7 Avenue du Général de Gaulle, 94700, Maisons-Alfort, France.
| |
Collapse
|
2
|
Tang L, Shao S, Wang C. Electrocardiographic features of children with Duchenne muscular dystrophy. Orphanet J Rare Dis 2022; 17:320. [PMID: 35987773 PMCID: PMC9392256 DOI: 10.1186/s13023-022-02473-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 08/13/2022] [Indexed: 11/10/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a clinically common X-linked recessive myopathy, which is caused by mutation of the gene encoding dystrophin on chromosome Xp21. The onset of heart injury in children with DMD is inconspicuous, and the prognosis is poor once it develops to the stage of heart failure. Cardiovascular complications remain an important cause of death in this patient population. At present, population and animal studies have suggested that Electrocardiogram (ECG) changes may be the initial manifestation of cardiac involvement in children with DMD. Relevant clinical studies have also confirmed that significant abnormal ECG changes already exist in DMD patients before cardiomegaly and/or LVEF decrease. With increases in age and decreases in cardiac function, the proportion of ECG abnormalities in DMD patients increase significantly. Some characteristic ECG changes, such as ST-segment changes, T wave inversion, Q wave at the inferolateral leads, LBBB and SDANN, have a certain correlation with the indexes of cardiac remodeling or impaired cardiac function in DMD patients, while VT and LBBB have demonstrated relatively good predictive value for the occurrence of long-term DCM and/or adverse cardiovascular events or even death in DMD patients. The present review discusses the electrocardiographic features in children with DMD.
Collapse
|
3
|
Stirm M, Fonteyne LM, Shashikadze B, Stöckl JB, Kurome M, Keßler B, Zakhartchenko V, Kemter E, Blum H, Arnold GJ, Matiasek K, Wanke R, Wurst W, Nagashima H, Knieling F, Walter MC, Kupatt C, Fröhlich T, Klymiuk N, Blutke A, Wolf E. Pig models for Duchenne muscular dystrophy – from disease mechanisms to validation of new diagnostic and therapeutic concepts. Neuromuscul Disord 2022; 32:543-556. [DOI: 10.1016/j.nmd.2022.04.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/22/2022] [Accepted: 04/22/2022] [Indexed: 12/13/2022]
|
4
|
Oh HJ, Chung E, Kim J, Kim MJ, Kim GA, Lee SH, Ra K, Eom K, Park S, Chae JH, Kim JS, Lee BC. Generation of a Dystrophin Mutant in Dog by Nuclear Transfer Using CRISPR/Cas9-Mediated Somatic Cells: A Preliminary Study. Int J Mol Sci 2022; 23:ijms23052898. [PMID: 35270040 PMCID: PMC8911381 DOI: 10.3390/ijms23052898] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 01/27/2023] Open
Abstract
Dystrophinopathy is caused by mutations in the dystrophin gene, which lead to progressive muscle degeneration, necrosis, and finally, death. Recently, golden retrievers have been suggested as a useful animal model for studying human dystrophinopathy, but the model has limitations due to difficulty in maintaining the genetic background using conventional breeding. In this study, we successfully generated a dystrophin mutant dog using the CRISPR/Cas9 system and somatic cell nuclear transfer. The dystrophin mutant dog displayed phenotypes such as elevated serum creatine kinase, dystrophin deficiency, skeletal muscle defects, an abnormal electrocardiogram, and avoidance of ambulation. These results indicate that donor cells with CRISPR/Cas9 for a specific gene combined with the somatic cell nuclear transfer technique can efficiently produce a dystrophin mutant dog, which will help in the successful development of gene therapy drugs for dogs and humans.
Collapse
Affiliation(s)
- Hyun Ju Oh
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (H.J.O.); (M.J.K.); (G.A.K.); (S.H.L.); (K.R.)
| | - Eugene Chung
- Center for Genome Engineering, Institute for Basic Science, Seoul 08826, Korea;
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Jaehwan Kim
- Department of Veterinary Medical Imaging, College of Veterinary Medicine, Konkuk University, Seoul 5029, Korea; (J.K.); (K.E.)
| | - Min Jung Kim
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (H.J.O.); (M.J.K.); (G.A.K.); (S.H.L.); (K.R.)
| | - Geon A. Kim
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (H.J.O.); (M.J.K.); (G.A.K.); (S.H.L.); (K.R.)
- Department of Clinical Pathology, College of Health Science, Eulji University, Uijeongbu 11759, Korea
| | - Seok Hee Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (H.J.O.); (M.J.K.); (G.A.K.); (S.H.L.); (K.R.)
| | - Kihae Ra
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (H.J.O.); (M.J.K.); (G.A.K.); (S.H.L.); (K.R.)
| | - Kidong Eom
- Department of Veterinary Medical Imaging, College of Veterinary Medicine, Konkuk University, Seoul 5029, Korea; (J.K.); (K.E.)
| | - Soojin Park
- Department of Pediatrics, Seoul National University College of Medicine, Seoul 03080, Korea; (S.P.); (J.-H.C.)
| | - Jong-Hee Chae
- Department of Pediatrics, Seoul National University College of Medicine, Seoul 03080, Korea; (S.P.); (J.-H.C.)
| | - Jin-Soo Kim
- Center for Genome Engineering, Institute for Basic Science, Seoul 08826, Korea;
- Correspondence: (J.-S.K.); (B.C.L.); Tel.: +82-2-880-9327 (J.-S.K.); +82-2-880-1269 (B.C.L.)
| | - Byeong Chun Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (H.J.O.); (M.J.K.); (G.A.K.); (S.H.L.); (K.R.)
- Correspondence: (J.-S.K.); (B.C.L.); Tel.: +82-2-880-9327 (J.-S.K.); +82-2-880-1269 (B.C.L.)
| |
Collapse
|
5
|
Schneider SM, Sansom GT, Guo LJ, Furuya S, Weeks BR, Kornegay JN. Natural History of Histopathologic Changes in Cardiomyopathy of Golden Retriever Muscular Dystrophy. Front Vet Sci 2022; 8:759585. [PMID: 35252412 PMCID: PMC8892215 DOI: 10.3389/fvets.2021.759585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 12/28/2021] [Indexed: 11/17/2022] Open
Abstract
Background Duchenne muscular dystrophy (DMD) is an X-linked inherited myopathy that causes progressive skeletal and cardiac muscle disease. Heart lesions were described in the earliest DMD reports, and cardiomyopathy is now the leading cause of death. However, diagnostics and treatment for cardiomyopathy have lagged behind those for appendicular and respiratory skeletal muscle disease. Most animal model studies have been done in the mdx mouse, which has a relatively mild form of cardiomyopathy. Dogs with the genetically homologous condition, Golden Retriever muscular dystrophy (GRMD), develop progressive cardiomyopathy analogous to that seen in DMD. Previous descriptive studies of GRMD cardiomyopathy have mostly been limited to selective sampling of the hearts from young dogs. Methods and Results We systematically assessed cardiac lesions in 31 GRMD and carrier dogs aged 3 to 76 months and a separate cohort of 2–10-year-old normal hounds. Both semi-quantitative lesion scoring and quantitation of the cross-sectional area of fibrosis distinguished dogs with GRMD disease from normal dogs. The carriers generally had intermediate involvement but had even greater fibrosis than GRMD dogs. Fatty infiltration was the most prominent feature in some older GRMD dogs. Vascular hypertrophy was increased in GRMD dogs and correlated positively with lesion severity. Purkinje fiber vacuolation was also increased but did not correlate with lesion severity. Histopathologic changes correlated with late gadolinium enhancement on cardiac MRI. Conclusion These features are generally compatible with those of DMD and further validate GRMD as a useful model to study cardiomyopathy pathogenesis and treatment. Additionally, the nature of some degenerative lesions suggests that functional hypoxia or non-thrombotic ischemia may contribute to disease progression.
Collapse
Affiliation(s)
- Sarah M. Schneider
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, United States
- *Correspondence: Sarah M. Schneider
| | - Garett T. Sansom
- Department of Environmental and Occupational Health, Texas A&M University, College Station, TX, United States
| | - Lee-Jae Guo
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, United States
| | - Shinji Furuya
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, United States
| | - Brad R. Weeks
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, United States
| | - Joe N. Kornegay
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, United States
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, United States
| |
Collapse
|
6
|
A Dystrophin Exon-52 Deleted Miniature Pig Model of Duchenne Muscular Dystrophy and Evaluation of Exon Skipping. Int J Mol Sci 2021; 22:ijms222313065. [PMID: 34884867 PMCID: PMC8657897 DOI: 10.3390/ijms222313065] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 12/12/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a lethal X-linked recessive disorder caused by mutations in the DMD gene and the subsequent lack of dystrophin protein. Recently, phosphorodiamidate morpholino oligomer (PMO)-antisense oligonucleotides (ASOs) targeting exon 51 or 53 to reestablish the DMD reading frame have received regulatory approval as commercially available drugs. However, their applicability and efficacy remain limited to particular patients. Large animal models and exon skipping evaluation are essential to facilitate ASO development together with a deeper understanding of dystrophinopathies. Using recombinant adeno-associated virus-mediated gene targeting and somatic cell nuclear transfer, we generated a Yucatan miniature pig model of DMD with an exon 52 deletion mutation equivalent to one of the most common mutations seen in patients. Exon 52-deleted mRNA expression and dystrophin deficiency were confirmed in the skeletal and cardiac muscles of DMD pigs. Accordingly, dystrophin-associated proteins failed to be recruited to the sarcolemma. The DMD pigs manifested early disease onset with severe bodywide skeletal muscle degeneration and with poor growth accompanied by a physical abnormality, but with no obvious cardiac phenotype. We also demonstrated that in primary DMD pig skeletal muscle cells, the genetically engineered exon-52 deleted pig DMD gene enables the evaluation of exon 51 or 53 skipping with PMO and its advanced technology, peptide-conjugated PMO. The results show that the DMD pigs developed here can be an appropriate large animal model for evaluating in vivo exon skipping efficacy.
Collapse
|
7
|
Kuraoka M, Aoki Y, Takeda S. Development of outcome measures according to dystrophic phenotypes in canine X-linked muscular dystrophy in Japan. Exp Anim 2021; 70:419-430. [PMID: 34135266 PMCID: PMC8614006 DOI: 10.1538/expanim.21-0072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked lethal muscle disorder characterized by primary muscle degeneration. Therapeutic strategies for DMD have been extensively explored, and some are in the stage of human clinical trials. Along with the development of new therapies, sensitive outcome measures are needed to monitor the effects of new treatments. Therefore, we investigated outcome measures such as biomarkers and motor function evaluation in a dystrophic model of beagle dogs, canine X-linked muscular dystrophy in Japan (CXMDJ). Osteopontin (OPN), a myogenic inflammatory cytokine, was explored as a potential biomarker in dystrophic dogs over the disease course. The serum OPN levels of CXMDJ dystrophic dogs were elevated, even in the early disease phase, and this could be related to the presence of regenerating muscle fibers; as such, OPN would be a promising biomarker for muscle regeneration. Next, accelerometry, which is an efficient method to quantify performance in validated tasks, was used to evaluate motor function longitudinally in dystrophic dogs. We measured three-axis acceleration and angular velocity with wireless hybrid sensors during gait evaluations. Multiple parameters of acceleration and angular velocity showed notedly lower values in dystrophic dogs compared with wild-type dogs, even at the onset of muscle weakness. These parameters accordingly decreased with exacerbation of clinical manifestations along with the disease course. Multiple parameters also indicated gait abnormalities in dystrophic dogs, such as a waddling gait. These outcome measures could be applicable in clinical trials of patients with DMD or other muscle disorders.
Collapse
Affiliation(s)
- Mutsuki Kuraoka
- Laboratory of Experimental Animal Science, Nippon Veterinary and Life Science University.,Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry
| | - Yoshitsugu Aoki
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry
| | - Shin'ichi Takeda
- National Institute of Neuroscience, National Center of Neurology and Psychiatry
| |
Collapse
|
8
|
Tone Y, Mamchaoui K, Tsoumpra MK, Hashimoto Y, Terada R, Maruyama R, Gait MJ, Arzumanov AA, McClorey G, Imamura M, Takeda S, Yokota T, Wood MJ, Mouly V, Aoki Y. Immortalized Canine Dystrophic Myoblast Cell Lines for Development of Peptide-Conjugated Splice-Switching Oligonucleotides. Nucleic Acid Ther 2021; 31:172-181. [PMID: 33567244 PMCID: PMC7997716 DOI: 10.1089/nat.2020.0907] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/24/2020] [Indexed: 12/27/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a severe muscle-wasting disease caused by frameshift or nonsense mutations in the DMD gene, resulting in the loss of dystrophin from muscle membranes. Exon skipping using splice-switching oligonucleotides (SSOs) restores the reading frame of DMD pre-mRNA by generating internally truncated but functional dystrophin protein. To potentiate effective tissue-specific targeting by functional SSOs, it is essential to perform accelerated and reliable in vitro screening-based assessment of novel oligonucleotides and drug delivery technologies, such as cell-penetrating peptides, before their in vivo pharmacokinetic and toxicity evaluation. We have established novel canine immortalized myoblast lines by transducing murine cyclin-dependent kinase-4 and human telomerase reverse transcriptase genes into myoblasts isolated from beagle-based wild-type or canine X-linked muscular dystrophy in Japan (CXMDJ) dogs. These myoblast lines exhibited improved myogenic differentiation and increased proliferation rates compared with passage-15 primary parental myoblasts, and their potential to differentiate into myotubes was maintained in later passages. Using these dystrophin-deficient immortalized myoblast lines, we demonstrate that a novel cell-penetrating peptide (Pip8b2)-conjugated SSO markedly improved multiexon skipping activity compared with the respective naked phosphorodiamidate morpholino oligomers. In vitro screening using immortalized canine cell lines will provide a basis for further pharmacological studies on drug delivery tools.
Collapse
Affiliation(s)
- Yuichiro Tone
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
- Discovery Research Laboratories in Tsukuba, Nippon Shinyaku Co., Ltd., Tsukuba, Japan
| | - Kamel Mamchaoui
- Center of Research in Myology, Sorbonne University, INSERM, Institute of Myology, Paris, France
| | - Maria K. Tsoumpra
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Yasumasa Hashimoto
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Reiko Terada
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Rika Maruyama
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Michael J. Gait
- Medical Research Council, Laboratory of Molecular Biology, Cambridge, United Kingdom
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Andrey A. Arzumanov
- Medical Research Council, Laboratory of Molecular Biology, Cambridge, United Kingdom
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Graham McClorey
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Michihiro Imamura
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Shin'ichi Takeda
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Toshifumi Yokota
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Matthew J.A. Wood
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- Oxford Harrington Rare Disease Centre, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Vincent Mouly
- Center of Research in Myology, Sorbonne University, INSERM, Institute of Myology, Paris, France
| | - Yoshitsugu Aoki
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
| |
Collapse
|
9
|
Improved transduction of canine X-linked muscular dystrophy with rAAV9-microdystrophin via multipotent MSC pretreatment. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 20:133-141. [PMID: 33426145 PMCID: PMC7773564 DOI: 10.1016/j.omtm.2020.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 11/11/2020] [Indexed: 11/28/2022]
Abstract
Duchenne muscular dystrophy (DMD) is a severe congenital disease associated with mutation of the dystrophin gene. Supplementation of dystrophin using recombinant adeno-associated virus (rAAV) has promise as a treatment for DMD, although vector-related general toxicities, such as liver injury, neurotoxicity, and germline transmission, have been suggested in association with the systemic delivery of high doses of rAAV. Here, we treated normal or dystrophic dogs with rAAV9 transduction in conjunction with multipotent mesenchymal stromal cell (MSC) injection to investigate the therapeutic effects of an rAAV expressing microdystrophin (μDys) under conditions of immune modulation. Bone-marrow-derived MSCs, rAAV-CMV-μDys, and a rAAV-CAG-luciferase (Luc) were injected into the jugular vein of a young dystrophic dog to induce systemic expression of μDys. One week after the first injection, the dog received a second intravenous injection of MSCs, and on the following day, rAAV was intravenously injected into the same dog. Systemic injection of rAAV9 with MSCs pretreatment improves gene transfer into normal and dystrophic dogs. Dystrophic phenotypes significantly improved in the rAAV-μDys-injected dystrophic dog, suggesting that an improved rAAV-μDys treatment including immune modulation induces successful long-term transgene expression to improve dystrophic phenotypes.
Collapse
|
10
|
Fortin JS, Hakim CH, Korte S, Yang NN, Fitzgerald SD, Johnson GC, Smith BF, Duan D. Widespread severe myodegeneration in a compound heterozygote female dog with dystrophin deficiency. Vet Med Sci 2021; 7:654-659. [PMID: 33502125 PMCID: PMC8136971 DOI: 10.1002/vms3.433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 12/02/2020] [Accepted: 01/09/2021] [Indexed: 12/02/2022] Open
Abstract
The University of Missouri (MU) has established a colony of dystrophin‐deficient dogs with a mixed breed background to mirror the variable pathologic effects of dystrophinopathies between persons of a given kindred to further the understanding of the genetic and molecular basis of the variable phenotype; thus to facilitate discovery of an effective therapeutic strategy. Herein we report the phenotype and genotype of a normal‐appearing 10‐month‐old colony female that died suddenly. At necropsy examination, there were reduced skeletal and laryngeal muscle volume and mild dilatation of the oesophagus. Microscopic findings consisted of extensive degeneration and regeneration of the axial skeletal, tongue, oesophageal, and laryngeal muscles that were characterized by considerable central nucleation, individual fibre mineralization and interstitial fibrosis. The myocardial findings were limited to infiltration of adipose cells in the interstitium. The female dog was a compound heterozygote with one X chromosome carrying a point mutation in intron 6 of the dystrophin gene and the other X chromosome carrying a repetitive element insertion in intron 13 of the dystrophin gene. Although the direct cause of death was uncertain, it might likely be due to sudden cardiac death as has been seen in Duchenne muscular dystrophy patients. This case demonstrated dystrophinopathy in female dogs that have no ameliorating normal X chromosome.
Collapse
Affiliation(s)
- Jessica S Fortin
- Veterinary Medical Diagnostic Laboratory, University of Missouri, Columbia, MO, USA
| | - Chady H Hakim
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, USA.,National Center for Advancing Translational Sciences, NIH, Bethesda, MD, USA
| | - Scott Korte
- Office of Animal Resources, University of Missouri, Columbia, MO, USA
| | - N Nora Yang
- National Center for Advancing Translational Sciences, NIH, Bethesda, MD, USA
| | - Scott D Fitzgerald
- Veterinary Diagnostic Laboratory, Michigan State University, Lansing, MI, USA
| | - Gayle C Johnson
- Veterinary Medical Diagnostic Laboratory, University of Missouri, Columbia, MO, USA
| | - Bruce F Smith
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL, USA.,Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Dongsheng Duan
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, USA.,Department of Neurology, School of Medicine, University of Missouri, Columbia, MO, USA.,Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA.,Department of Biomedical, Biological & Chemical Engineering, College of Engineering, University of Missouri, Columbia, MO, USA
| |
Collapse
|
11
|
Nitahara-Kasahara Y, Kuraoka M, Guillermo PH, Hayashita-Kinoh H, Maruoka Y, Nakamura-Takahasi A, Kimura K, Takeda S, Okada T. Dental pulp stem cells can improve muscle dysfunction in animal models of Duchenne muscular dystrophy. Stem Cell Res Ther 2021; 12:78. [PMID: 33494794 PMCID: PMC7831244 DOI: 10.1186/s13287-020-02099-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/13/2020] [Indexed: 12/11/2022] Open
Abstract
Background Duchenne muscular dystrophy (DMD) is an inherited progressive disorder that causes skeletal and cardiac muscle deterioration with chronic inflammation. Dental pulp stem cells (DPSCs) are attractive candidates for cell-based strategies for DMD because of their immunosuppressive properties. Therefore, we hypothesized that systemic treatment with DPSCs might show therapeutic benefits as an anti-inflammatory therapy. Methods To investigate the potential benefits of DPSC transplantation for DMD, we examined disease progression in a DMD animal model, mdx mice, by comparing them with different systemic treatment conditions. The DPSC-treated model, a canine X-linked muscular dystrophy model in Japan (CXMDJ), which has a severe phenotype similar to that of DMD patients, also underwent comprehensive analysis, including histopathological findings, muscle function, and locomotor activity. Results We demonstrated a therapeutic strategy for long-term functional recovery in DMD using repeated DPSC administration. DPSC-treated mdx mice and CXMDJ showed no serious adverse events. MRI findings and muscle histology suggested that DPSC treatment downregulated severe inflammation in DMD muscles and demonstrated a milder phenotype after DPSC treatment. DPSC-treated models showed increased recovery in grip-hand strength and improved tetanic force and home cage activity. Interestingly, maintenance of long-term running capability and stabilized cardiac function was also observed in 1-year-old DPSC-treated CXMDJ. Conclusions We developed a novel strategy for the safe and effective transplantation of DPSCs for DMD recovery, which included repeated systemic injection to regulate inflammation at a young age. This is the first report on the efficacy of a systemic DPSC treatment, from which we can propose that DPSCs may play an important role in delaying the DMD disease phenotype.
Collapse
Affiliation(s)
- Yuko Nitahara-Kasahara
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Tokyo, Japan. .,Division of Cell and Gene Therapy, Nippon Medical School, Bunkyo-city, Tokyo, Japan. .,Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan.
| | - Mutsuki Kuraoka
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan.,Laboratory of Experimental Animal Science, Nippon Veterinary and Life Science University, Musashino, Tokyo, Japan
| | - Posadas Herrera Guillermo
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Tokyo, Japan.,Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, Institute of Medical Science, The University of Tokyo, Minato-city, Tokyo, Japan
| | - Hiromi Hayashita-Kinoh
- Division of Cell and Gene Therapy, Nippon Medical School, Bunkyo-city, Tokyo, Japan.,Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan.,Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, Institute of Medical Science, The University of Tokyo, Minato-city, Tokyo, Japan
| | - Yasunobu Maruoka
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Tokyo, Japan
| | | | - Koichi Kimura
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan.,Department of General Medicine, The Institute of Medical Science, The University of Tokyo, Minato-city, Tokyo, Japan
| | - Shin'ichi Takeda
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Takashi Okada
- Division of Cell and Gene Therapy, Nippon Medical School, Bunkyo-city, Tokyo, Japan. .,Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan. .,Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, Institute of Medical Science, The University of Tokyo, Minato-city, Tokyo, Japan.
| |
Collapse
|
12
|
Sugihara H, Kimura K, Yamanouchi K, Teramoto N, Okano T, Daimon M, Morita H, Takenaka K, Shiga T, Tanihata J, Aoki Y, Inoue-Nagamura T, Yotsuyanagi H, Komuro I. Age-Dependent Echocardiographic and Pathologic Findings in a Rat Model with Duchenne Muscular Dystrophy Generated by CRISPR/Cas9 Genome Editing. Int Heart J 2020; 61:1279-1284. [PMID: 33191355 DOI: 10.1536/ihj.20-372] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Duchenne muscular dystrophy (DMD) is X-linked recessive myopathy caused by mutations in the dystrophin gene. Although conventional treatments have improved their prognosis, inevitable progressive cardiomyopathy is still the leading cause of death in patients with DMD. To explore novel therapeutic options, a suitable animal model with heart involvement has been warranted.We have generated a rat model with an out-of-frame mutation in the dystrophin gene using CRISPR/Cas9 genome editing (DMD rats). The aim of this study was to evaluate their cardiac functions and pathologies to provide baseline data for future experiments developing treatment options for DMD.In comparison with age-matched wild rats, 6-month-old DMD rats showed no significant differences by echocardiographic evaluations. However, 10-month-old DMD rats showed significant deterioration in left ventricular (LV) fractional shortening (P = 0.024), and in tissue Doppler peak systolic velocity (Sa) at the LV lateral wall (P = 0.041) as well as at the right ventricular (RV) free-wall (P = 0.004). These functional findings were consistent with the fibrotic distributions by histological analysis.Although the cardiac phenotype was milder than anticipated, DMD rats showed similar distributions and progression of heart involvement to those of patients with DMD. This animal may be a useful model with which to develop effective drugs and to understand the underlying mechanisms of progressive heart failure in patients with DMD.
Collapse
Affiliation(s)
- Hidetoshi Sugihara
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo
| | - Koichi Kimura
- The Institute of Medical Science, The University of Tokyo.,Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo
| | - Keitaro Yamanouchi
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo
| | - Naomi Teramoto
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo
| | - Tomoko Okano
- Department of Laboratory Medicine, The University of Tokyo Hospital
| | - Masao Daimon
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo.,Department of Laboratory Medicine, The University of Tokyo Hospital
| | - Hiroyuki Morita
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo
| | - Katsu Takenaka
- Department of Laboratory Medicine, The University of Tokyo Hospital
| | - Takanori Shiga
- Department of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo
| | - Jun Tanihata
- Department of Molecular Therapy, National Center of Neurology and Psychiatry
| | - Yoshitsugu Aoki
- Department of Molecular Therapy, National Center of Neurology and Psychiatry
| | | | | | - Issei Komuro
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo
| |
Collapse
|
13
|
Barthélémy I, Hitte C, Tiret L. The Dog Model in the Spotlight: Legacy of a Trustful Cooperation. J Neuromuscul Dis 2020; 6:421-451. [PMID: 31450509 PMCID: PMC6918919 DOI: 10.3233/jnd-190394] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Dogs have long been used as a biomedical model system and in particular as a preclinical proof of concept for innovative therapies before translation to humans. A recent example of the utility of this animal model is the promising myotubularin gene delivery in boys affected by X-linked centronuclear myopathy after successful systemic, long-term efficient gene therapy in Labrador retrievers. Mostly, this is due to unique features that make dogs an optimal system. The continuous emergence of spontaneous inherited disorders enables the identification of reliable complementary molecular models for human neuromuscular disorders (NMDs). Dogs’ characteristics including size, lifespan and unprecedented medical care level allow a comprehensive longitudinal description of diseases. Moreover, the highly similar pathogenic mechanisms with human patients yield to translational robustness. Finally, interindividual phenotypic heterogeneity between dogs helps identifying modifiers and anticipates precision medicine issues. This review article summarizes the present list of molecularly characterized dog models for NMDs and provides an exhaustive list of the clinical and paraclinical assays that have been developed. This toolbox offers scientists a sensitive and reliable system to thoroughly evaluate neuromuscular function, as well as efficiency and safety of innovative therapies targeting these NMDs. This review also contextualizes the model by highlighting its unique genetic value, shaped by the long-term coevolution of humans and domesticated dogs. Because the dog is one of the most protected research animal models, there is considerable opposition to include it in preclinical projects, posing a threat to the use of this model. We thus discuss ethical issues, emphasizing that unlike many other models, the dog also benefits from its contribution to comparative biomedical research with a drastic reduction in the prevalence of morbid alleles in the breeding stock and an improvement in medical care.
Collapse
Affiliation(s)
- Inès Barthélémy
- U955 - IMRB, Team 10 - Biology of the neuromuscular system, Inserm, UPEC, EFS, École nationale vétérinaire d'Alfort, Maisons-Alfort, France
| | - Christophe Hitte
- CNRS, University of Rennes 1, UMR 6290, IGDR, Faculty of Medicine, SFR Biosit, Rennes, France
| | - Laurent Tiret
- U955 - IMRB, Team 10 - Biology of the neuromuscular system, Inserm, UPEC, EFS, École nationale vétérinaire d'Alfort, Maisons-Alfort, France
| |
Collapse
|
14
|
Ghaleh B, Barthélemy I, Sambin L, Bizé A, Hittinger L, Blot S, Su JB. Alteration in Left Ventricular Contractile Function Develops in Puppies With Duchenne Muscular Dystrophy. J Am Soc Echocardiogr 2020; 33:120-129.e1. [DOI: 10.1016/j.echo.2019.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 01/17/2023]
|
15
|
Maruyama R, Aoki Y, Takeda S, Yokota T. In Vivo Evaluation of Multiple Exon Skipping with Peptide-PMOs in Cardiac and Skeletal Muscles in Dystrophic Dogs. Methods Mol Biol 2019; 1828:365-379. [PMID: 30171554 DOI: 10.1007/978-1-4939-8651-4_23] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Exon skipping is an emerging approach to treating Duchenne muscular dystrophy (DMD), one of the most common lethal genetic disorders. Exon skipping uses synthetic antisense oligonucleotides (AONs) to splice out frame-disrupting exon(s) of DMD mRNA to restore the reading frame of the gene products and produce truncated yet functional proteins. The FDA conditionally approved the first exon-skipping AON, called eteplirsen (brand name ExonDys51), targeting exon 51 of the DMD gene, in late 2016. Using a cocktail of AONs, multiple exons can be skipped, which can theoretically treat 80-90% of patients with DMD. Although the success of multiple exon skipping in a DMD dog model has made a significant impact on the development of therapeutics for DMD, unmodified AONs such as phosphorodiamidate morpholino oligomers (PMOs) have little efficacy in cardiac muscles. Here, we describe our technique of intravenous injection of a cocktail of peptide-conjugated PMOs (PPMOs) to skip multiple exons, exons 6 and 8, in both skeletal and cardiac muscles in dystrophic dogs and the evaluation of the efficacy and toxicity.
Collapse
Affiliation(s)
- Rika Maruyama
- Department of Medical Genetics, University of Alberta Faculty of Medicine and Dentistry, Edmonton, AB, Canada
| | - Yoshitsugu Aoki
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Shin'ichi Takeda
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan.
| | - Toshifumi Yokota
- Department of Medical Genetics, University of Alberta Faculty of Medicine and Dentistry, Edmonton, AB, Canada. .,The Friends of Garrett Cumming Research and Muscular Dystrophy Canada HM Toupin Neurological Science Endowed Research Chair, Edmonton, AB, Canada.
| |
Collapse
|
16
|
Nakamura A. Mutation-Based Therapeutic Strategies for Duchenne Muscular Dystrophy: From Genetic Diagnosis to Therapy. J Pers Med 2019; 9:jpm9010016. [PMID: 30836656 PMCID: PMC6462977 DOI: 10.3390/jpm9010016] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 02/22/2019] [Accepted: 02/22/2019] [Indexed: 02/06/2023] Open
Abstract
Duchenne and Becker muscular dystrophy (DMD/BMD) are X-linked muscle disorders caused by mutations of the DMD gene, which encodes the subsarcolemmal protein dystrophin. In DMD, dystrophin is not expressed due to a disruption in the reading frame of the DMD gene, resulting in a severe phenotype. Becker muscular dystrophy exhibits a milder phenotype, having mutations that maintain the reading frame and allow for the production of truncated dystrophin. To date, various therapeutic approaches for DMD have been extensively developed. However, the pathomechanism is quite complex despite it being a single gene disorder, and dystrophin is expressed not only in a large amount of skeletal muscle but also in cardiac, vascular, intestinal smooth muscle, and nervous system tissue. Thus, the most appropriate therapy would be complementation or restoration of dystrophin expression, such as gene therapy using viral vectors, readthrough therapy, or exon skipping therapy. Among them, exon skipping therapy with antisense oligonucleotides can restore the reading frame and yield the conversion of a severe phenotype to one that is mild. In this paper, I present the significance of molecular diagnosis and the development of mutation-based therapeutic strategies to complement or restore dystrophin expression.
Collapse
Affiliation(s)
- Akinori Nakamura
- Department of Neurology, National Hospital Organization, Matsumoto Medical Center, 2-20-30 Murai-machi Minami, Matsumoto 399-8701, Japan.
- Third Department of Medicine, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto 390-8621, Japan.
| |
Collapse
|
17
|
Lim KRQ, Echigoya Y, Nagata T, Kuraoka M, Kobayashi M, Aoki Y, Partridge T, Maruyama R, Takeda S, Yokota T. Efficacy of Multi-exon Skipping Treatment in Duchenne Muscular Dystrophy Dog Model Neonates. Mol Ther 2018; 27:76-86. [PMID: 30448197 DOI: 10.1016/j.ymthe.2018.10.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 10/14/2018] [Accepted: 10/16/2018] [Indexed: 12/12/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is caused by mutations in DMD, which codes for dystrophin. Because the progressive and irreversible degeneration of muscle occurs from childhood, earlier therapy is required to prevent dystrophic progression. Exon skipping by antisense oligonucleotides called phosphorodiamidate morpholino oligomers (PMOs), which restores the DMD reading frame and dystrophin expression, is a promising candidate for use in neonatal patients, yet the potential remains unclear. Here, we investigate the systemic efficacy and safety of early exon skipping in dystrophic dog neonates. Intravenous treatment of canine X-linked muscular dystrophy in Japan dogs with a 4-PMO cocktail resulted in ∼3%-27% in-frame exon 6-9 skipping and dystrophin restoration across skeletal muscles up to 14% of healthy levels. Histopathology was ameliorated with the reduction of fibrosis and/or necrosis area and centrally nucleated fibers, significantly in the diaphragm. Treatment induced cardiac multi-exon skipping, though dystrophin rescue was not detected. Functionally, treatment led to significant improvement in the standing test. Toxicity was not observed from blood tests. This is the first study to demonstrate successful multi-exon skipping treatment and significant functional improvement in dystrophic dogs. Early treatment was most beneficial for respiratory muscles, with implications for addressing pulmonary malfunction in patients.
Collapse
Affiliation(s)
- Kenji Rowel Q Lim
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G2H7, Canada
| | - Yusuke Echigoya
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G2H7, Canada; Laboratory of Biomedical Science, Department of Veterinary Medicine, Nihon University, Fujisawa, Kanagawa 252-0880, Japan
| | - Tetsuya Nagata
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8502, Japan
| | - Mutsuki Kuraoka
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8502, Japan
| | - Masanori Kobayashi
- Department of Reproduction, Nippon Veterinary and Life Science University, Musashino, Tokyo 180-0023, Japan
| | - Yoshitsugu Aoki
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8502, Japan
| | - Terence Partridge
- Research Center for Genetic Medicine, Children's National Medical Center, Washington, DC 20010, USA; Department of Integrative Systems Biology, George Washington University School of Medicine, Washington, DC 20010, USA
| | - Rika Maruyama
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G2H7, Canada
| | - Shin'ichi Takeda
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8502, Japan.
| | - Toshifumi Yokota
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G2H7, Canada; Muscular Dystrophy Canada Research Chair, Edmonton, AB T6G2H7, Canada.
| |
Collapse
|
18
|
Shrader SM, Jung S, Denney TS, Smith BF. Characterization of Australian Labradoodle dystrophinopathy. Neuromuscul Disord 2018; 28:927-937. [PMID: 30286978 DOI: 10.1016/j.nmd.2018.08.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 08/05/2018] [Accepted: 08/23/2018] [Indexed: 12/22/2022]
Abstract
In humans, dystrophin mutations cause the X-linked recessive disorder known as Duchenne muscular dystrophy (DMD). These mutations result in skeletal and cardiac muscle damage with mortality increasingly associated with cardiomyopathy. We have identified a novel dystrophin mutation in exon 21 in a line of Australian Labradoodles; affected dogs develop progressive clinical signs including poor weight gain and weight loss, gait abnormalities, exercise intolerance, skeletal muscle atrophy, macroglossa, ptyalism, dysphagia, kyphosis, and a plantigrade stance. Echocardiographic abnormalities include hyperechoic foci in the left ventricular papillary muscles, septal hypokinesis, and decreased left ventricular systolic and diastolic volume and internal diameter. Holter recordings found a Mobitz type II second-degree atrioventricular (AV) block in one affected dog. Analysis of phosphocreatine-to-ATP ratios (PCr/ATP) (obtained via cardiac magnetic resonance imaging and spectroscopy evaluation), found no statistically significant difference in the mean PCr/ATP between groups. Histopathologic skeletal muscle changes included fibrofatty infiltration, myocyte degeneration, necrosis, and regeneration, lymphohistiocytic inflammation, and mineralization; cardiac changes were limited to a focal area of mineralization adjacent to the sinoatrial node in the dog with a second-degree AV block. Due to rapidly progressive clinical signs, a severe phenotype, and potential for cardiac involvement, Australian Labradoodle dystrophinopathy may be a useful model to further study DMD pathogenesis.
Collapse
Affiliation(s)
- Stephanie M Shrader
- Department of Pathobiology, Auburn University College of Veterinary Medicine, Auburn, AL 36849, USA.
| | - SeungWoo Jung
- Department of Clinical Sciences, Auburn University College of Veterinary Medicine, Auburn, AL 36849, USA
| | - Thomas S Denney
- Department of Electrical and Computer Engineering, Auburn University, Auburn, AL 36849, USA; Auburn University MRI Research Center, Auburn, AL 36849, USA
| | - Bruce F Smith
- Department of Pathobiology, Auburn University College of Veterinary Medicine, Auburn, AL 36849, USA; Scott-Ritchey Research Center, Auburn University College of Veterinary Medicine, Auburn, AL 36849, USA
| |
Collapse
|
19
|
Systemic Delivery of Morpholinos to Skip Multiple Exons in a Dog Model of Duchenne Muscular Dystrophy. Methods Mol Biol 2018; 1565:201-213. [PMID: 28364245 DOI: 10.1007/978-1-4939-6817-6_17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Exon-skipping therapy is an emerging approach that uses synthetic DNA-like molecules called antisense oligonucleotides (AONs) to splice out frame-disrupting parts of mRNA, restore the reading frame, and produce truncated yet functional proteins. Multiple exon skipping utilizing a cocktail of AONs can theoretically treat 80-90% of patients with Duchenne muscular dystrophy (DMD). The success of multiple exon skipping by the systemic delivery of a cocktail of AONs called phosphorodiamidate morpholino oligomers (PMOs) in a DMD dog model has made a significant impact on the development of therapeutics for DMD, leading to clinical trials of PMO-based drugs. Here, we describe the systemic delivery of a cocktail of PMOs to skip multiple exons in dystrophic dogs and the evaluation of the efficacies and toxicity in vivo.
Collapse
|
20
|
Moving towards successful exon-skipping therapy for Duchenne muscular dystrophy. J Hum Genet 2017; 62:871-876. [DOI: 10.1038/jhg.2017.57] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 03/28/2017] [Accepted: 05/01/2017] [Indexed: 01/15/2023]
|
21
|
Effects of systemic multiexon skipping with peptide-conjugated morpholinos in the heart of a dog model of Duchenne muscular dystrophy. Proc Natl Acad Sci U S A 2017; 114:4213-4218. [PMID: 28373570 DOI: 10.1073/pnas.1613203114] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a lethal genetic disorder caused by an absence of the dystrophin protein in bodywide muscles, including the heart. Cardiomyopathy is a leading cause of death in DMD. Exon skipping via synthetic phosphorodiamidate morpholino oligomers (PMOs) represents one of the most promising therapeutic options, yet PMOs have shown very little efficacy in cardiac muscle. To increase therapeutic potency in cardiac muscle, we tested a next-generation morpholino: arginine-rich, cell-penetrating peptide-conjugated PMOs (PPMOs) in the canine X-linked muscular dystrophy in Japan (CXMDJ) dog model of DMD. A PPMO cocktail designed to skip dystrophin exons 6 and 8 was injected intramuscularly, intracoronarily, or intravenously into CXMDJ dogs. Intravenous injections with PPMOs restored dystrophin expression in the myocardium and cardiac Purkinje fibers, as well as skeletal muscles. Vacuole degeneration of cardiac Purkinje fibers, as seen in DMD patients, was ameliorated in PPMO-treated dogs. Although symptoms and functions in skeletal muscle were not ameliorated by i.v. treatment, electrocardiogram abnormalities (increased Q-amplitude and Q/R ratio) were improved in CXMDJ dogs after intracoronary or i.v. administration. No obvious evidence of toxicity was found in blood tests throughout the monitoring period of one or four systemic treatments with the PPMO cocktail (12 mg/kg/injection). The present study reports the rescue of dystrophin expression and recovery of the conduction system in the heart of dystrophic dogs by PPMO-mediated multiexon skipping. We demonstrate that rescued dystrophin expression in the Purkinje fibers leads to the improvement/prevention of cardiac conduction abnormalities in the dystrophic heart.
Collapse
|
22
|
Schneider SM, Coleman AE, Guo LJ, Tou S, Keene BW, Kornegay JN. Suspected acute myocardial infarction in a dystrophin-deficient dog. Neuromuscul Disord 2016; 26:361-6. [PMID: 27105608 DOI: 10.1016/j.nmd.2016.02.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 01/01/2016] [Accepted: 02/01/2016] [Indexed: 10/22/2022]
Abstract
Golden retriever muscular dystrophy (GRMD) is a model for the genetically homologous human disease, Duchenne muscular dystrophy (DMD). Unlike the mildly affected mdx mouse, GRMD recapitulates the severe DMD phenotype. In addition to skeletal muscle involvement, DMD boys develop cardiomyopathy. While the cardiomyopathy of DMD is typically slowly progressive, rare early episodes of acute cardiac decompensation, compatible with myocardial infarction, have been described. We report here a 7-month-old GRMD dog with an apparent analogous episode of myocardial infarction. The dog presented with acute signs of cardiac disease, including tachyarrhythmia, supraventricular premature complexes, and femoral pulse deficits. Serum cardiac biomarkers, cardiac-specific troponin I (cTnI) and N-terminal prohormone of B-type natriuretic peptide (NT-proBNP), were markedly increased. Echocardiography showed areas of hyperechoic myocardial enhancement, typical of GRMD cardiomyopathy. Left ventricular dyskinesis and elevated cTnI were suggestive of acute myocardial damage/infarction. Over a 3-year period, progression to a severe dilated phenotype was observed.
Collapse
Affiliation(s)
- Sarah Morar Schneider
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, United States
| | - Amanda Erickson Coleman
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, 1052 William Moore Drive, Raleigh, NC 27607, United States
| | - Lee-Jae Guo
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, United States; Texas A&M Institute for Preclinical Studies, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, United States
| | - Sandra Tou
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, 1052 William Moore Drive, Raleigh, NC 27607, United States
| | - Bruce W Keene
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, 1052 William Moore Drive, Raleigh, NC 27607, United States
| | - Joe N Kornegay
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, United States; Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, United States; Texas A&M Institute for Preclinical Studies, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, United States; Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina-Chapel Hill, Chapel Hill, NC 27607, United States; Department of Neurology, School of Medicine, University of North Carolina-Chapel Hill, Chapel Hill, NC 27607, United States.
| |
Collapse
|
23
|
McGreevy JW, Hakim CH, McIntosh MA, Duan D. Animal models of Duchenne muscular dystrophy: from basic mechanisms to gene therapy. Dis Model Mech 2015; 8:195-213. [PMID: 25740330 PMCID: PMC4348559 DOI: 10.1242/dmm.018424] [Citation(s) in RCA: 316] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a progressive muscle-wasting disorder. It is caused by loss-of-function mutations in the dystrophin gene. Currently, there is no cure. A highly promising therapeutic strategy is to replace or repair the defective dystrophin gene by gene therapy. Numerous animal models of DMD have been developed over the last 30 years, ranging from invertebrate to large mammalian models. mdx mice are the most commonly employed models in DMD research and have been used to lay the groundwork for DMD gene therapy. After ~30 years of development, the field has reached the stage at which the results in mdx mice can be validated and scaled-up in symptomatic large animals. The canine DMD (cDMD) model will be excellent for these studies. In this article, we review the animal models for DMD, the pros and cons of each model system, and the history and progress of preclinical DMD gene therapy research in the animal models. We also discuss the current and emerging challenges in this field and ways to address these challenges using animal models, in particular cDMD dogs.
Collapse
Affiliation(s)
- Joe W McGreevy
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Chady H Hakim
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Mark A McIntosh
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Dongsheng Duan
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA Department of Neurology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| |
Collapse
|
24
|
Yu X, Bao B, Echigoya Y, Yokota T. Dystrophin-deficient large animal models: translational research and exon skipping. Am J Transl Res 2015; 7:1314-1331. [PMID: 26396664 PMCID: PMC4568789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 07/11/2015] [Indexed: 06/05/2023]
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked recessive genetic disorder caused by mutations in the dystrophin gene. Affecting approximately 1 in 3,600-9337 boys, DMD patients exhibit progressive muscle degeneration leading to fatality as a result of heart or respiratory failure. Despite the severity and prevalence of the disease, there is no cure available. While murine models have been successfully used in illustrating the mechanisms of DMD, their utility in DMD research is limited due to their mild disease phenotypes such as lack of severe skeletal muscle and cardiac symptoms. To address the discrepancy between the severity of disease displayed by murine models and human DMD patients, dystrophin-deficient dog models with a splice site mutation in intron 6 were established. Examples of these are Golden Retriever muscular dystrophy and beagle-based Canine X-linked muscular dystrophy. These large animal models are widely employed in therapeutic DMD research due to their close resemblance to the severity of human patient symptoms. Recently, genetically tailored porcine models of DMD with deleted exon 52 were developed by our group and others, and can potentially act as a new large animal model. While therapeutic outcomes derived from these large animal models can be more reliably extrapolated to DMD patients, a comprehensive understanding of these models is still needed. This paper will discuss recent progress and future directions of DMD studies with large animal models such as canine and porcine models.
Collapse
Affiliation(s)
- Xinran Yu
- Department of Medical Genetics, School of Human Development, Faculty of Medicine and Dentistry, University of AlbertaEdmonton, AB, Canada T6G 2H7
| | - Bo Bao
- Department of Medical Genetics, School of Human Development, Faculty of Medicine and Dentistry, University of AlbertaEdmonton, AB, Canada T6G 2H7
| | - Yusuke Echigoya
- Department of Medical Genetics, School of Human Development, Faculty of Medicine and Dentistry, University of AlbertaEdmonton, AB, Canada T6G 2H7
| | - Toshifumi Yokota
- Department of Medical Genetics, School of Human Development, Faculty of Medicine and Dentistry, University of AlbertaEdmonton, AB, Canada T6G 2H7
- Muscular Dystrophy Canada Research Chair, University of AlbertaEdmonton, AB, Canada T6G 2H7
| |
Collapse
|
25
|
Kornegay JN, Spurney CF, Nghiem PP, Brinkmeyer-Langford CL, Hoffman EP, Nagaraju K. Pharmacologic management of Duchenne muscular dystrophy: target identification and preclinical trials. ILAR J 2015; 55:119-49. [PMID: 24936034 DOI: 10.1093/ilar/ilu011] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked human disorder in which absence of the protein dystrophin causes degeneration of skeletal and cardiac muscle. For the sake of treatment development, over and above definitive genetic and cell-based therapies, there is considerable interest in drugs that target downstream disease mechanisms. Drug candidates have typically been chosen based on the nature of pathologic lesions and presumed underlying mechanisms and then tested in animal models. Mammalian dystrophinopathies have been characterized in mice (mdx mouse) and dogs (golden retriever muscular dystrophy [GRMD]). Despite promising results in the mdx mouse, some therapies have not shown efficacy in DMD. Although the GRMD model offers a higher hurdle for translation, dogs have primarily been used to test genetic and cellular therapies where there is greater risk. Failed translation of animal studies to DMD raises questions about the propriety of methods and models used to identify drug targets and test efficacy of pharmacologic intervention. The mdx mouse and GRMD dog are genetically homologous to DMD but not necessarily analogous. Subcellular species differences are undoubtedly magnified at the whole-body level in clinical trials. This problem is compounded by disparate cultures in clinical trials and preclinical studies, pointing to a need for greater rigor and transparency in animal experiments. Molecular assays such as mRNA arrays and genome-wide association studies allow identification of genetic drug targets more closely tied to disease pathogenesis. Genes in which polymorphisms have been directly linked to DMD disease progression, as with osteopontin, are particularly attractive targets.
Collapse
|
26
|
Intra-amniotic rAAV-mediated microdystrophin gene transfer improves canine X-linked muscular dystrophy and may induce immune tolerance. Mol Ther 2015; 23:627-37. [PMID: 25586688 DOI: 10.1038/mt.2015.5] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 01/02/2015] [Indexed: 12/14/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a severe congenital disease due to mutations in the dystrophin gene. Supplementation of dystrophin using recombinant adenoassociated virus vector has promise as a treatment of DMD, although therapeutic benefit of the truncated dystrophin still remains to be elucidated. Besides, host immune responses against the vector as well as transgene products have been denoted in the clinical gene therapy studies. Here, we transduced dystrophic dogs fetuses to investigate the therapeutic effects of an AAV vector expressing microdystrophin under conditions of immune tolerance. rAAV-CMV-microdystrophin and a rAAV-CAG-luciferase were injected into the amniotic fluid surrounding fetuses. We also reinjected rAAV9-CMV-microdystrophin into the jugular vein of an infant dystrophic dog to induce systemic expression of microdystrophin. Gait and cardiac function significantly improved in the rAAV-microdystrophin-injected dystrophic dog, suggesting that an adequate treatment of rAAV-microdystrophin with immune modulation induces successful long-term transgene expression to analyze improved dystrophic phenotype.
Collapse
|
27
|
Echigoya Y, Yokota T. Skipping multiple exons of dystrophin transcripts using cocktail antisense oligonucleotides. Nucleic Acid Ther 2013; 24:57-68. [PMID: 24380394 DOI: 10.1089/nat.2013.0451] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is one of the most common and lethal genetic disorders, with 20,000 children per year born with DMD globally. DMD is caused by mutations in the dystrophin (DMD) gene. Antisense-mediated exon skipping therapy is a promising therapeutic approach that uses short DNA-like molecules called antisense oligonucleotides (AOs) to skip over/splice out the mutated part of the gene to produce a shortened but functional dystrophin protein. One major challenge has been its limited applicability. Multiple exon skipping has recently emerged as a potential solution. Indeed, many DMD patients need exon skipping of multiple exons in order to restore the reading frame, depending on how many base pairs the mutated exon(s) and adjacent exons have. Theoretically, multiple exon skipping could be used to treat approximately 90%, 80%, and 98% of DMD patients with deletion, duplication, and nonsense mutations, respectively. In addition, multiple exon skipping could be used to select deletions that optimize the functionality of the truncated dystrophin protein. The proof of concept of systemic multiple exon skipping using a cocktail of AOs has been demonstrated in dystrophic dog and mouse models. Remaining challenges include the insufficient efficacy of systemic treatment, especially for therapies that target the heart, and limited long-term safety data. Here we review recent preclinical developments in AO-mediated multiple exon skipping and discuss the remaining challenges.
Collapse
Affiliation(s)
- Yusuke Echigoya
- 1 Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta , Edmonton, Alberta, Canada
| | | |
Collapse
|
28
|
Ramadasan-Nair R, Gayathri N, Mishra S, Sunitha B, Mythri RB, Nalini A, Subbannayya Y, Harsha HC, Kolthur-Seetharam U, Srinivas Bharath MM. Mitochondrial alterations and oxidative stress in an acute transient mouse model of muscle degeneration: implications for muscular dystrophy and related muscle pathologies. J Biol Chem 2013; 289:485-509. [PMID: 24220031 DOI: 10.1074/jbc.m113.493270] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Muscular dystrophies (MDs) and inflammatory myopathies (IMs) are debilitating skeletal muscle disorders characterized by common pathological events including myodegeneration and inflammation. However, an experimental model representing both muscle pathologies and displaying most of the distinctive markers has not been characterized. We investigated the cardiotoxin (CTX)-mediated transient acute mouse model of muscle degeneration and compared the cardinal features with human MDs and IMs. The CTX model displayed degeneration, apoptosis, inflammation, loss of sarcolemmal complexes, sarcolemmal disruption, and ultrastructural changes characteristic of human MDs and IMs. Cell death caused by CTX involved calcium influx and mitochondrial damage both in murine C2C12 muscle cells and in mice. Mitochondrial proteomic analysis at the initial phase of degeneration in the model detected lowered expression of 80 mitochondrial proteins including subunits of respiratory complexes, ATP machinery, fatty acid metabolism, and Krebs cycle, which further decreased in expression during the peak degenerative phase. The mass spectrometry (MS) data were supported by enzyme assays, Western blot, and histochemistry. The CTX model also displayed markers of oxidative stress and a lowered glutathione reduced/oxidized ratio (GSH/GSSG) similar to MDs, human myopathies, and neurogenic atrophies. MS analysis identified 6 unique oxidized proteins from Duchenne muscular dystrophy samples (n = 6) (versus controls; n = 6), including two mitochondrial proteins. Interestingly, these mitochondrial proteins were down-regulated in the CTX model thereby linking oxidative stress and mitochondrial dysfunction. We conclude that mitochondrial alterations and oxidative damage significantly contribute to CTX-mediated muscle pathology with implications for human muscle diseases.
Collapse
|
29
|
Cardiac structure and function in female carriers of a canine model of Duchenne muscular dystrophy. Res Vet Sci 2012; 94:610-7. [PMID: 23231955 DOI: 10.1016/j.rvsc.2012.09.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 09/21/2012] [Accepted: 09/29/2012] [Indexed: 01/16/2023]
Abstract
This investigation tested the hypothesis that carriers of golden retriever muscular dystrophy (GRMD), a genetically homologous condition of Duchenne muscular dystrophy (DMD), have quantifiable abnormalities in myocardial function, structure, or cardiac rhythm. Eleven GRMD carriers and four matched controls had cardiac evaluations and postmortem examinations. 24-h ECG Holter monitoring disclosed ventricular ectopy in 10 of 11 carriers and 2 of 4 controls. Conventional echocardiography failed to demonstrate significant differences between carriers and controls in systolic function. All carriers had multifocal, minimal to marked myofiber necrosis, fibrosis, mineralization, inflammation, and/or fatty change in their hearts. Immunohistochemistry revealed a mosaic dystrophin deficiency in scattered cardiac myofibers in all carriers. No controls had cardiac histologic lesions; all had uniform dystrophin staining. Despite cardiac mosaic dystrophin expression and degenerative cardiac lesions, GRMD carriers at up to 3 years of age could not be distinguished statistically from normal controls by echocardiography or 24-h Holter monitoring.
Collapse
|
30
|
Kornegay JN, Bogan JR, Bogan DJ, Childers MK, Li J, Nghiem P, Detwiler DA, Larsen CA, Grange RW, Bhavaraju-Sanka RK, Tou S, Keene BP, Howard JF, Wang J, Fan Z, Schatzberg SJ, Styner MA, Flanigan KM, Xiao X, Hoffman EP. Canine models of Duchenne muscular dystrophy and their use in therapeutic strategies. Mamm Genome 2012; 23:85-108. [PMID: 22218699 DOI: 10.1007/s00335-011-9382-y] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 11/29/2011] [Indexed: 01/16/2023]
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked recessive disorder in which the loss of dystrophin causes progressive degeneration of skeletal and cardiac muscle. Potential therapies that carry substantial risk, such as gene- and cell-based approaches, must first be tested in animal models, notably the mdx mouse and several dystrophin-deficient breeds of dogs, including golden retriever muscular dystrophy (GRMD). Affected dogs have a more severe phenotype, in keeping with that of DMD, so may better predict disease pathogenesis and treatment efficacy. Various phenotypic tests have been developed to characterize disease progression in the GRMD model. These biomarkers range from measures of strength and joint contractures to magnetic resonance imaging. Some of these tests are routinely used in clinical veterinary practice, while others require specialized equipment and expertise. By comparing serial measurements from treated and untreated groups, one can document improvement or delayed progression of disease. Potential treatments for DMD may be broadly categorized as molecular, cellular, or pharmacologic. The GRMD model has increasingly been used to assess efficacy of a range of these therapies. A number of these studies have provided largely general proof-of-concept for the treatment under study. Others have demonstrated efficacy using the biomarkers discussed. Importantly, just as symptoms in DMD vary among patients, GRMD dogs display remarkable phenotypic variation. Though confounding statistical analysis in preclinical trials, this variation offers insight regarding the role that modifier genes play in disease pathogenesis. By correlating functional and mRNA profiling results, gene targets for therapy development can be identified.
Collapse
Affiliation(s)
- Joe N Kornegay
- Department of Pathology and Laboratory Medicine, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Fine DM, Shin JH, Yue Y, Volkmann D, Leach SB, Smith BF, McIntosh M, Duan D. Age-matched comparison reveals early electrocardiography and echocardiography changes in dystrophin-deficient dogs. Neuromuscul Disord 2011; 21:453-61. [PMID: 21570848 PMCID: PMC3298689 DOI: 10.1016/j.nmd.2011.03.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 03/02/2011] [Accepted: 03/28/2011] [Indexed: 01/09/2023]
Abstract
The absence of dystrophin in the heart leads to Duchenne cardiomyopathy. Dystrophin-deficient dogs represent a critical model to translate novel therapies developed in mice to humans. Unfortunately, little is known about cardiophysiology changes in these dogs. We performed prospective electrocardiographic and echocardiographic examinations at 3, 6 and 12 months of age in four normal and three affected dogs obtained from the same litter. Affected dogs showed growth retardation and serum creatine kinase elevation. Necropsy confirmed cardiac dystrophin deficiency and histopathology. Q/R ratio elevation and diastolic left ventricular (LV) internal diameter reduction were the most consistent findings in affected dogs at all ages. At 6 and 12 months, dystrophic dogs also showed significant reduction of PR intervals, LV end diastolic/systolic volumes and systolic LV internal diameters. Epicardial and endocardial slope times were significantly reduced in affected dogs at 12 months. These results establish the baseline for evaluating experimental therapies in the future.
Collapse
Affiliation(s)
- Deborah M. Fine
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, The University of Missouri, Columbia, MO, USA
| | - Jin-Hong Shin
- Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri, Columbia, MO, USA
| | - Yongping Yue
- Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri, Columbia, MO, USA
| | - Dietrich Volkmann
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, The University of Missouri, Columbia, MO, USA
| | - Stacey B. Leach
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, The University of Missouri, Columbia, MO, USA
| | - Bruce F. Smith
- Scott-Ritchey Research Center and the Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Mark McIntosh
- Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri, Columbia, MO, USA
| | - Dongsheng Duan
- Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri, Columbia, MO, USA
| |
Collapse
|
32
|
James J, Kinnett K, Wang Y, Ittenbach RF, Benson DW, Cripe L. Electrocardiographic abnormalities in very young Duchenne muscular dystrophy patients precede the onset of cardiac dysfunction. Neuromuscul Disord 2011; 21:462-7. [DOI: 10.1016/j.nmd.2011.04.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Revised: 03/14/2011] [Accepted: 04/15/2011] [Indexed: 10/18/2022]
|
33
|
Takano H, Fujii Y, Yugeta N, Takeda S, Wakao Y. Assessment of left ventricular regional function in affected and carrier dogs with Duchenne muscular dystrophy using speckle tracking echocardiography. BMC Cardiovasc Disord 2011; 11:23. [PMID: 21609496 PMCID: PMC3118958 DOI: 10.1186/1471-2261-11-23] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Accepted: 05/25/2011] [Indexed: 11/23/2022] Open
Abstract
Background Two-dimensional speckle tracking echocardiography (STE) is a relatively new method to detect regional myocardial dysfunction. To assess left ventricular (LV) regional myocardial dysfunction using STE in Duchenne muscular dystrophy model dogs (CXMDJ) without overt clinical signs of heart failure. Methods Six affected dogs, 8 carrier dogs with CXMDJ, and 8 control dogs were used. Conventional echocardiography, systolic and diastolic function by Doppler echocardiography, tissue Doppler imaging (TDI), and strain indices using STE, were assessed and compared among the 3 groups. Results Significant differences were seen in body weight, transmitral E wave and E' wave derived from TDI among the 3 groups. Although no significant difference was observed in any global strain indices, in segmental analysis, the peak radial strain rate during early diastole in posterior segment at chordae the tendineae level showed significant differences among the 3 groups. Conclusions The myocardial strain rate by STE served to detect the impaired cardiac diastolic function in CXMDJ without any obvious LV dilation or clinical signs. The radial strain rate may be a useful parameter to detect early myocardial impairment in CXMDJ.
Collapse
Affiliation(s)
- Hiroshi Takano
- Department of Surgery 1, School of Veterinary Medicine, Azabu University, Kanagawa, Japan
| | | | | | | | | |
Collapse
|
34
|
Mizuno H, Nakamura A, Aoki Y, Ito N, Kishi S, Yamamoto K, Sekiguchi M, Takeda S, Hashido K. Identification of muscle-specific microRNAs in serum of muscular dystrophy animal models: promising novel blood-based markers for muscular dystrophy. PLoS One 2011; 6:e18388. [PMID: 21479190 PMCID: PMC3068182 DOI: 10.1371/journal.pone.0018388] [Citation(s) in RCA: 152] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Accepted: 03/06/2011] [Indexed: 11/23/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a lethal X-linked disorder caused by mutations in the dystrophin gene, which encodes a cytoskeletal protein, dystrophin. Creatine kinase (CK) is generally used as a blood-based biomarker for muscular disease including DMD, but it is not always reliable since it is easily affected by stress to the body, such as exercise. Therefore, more reliable biomarkers of muscular dystrophy have long been desired. MicroRNAs (miRNAs) are small, ∼22 nucleotide, noncoding RNAs which play important roles in the regulation of gene expression at the post-transcriptional level. Recently, it has been reported that miRNAs exist in blood. In this study, we hypothesized that the expression levels of specific serum circulating miRNAs may be useful to monitor the pathological progression of muscular diseases, and therefore explored the possibility of these miRNAs as new biomarkers for muscular diseases. To confirm this hypothesis, we quantified the expression levels of miRNAs in serum of the dystrophin-deficient muscular dystrophy mouse model, mdx, and the canine X-linked muscular dystrophy in Japan dog model (CXMDJ), by real-time PCR. We found that the serum levels of several muscle-specific miRNAs (miR-1, miR-133a and miR-206) are increased in both mdx and CXMDJ. Interestingly, unlike CK levels, expression levels of these miRNAs in mdx serum are little influenced by exercise using treadmill. These results suggest that serum miRNAs are useful and reliable biomarkers for muscular dystrophy.
Collapse
Affiliation(s)
- Hideya Mizuno
- Administrative Section of Radiation Protection, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Akinori Nakamura
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Yoshitsugu Aoki
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
- Department of System Neuroscience, Medical Research Institute, Tokyo Medical and Dental School University Graduate School, Tokyo, Japan
| | - Naoki Ito
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
- Department of Biological Information, Tokyo Institute of Technology, Yokohama, Japan
| | - Soichiro Kishi
- Administrative Section of Radiation Protection, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Kazuhiro Yamamoto
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Masayuki Sekiguchi
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Shin'ichi Takeda
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Kazuo Hashido
- Administrative Section of Radiation Protection, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
- * E-mail:
| |
Collapse
|
35
|
Miyazato LG, Moraes JRE, Beretta DC, Kornegay JN. Muscular dystrophy in dogs: does the crossing of breeds influence disease phenotype? Vet Pathol 2011; 48:655-62. [PMID: 21233328 DOI: 10.1177/0300985810387070] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Golden Retriever (GR) muscular dystrophy is an inherited degenerative muscle disease that provides an excellent model for Duchenne muscular dystrophy in humans. This study defined the histopathologic lesions, including the distribution of type I and II muscle fibers (FTI and FTII), in 12 dystrophic and 3 nondystrophic dogs between 7 and 15 months of age. The authors were interested in studying the influence on disease phenotype from crossing the base GR breed with Yellow Labrador Retrievers. The dystrophic dogs were divided according to breed: GRs and Golden Labrador Retrievers (GLRs). On hematoxylin and eosin staining, histopathologic lesions were more severe in GRs than GLRs. Six of eight GR muscles (75%) had a severe lesion grade (grade 3). In contrast, seven GLR muscles (87.5%) had mild lesions (grade 2), and only one had severe lesions (grade 3). Changes in fiber-type distribution were more pronounced in GRs versus GLRs. FTI:FTII ratio inversion was observed in three dystrophic GRs but only one GLR. The mean diameter of FTI and FTII was smaller in GRs and GLRs than in nondystrophic dogs (P < .01). The FTI of five GR muscles (62.5%) were larger than those of GLRs, whereas only one GLR muscle was larger (P < .05). The differential was less pronounced for FTII, with four GR muscles being larger and three GLR being larger. Observations indicate that crossing the base GR breed with Labrador Retrievers lessened the severity of the GR muscular dystrophy phenotype.
Collapse
Affiliation(s)
- L G Miyazato
- São Paulo State University, Department of Veterinary Pathology, Jaboticabal, São Paulo, Brazil
| | | | | | | |
Collapse
|
36
|
Mammalian models of Duchenne Muscular Dystrophy: pathological characteristics and therapeutic applications. J Biomed Biotechnol 2011; 2011:184393. [PMID: 21274260 PMCID: PMC3022202 DOI: 10.1155/2011/184393] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Accepted: 12/19/2010] [Indexed: 11/23/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a devastating X-linked muscle disorder characterized by muscle wasting which is caused by mutations in the DMD gene. The DMD gene encodes the sarcolemmal protein dystrophin, and loss of dystrophin causes muscle degeneration and necrosis. Thus far, therapies for this disorder are unavailable. However, various therapeutic trials based on gene therapy, exon skipping, cell therapy, read through therapy, or pharmaceutical agents have been conducted extensively. In the development of therapy as well as elucidation of pathogenesis in DMD, appropriate animal models are needed. Various animal models of DMD have been identified, and mammalian (murine, canine, and feline) models are indispensable for the examination of the mechanisms of pathogenesis and the development of therapies. Here, we review the pathological features of DMD and therapeutic applications, especially of exon skipping using antisense oligonucleotides and gene therapies using viral vectors in murine and canine models of DMD.
Collapse
|
37
|
Morini AC, Brolio MP, Millano AM, Braggio LZ, Martins DS, Perecin F, Ambrósio CE, Miglino MA. Existem diferenças nos parâmetros hematológicos e bioquímicos séricos entre fêmeas normais e portadoras do modelo experimental GRMD (Golden Retriever Muscular Dystrophy)? PESQUISA VETERINÁRIA BRASILEIRA 2011. [DOI: 10.1590/s0100-736x2011000100015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A proposta deste estudo foi avaliar se existem alterações nos padrões hematológicos e bioquímicos de cadelas da raça Golden Retriever portadoras do gene da distrofia muscular progressiva em comparação aos valores obtidos em cadelas não portadoras de mesma raça e idade. Foram analisados 33 animais, distribuídos em dois grupos, um composto por 19 cadelas Golden Retrievers não portadoras (GRNP) e outro composto por 14 cadelas Golden Retrievers portadoras do gene da distrofia muscular (GRP). Os dois grupos foram submetidos aos mesmos testes hematológicos e bioquímicos, com a mesma frequência e durante o mesmo intervalo de tempo. Apesar de existir diferença estatisticamente significativa entre os grupos para alguns parâmetros hematológicos avaliados, todos os resultados obtidos estavam de acordo com os valores de referência utilizados. Na avaliação dos parâmetros bioquímicos séricos a dosagem de ALT no grupo GRNP ficou levemente acima da média, porém sem grandes significados clínicos A CK também apresentou níveis elevados no grupo GRP, devido à degeneração e necrose muscular característicos da doença, as alterações encontradas nessa análise já eram esperadas. Os demais parâmetros não se alteraram.
Collapse
|
38
|
Pellegrino A, Yamaki FL, Pereira RCE, Oliveira VMD, Larsson MHMA. Padronização de parâmetros eletrocardiográficos de cães da raça Golden Retriever clinicamente sadios. PESQUISA VETERINARIA BRASILEIRA 2010. [DOI: 10.1590/s0100-736x2010001200014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A distrofia muscular de Duchenne (DMD) em humanos é uma alteração neuromuscular hereditária, de caráter recessivo, ligada ao cromossomo X e causada pela ausência ou disfunção da distrofina. Clinicamente, caracteriza-se por grave alteração na musculatura esquelética, resultando em morte precoce do indivíduo acometido. Em cães da raça Golden Retriever, a mutação que leva à distrofia muscular ocorre espontaneamente e a extensa homologia entre a patogênese da DMD e da distrofia muscular do Golden Retriever permite qualificar o cão como o principal substituto de humanos nos testes clínicos de novas terapias. O miocárdio deficiente em distrofina é mais vulnerável à sobrecarga de pressão e os pacientes com DMD podem desenvolver cardiomiopatia dilatada, hipertensão arterial e o eletrocardiograma pode se apresentar distintamente anormal. No presente estudo, foram avaliados exames eletrocardiográficos de 38 cães da raça Golden Retriever clinicamente sadios (20 animais de até 12 meses de idade e 18 animais entre 12 e 36 meses de idade), com a finalidade de se obter parâmetros para a padronização do eletrocardiograma nessa referida raça, o que futuramente poderá servir de referência na identificação de cães portadores ou afetados pela distrofia muscular. Os valores eletrocardiográficos obtidos encontraram-se dentro dos valores de normalidade e referência para as diferentes raças de cães; e as variáveis peso e idade alteraram significativamente a freqüência cardíaca e a amplitude do complexo QRS.
Collapse
|
39
|
Ameen V, Robson LG. Experimental models of duchenne muscular dystrophy: relationship with cardiovascular disease. Open Cardiovasc Med J 2010; 4:265-77. [PMID: 21258567 PMCID: PMC3024556 DOI: 10.2174/1874192401004010265] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Revised: 09/28/2010] [Accepted: 10/04/2010] [Indexed: 01/15/2023] Open
Abstract
Almost every boy that has Duchenne Muscular Dystrophy (DMD) will develop cardiac problems. Whereas, it used to be respiratory problems that was the main cause of death in these DMD boys; with the advent of better respiratory care it is now the cardiac involvement that is becoming the most common cause of their death. Once the heart is affected, there is progressive deterioration in the function of the heart over time. The main problem is the death of the cardiomyocytes. The cause of the cardiomyocyte death is due to the loss of dystrophin, this makes the sarcolemma more susceptible to damage, and leads to a cascade of calcium influx, calcium activated proteases and ultimately the death of the cardiomyocyte. The dead cardiomyocytes are replaced by fibrotic tissue, which results in a dilated cardiomyopathy (DCM) developing, which begins in the base of the left ventricle and progresses to involve the entire left ventricle. The treatments used for the DMD cardiomyopathy are based on ones designed for other forms of cardiac weakness and include ACE-inhibitors and β-blockers. New therapies based around the pathophysiology in DMD are now being introduced. This review will look at the pathophysiology of the cardiac problems in DMD and how the various animal models that are available can be used to design new treatment options for DMD boys.
Collapse
Affiliation(s)
- Venus Ameen
- Queen Mary University of London, Barts & The London School of Medicine and Dentistry, Blizard Institute of Cell and Molecular Science, Turner Street, London E1 2AD, UK
| | | |
Collapse
|
40
|
Walmsley GL, Arechavala-Gomeza V, Fernandez-Fuente M, Burke MM, Nagel N, Holder A, Stanley R, Chandler K, Marks SL, Muntoni F, Shelton GD, Piercy RJ. A duchenne muscular dystrophy gene hot spot mutation in dystrophin-deficient cavalier king charles spaniels is amenable to exon 51 skipping. PLoS One 2010; 5:e8647. [PMID: 20072625 PMCID: PMC2800183 DOI: 10.1371/journal.pone.0008647] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Accepted: 12/10/2009] [Indexed: 11/26/2022] Open
Abstract
Background Duchenne muscular dystrophy (DMD), which afflicts 1 in 3500 boys, is one of the most common genetic disorders of children. This fatal degenerative condition is caused by an absence or deficiency of dystrophin in striated muscle. Most affected patients have inherited or spontaneous deletions in the dystrophin gene that disrupt the reading frame resulting in unstable truncated products. For these patients, restoration of the reading frame via antisense oligonucleotide-mediated exon skipping is a promising therapeutic approach. The major DMD deletion “hot spot” is found between exons 45 and 53, and skipping exon 51 in particular is predicted to ameliorate the dystrophic phenotype in the greatest number of patients. Currently the mdx mouse is the most widely used animal model of DMD, although its mild phenotype limits its suitability in clinical trials. The Golden Retriever muscular dystrophy (GRMD) model has a severe phenotype, but due to its large size, is expensive to use. Both these models have mutations in regions of the dystrophin gene distant from the commonly mutated DMD “hot spot”. Methodology/Principal Findings Here we describe the severe phenotype, histopathological findings, and molecular analysis of Cavalier King Charles Spaniels with dystrophin-deficient muscular dystrophy (CKCS-MD). The dogs harbour a missense mutation in the 5′ donor splice site of exon 50 that results in deletion of exon 50 in mRNA transcripts and a predicted premature truncation of the translated protein. Antisense oligonucleotide-mediated skipping of exon 51 in cultured myoblasts from an affected dog restored the reading frame and protein expression. Conclusions/Significance Given the small size of the breed, the amiable temperament and the nature of the mutation, we propose that CKCS-MD is a valuable new model for clinical trials of antisense oligonucleotide-induced exon skipping and other therapeutic approaches for DMD.
Collapse
Affiliation(s)
- Gemma L. Walmsley
- Department of Veterinary Clinical Sciences, Royal Veterinary College, London, United Kingdom
| | | | - Marta Fernandez-Fuente
- Department of Veterinary Clinical Sciences, Royal Veterinary College, London, United Kingdom
- Dubowitz Neuromuscular Centre, Institute of Child Health, University College London, United Kingdom
| | - Margaret M. Burke
- Pathology Laboratory, Harefield Hospital, Royal Brompton & Harefield NHS Foundation Trust, Harefield, Middlesex, United Kingdom
| | - Nicole Nagel
- Alphapet Veterinary Clinic, Bognor Regis, West Sussex, United Kingdom
| | - Angela Holder
- Pathology and Infectious Diseases, Royal Veterinary College, London, United Kingdom
| | - Rachael Stanley
- Department of Veterinary Clinical Sciences, Royal Veterinary College, London, United Kingdom
| | - Kate Chandler
- Department of Veterinary Clinical Sciences, Royal Veterinary College, London, United Kingdom
| | - Stanley L. Marks
- Department of Medicine & Epidemiology, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre, Institute of Child Health, University College London, United Kingdom
| | - G. Diane Shelton
- Department of Pathology, School of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Richard J. Piercy
- Department of Veterinary Clinical Sciences, Royal Veterinary College, London, United Kingdom
- Dubowitz Neuromuscular Centre, Institute of Child Health, University College London, United Kingdom
- * E-mail:
| |
Collapse
|
41
|
Yokota T, Lu QL, Partridge T, Kobayashi M, Nakamura A, Takeda S, Hoffman E. Efficacy of systemic morpholino exon-skipping in Duchenne dystrophy dogs. Ann Neurol 2009; 65:667-76. [PMID: 19288467 DOI: 10.1002/ana.21627] [Citation(s) in RCA: 291] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE Duchenne muscular dystrophy (DMD) is caused by the inability to produce dystrophin protein at the myofiber membrane. A method to rescue dystrophin production by antisense oligonucleotides, termed exon-skipping, has been reported for the mdx mouse and in four DMD patients by local intramuscular injection. We sought to test efficacy and toxicity of intravenous oligonucleotide (morpholino)-induced exon skipping in the DMD dog model. METHODS We tested a series of antisense drugs singly and as cocktails, both in primary cell culture, and two in vivo delivery methods (intramuscular injection and systemic intravenous injection). The efficiency and efficacy of multiexon skipping (exons 6-9) were tested at the messenger RNA, protein, histological, and clinical levels. RESULTS Weekly or biweekly systemic intravenous injections with a three-morpholino cocktail over the course of 5 to 22 weeks induced therapeutic levels of dystrophin expression throughout the body, with an average of about 26% normal levels. This was accompanied by reduced inflammatory signals examined by magnetic resonance imaging and histology, improved or stabilized timed running tests, and clinical symptoms. Blood tests indicated no evidence of toxicity. INTERPRETATION This is the first report of widespread rescue of dystrophin expression to therapeutic levels in the dog model of DMD. This study also provides a proof of concept for systemic multiexon-skipping therapy. Use of cocktails of morpholino, as shown here, allows broader application of this approach to a greater proportion of DMD patients (90%) and also offers the prospect of selecting deletions that optimize the functionality of the dystrophin protein.
Collapse
Affiliation(s)
- Toshifumi Yokota
- Research Center for Genetic Medicine, Children's National Medical Center, Washington, DC 20010, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Kobayashi M, Nakamura A, Hasegawa D, Fujita M, Orima H, Takeda S. Evaluation of dystrophic dog pathology by fat-suppressed T2-weighted imaging. Muscle Nerve 2009; 40:815-26. [DOI: 10.1002/mus.21384] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
43
|
Abstract
Duchenne muscular dystrophy (DMD) is a lethal muscle disorder caused by mutations in the DMD gene for which no mutation-targeted therapy has been available thus far. However, exon-skipping mediated by antisense oligonucleotides (AOs), which are short single-strand DNAs, has considerable potential for DMD therapy, and clinical trials in DMD patients are currently underway. This exon-skipping therapy changes an out-of-frame mutation into an in-frame mutation, aiming at conversion of a severe DMD phenotype into a mild phenotype by restoration of truncated dystrophin expression. Recently, stable and less-toxic AOs have been developed, and their higher efficacy was confirmed in mice and dog models of DMD. In this review, we briefly summarize the genetic basis of DMD and the potential and perspectives of exon skipping as a promising therapy for this disease.
Collapse
Affiliation(s)
- Akinori Nakamura
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo, Japan
| | | |
Collapse
|
44
|
Urasawa N, Wada MR, Machida N, Yuasa K, Shimatsu Y, Wakao Y, Yuasa S, Sano T, Nonaka I, Nakamura A, Takeda S. Selective vacuolar degeneration in dystrophin-deficient canine Purkinje fibers despite preservation of dystrophin-associated proteins with overexpression of Dp71. Circulation 2008; 117:2437-48. [PMID: 18458171 DOI: 10.1161/circulationaha.107.739326] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Respiratory support therapy significantly improves life span in patients with Duchenne muscular dystrophy; cardiac-related fatalities, including lethal arrhythmias, then become a crucial issue. It is therefore important to more thoroughly understand cardiac involvement, especially pathology of the conduction system, in the larger Duchenne muscular dystrophy animal models such as dystrophic dogs. METHODS AND RESULTS When 10 dogs with canine X-linked muscular dystrophy in Japan (CXMD(J)) were examined at the age of 1 to 13 months, dystrophic changes of the ventricular myocardium were not evident; however, Purkinje fibers showed remarkable vacuolar degeneration as early as 4 months of age. The degeneration of CXMD(J) Purkinje fibers was coincident with overexpression of Dp71 at the sarcolemma and translocation of mu-calpain to the cell periphery near the sarcolemma or in the vacuoles. Immunoblotting of the microdissected fraction showed that mu-calpain-sensitive proteins such as desmin and cardiac troponin-I or -T were selectively degraded in the CXMD(J) Purkinje fibers. Utrophin was highly upregulated in the earlier stage of CXMD(J) Purkinje fibers, but the expression was dislocated when vacuolar degeneration was recognized at 4 months of age. Nevertheless, the expression of dystrophin-associated proteins alpha-, beta-, gamma-, and delta-sarcoglycans and beta-dystroglycan was well maintained at the sarcolemma of Purkinje fibers. CONCLUSIONS Selective vacuolar degeneration of Purkinje fibers was found in the early stages of dystrophin deficiency. Dislocation of utrophin besides upregulation of Dp71 can be involved with this pathology. The degeneration of Purkinje fibers can be associated with the distinct deep Q waves in ECG and fatal arrhythmia seen in dystrophin deficiency.
Collapse
Affiliation(s)
- Nobuyuki Urasawa
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-higashi, Kodaira, Tokyo 187-8502, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Grounds MD, Radley HG, Lynch GS, Nagaraju K, De Luca A. Towards developing standard operating procedures for pre-clinical testing in the mdx mouse model of Duchenne muscular dystrophy. Neurobiol Dis 2008; 31:1-19. [PMID: 18499465 DOI: 10.1016/j.nbd.2008.03.008] [Citation(s) in RCA: 247] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2008] [Revised: 03/20/2008] [Accepted: 03/24/2008] [Indexed: 11/19/2022] Open
Abstract
This review discusses various issues to consider when developing standard operating procedures for pre-clinical studies in the mdx mouse model of Duchenne muscular dystrophy (DMD). The review describes and evaluates a wide range of techniques used to measure parameters of muscle pathology in mdx mice and identifies some basic techniques that might comprise standardised approaches for evaluation. While the central aim is to provide a basis for the development of standardised procedures to evaluate efficacy of a drug or a therapeutic strategy, a further aim is to gain insight into pathophysiological mechanisms in order to identify other therapeutic targets. The desired outcome is to enable easier and more rigorous comparison of pre-clinical data from different laboratories around the world, in order to accelerate identification of the best pre-clinical therapies in the mdx mouse that will fast-track translation into effective clinical treatments for DMD.
Collapse
Affiliation(s)
- Miranda D Grounds
- School of Anatomy and Human Biology, the University of Western Australia, Perth, Western Australia, Australia.
| | | | | | | | | |
Collapse
|
46
|
Yuasa K, Nakamura A, Hijikata T, Takeda S. Dystrophin deficiency in canine X-linked muscular dystrophy in Japan (CXMDJ) alters myosin heavy chain expression profiles in the diaphragm more markedly than in the tibialis cranialis muscle. BMC Musculoskelet Disord 2008; 9:1. [PMID: 18182116 PMCID: PMC2257929 DOI: 10.1186/1471-2474-9-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2007] [Accepted: 01/09/2008] [Indexed: 11/10/2022] Open
Abstract
Background Skeletal muscles are composed of heterogeneous collections of muscle fiber types, the arrangement of which contributes to a variety of functional capabilities in many muscle types. Furthermore, skeletal muscles can adapt individual myofibers under various circumstances, such as disease and exercise, by changing fiber types. This study was performed to examine the influence of dystrophin deficiency on fiber type composition of skeletal muscles in canine X-linked muscular dystrophy in Japan (CXMDJ), a large animal model for Duchenne muscular dystrophy. Methods We used tibialis cranialis (TC) muscles and diaphragms of normal dogs and those with CXMDJ at various ages from 1 month to 3 years old. For classification of fiber types, muscle sections were immunostained with antibodies against fast, slow, or developmental myosin heavy chain (MHC), and the number and size of these fibers were analyzed. In addition, MHC isoforms were detected by gel electrophoresis. Results In comparison with TC muscles of CXMDJ, the number of fibers expressing slow MHC increased markedly and the number of fibers expressing fast MHC decreased with growth in the affected diaphragm. In populations of muscle fibers expressing fast and/or slow MHC(s) but not developmental MHC of CXMDJ muscles, slow MHC fibers were predominant in number and showed selective enlargement. Especially, in CXMDJ diaphragms, the proportions of slow MHC fibers were significantly larger in populations of myofibers with non-expression of developmental MHC. Analyses of MHC isoforms also indicated a marked increase of type I and decrease of type IIA isoforms in the affected diaphragm at ages over 6 months. In addition, expression of developmental (embryonic and/or neonatal) MHC decreased in the CXMDJ diaphragm in adults, in contrast to continuous high-level expression in affected TC muscle. Conclusion The CXMDJ diaphragm showed marked changes in fiber type composition unlike TC muscles, suggesting that the affected diaphragm may be effectively adapted toward dystrophic stress by switching to predominantly slow fibers. Furthermore, the MHC expression profile in the CXMDJ diaphragm was markedly different from that in mdx mice, indicating that the dystrophic dog is a more appropriate model than a murine one, to investigate the mechanisms of respiratory failure in DMD.
Collapse
Affiliation(s)
- Katsutoshi Yuasa
- Department of Anatomy and Cell Biology, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, Nishi-tokyo, Tokyo 202-8585, Japan.
| | | | | | | |
Collapse
|
47
|
Yokota T, Pistilli E, Duddy W, Nagaraju K. Potential of oligonucleotide-mediated exon-skipping therapy for Duchenne muscular dystrophy. Expert Opin Biol Ther 2007; 7:831-42. [PMID: 17555369 DOI: 10.1517/14712598.7.6.831] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Many of the mutations associated with Duchenne muscular dystrophy can potentially be rescued by exon-skipping therapy, targeting selected exons of prespliced mRNA for the dystrophin gene with antisense oligonucleotides, thereby restoring reading frames. The recent development of antisense oligonucleotides with higher stability and lower toxicity, such as morpholinos, has made it possible to restore dystrophin efficiently in dystrophic mice in vivo with no obvious side effects. There seems little doubt that such exon-skipping therapy is destined to proceed to the clinical application stage in patients with Duchenne muscular dystrophy. One of the remaining issues to be addressed is the skipping of multiple exons because such multi-exon skipping therapy could expand the potential patient target population to include 80% of those with duplication mutations and 90% of those with deletion mutations. At present, this multi-exon skipping strategy is being investigated in dystrophic dogs as well as dystrophic mice. There are several challenges that still need to be overcome, including the low uptake of antisense oligonucleotides into the heart and the need to design efficient, nontoxic, cost-effective oligonucleotides. This review summarizes recent progress in exon-skipping therapy and discusses future perspectives with regard to human clinical trials.
Collapse
Affiliation(s)
- Toshifumi Yokota
- Children's National Medical Center, Research Center for Genetic Medicine, Washington, DC 20010, USA.
| | | | | | | |
Collapse
|