1
|
Aksoy-Ozer ZB, Bitirim CV, Turan B, Akcali KC. The Role of Zinc on Liver Fibrosis by Modulating ZIP14 Expression Throughout Epigenetic Regulatory Mechanisms. Biol Trace Elem Res 2024; 202:5094-5105. [PMID: 38221603 PMCID: PMC11442477 DOI: 10.1007/s12011-023-04057-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 12/31/2023] [Indexed: 01/16/2024]
Abstract
Zinc plays a pivotal role in tissue regeneration and maintenance being as a central cofactor in a plethora of enzymatic activities. Hypozincemia is commonly seen with chronic liver disease and is associated with an increased risk of liver fibrosis development and hepatocellular carcinoma. Previously favorable effects of zinc supplementation on liver fibrosis have been shown. However, the underlying mechanism of this effect is not elucidated. Liver fibrosis was induced in mice by using CCl4 injection, followed by treatment with zinc chloride (ZnCl2) both at fibrotic and sham groups, and their hepatocytes were isolated. Our results showed that the administration of ZnCl2 restored the depleted cytosolic zinc levels in the hepatocytes isolated from the fibrotic group. Also, alpha-smooth muscle actin (αSMA) expression in hepatocytes was decreased, indicating a reversal of the fibrotic process. Notably, ZIP14 expression significantly increased in the fibrotic group following ZnCl2 treatment, whereas in the sham group ZIP14 expression decreased. Chromatin immunoprecipitation (ChIP) experiments revealed an increased binding percentage of Metal-regulatory transcription factor 1 (MTF1) on ZIP14 promoter in the hepatocytes isolated from fibrotic mice compared to the sham group after ZnCl2 administration. In the same group, the binding percentage of the histone deacetylase HDAC4 on ZIP14 promoter decreased. Our results suggest that the ZnCl2 treatment ameliorates liver fibrosis by elevating intracellular zinc levels through MTF1-mediated regulation of ZIP14 expression and the reduction of ZIP14 deacetylation via HDAC4. The restoration of intracellular zinc concentrations and the modulation of ZIP14 expression by zinc orchestrated through MTF1 and HDAC4, appear to be essential determinants of the therapeutic response in hepatic fibrosis. These findings pave the way for potential novel interventions targeting zinc-related pathways for the treatment of liver fibrosis and associated conditions.
Collapse
Affiliation(s)
| | | | - Belma Turan
- Biophysics Department, Lokman Hekim University Medical School, Ankara, Turkey
| | - Kamil Can Akcali
- Ankara University Stem Cell Institute, Ankara, Turkey.
- Biophysics Department, Ankara University Medical School, Ankara, Turkey.
| |
Collapse
|
2
|
Liu C, Tang J, Chen Y, Zhang Q, Lin J, Wu S, Han J, Liu Z, Wu C, Zhuo Y, Li Y. Intracellular Zn 2+ promotes extracellular matrix remodeling in dexamethasone-treated trabecular meshwork. Am J Physiol Cell Physiol 2024; 326:C1293-C1307. [PMID: 38525543 DOI: 10.1152/ajpcell.00725.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/26/2024] [Accepted: 03/09/2024] [Indexed: 03/26/2024]
Abstract
Given the widespread application of glucocorticoids in ophthalmology, the associated elevation of intraocular pressure (IOP) has long been a vexing concern for clinicians, yet the underlying mechanisms remain inconclusive. Much of the discussion focuses on the extracellular matrix (ECM) of trabecular meshwork (TM). It is widely agreed that glucocorticoids impact the expression of matrix metalloproteinases (MMPs), leading to ECM deposition. Since Zn2+ is vital for MMPs, we explored its role in ECM alterations induced by dexamethasone (DEX). Our study revealed that in human TM cells treated with DEX, the level of intracellular Zn2+ significantly decreased, accompanied by impaired extracellular Zn2+ uptake. This correlated with changes in several Zrt-, Irt-related proteins (ZIPs) and metallothionein. ZIP8 knockdown impaired extracellular Zn2+ uptake, but Zn2+ chelation did not affect ZIP8 expression. Resembling DEX's effects, chelation of Zn2+ decreased MMP2 expression, increased the deposition of ECM proteins, and induced structural disarray of ECM. Conversely, supplementation of exogenous Zn2+ in DEX-treated cells ameliorated these outcomes. Notably, dietary zinc supplementation in mice significantly reduced DEX-induced IOP elevation and collagen content in TM, thereby rescuing the visual function of the mice. These findings underscore zinc's pivotal role in ECM regulation, providing a novel perspective on the pathogenesis of glaucoma.NEW & NOTEWORTHY Our study explores zinc's pivotal role in mitigating extracellular matrix dysregulation in the trabecular meshwork and glucocorticoid-induced ocular hypertension. We found that in human trabecular meshwork cells treated with dexamethasone, intracellular Zn2+ significantly decreased, accompanied by impaired extracellular Zn2+ uptake. Zinc supplementation rescues visual function by modulating extracellular matrix proteins and lowering intraocular pressure, offering a direction for further exploration in glaucoma management.
Collapse
Affiliation(s)
- Canying Liu
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceGuangzhouChina
| | - Jiahui Tang
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceGuangzhouChina
| | - Yuze Chen
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceGuangzhouChina
| | - Qi Zhang
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceGuangzhouChina
| | - Jicheng Lin
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceGuangzhouChina
| | - Siting Wu
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceGuangzhouChina
| | - Jiaxu Han
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceGuangzhouChina
| | - Zhe Liu
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceGuangzhouChina
| | - Caiqing Wu
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceGuangzhouChina
| | - Yehong Zhuo
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceGuangzhouChina
| | - Yiqing Li
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceGuangzhouChina
| |
Collapse
|
3
|
Anas M, Diniz WJS, Menezes ACB, Reynolds LP, Caton JS, Dahlen CR, Ward AK. Maternal Mineral Nutrition Regulates Fetal Genomic Programming in Cattle: A Review. Metabolites 2023; 13:metabo13050593. [PMID: 37233634 DOI: 10.3390/metabo13050593] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
Maternal mineral nutrition during the critical phases of fetal development may leave lifetime impacts on the productivity of an individual. Most research within the developmental origins of the health and disease (DOHaD) field is focused on the role of macronutrients in the genome function and programming of the developing fetus. On the other hand, there is a paucity of knowledge about the role of micronutrients and, specifically, minerals in regulating the epigenome of livestock species, especially cattle. Therefore, this review will address the effects of the maternal dietary mineral supply on the fetal developmental programming from the embryonic to the postnatal phases in cattle. To this end, we will draw a parallel between findings from our cattle model research with data from model animals, cell lines, and other livestock species. The coordinated role and function of different mineral elements in feto-maternal genomic regulation underlies the establishment of pregnancy and organogenesis and, ultimately, affects the development and functioning of metabolically important tissues, such as the fetal liver, skeletal muscle, and, importantly, the placenta. Through this review, we will delineate the key regulatory pathways involved in fetal programming based on the dietary maternal mineral supply and its crosstalk with epigenomic regulation in cattle.
Collapse
Affiliation(s)
- Muhammad Anas
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 36849, USA
| | | | - Ana Clara B Menezes
- Department of Animal Science, South Dakota State University, Brookings, SD 57007, USA
| | - Lawrence P Reynolds
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 36849, USA
| | - Joel S Caton
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 36849, USA
| | - Carl R Dahlen
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 36849, USA
| | - Alison K Ward
- Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| |
Collapse
|
4
|
Pochwat B, Misztak P, Masternak J, Bączyńska E, Bijata K, Roszkowska M, Bijata M, Włodarczyk J, Szafarz M, Wyska E, Muszyńska B, Krakowska A, Opoka W, Nowak G, Szewczyk B. Combined hyperforin and lanicemine treatment instead of ketamine or imipramine restores behavioral deficits induced by chronic restraint stress and dietary zinc restriction in mice. Front Pharmacol 2022; 13:933364. [PMID: 36091748 PMCID: PMC9448861 DOI: 10.3389/fphar.2022.933364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/18/2022] [Indexed: 11/29/2022] Open
Abstract
Clinical and preclinical studies show evidence that chronic stress or nutritional deficits in dietary zinc (Zn) intake may be risk factors for developing major depressive disorder (MDD). Furthermore, there may be possible links between low serum Zn levels and development of treatment-resistant depression. In the present work, we combined chronic restraint stress (CRS) and a low-zinc diet (ZnD) in mice and carried out a set of behavioral and biochemical studies. The mice were treated with four different antidepressant compounds, namely, ketamine, Ro 25–6981 (Ro), hyperforin and lanicemine (Hyp + Lan), and imipramine (IMI). We show that CRS or ZnD alone or a combination of CRS and ZnD (CRS + ZnD) induces anhedonia observed in the sucrose preference test (SPT). The behavioral effects of CRS were restored by ketamine or IMI. However, only Hyp + Lan restored the deficits in behavioral phenotype in mice subjected to CRS + ZnD. We also showed that the antidepressant-like effects observed in Hyp + Lan-treated CRS + ZnD mice were associated with changes in the morphology of the dendritic spines (restored physiological level) in the hippocampus (Hp). Finally, we studied the metabolism of ketamine and its brain absorption in CRS and CRS + ZnD mice. Our results suggest that CRS + ZnD does not alter the metabolism of ketamine to (2R,6R;2S,6S)-HNK; however, CRS + ZnD can induce altered bioavailability and distribution of ketamine in the Hp and frontal cortex (FC) in CRS + ZnD animals compared to the control and CRS groups.
Collapse
Affiliation(s)
- Bartłomiej Pochwat
- Department of Neurobiology, Maj Institute of Pharmacology Polish Academy of Sciences, Krakow, Poland
- *Correspondence: Bartłomiej Pochwat, ; Bernadeta Szewczyk,
| | - Paulina Misztak
- Department of Neurobiology, Maj Institute of Pharmacology Polish Academy of Sciences, Krakow, Poland
| | - Julia Masternak
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Warszawa, Poland
| | - Ewa Bączyńska
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Warszawa, Poland
| | - Krystian Bijata
- Faculty of Chemistry, University of Warsaw, Warszawa, Poland
| | - Matylda Roszkowska
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Warszawa, Poland
| | - Monika Bijata
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Warszawa, Poland
| | - Jakub Włodarczyk
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Warszawa, Poland
| | - Małgorzata Szafarz
- Department of Pharmacokinetics and Physical Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Elżbieta Wyska
- Department of Pharmacokinetics and Physical Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Bożena Muszyńska
- Department of Pharmaceutical Botany, Pharmacy Faculty, Jagiellonian University Medical College, Kraków, Poland
| | - Agata Krakowska
- Department of Inorganic and Analitycal Chemistry, Pharmacy Faculty, Jagiellonian University Medical College, Kraków, Poland
| | - Włodzimierz Opoka
- Department of Inorganic and Analitycal Chemistry, Pharmacy Faculty, Jagiellonian University Medical College, Kraków, Poland
| | - Gabriel Nowak
- Department of Neurobiology, Maj Institute of Pharmacology Polish Academy of Sciences, Krakow, Poland
| | - Bernadeta Szewczyk
- Department of Neurobiology, Maj Institute of Pharmacology Polish Academy of Sciences, Krakow, Poland
- *Correspondence: Bartłomiej Pochwat, ; Bernadeta Szewczyk,
| |
Collapse
|
5
|
Hepatic Homeostasis of Metal Ions Following Acute Repeated Stress Exposure in Rats. Antioxidants (Basel) 2021; 11:antiox11010085. [PMID: 35052588 PMCID: PMC8773239 DOI: 10.3390/antiox11010085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/22/2021] [Accepted: 12/28/2021] [Indexed: 01/25/2023] Open
Abstract
Essential metals such as copper, iron, and zinc are cofactors in various biological processes including oxygen utilisation, cell growth, and biomolecular synthesis. The homeostasis of these essential metals is carefully controlled through a system of protein transporters involved in the uptake, storage, and secretion. Some metal ions can be transformed by processes including reduction/oxidation (redox) reactions, and correspondingly, the breakdown of metal ion homeostasis can lead to formation of reactive oxygen and nitrogen species. We have previously demonstrated rapid biochemical responses to stress involving alterations in the redox state to generate free radicals and the resultant oxidative stress. However, the effects of stress on redox-active metals including iron and copper and redox-inert zinc have not been well characterised. Therefore, this study aims to examine the changes in these essential metals following exposure to short-term repeated stress, and to further elucidate the alterations in metal homeostasis through expression analysis of different metal transporters. Outbred male Wistar rats were exposed to unrestrained (control), 1 day, or 3 days of 6 h restraint stress (n = 8 per group). After the respective stress treatment, blood and liver samples were collected for the analysis of biometal concentrations and relative gene expression of metal transporter and binding proteins. Exposure to repeated restraint stress was highly effective in causing hepatic redox imbalance. Stress was also shown to induce hepatic metal redistribution, while modulating the mRNA levels of key metal transporters. Overall, this study is the first to characterise the gene expression profile of metal homeostasis following stress and provide insight into the changes occurring prior to the onset of chronic stress conditions.
Collapse
|
6
|
La X, Wang W, Zhang M, Liang L. Definition and Multiple Factors of Recurrent Spontaneous Abortion. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1300:231-257. [PMID: 33523437 DOI: 10.1007/978-981-33-4187-6_11] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Recurrent spontaneous abortion (RSA) is usually defined as three or more spontaneous abortions prior to 20-28 weeks gestation. RSA affects approximately 2-5% of all women of childbearing age, and it brings tremendous psychological and psychiatric trauma to the women and also results in economic burden. The causes could be female age, anatomical and chromosomal abnormalities, genetic, endocrinological, placental anomalies, infection, smoking and alcohol consumption, psychological factor, exposure to environmental factors such as heavy metal, environment pollution, and radiation.
Collapse
Affiliation(s)
- Xiaolin La
- Reproductive Medicine Center, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China.
| | - Wenjuan Wang
- Reproductive Medical Center, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, P.R. China
| | - Meng Zhang
- Reproductive Medicine Center, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Li Liang
- Reproductive Medical Center, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, P.R. China
| |
Collapse
|
7
|
Grzeszczak K, Kwiatkowski S, Kosik-Bogacka D. The Role of Fe, Zn, and Cu in Pregnancy. Biomolecules 2020; 10:E1176. [PMID: 32806787 PMCID: PMC7463674 DOI: 10.3390/biom10081176] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/05/2020] [Accepted: 08/05/2020] [Indexed: 12/15/2022] Open
Abstract
Iron (Fe), copper (Cu), and zinc (Zn) are microelements essential for the proper functioning of living organisms. These elements participatein many processes, including cellular metabolism and antioxidant and anti-inflammatory defenses, and also influence enzyme activity, regulate gene expression, and take part in protein synthesis. Fe, Cu, and Zn have a significant impact on the health of pregnant women and in the development of the fetus, as well as on the health of the newborn. A proper concentration of these elements in the body of women during pregnancy reduces the risk of complications such as anemia, induced hypertension, low birth weight, preeclampsia, and postnatal complications. The interactions between Fe, Cu, and Zn influence their availability due to their similar physicochemical properties. This most often occurs during intestinal absorption, where metal ions compete for binding sites with transport compounds. Additionally, the relationships between these ions have a great influence on the course of reactions in the tissues, as well as on their excretion, which can be stimulated or delayed. This review aims to summarize reports on the influence of Fe, Cu, and Zn on the course of single and multiple pregnancies, and to discuss the interdependencies and mechanisms occurring between Fe, Cu, and Zn.
Collapse
Affiliation(s)
- Konrad Grzeszczak
- Department of Biology and Medical Parasitology, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland;
| | - Sebastian Kwiatkowski
- Department of Obstetrics and Gynecology, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland;
| | - Danuta Kosik-Bogacka
- Independent Laboratory of Pharmaceutical Botany, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| |
Collapse
|
8
|
Lopresti AL. The Effects of Psychological and Environmental Stress on Micronutrient Concentrations in the Body: A Review of the Evidence. Adv Nutr 2020; 11:103-112. [PMID: 31504084 PMCID: PMC7442351 DOI: 10.1093/advances/nmz082] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 06/14/2019] [Accepted: 07/08/2019] [Indexed: 12/21/2022] Open
Abstract
Stress is the nonspecific response of the body to any demand for change. Excess or chronic psychological or environmental stress is associated with an increased risk of mental and physical diseases, with several mechanisms theorized to be associated with its detrimental effects. One underappreciated potential mechanism relates to the effects of psychological and environmental stress on micronutrient concentrations. Micronutrients (vitamins and minerals) are essential for optimal physical and mental function, with deficiencies associated with an array of diseases. In this article, animal and human studies investigating the effects of various psychological and environmental stressors on micronutrient concentrations are reviewed. In particular, the effects of psychological stress, sleep deprivation, and physical exercise on micronutrient concentrations and micronutrient excretion are summarized. Micronutrients identified in this review include magnesium, zinc, calcium, iron, and niacin. Overall, the bulk of evidence suggests stress can affect micronutrient concentrations, often leading to micronutrient depletion. However, before definitive conclusions about the effects of stress can be made, the impact of different stressors, stress severity, and acute versus chronic stress on micronutrient concentrations requires investigation. Moreover, the impact of stress on micronutrients in different populations varying in age, gender, and premorbid health status and the durability of changes after a stressor is resolved require examination. The medical, physical, and psychological implications of nutrient changes caused by a stressor also remain to be determined.
Collapse
Affiliation(s)
- Adrian L Lopresti
- School of Psychology and Exercise Science, Murdoch University, Perth, Australia; and Clinical Research Australia, Duncraig, Australia,Address correspondence to ALL (e-mail: )
| |
Collapse
|
9
|
Tian Y, Wu B, Li X, Jin X, Zhang F, Jiang C, Xu W, Li H, Wang H. The Resveratrol Alleviates the Hepatic Toxicity of CuSO 4 in the Rat. Biol Trace Elem Res 2019; 187:464-471. [PMID: 29980948 DOI: 10.1007/s12011-018-1398-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/24/2018] [Indexed: 02/07/2023]
Abstract
Cu is toxic to humans and other animals. Oxidative stress is an important mechanism involved in Cu toxicity. Resveratrol (RSV) is an antioxidative compound, so could counteract Cu toxicity. The aim of this study was to determine whether RSV protects the liver from the effects of CuSO4. Forty male Sprague-Dawley rats (5 weeks old, 110-120 g) were divided into four groups (n = 10 per group), a control group and groups treated with CuSO4 at a dose of 200 mg/kg body weight (BW), RSV at a dose of 15 mg/kg BW, and CuSO4 at a dose of 200 mg/kg BW and RSV at a dose of 15 mg/kg BW. The treatments were orally administered for 30 days. The livers were removed from the rats at the end of the study, and the cytochrome P450, cytochrome b5, Cu, Fe, Zn, glutathione peroxidase, superoxide dismutase, reactive oxygen species, aspartate aminotransferase, and alanine aminotransferase concentrations in the livers were determined. CuSO4 decreased the BW, liver weight, and cytochrome P450, cytochrome b5, Fe, Zn, glutathione peroxidase, and superoxide dismutase concentrations but increased the Cu, aspartate aminotransferase, alanine aminotransferase, and reactive oxygen species concentrations relative to the control group. RSV alleviated the toxic effects of CuSO4 on the liver, indicating that RSV attenuates CuSO4-induced liver injury by decreasing the liver transaminase concentration and oxidative stress, promoting antioxidative activity and cytochrome P450 enzymes, and maintaining balance in the trace element concentrations. The results indicate that RSV could be used to treat CuSO4 toxicity.
Collapse
Affiliation(s)
- Yaping Tian
- Department of Dermatology and Venerology of the First Hospital, Jilin University, Changchun, 130021, China
| | - Bing Wu
- Department of Neurosurgery of China-Japan Union Hospital, Jilin University, Changchun, 130033, China
- Key Laboratory of Radiobiology (Ministry of Health) of Public Health, Jilin University, Changchun, 130033, China
| | - Xiaoping Li
- Department of Pediatric Endocrinology of the First Hospital, Jilin University, Changchun, 130021, China
| | - Xuefei Jin
- Department of Urology of China-Japan Union Hospital, Jilin University, Changchun, 130033, China
| | - Fuqiang Zhang
- Science and Research Center of China-Japan Union Hospital, Jilin University, Changchun, 130033, China
| | - Chunyan Jiang
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300070, China
| | - Wenzhou Xu
- Department of Stomatology, Stomatological Hospital, Jilin University, Changchun, 130021, China
| | - Hang Li
- Department of Hepatobiliary and pancreatic surgery, China-Japan Union Hospital, Jilin University, Changchun, 130033, China
| | - Heyuan Wang
- Department of Endocrinology and Metabolism of the First Hospital, Jilin University, Changchun, 130021, China.
- Department of Immunology in College of Basic Medical Sciences, Jilin University, Changchun, 130021, China.
| |
Collapse
|
10
|
Role of Zinc and Selenium in Oxidative Stress and Immunosenescence: Implications for Healthy Aging and Longevity. HANDBOOK OF IMMUNOSENESCENCE 2019. [PMCID: PMC7121636 DOI: 10.1007/978-3-319-99375-1_66] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Aging is a complex process that includes gradual and spontaneous biochemical and physiological changes which contributes to a decline in performance and increased susceptibility to diseases. Zn and Se are essential trace elements that play a pivotal role in immune functions and antioxidant defense and, consequently, are claimed to play also a role in successful aging trajectories. Consistently with their nature of essential trace elements, a plethora of data obtained “in vitro” and “in vivo” (in humans and animal models) support the relevance of Zn and Se for both the innate and adoptive immune response. Moreover, Zn and Se are strictly involved in the synthesis and regulation of activity of proteins and enzymes, e.g., metallothioneins (MT) and glutathione peroxidase (GPX), that are necessary for our endogenous antioxidant response. This is clearly important to protect our cells from oxidative damage and to slow the decline of our immune system with aging. Age-related changes affecting tissue levels of Zn and Se may indicate that the risk of Zn and Se deficiency increases with aging. However, it is still unclear which of these changes can be the consequence of a “real deficiency” and which can be part of our physiological compensatory response to the accumulating damage occurring in aging. Furthermore, the upregulation of antioxidant proteins (Zn and Se dependent) may be a manifestation of self-induced oxidative stress. By the way, Zn and Se dependent proteins are modulated not only by nutritional status, but also by well-known hallmarks of aging that play antagonistic functions, such as the deregulated nutrient sensing pathways and cellular senescence. Thus, it is not an easy task to conduct Zn or Se supplementation in elderly and it is emerging consistent that these kind of supplementation requires an individualized approach. Anyway, there is consistent support that supplementation with Zn using doses around 10 mg/day is generally safe in elderly and may even improve part of immune performances in those subjects with a baseline deficiency. Regarding Se supplementation, it may induce both beneficial and detrimental effects on cellular immunity depending on the form of Se, supplemental dose, and delivery matrix. The nutritional association of supplements based on “Zn plus Se” is hypothesized to provide additional benefits, but this will likely need a more complex individualized approach. The improvement of our knowledge around screening and detection of Zn and Se deficiency in aging could lead to substantial benefits in terms of efficacy of nutritional supplements aimed at ameliorate performance and health in aging.
Collapse
|
11
|
Jarosz Ł, Marek A, Grądzki Z, Laskowska E, Kwiecień M. Effect of Zinc Sulfate and Zinc Glycine Chelate on Concentrations of Acute Phase Proteins in Chicken Serum and Liver Tissue. Biol Trace Elem Res 2019; 187:258-272. [PMID: 29675569 PMCID: PMC6314988 DOI: 10.1007/s12011-018-1346-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 04/10/2018] [Indexed: 01/13/2023]
Abstract
The aim of the study was to determine how inorganic and organic forms of zinc affect the concentrations of C-reactive protein (CRP), serum amyloid A (SAA), alpha-1-acid glycoprotein (α-1-AGP), haptoglobin (Hp), and transferrin (TRF) in the blood and liver tissue of 450 1-day-old Ross 308 chicken. Four experimental groups received one the following: inorganic zinc (ZnSO4), a zinc phytase enzyme supplement (ZnSO4-F), organic zinc in combination with glycine (Zn-Gly), or organic zinc supplemented with phytase (Zn-Gly-F). The chicken serum and liver homogenates were assayed using an ELISA kit. The results of the study showed statistically significantly higher serum and liver concentration of SAA in the group of birds that received zinc sulfate in comparison to the group of birds receiving zinc in organic form. A statistically significantly higher serum concentration of CRP and α-1-AGP was also noted in the group receiving zinc sulfate as compared to the Zn-Gly group. Comparison of the serum concentration of TRF between the supplemented groups showed a statistically significant increase in this parameter in the Zn-Gly-F group as compared to the ZSO4-F group. The increase in the serum concentration of Hp in all groups in comparison to the control may indicate stimulation of local immune mechanisms. The results of this study showed an increase in the concentrations of APPs such as AGP and TRF following the administration of zinc glycine chelates, which may demonstrate their effect on metabolic processes in the liver and on immunocompetent cells that regulate the intensity of the immune response.
Collapse
Affiliation(s)
- Łukasz Jarosz
- Department of Epizootiology and Clinic of Infectious Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Głęboka 30, 20-612 Lublin, Poland
| | - Agnieszka Marek
- Sub-Department of Preventive Veterinary and Avian Diseases, Institute of Biological Bases of Animal Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Głęboka 30, 20-612 Lublin, Poland
| | - Zbigniew Grądzki
- Department of Epizootiology and Clinic of Infectious Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Głęboka 30, 20-612 Lublin, Poland
| | - Ewa Laskowska
- Department of Epizootiology and Clinic of Infectious Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Głęboka 30, 20-612 Lublin, Poland
| | - Małgorzata Kwiecień
- Faculty of Biology and Animal Breeding, Institute of Animal Nutrition and Bromatology, Department of Animal Nutrition, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
| |
Collapse
|
12
|
Nakamura S, Shimazawa M, Hara H. Physiological Roles of Metallothioneins in Central Nervous System Diseases. Biol Pharm Bull 2018; 41:1006-1013. [DOI: 10.1248/bpb.b17-00856] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Shinsuke Nakamura
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University
| | - Masamitsu Shimazawa
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University
| | - Hideaki Hara
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University
| |
Collapse
|
13
|
Hua C, Geng Y, Chen Q, Niu L, Cai L, Tao S, Ni Y, Zhao R. Dexamethasone impacts zinc levels in goats by regulating zinc transportation in the colon and the metabolism in the liver. Anim Sci J 2018; 89:1296-1301. [PMID: 29943507 DOI: 10.1111/asj.13059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 05/22/2018] [Indexed: 11/28/2022]
Abstract
The aim of this study was to investigate the effects of dexamethasone (DEX) on zinc metabolism in goats. In this study, 10 goats were randomly divided into two groups. One group was injected with dexamethasone (Dex group) and the other group was injected with saline (Con group). Dex treatment significantly decreased hepatic zinc levels (p < .01) and increased Zn transporters 1 (ZNT-1) expression (p < .05). The concentration of zinc in the cecal and colonic contents was significantly increased (p < .05). However, zinc levels were increased only in the colon tissues (p < .05) but not in the cecal tissues (p > .05). A dramatic increase in Zrt-, Irt-related proteins 14 (ZIP-14) expression (p < .05) following Dex treatment was also observed and likely induced the elevated zinc levels in the colon, and a significant reduction in Zip-14 methylation (p < .05) may be responsible for the observed increase in Zip-14 expression. Together, these results indicate that Dex influences zinc homeostasis by increasing hepatic ZNT-1 and colonic ZIP-14 expression. Additionally, these results provide valuable information for the clinical application of Dex.
Collapse
Affiliation(s)
- Canfeng Hua
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, China
| | - Yali Geng
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, China
| | - Qu Chen
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, China
| | - Liqiong Niu
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, China
| | - Liuping Cai
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, China
| | - Shiyu Tao
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, China
| | - Yingdong Ni
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, China
| | - Ruqian Zhao
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
14
|
Kim NR, Kim KW, Kim HN, Song SW. Associations Between Serum Zinc Levels and Mental Health: Findings from the 2010 Korean National Health and Nutrition Examination Survey. Biol Trace Elem Res 2018; 181:192-198. [PMID: 28508187 DOI: 10.1007/s12011-017-1051-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 05/07/2017] [Indexed: 01/09/2023]
Abstract
Mental health problems are a major public health issue worldwide, and zinc may be associated with psychiatric symptoms, but such associations have not been investigated extensively. This study was conducted to evaluate the relationship between serum zinc levels and mental health problems in Korean adults. We used data from the Korean National Health and Nutrition Examination Survey V-1, a cross-sectional survey of Korean civilians. Data from 1748 subjects were analyzed. Serum zinc levels did not differ significantly according to psychiatric symptoms including sleep duration, stress, depressed mood, suicidal ideation, and whether respondents sought psychiatric consultation. The frequencies and odds ratios of psychiatric symptoms according to serum zinc tertiles were not significantly associated after adjusting for age, smoking, alcohol consumption, physical activity, body mass index, total body fat, and renal function and for daily fat, carbohydrate, and protein intake. Serum zinc levels may not be associated with psychiatric symptoms in Korean adults without psychiatric disorders.
Collapse
Affiliation(s)
- Na-Rae Kim
- Department of Family Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, 93, Jungbu-daero, Paldal-gu, Suwon-si, Gyeonggi-do, 16247, Republic of Korea
| | - Ko-Woon Kim
- Department of Family Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, 93, Jungbu-daero, Paldal-gu, Suwon-si, Gyeonggi-do, 16247, Republic of Korea
| | - Ha-Na Kim
- Department of Family Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, 93, Jungbu-daero, Paldal-gu, Suwon-si, Gyeonggi-do, 16247, Republic of Korea
| | - Sang-Wook Song
- Department of Family Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, 93, Jungbu-daero, Paldal-gu, Suwon-si, Gyeonggi-do, 16247, Republic of Korea.
| |
Collapse
|
15
|
Aydemir TB, Cousins RJ. The Multiple Faces of the Metal Transporter ZIP14 (SLC39A14). J Nutr 2018; 148:174-184. [PMID: 29490098 PMCID: PMC6251594 DOI: 10.1093/jn/nxx041] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 11/07/2017] [Indexed: 12/14/2022] Open
Abstract
The SLC39A family of metal transporters was identified through homologies with the Zrt- and Irt-like (ZIP) proteins from yeast and plants. Of all the ZIP transporters, ZIP14 is arguably the most robustly characterized in terms of function at the integrative level. Mice with a global knockout of Zip14 are viable, thus providing the opportunity to conduct physiologic experiments. In mice, Zip14 expression is highly tissue specific, with the greatest abundance in the jejunum > liver > heart > kidney > white adipose tissue > skeletal muscle > spleen > pancreas. A unique feature of Zip14 is its upregulation by proinflammatory conditions, particularly increased interleukin 6 (IL-6) and nitric oxide. The transcription factors AP-1, ATF4, and ATF6α are involved in Zip14 regulation. ZIP14 does not appear to be zinc-regulated. The Zip14 knockout phenotype shows multiple sites of ZIP14 function, including the liver, adipose tissue, brain, pancreas, and bone. A prominent feature of the Zip14 ablation is a reduction in intestinal barrier function and onset of metabolic endotoxemia. Many aspects of the phenotype are accentuated with age and accompany increased circulating IL-6. Studies with 65Zn, 59Fe [nontransferrin-bound iron (NTBI)] and 54Mn show that ZIP14 transports these metals. At a steady state, the plasma concentrations of zinc, NTBI, and manganese are such that zinc ions are the major substrate available for ZIP14 at the cell surface. Upregulation of ZIP14 accounts for the hypozincemia and hepatic zinc accumulation associated with acute inflammation and sepsis and is required for liver regeneration and resistance to endoplasmic reticulum (ER) stress. Zip14 ablation in mice produces a defect in manganese excretion that leads to excess manganese accumulation in the brain that produces characteristics of Parkinsonism.
Collapse
Affiliation(s)
- Tolunay B Aydemir
- Food Science and Human Nutrition Department and Center for Nutritional
Sciences, College of Agricultural and Life Sciences, University of Florida, Gainesville,
FL,Address correspondence to TBA (e-mail: )
| | - Robert J Cousins
- Food Science and Human Nutrition Department and Center for Nutritional
Sciences, College of Agricultural and Life Sciences, University of Florida, Gainesville,
FL
| |
Collapse
|
16
|
Abstract
Exposure to stress is known to cause hepatic iron dysregulation, but the relationship between prolonged stress and liver iron metabolism is not yet fully understood. Thirty 13-week-old female Sprague-Dawley rats were randomly divided into two groups, as follows: the control group (saline-injection) and the dexamethasone group (Dexamethasone (Dex)-injection 0.1 mg/kg/day). After the 21-day stress trial, the results showed that chronic Dex administration not only impaired serum corticosterone (p = 0.00) and interleukin-6 (IL-6) (p = 0.01) levels, but also decreased white blood cell counts (p = 0.00), and reduced blood lymphocyte counts (p = 0.00). The daily Dex-injection also significantly reduced body weight (p < 0.01) by inhibiting food intake. Consecutive Dex administration resulted in decreased iron intake (p = 0.00), enhanced serum iron levels (p = 0.01), and increased the serum souble transferrin receptor (sTfR) content (p = 0.00) in rats. Meanwhile, long-term Dex exposure down-regulated duodenal cytochrome b (DCYTB) (p = 0.00) and the divalent metal transporter 1 (DMT1) (p = 0.04) protein expression, but up-regulated ferroportin (FPN) protein expression (p = 0.04). Chronic Dex administration reduced liver iron concentration (p = 0.02) in rats. Hepatic transferrin receptor 1 (TFR1) expression was lowered at the protein level (p = 0.03), yet with uncoupled mRNA abundance in Dex-treated rats. Enhanced iron-regulatory protein (IRP)/iron-responsive element (IRE) binding activity was observed, but did not line up with lowered hepatic TFR1 protein expression. This study indicates that long-term Dex exposure reduces liver iron content, which is closely associated with down-regulated hepatic TFR1 protein expression.
Collapse
|
17
|
Guo J, Lin Q, Shao Y, Rong L, Zhang D. BMP‑7 suppresses excessive scar formation by activating the BMP‑7/Smad1/5/8 signaling pathway. Mol Med Rep 2017. [PMID: 28627680 PMCID: PMC5561965 DOI: 10.3892/mmr.2017.6779] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Scarring is the inevitable consequence of wound repair, which may cause significant physical and mental pain to patients when excessive. Bone morphogenetic protein-7 (BMP-7) has been proved to inhibit TGF-β-induced fibrosis in various tissues including dermal papilla cells. However, the effect of BMP-7 on hypertrophic scarring, a common proliferative disorder of dermal fibroblasts, has not been determined. To overcome this problem, the present study established a mouse model of thermal injury to investigate the inhibitory effects of BMP-7 on scar formation. The histological analysis of scar tissues was performed by H&E and Masson's trichrome staining. Western blot assay was used to determine the level changes of related proteins and TUNEL assay was performed to assess the apoptosis of scar tissues. The results demonstrated that BMP-7 promoted wound healing and inhibited scar formation when compared with untreated mice. Collagen deposition and the expression of fibrotic proteins were suppressed in the scar tissues of mice treated with BMP-7. In addition, BMP-7 induced fibroblast apoptosis in scar tissues. Furthermore, activation of the BMP-7/Smad1/5/8 signaling pathway may have been involved in the inhibitory effects of BMP-7 on scar formation. In conclusion, the results of the present study indicate that BMP-7 may inhibit excessive scar formation via activation of the BMP-7/Smad1/5/8 signaling pathway. The results present a potential alternative therapeutic strategy for the treatment of hypertrophic scarring.
Collapse
Affiliation(s)
- Jingdong Guo
- Department of Plastic and Reconstructive Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Quan Lin
- Department of Plastic and Reconstructive Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Ying Shao
- Department of Plastic and Reconstructive Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Li Rong
- Department of Plastic and Reconstructive Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Duo Zhang
- Department of Plastic and Reconstructive Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
18
|
Amin SN, El-Aidi AA, Zickri MB, Rashed LA, Hassan SS. Hepatoprotective effect of blocking N-methyl-d-aspartate receptors in male albino rats exposed to acute and repeated restraint stress. Can J Physiol Pharmacol 2017; 95:721-731. [PMID: 28317386 DOI: 10.1139/cjpp-2016-0556] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Stress affects many organs in addition to the brain, including the liver. We assessed the effects on the liver of blocking N-methyl-d-aspartate (NMDA) glutamate receptors with memantine in acute and repeated restraint stress. Forty-two male albino rats were divided into 7 groups; control, acute restraint stress (ARS), ARS + memantine, repeated restraint stress, repeated restraint + memantine, and positive control groups. We measured serum iron, zinc, alanine transferase and aspartame transferase, hepatic malondialdehyde, tumor necrosis factor-α (TNF-α), glutathione peroxidase, superoxide dismutase, metallothionein content, zinc transporter ZRT/IRT-like protein 14 mRNA expression, and hepcidin expression. We conducted a histopathological evaluation via histological staining and immunostaining for glial fibrillary acidic protein and synaptophysin expression, both of which are markers of hepatic stellate cell (HSC) activation. Both ARS and repeated stress increased markers of hepatic cell injury, oxidative stress, and HSC activation. Blocking NMDA with memantine provided a hepatoprotective effect in acute and repeated restraint stress and decreased hepatic cell injury, oxidative stress, and HSC activation.
Collapse
Affiliation(s)
- Shaimaa Nasr Amin
- a Department of Medical Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | | | - Maha Baligh Zickri
- c Department of Histology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Laila Ahmed Rashed
- d Department of Biochemistry, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Sherif Sabry Hassan
- e Department of Anatomy, Faculty of Medicine, Cairo University, Cairo, Egypt.,f California University of Science and Medicine, School of Medicine, Department of Medical Education, Colton, CA, USA
| |
Collapse
|
19
|
Bin BH, Bhin J, Kim NH, Lee SH, Jung HS, Seo J, Kim DK, Hwang D, Fukada T, Lee AY, Lee TR, Cho EG. An Acrodermatitis Enteropathica-Associated Zn Transporter, ZIP4, Regulates Human Epidermal Homeostasis. J Invest Dermatol 2016; 137:874-883. [PMID: 27940220 DOI: 10.1016/j.jid.2016.11.028] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 10/24/2016] [Accepted: 11/16/2016] [Indexed: 01/26/2023]
Abstract
Acrodermatitis enteropathica is an autosomal recessive disorder characterized by scaly eczematous dermatosis accompanied by alopecia and diarrhea. Various mutations in the SLC39A4 gene (ZIP4), which encodes a zinc transporter, are responsible for this disorder. However, the molecular mechanism underlying the involvement of ZIP4 in the pathogenesis of this condition has yet to be established. In this study, we report the role of ZIP4 in human epidermis. ZIP4 is predominantly expressed in human keratinocytes, and its expression is dramatically reduced on epidermal differentiation. ZIP4 knockdown in human keratinocytes down-regulates zinc (Zn) levels and the transcriptional activity of a key epidermal Zn-binding protein, ΔNp63, and dysregulates epidermal differentiation in a reconstituted human skin model, resulting in the appearance of proliferating keratinocytes even in the uppermost layers of the skin. We verified that, among the amino acid residues in its Zn-binding motif, Cys205 is critical for the processing and nuclear distribution of ΔNp63 and, therefore, Zn-dependent transcriptional activity. Our results suggest that ZIP4 is essential for maintaining human epidermal homeostasis through the regulation of Zn-dependent ΔNp63 activity and can provide insight into the molecular mechanisms responsible for the cutaneous symptoms observed in Acrodermatitis enteropathica patients.
Collapse
Affiliation(s)
- Bum-Ho Bin
- Basic Research & Innovation Division, R&D Unit, AmorePacific Corporation, Yongin, Republic of Korea
| | - Jinhyuk Bhin
- Department of Chemical Engineering, POSTECH, Pohang, Republic of Korea
| | - Nan-Hyung Kim
- Department of Dermatology, Dongguk University Ilsan Hospital, Goyang, Republic of Korea
| | - Su-Hyon Lee
- Bio Solution Corporation, Seoul, Republic of Korea
| | | | - Juyeon Seo
- Basic Research & Innovation Division, R&D Unit, AmorePacific Corporation, Yongin, Republic of Korea
| | - Dae-Kyum Kim
- Donnelly Centre, Departments of Molecular Genetics and Computer Science, University of Toronto, Toronto, Ontario, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Daehee Hwang
- Department of New Biology and Center for Plant Aging Research, Institute for Basic Science, DGIST, Daegu, Republic of Korea
| | - Toshiyuki Fukada
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| | - Ai-Young Lee
- Department of Dermatology, Dongguk University Ilsan Hospital, Goyang, Republic of Korea
| | - Tae Ryong Lee
- Basic Research & Innovation Division, R&D Unit, AmorePacific Corporation, Yongin, Republic of Korea.
| | - Eun-Gyung Cho
- Basic Research & Innovation Division, R&D Unit, AmorePacific Corporation, Yongin, Republic of Korea.
| |
Collapse
|
20
|
Huang D, Zhuo Z, Fang S, Yue M, Feng J. Different Zinc Sources Have Diverse Impacts on Gene Expression of Zinc Absorption Related Transporters in Intestinal Porcine Epithelial Cells. Biol Trace Elem Res 2016; 173:325-32. [PMID: 26994770 DOI: 10.1007/s12011-016-0655-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 02/15/2016] [Indexed: 10/22/2022]
Abstract
This study was conducted to investigate the effects of zinc sources on gene expression of zinc-related transporters in intestinal porcine epithelial cells (IPEC-1). IPEC-1 cells were treated with zinc glycine chelate (Zn-Gly), zinc methionine (Zn-Met), and zinc sulfate (ZnSO4), respectively, for measurement of cell viability. Then, the relative expression of zinc-related transporters in IPEC-1 in response to different zinc sources (50 μmol/L zinc) was measured. Zinc transporter SLC39A4 (ZIP4) expression was selectively silenced to assess the function of ZIP4 in inorganic and organic zinc absorption. The result showed that Zn-Gly and Zn-Met had lower cell damage compared with ZnSO4 on the same zinc levels. Different zinc sources improved the expression of metallothionein1 (MT1) and zinc transporter SLC30A1 (ZnT1) messenger RNA (mRNA) compared with the control (P < 0.05), while ZIP4 decreased (P < 0.05) in response to zinc addition. MT1 and ZnT1 mRNA expressions in Zn-Gly and Zn-Met were higher than those in ZnSO4, and ZIP4 mRNA expression in Zn-Met was the lowest among three kinds of zinc sources (P < 0.05). Expression of divalent metal transporter 1 (DMT1) mRNA in control was significantly higher (P < 0.05) than added different zinc sources groups. Silencing of ZIP4 significantly decreased MT1 mRNA expression in ZnSO4 and Zn-Gly treatments, reduced zinc absorption rate, and increased DMT1 mRNA expression in ZnSO4 compared with negative control. In summary, different zinc sources could improve zinc status on IPEC-1 cells and organic zinc had lower cell damage compared with ZnSO4. Moreover, Zn-Gly and Zn-Met are more efficient on zinc absorption according to the expression of various zinc-related transporters MT1, ZIP4, ZnT1, and DMT1. ZIP4 played a direct role in inorganic zinc uptake, and the absorption of zinc in Zn-Gly depends on ZIP4 partly, while absorption of Zn-Met is less dependent on ZIP4.
Collapse
Affiliation(s)
- Danping Huang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Science, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Zhao Zhuo
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Science, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Shenglin Fang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Science, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Min Yue
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Science, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Jie Feng
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Science, Zhejiang University, Hangzhou, 310058, People's Republic of China.
| |
Collapse
|
21
|
Developmental toxicity of intravenously injected zinc oxide nanoparticles in rats. Arch Pharm Res 2016; 39:1682-1692. [DOI: 10.1007/s12272-016-0767-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Accepted: 05/31/2016] [Indexed: 01/10/2023]
|
22
|
Ding Q, Li H, Tian X, Shen Z, Wang X, Mo F, Huang J, Shen H. Zinc and imipramine reverse the depression-like behavior in mice induced by chronic restraint stress. J Affect Disord 2016; 197:100-6. [PMID: 26985741 DOI: 10.1016/j.jad.2016.03.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 02/19/2016] [Accepted: 03/07/2016] [Indexed: 12/25/2022]
Abstract
Depression is a common psychopathological disorders. Studies of depression have indicated that zinc play a role in the depression pathophysiology and treatment. In present study, we examined the effects of zinc and imipramine supplement alone or combination of zinc and imipramine in mice induced by chronic restraint stress (CRS). Moreover, the possible roles of zinc receptor (G protein-coupled receptor 39, GPR39)-related pathway was investigated. Decreased weight and increased corticosterone (CORT) were observed after 3 weeks CRS exposure. It was shown that CRS induced lower serum zinc, higher hippocampal zinc, increased immobility time in tail suspension test and decreased movement distance in spontaneous activity test, which could be normalized by zinc (30 mg/kg) and imipramine (20 mg/kg) supplement alone and combination of zinc (15 mg/kg) and imipramine (5 mg/kg) for 3 weeks after CRS exposure. Moreover, the changes in mRNA expressions of GPR39, cAMP-response element binding protein (CREB), brain-derived neurotropic factor (BDNF) and n-methytl-d-aspartate receptors (NMDAR) could be reversed by the same treatment mentioned above. These results suggested that zinc dyshomeostasis in serum and hippocampus and depression-like behavior in CRS exposure animals observed in present study could be normalized by zinc and imipramine. The combination of zinc and imipramine in low dose has synergetic effects. The possible mechanism might be correlated to GPR39 receptor-related pathway.
Collapse
Affiliation(s)
- Qin Ding
- Department of Naval Hygiene, Second Military Medical University, Shanghai, China
| | - Hongxia Li
- Department of Naval Hygiene, Second Military Medical University, Shanghai, China
| | - Xue Tian
- Department of Naval Hygiene, Second Military Medical University, Shanghai, China
| | - Zhilei Shen
- Department of Naval Hygiene, Second Military Medical University, Shanghai, China
| | - Xiaoli Wang
- Department of Naval Hygiene, Second Military Medical University, Shanghai, China
| | - Fengfeng Mo
- Department of Naval Hygiene, Second Military Medical University, Shanghai, China
| | - Junlong Huang
- Department of Naval Hygiene, Second Military Medical University, Shanghai, China.
| | - Hui Shen
- Department of Naval Hygiene, Second Military Medical University, Shanghai, China.
| |
Collapse
|
23
|
Golbidi S, Frisbee JC, Laher I. Chronic stress impacts the cardiovascular system: animal models and clinical outcomes. Am J Physiol Heart Circ Physiol 2015; 308:H1476-98. [DOI: 10.1152/ajpheart.00859.2014] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 04/03/2015] [Indexed: 01/01/2023]
Abstract
Psychological stresses are associated with cardiovascular diseases to the extent that cardiovascular diseases are among the most important group of psychosomatic diseases. The longstanding association between stress and cardiovascular disease exists despite a large ambiguity about the underlying mechanisms. An array of possibilities have been proposed including overactivity of the autonomic nervous system and humoral changes, which then converge on endothelial dysfunction that initiates unwanted cardiovascular consequences. We review some of the features of the two most important stress-activated systems, i.e., the humoral and nervous systems, and focus on alterations in endothelial function that could ensue as a result of these changes. Cardiac and hematologic consequences of stress are also addressed briefly. It is likely that activation of the inflammatory cascade in association with oxidative imbalance represents key pathophysiological components of stress-induced cardiovascular changes. We also review some of the commonly used animal models of stress and discuss the cardiovascular outcomes reported in these models of stress. The unique ability of animals for adaptation under stressful conditions lessens the extrapolation of laboratory findings to conditions of human stress. An animal model of unpredictable chronic stress, which applies various stress modules in a random fashion, might be a useful solution to this predicament. The use of stress markers as indicators of stress intensity is also discussed in various models of animal stress and in clinical studies.
Collapse
Affiliation(s)
- Saeid Golbidi
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, Canada; and
| | - Jefferson C. Frisbee
- Center for Cardiovascular and Respiratory Sciences, West Virginia University Health Sciences Center, Morgantown, West Virginia
| | - Ismail Laher
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, Canada; and
| |
Collapse
|
24
|
Cobbina SJ, Chen Y, Zhou Z, Wu X, Feng W, Wang W, Li Q, Zhao T, Mao G, Wu X, Yang L. Interaction of four low dose toxic metals with essential metals in brain, liver and kidneys of mice on sub-chronic exposure. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2015; 39:280-291. [PMID: 25531266 DOI: 10.1016/j.etap.2014.11.030] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 11/16/2014] [Indexed: 06/04/2023]
Abstract
This study reports on interactions between low dose toxic and essential metals. Low dose Pb (0.01mg/L), Hg (0.001mg/L), Cd (0.005mg/L) and As (0.01mg/L) were administered singly to four groups of 3-week old mice for 120 days. Pb exposure increased brain Mg and Cu by 55.5% and 266%, respectively. Increased brain Mg resulted from metabolic activity of brain to combat insults, whiles Cu overload was due to alteration and dysfunction of CTR1 and ATP7A molecules. Reduction of liver Ca by 56.0% and 31.6% (on exposure to As and Cd, respectively) resulted from inhibition of Ca-dependent ATPase in nuclei and endoplasmic reticulum through binding with thiol groups. Decreased kidney Mg, Ca and Fe was due to uptake of complexes of As and Cd with thiol groups from proximal tubular lumen. At considerably low doses, the study establishes that, toxic metals disturb the homeostasis of essential metals.
Collapse
Affiliation(s)
- Samuel Jerry Cobbina
- School of the Environment, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, Jiangsu, China
| | - Yao Chen
- School of the Environment, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, Jiangsu, China
| | - Zhaoxiang Zhou
- School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, China
| | - Xueshan Wu
- School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, China
| | - Weiwei Feng
- School of Food and Biological Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, Jiangsu, China
| | - Wei Wang
- School of Food and Biological Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, Jiangsu, China
| | - Qian Li
- School of Pharmacy, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, Jiangsu, China
| | - Ting Zhao
- School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, China
| | - Guanghua Mao
- School of the Environment, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, Jiangsu, China
| | - Xiangyang Wu
- School of the Environment, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, Jiangsu, China.
| | - Liuqing Yang
- School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, China.
| |
Collapse
|
25
|
Dou X, Tian X, Zheng Y, Huang J, Shen Z, Li H, Wang X, Mo F, Wang W, Wang S, Shen H. Psychological stress induced hippocampus zinc dyshomeostasis and depression-like behavior in rats. Behav Brain Res 2014; 273:133-8. [PMID: 25092572 DOI: 10.1016/j.bbr.2014.07.040] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Revised: 07/19/2014] [Accepted: 07/24/2014] [Indexed: 12/20/2022]
Abstract
There are strong evidences showed that psychological stress (PS) could result in depression. Recently, many attentions were paid to the roles of corticosterone (CORT) and zinc dyshomeostasis in the development of depression. In this study, we investigated the zinc level in rat hippocampus after exposure to PS and accompanied behavior change. Male SD rats were randomly divided into the control and PS groups. Each group had two subgroups: 7-d group and 14-d group. A communication box was used to produce the PS model in rats. Compared to control group, the PS-treated group showed decreased total zinc levels and increased free zinc levels observed by TSQ staining in hippocampus. Meanwhile, there were significant decreases in mRNA expressions of zinc transporters including ZnT1, ZnT3 and ZIP1 and metallothionein (MT) contents in hippocampus. Moreover, the increased immobility time in forced swim test (FST), lower movement time and total movement distance and longer immobile time in spontaneous activity test were demonstrated in rats after PS exposure. These results suggested that the depression-like behavior in PS-treated rats might be correlated with zinc dyshomeostasis including decreased zinc contents and increased free zinc in hippocampus which was related to changes in zinc transporters and MT expressions.
Collapse
Affiliation(s)
- Xiao Dou
- Department of Naval Hygiene, Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, PR China
| | - Xue Tian
- Department of Naval Hygiene, Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, PR China
| | - Yuanyuan Zheng
- Department of Immunology, Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, PR China
| | - Junlong Huang
- Department of Naval Hygiene, Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, PR China
| | - Zhilei Shen
- Department of Naval Hygiene, Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, PR China
| | - Hongxia Li
- Department of Naval Hygiene, Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, PR China
| | - Xiaoli Wang
- Department of Naval Hygiene, Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, PR China
| | - Fengfeng Mo
- Department of Naval Hygiene, Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, PR China
| | - Wanyin Wang
- Department of Naval Hygiene, Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, PR China
| | - Shi Wang
- Department of Neurology, No. 411 Hospital, 15 East Dongjiangwan Road, Shanghai 200081, PR China.
| | - Hui Shen
- Department of Naval Hygiene, Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, PR China.
| |
Collapse
|
26
|
Dieni CA, Callaghan NI, Gormley PT, Butler KMA, Maccormack TJ. Physiological hepatic response to zinc oxide nanoparticle exposure in the white sucker, Catostomus commersonii. Comp Biochem Physiol C Toxicol Pharmacol 2014; 162:51-61. [PMID: 24704545 DOI: 10.1016/j.cbpc.2014.03.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 03/21/2014] [Accepted: 03/21/2014] [Indexed: 11/28/2022]
Abstract
Liver toxicity of commercially relevant zinc oxide nanoparticles (nZnO) was assessed in a benthic freshwater cypriniform, the white sucker (Catostomus commersonii). Exposure to nZnO caused several changes in levels of liver enzyme activity, antioxidants, and lipid peroxidation end products consistent with an oxidative stress response. Aconitase activity decreased by ~65% but tended to be restored to original levels upon supplementation with Fe(2+), indicating oxidative inactivation of the 4Fe-4S cluster. Furthermore, glucose-6-phosphate dehydrogenase activity decreased by ~29%, and glutathione levels increased by ~56%. Taken together, these suggest that nZnO induces hepatic physiological stress. Each assay was then validated by using a single liver homogenate or plasma sample that was partitioned and treated with nZnO or Zn(2+), the breakdown product of nZnO. It was found that Zn(2+), but not nZnO, increased detected glutathione reductase activity by ~14% and decreased detected malondialdehyde by ~39%. This indicates that if appreciable nZnO dissolution occurs in liver samples during processing and assay, it may skew results, with implications not only for this study, but also for a wide range of nanotoxicology studies focusing on nZnO. Finally, in vitro incubations of cell-free rat blood plasma with nZnO failed to generate any significant increase in malondialdehyde or protein carbonyl levels, or any significant decrease in ferric reducing ability of plasma. This suggests that at the level tested, any oxidative stress caused by nZnO is the result of a coordinated physiological response by the liver.
Collapse
Affiliation(s)
- Christopher Anthony Dieni
- Department of Chemistry and Biochemistry, Mount Allison University, Barclay Chemistry Building, 63C York Street, Sackville, New Brunswick E4L 1G8, Canada.
| | - Neal Ingraham Callaghan
- Department of Chemistry and Biochemistry, Mount Allison University, Barclay Chemistry Building, 63C York Street, Sackville, New Brunswick E4L 1G8, Canada
| | - Patrick Thomas Gormley
- Department of Chemistry and Biochemistry, Mount Allison University, Barclay Chemistry Building, 63C York Street, Sackville, New Brunswick E4L 1G8, Canada
| | - Kathryn Marie Alison Butler
- Department of Chemistry and Biochemistry, Mount Allison University, Barclay Chemistry Building, 63C York Street, Sackville, New Brunswick E4L 1G8, Canada
| | - Tyson James Maccormack
- Department of Chemistry and Biochemistry, Mount Allison University, Barclay Chemistry Building, 63C York Street, Sackville, New Brunswick E4L 1G8, Canada
| |
Collapse
|