1
|
Yang X, Ye T, Rong L, Peng H, Tong J, Xiao X, Wan X, Guo J. GATA4 Forms a Positive Feedback Loop with CDX2 to Transactivate MUC2 in Bile Acids-Induced Gastric Intestinal Metaplasia. Gut Liver 2024; 18:414-425. [PMID: 36860162 PMCID: PMC11096910 DOI: 10.5009/gnl220394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/22/2022] [Accepted: 12/28/2022] [Indexed: 03/03/2023] Open
Abstract
Background/Aims Gastric intestinal metaplasia (GIM), a common precancerous lesion of gastric cancer, can be caused by bile acid reflux. GATA binding protein 4 (GATA4) is an intestinal transcription factor involved in the progression of gastric cancer. However, the expression and regulation of GATA4 in GIM has not been clarified. Methods The expression of GATA4 in bile acid-induced cell models and human specimens was examined. The transcriptional regulation of GATA4 was investigated by chromatin immunoprecipitation and luciferase reporter gene analysis. An animal model of duodenogastric reflux was used to confirm the regulation of GATA4 and its target genes by bile acids. Results GATA4 expression was elevated in bile acid-induced GIM and human specimens. GATA4 bound to the promoter of mucin 2 (MUC2) and stimulate its transcription. GATA4 and MUC2 expression was positively correlated in GIM tissues. Nuclear transcription factor-κB activation was required for the upregulation of GATA4 and MUC2 in bile acid-induced GIM cell models. GATA4 and caudal-related homeobox 2 (CDX2) reciprocally transactivated each other to drive the transcription of MUC2. In chenodeoxycholic acid-treated mice, MUC2, CDX2, GATA4, p50, and p65 expression levels were increased in the gastric mucosa. Conclusions GATA4 is upregulated and can form a positive feedback loop with CDX2 to transactivate MUC2 in GIM. NF-κB signaling is involved in the upregulation of GATA4 by chenodeoxycholic acid.
Collapse
Affiliation(s)
- Xiaofang Yang
- Department of Gastroenterology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing University School of Medicine, Chongqing, China
| | - Ting Ye
- Department of Gastroenterology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing University School of Medicine, Chongqing, China
| | - Li Rong
- Department of Gastroenterology, Bishan Hospital of Chongqing, Bishan Hospital of Chongqing Medical University, Chongqing, China
| | - Hong Peng
- Department of Gastroenterology, Bishan Hospital of Chongqing, Bishan Hospital of Chongqing Medical University, Chongqing, China
| | - Jin Tong
- Department of Gastroenterology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing University School of Medicine, Chongqing, China
| | - Xiao Xiao
- Department of Gastroenterology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing University School of Medicine, Chongqing, China
| | - Xiaoqiang Wan
- Department of Gastroenterology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing University School of Medicine, Chongqing, China
| | - Jinjun Guo
- Department of Gastroenterology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing University School of Medicine, Chongqing, China
- Department of Gastroenterology, Bishan Hospital of Chongqing, Bishan Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
2
|
Kumar N, Prakash PG, Wentland C, Kurian SM, Jethva G, Brinkmann V, Mollenkopf HJ, Krammer T, Toussaint C, Saliba AE, Biebl M, Jürgensen C, Wiedenmann B, Meyer TF, Gurumurthy RK, Chumduri C. Decoding spatiotemporal transcriptional dynamics and epithelial fibroblast crosstalk during gastroesophageal junction development through single cell analysis. Nat Commun 2024; 15:3064. [PMID: 38594232 PMCID: PMC11004180 DOI: 10.1038/s41467-024-47173-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 03/22/2024] [Indexed: 04/11/2024] Open
Abstract
The gastroesophageal squamocolumnar junction (GE-SCJ) is a critical tissue interface between the esophagus and stomach, with significant relevance in the pathophysiology of gastrointestinal diseases. Despite this, the molecular mechanisms underlying GE-SCJ development remain unclear. Using single-cell transcriptomics, organoids, and spatial analysis, we examine the cellular heterogeneity and spatiotemporal dynamics of GE-SCJ development from embryonic to adult mice. We identify distinct transcriptional states and signaling pathways in the epithelial and mesenchymal compartments of the esophagus and stomach during development. Fibroblast-epithelial interactions are mediated by various signaling pathways, including WNT, BMP, TGF-β, FGF, EGF, and PDGF. Our results suggest that fibroblasts predominantly send FGF and TGF-β signals to the epithelia, while epithelial cells mainly send PDGF and EGF signals to fibroblasts. We observe differences in the ligands and receptors involved in cell-cell communication between the esophagus and stomach. Our findings provide insights into the molecular mechanisms underlying GE-SCJ development and fibroblast-epithelial crosstalk involved, paving the way to elucidate mechanisms during adaptive metaplasia development and carcinogenesis.
Collapse
Affiliation(s)
- Naveen Kumar
- Laboratory of Infections, Carcinogenesis and Regeneration, Medical Biotechnology Section, Department of Biological and Chemical Engineering, Aarhus University, Aarhus, Denmark
- Department of Microbiology, University of Würzburg, Würzburg, Germany
| | | | | | | | - Gaurav Jethva
- Department of Microbiology, University of Würzburg, Würzburg, Germany
| | - Volker Brinkmann
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Hans-Joachim Mollenkopf
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Tobias Krammer
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Center for Infection Research (HZI), Würzburg, Germany
| | - Christophe Toussaint
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Center for Infection Research (HZI), Würzburg, Germany
| | - Antoine-Emmanuel Saliba
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Center for Infection Research (HZI), Würzburg, Germany
- University of Würzburg, Faculty of Medicine, Institute of Molecular Infection Biology (IMIB), Würzburg, Germany
| | - Matthias Biebl
- Surgical Clinic Campus Charité Mitte, Charité University Medicine, Berlin, Germany
| | - Christian Jürgensen
- Department of Hepatology and Gastroenterology, Charité University Medicine, Berlin, Germany
| | - Bertram Wiedenmann
- Department of Hepatology and Gastroenterology, Charité University Medicine, Berlin, Germany
| | - Thomas F Meyer
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Rajendra Kumar Gurumurthy
- Department of Microbiology, University of Würzburg, Würzburg, Germany
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Cindrilla Chumduri
- Laboratory of Infections, Carcinogenesis and Regeneration, Medical Biotechnology Section, Department of Biological and Chemical Engineering, Aarhus University, Aarhus, Denmark.
- Department of Microbiology, University of Würzburg, Würzburg, Germany.
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany.
- Department of Hepatology and Gastroenterology, Charité University Medicine, Berlin, Germany.
| |
Collapse
|
3
|
Pope HF, Pilmane M, Junga A, Pētersons A. The Assessment of CDX1, IHH, SHH, GATA4, FOXA2, FOXF1 in Congenital Intra-Abdominal Adhesions. Acta Med Litu 2024; 31:109-121. [PMID: 38978864 PMCID: PMC11227690 DOI: 10.15388/amed.2024.31.1.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/17/2024] [Accepted: 03/25/2024] [Indexed: 07/10/2024] Open
Abstract
Congenital abdominal adhesions are a rare condition that can result in a small bowel obstruction at any age, more frequently in pediatric populations. The cause remains unknown, and the importance of aberrant congenital bands is related to the difficulty of diagnosis, and cases of death with late detection have been documented. This research examines the expression of Caudal Type Homeobox 1 (CDX1), Indian Hedgehog (IHH), Sonic Hedgehog (SHH), GATA Binding Protein 4 (GATA4), Forkhead Box A2 (FOXA2) and Forkhead Box F1 (FOXF1) gene expression in human abdominal congenital adhesion fibroblast and endothelium cells by chromogenic in situ hybridization, with the aim of elucidating their potential association with the etiology of congenital intra-abdominal adhesion band development. The potential genes' signals were examined using a semi-quantitative approach. Significant correlations were observed between the expression of CDX1 (p <.001) and SHH (p=0.032) genes in fibroblasts from congenital intra-abdominal adhesions compared to fibroblasts from control peritoneal tissue. Statistically significant very strong correlations were found between the CDX1 and IHH comparing endothelium and fibroblast cells in congenital abdominal adhesion bands. There was no statistically significant difference found in the distribution of IHH, FOXA2, GATA4, and FOXF1 between the fibroblasts and endothelium of the patients compared to the control group. The presence of notable distinctions and diverse associations suggests the potential involvement of numerous morpho-pathogenetic processes in the development of intraabdominal adhesions.
Collapse
Affiliation(s)
| | - Māra Pilmane
- Institute of Anatomy and Anthropology, Riga Stradiņš University, Riga, Latvia
| | - Anna Junga
- Institute of Anatomy and Anthropology, Riga Stradiņš University, Riga, Latvia
| | - Aigars Pētersons
- Children’s Clinical University Hospital, Riga Stradiņš University, Riga, Latvia
| |
Collapse
|
4
|
Wu H, Zhang L, Chen B, Ou B, Xu J, Tian N, Yang D, Ai Y, Chen Q, Quan D, Zhang T, Lv L, Tian Y, Zhang J, Wu S. B13, a well-tolerated inhibitor of hedgehog pathway, exhibited potent anti-tumor effects against colorectal carcinoma in vitro and in vivo. Bioorg Chem 2023; 135:106488. [PMID: 36989734 DOI: 10.1016/j.bioorg.2023.106488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 03/02/2023] [Accepted: 03/18/2023] [Indexed: 03/29/2023]
Abstract
Abnormal activation of Hedgehog (Hh) signaling pathway mediates the genesis and progression of various tumors [1]. Currently, three drugs targeting the Hh signaling component Smoothened (Smo) have been marketed for the clinical treatment of basal cell tumors or acute myeloid leukemia. However, drug resistance is a common problem in those drugs, so the study of Smo inhibitors that can overcome drug resistance has important guiding significance for clinical adjuvant drugs. MTT assay, clone formation assay and EdU assay were used to detect the proliferation inhibitory activity of the drugs on tumor cells. The effect of B13 on cell cycle and apoptosis were detected by flow cytometry. An acute toxicity test was used to detect the toxicity of B13 in vivo, and xenograft tumor model was used to detect the efficacy of B13 in vivo. The binding of B13 to Smo was studied by BODIPY-cyclopamine competitive binding assay and molecular docking. The effect of B13 on the expression and localization of downstream target gene Gli1/2 of Smo was investigated by Western Blot and immunofluorescence assay. SmoD473H mutant cell line was constructed to study the effect of B13 against drug resistance. (1) B13 had the strongest inhibitory activity against colorectal cancer cells. (2) B13 can effectively inhibit the clone formation and EdU positive rate of colon cancer cells. (3) B13 can block the cell cycle in the G2/M phase and cell apoptosis. (4) B13 has low toxicity in vivo, and its efficacy in vivo is better than that of the Vismodegib. (5) Molecular docking and BODIPY-cyclopamine experiments showed that B13 could bind to Smo protein. (6) B13 can inhibit the protein expression of Gli1, the downstream of Smo, and inhibit its entry into the nucleus. (7) B13 could inhibit the expression of Gli1 in the HEK293 cells with SmoD473H, and the molecular docking results showed that B13 could bind SmoD473H protein. B13 with the best anti-tumor activity was screened out by MTT assay. In vitro, pharmacodynamics experiments showed that B13 could effectively inhibit the proliferation and metastasis of colorectal cancer cells, induce cell cycle arrest, and induce cell apoptosis. In vivo pharmacodynamics experiments showed that B13 was superior to Vismodegib in antitumor activity and had low toxicity in vivo. Mechanism studies have shown that B13 can bind Smo protein, inhibit the expression of downstream Gli1 and its entry into the nucleus. Notably, B13 overcomes resistance caused by SmoD473H mutations.
Collapse
|
5
|
Regulatory domains controlling high intestinal vitamin D receptor gene expression are conserved in mouse and human. J Biol Chem 2022; 298:101616. [PMID: 35065959 PMCID: PMC8891975 DOI: 10.1016/j.jbc.2022.101616] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 12/14/2022] Open
Abstract
Vitamin D receptor (VDR) levels are highest in the intestine where it mediates 1,25 dihydroxyvitamin D-induced gene expression. However, the mechanisms controlling high intestinal VDR gene expression are unknown. Here, we used Assay for Transposase-Accessible Chromatin using Sequencing (ATAC-Seq) to identify the regulatory sites controlling intestine-specific Vdr gene expression in the small intestine (villi and crypts) and colon of developing, adult, and aged mice. We identified 17 ATAC peaks in a 125 kb region from intron 3 to −55.8 kb from exon 1 of the Vdr gene. Interestingly, many of these peaks were missing/reduced in the developing intestine. Chromatin ImmunoPrecipitation-Sequencing (ChIP-Seq) peaks for intestinal transcription factors (TFs) were present within the ATAC peaks and at HiChIP looping attachments that connected the ATAC/TF ChIP peaks to the transcription start site and CCCTF-binding factor sites at the borders of the Vdr gene regulatory domain. Intestine-specific regulatory sites were identified by comparing ATAC peaks to DNAse-Seq data from other tissues that revealed tissue-specific, evolutionary conserved, and species-specific peaks. Bioinformatics analysis of human DNAse-Seq peaks revealed polymorphisms that disrupt TF-binding sites. Our analysis shows that mouse intestinal Vdr gene regulation requires a complex interaction of multiple distal regulatory regions and is controlled by a combination of intestinal TFs. These intestinal regulatory sites are well conserved in humans suggesting that they may be key components of VDR regulation in both mouse and human intestines.
Collapse
|
6
|
DeLaForest A, Kohlnhofer BM, Franklin OD, Stavniichuk R, Thompson CA, Pulakanti K, Rao S, Battle MA. GATA4 Controls Epithelial Morphogenesis in the Developing Stomach to Promote Establishment of Glandular Columnar Epithelium. Cell Mol Gastroenterol Hepatol 2021; 12:1391-1413. [PMID: 34111600 PMCID: PMC8479485 DOI: 10.1016/j.jcmgh.2021.05.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 05/12/2021] [Accepted: 05/19/2021] [Indexed: 02/04/2023]
Abstract
BACKGROUND & AIMS The transcription factor GATA4 is broadly expressed in nascent foregut endoderm. As development progresses, GATA4 is lost in the domain giving rise to the stratified squamous epithelium of the esophagus and forestomach (FS), while it is maintained in the domain giving rise to the simple columnar epithelium of the hindstomach (HS). Differential GATA4 expression within these domains coincides with the onset of distinct tissue morphogenetic events, suggesting a role for GATA4 in diversifying foregut endoderm into discrete esophageal/FS and HS epithelial tissues. The goal of this study was to determine how GATA4 regulates differential morphogenesis of the mouse gastric epithelium. METHODS We used a Gata4 conditional knockout mouse line to eliminate GATA4 in the developing HS and a Gata4 conditional knock-in mouse line to express GATA4 in the developing FS. RESULTS We found that GATA4-deficient HS epithelium adopted a FS-like fate, and conversely, that GATA4-expressing FS epithelium adopted a HS-like fate. Underlying structural changes in these epithelia were broad changes in gene expression networks attributable to GATA4 directly activating or repressing expression of HS or FS defining transcripts. Our study implicates GATA4 as having a primary role in suppressing an esophageal/FS transcription factor network during HS development to promote columnar epithelium. Moreover, GATA4-dependent phenotypes in developmental mutants reflected changes in gene expression associated with Barrett's esophagus. CONCLUSIONS This study demonstrates that GATA4 is necessary and sufficient to activate the development of simple columnar epithelium, rather than stratified squamous epithelium, in the embryonic stomach. Moreover, similarities between mutants and Barrett's esophagus suggest that developmental biology can provide insight into human disease mechanisms.
Collapse
Affiliation(s)
- Ann DeLaForest
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Bridget M Kohlnhofer
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Olivia D Franklin
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Roman Stavniichuk
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Cayla A Thompson
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Kirthi Pulakanti
- Blood Research Institute, Versiti Wisconsin, Milwaukee, Wisconsin
| | - Sridhar Rao
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin; Blood Research Institute, Versiti Wisconsin, Milwaukee, Wisconsin; Division of Hematology/Oncology/Blood and Marrow Transplantation, Department of Pediatrics, Medical College of Wisconsin and Children's Wisconsin, Milwaukee, Wisconsin
| | - Michele A Battle
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin.
| |
Collapse
|
7
|
Zhao A, Qin H, Sun M, Tang M, Mei J, Ma K, Fu X. Chemical conversion of human epidermal stem cells into intestinal goblet cells for modeling mucus-microbe interaction and therapy. SCIENCE ADVANCES 2021; 7:7/16/eabb2213. [PMID: 33853767 PMCID: PMC8046373 DOI: 10.1126/sciadv.abb2213] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 02/25/2021] [Indexed: 06/01/2023]
Abstract
Intestinal goblet cells secrete mucus layers protecting the intestinal epithelia against injuries. It is challenging to study the interaction of goblet cells, mucus layers, and gut microbiota because of difficulty in producing goblet cells and mucus models. We generate intestinal goblet cells from human epidermal stem cells with two small molecular inhibitors Repsox and CHIR99021 in the presence of basic fibroblast growth factor and bone morphogenetic protein 4 at high efficiency (~95%) of conversion for a short time (6 to 8 days). Induced goblet cells are functional to secrete mucus, deliver fluorescent antigen, and form mucus layers modeling the mucus-microbe interaction in vitro. Transplantation of induced goblet cells and oral administration of chemical induction media promote the repair of the intestinal epithelia in a colitis mouse model. Thus, induced goblet cells can be used for investigating mucus-microbe interaction, and chemical cocktails may act as drugs for repairing the intestinal epithelia.
Collapse
Affiliation(s)
- Andong Zhao
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Division and 4th Medical Center, PLA General Hospital and PLA Medical College, 28 Fu Xing Road, Haidian District, Beijing 100853, China
- Tianjin Medical University, Tianjin 300070, China
| | - Hua Qin
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Division and 4th Medical Center, PLA General Hospital and PLA Medical College, 28 Fu Xing Road, Haidian District, Beijing 100853, China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing 100048, China
| | - Mengli Sun
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Division and 4th Medical Center, PLA General Hospital and PLA Medical College, 28 Fu Xing Road, Haidian District, Beijing 100853, China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing 100048, China
| | - Mao Tang
- Tianjin Medical University, Tianjin 300070, China
| | - Jinyu Mei
- Tianjin Medical University, Tianjin 300070, China
| | - Kui Ma
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Division and 4th Medical Center, PLA General Hospital and PLA Medical College, 28 Fu Xing Road, Haidian District, Beijing 100853, China
| | - Xiaobing Fu
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Division and 4th Medical Center, PLA General Hospital and PLA Medical College, 28 Fu Xing Road, Haidian District, Beijing 100853, China.
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing 100048, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, Beijing 100048, China
| |
Collapse
|
8
|
Stavniichuk R, DeLaForest A, Thompson CA, Miller J, Souza RF, Battle MA. GATA4 blocks squamous epithelial cell gene expression in human esophageal squamous cells. Sci Rep 2021; 11:3206. [PMID: 33547361 PMCID: PMC7864948 DOI: 10.1038/s41598-021-82557-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 01/12/2021] [Indexed: 12/21/2022] Open
Abstract
GATA4 promotes columnar epithelial cell fate during gastric development. When ectopically expressed in the developing mouse forestomach, the tissue emerges as columnar-like rather than stratified squamous with gene expression changes that parallel those observed in the pre-malignant squamous to columnar metaplasia known as Barrett's esophagus (BE). GATA4 mRNA up-regulation and gene amplification occur in BE and its associated cancer, esophageal adenocarcinoma (EAC), and GATA4 gene amplification correlates with poor patient outcomes. Here, we explored the effect of ectopic expression of GATA4 in mature human esophageal squamous epithelial cells. We found that GATA4 expression in esophageal squamous epithelial cells compromised squamous cell marker gene expression and up-regulated expression of the canonical columnar cell cytokeratin KRT8. We observed GATA4 occupancy in the p63, KRT5, and KRT15 promoters, suggesting that GATA4 directly represses expression of squamous epithelial cell marker genes. Finally, we verified GATA4 protein expression in BE and EAC and found that exposure of esophageal squamous epithelial cells to acid and bile, known BE risk factors, induced GATA4 mRNA expression. We conclude that GATA4 suppresses expression of genes marking the stratified squamous epithelial cell lineage and that this repressive action by GATA4 may have implications in BE and EAC.
Collapse
Affiliation(s)
- Roman Stavniichuk
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Ann DeLaForest
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Cayla A Thompson
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - James Miller
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Rhonda F Souza
- Department of Medicine, Center for Esophageal Diseases, Baylor University Medical Center and Center for Esophageal Research, Baylor Scott & White Research Institute, Dallas, TX, USA
| | - Michele A Battle
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
9
|
Expression patterns of seven key genes, including β-catenin, Notch1, GATA6, CDX2, miR-34a, miR-181a and miR-93 in gastric cancer. Sci Rep 2020; 10:12342. [PMID: 32704077 PMCID: PMC7378835 DOI: 10.1038/s41598-020-69308-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 06/01/2020] [Indexed: 02/08/2023] Open
Abstract
Gastric cancer (GC) is one of the most prevalent cancers and a major cause of cancer related mortality worldwide. Incidence of GC is affected by various factors, including genetic and environmental factors. Despite extensive research has been done for molecular characterization of GC, it remains largely unknown. Therefore, further studies specially conducted among various ethnicities in different geographic locations, are required to know the precise molecular mechanisms leading to tumorigenesis and progression of GC. The expression patterns of seven candidate genes, including β-catenin, Notch1, GATA6, CDX2, miR-34a, miR-181a, and miR-93 were determined in 24 paired GC tissues and corresponding non-cancerous tissues by quantitative Real-Time PCR. The association between the expression of these genes and clinicopathologic factors were also investigated. Our results demonstrated that overall mRNA levels of GATA6 were significantly decreased in the tumor samples in comparison with the non-cancerous tissues (median fold change (FC) = 0.3143; P = 0.0003). Overall miR-93 levels were significantly increased in the tumor samples relative to the non-cancerous gastric tissues (FC = 2.441; P = 0.0002). β-catenin mRNA expression showed a strong positive correlation with miR-34a (r = 0.5784; P = 0.0031), and miR-181a (r = 0.5652; P = 0.004) expression. miR-34a and miR-181a expression showed a significant positive correlation (r = 0.4862; P = 0.016). Moreover, lower expression of Notch1 was related to distant metastasis in GC patients with a borderline statistical significance (p = 0.0549). These data may advance our understanding of the molecular biology that drives GC as well as provide potential targets for defining novel therapeutic strategies for GC treatment.
Collapse
|
10
|
Badgery H, Chong L, Iich E, Huang Q, Georgy SR, Wang DH, Read M. Recent insights into the biology of Barrett's esophagus. Ann N Y Acad Sci 2020; 1481:198-209. [PMID: 32681541 DOI: 10.1111/nyas.14432] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/04/2020] [Accepted: 06/17/2020] [Indexed: 12/21/2022]
Abstract
Barrett's esophagus (BE) is the only known precursor to esophageal adenocarcinoma (EAC), an aggressive cancer with a poor prognosis. Our understanding of the pathogenesis and Barrett's metaplasia is incomplete, and this has limited the development of new therapeutic targets and agents, risk stratification ability, and management strategies. This review outlines current insights into the biology of BE and addresses controversies surrounding cell of origin, cellular reprogramming theories, updates on esophageal epithelial barrier function, and the significance of goblet cell metaplasia and its association with malignant change. Further research into the basic biology of BE is vital as it will underpin novel therapies and improve our ability to predict malignant progression and help identify the minority of patients who will develop EAC.
Collapse
Affiliation(s)
- Henry Badgery
- Department of Upper Gastrointestinal Surgery, St Vincent's Hospital, Melbourne, Victoria, Australia
| | - Lynn Chong
- Department of Upper Gastrointestinal Surgery, St Vincent's Hospital, Melbourne, Victoria, Australia
| | - Elhadi Iich
- Cancer Biology and Surgical Oncology Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Qin Huang
- Department of Pathology and Laboratory Medicine, Veterans Affairs Boston Healthcare System and Harvard Medical School, West Roxbury, Massachusetts
| | - Smitha Rose Georgy
- Department of Anatomic Pathology, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - David H Wang
- Department of Hematology and Oncology, UT Southwestern Medical Centre and VA North Texas Health Care System, Dallas, Texas
| | - Matthew Read
- Department of Upper Gastrointestinal Surgery, St Vincent's Hospital, Melbourne, Victoria, Australia.,Department of Surgery, The University of Melbourne, St Vincent's Hospital, Melbourne, Victoria, Australia
| |
Collapse
|
11
|
Gleeson JP, Estrada HQ, Yamashita M, Svendsen CN, Targan SR, Barrett RJ. Development of Physiologically Responsive Human iPSC-Derived Intestinal Epithelium to Study Barrier Dysfunction in IBD. Int J Mol Sci 2020; 21:E1438. [PMID: 32093254 PMCID: PMC7073090 DOI: 10.3390/ijms21041438] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 02/13/2020] [Accepted: 02/18/2020] [Indexed: 12/12/2022] Open
Abstract
In inflammatory bowel disease (IBD), the intestinal epithelium is characterized by increased permeability both in active disease and remission states. The genetic underpinnings of this increased intestinal permeability are largely unstudied, in part due to a lack of appropriate modelling systems. Our aim is to develop an in vitro model of intestinal permeability using induced pluripotent stem cell (iPSC)-derived human intestinal organoids (HIOs) and human colonic organoids (HCOs) to study barrier dysfunction. iPSCs were generated from healthy controls, adult onset IBD, and very early onset IBD (VEO-IBD) patients and differentiated into HIOs and HCOs. EpCAM+ selected cells were seeded onto Transwell inserts and barrier integrity studies were carried out in the presence or absence of pro-inflammatory cytokines TNFα and IFNγ. Quantitative real-time PCR (qRT-PCR), transmission electron microscopy (TEM), and immunofluorescence were used to determine altered tight and adherens junction protein expression or localization. Differentiation to HCO indicated an increased gene expression of CDX2, CD147, and CA2, and increased basal transepithelial electrical resistance compared to HIO. Permeability studies were carried out in HIO- and HCO-derived epithelium, and permeability of FD4 was significantly increased when exposed to TNFα and IFNγ. TEM and immunofluorescence imaging indicated a mislocalization of E-cadherin and ZO-1 in TNFα and IFNγ challenged organoids with a corresponding decrease in mRNA expression. Comparisons between HIO- and HCO-epithelium show a difference in gene expression, electrophysiology, and morphology: both are responsive to TNFα and IFNγ stimulation resulting in enhanced permeability, and changes in tight and adherens junction architecture. This data indicate that iPSC-derived HIOs and HCOs constitute an appropriate physiologically responsive model to study barrier dysfunction and the role of the epithelium in IBD and VEO-IBD.
Collapse
Affiliation(s)
- John P. Gleeson
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (J.P.G.); (H.Q.E.); (C.N.S.)
| | - Hannah Q. Estrada
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (J.P.G.); (H.Q.E.); (C.N.S.)
| | - Michifumi Yamashita
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA;
| | - Clive N. Svendsen
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (J.P.G.); (H.Q.E.); (C.N.S.)
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Stephan R. Targan
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA;
| | - Robert J. Barrett
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (J.P.G.); (H.Q.E.); (C.N.S.)
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA;
| |
Collapse
|
12
|
Romano O, Miccio A. GATA factor transcriptional activity: Insights from genome-wide binding profiles. IUBMB Life 2019; 72:10-26. [PMID: 31574210 DOI: 10.1002/iub.2169] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 09/05/2019] [Indexed: 01/07/2023]
Abstract
The members of the GATA family of transcription factors have homologous zinc fingers and bind to similar sequence motifs. Recent advances in genome-wide technologies and the integration of bioinformatics data have led to a better understanding of how GATA factors regulate gene expression; GATA-factor-induced transcriptional and epigenetic changes have now been analyzed at unprecedented levels of detail. Here, we review the results of genome-wide studies of GATA factor occupancy in human and murine cell lines and primary cells (as determined by chromatin immunoprecipitation sequencing), and then discuss the molecular mechanisms underlying the mediation of transcriptional and epigenetic regulation by GATA factors.
Collapse
Affiliation(s)
- Oriana Romano
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Annarita Miccio
- Laboratory of chromatin and gene regulation during development, Imagine Institute, INSERM UMR, Paris, France.,Paris Descartes, Sorbonne Paris Cité University, Imagine Institute, Paris, France
| |
Collapse
|
13
|
Sun Z, Yan B. Multiple roles and regulatory mechanisms of the transcription factor GATA6 in human cancers. Clin Genet 2019; 97:64-72. [PMID: 31437305 DOI: 10.1111/cge.13630] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/13/2019] [Accepted: 08/20/2019] [Indexed: 12/24/2022]
Abstract
Cancer is a common type of non-communicable disease, and its morbidity and mortality are rapidly increasing. It is expected to become the largest obstacle to the promotion of global human health in the future. Some transcription factors that play important regulatory roles in embryogenesis and subsequent tissue maintenance can be selectively amplified during tumorigenesis. Due to its high expression in the embryonic endoderm and mesoderm, GATA6 plays a crucial role in the normal development of early human heart, lung, digestive system, adrenal glands, breasts, ovaries, retina, skin, and nervous system. Up to now, overexpression of the GATA6 gene has been shown to play an important role in several cancers, including lung cancer, digestive system tumors, breast cancer, and ovarian cancer. However, the human body is a complex organism, which causes the transcription factor GATA6 to have multiple roles in cancer. In this review, we summarize the multiple roles of transcription factor GATA6 in various cancers and its regulatory mechanisms. The aim is to better understand the relationship between GATA6 gene expression and cancer development and to provide new insights for exploring potential therapeutic targets.
Collapse
Affiliation(s)
- Zhaoqing Sun
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Bo Yan
- Shandong Provincial Key Laboratory of Cardiac Disease Diagnosis and Treatment, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China.,The Center for Molecular Genetics of Cardiovascular Diseases, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China.,Shandong Provincial Sino-US Cooperation Research Center for Translational Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| |
Collapse
|
14
|
Abstract
Chronic injury and inflammation in the esophagus can cause a change in cellular differentiation known as metaplasia. Most commonly, the differentiation changes manifest as Barrett's esophagus (BE), characterized by the normal stratified squamous epithelium converting into a cuboidal-columnar, glandular morphology. BE cells can phenotypically resemble specific normal cell types of the stomach or intestine, or they can have overlapping phenotypes in disorganized admixtures. The stomach can also undergo metaplasia characterized by aberrant gastric or intestinal differentiation patterns. In both organs, it has been argued that metaplasia may represent a recapitulation of the embryonic or juvenile gastrointestinal tract, as cells access a developmental progenitor genetic program that can help repair damaged tissue. Here, we review the normal development of esophagus and stomach, and describe how BE represents an intermixing of cells resembling gastric pseudopyloric (SPEM) and intestinal metaplasia. We discuss a cellular process recently termed "paligenosis" that governs how mature, differentiated cells can revert to a proliferating progenitor state in metaplasia. We discuss the "Cyclical Hit" theory in which paligenosis might be involved in the increased risk of metaplasia for progression to cancer. However, somatic mutations might occur in proliferative phases and then be warehoused upon redifferentiation. Through years of chronic injury and many rounds of paligenosis and dedifferentiation, eventually a cell with a mutation that prevents dedifferentiation may arise and clonally expand fueling stable metaplasia and potentially thereafter acquiring additional mutations and progressing to dysplasia and cancer.
Collapse
Affiliation(s)
- Ramon U Jin
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Jason C Mills
- Division of Gastroenterology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
15
|
Li H, Feng C, Shi S. miR-196b promotes lung cancer cell migration and invasion through the targeting of GATA6. Oncol Lett 2018; 16:247-252. [PMID: 29928408 PMCID: PMC6006457 DOI: 10.3892/ol.2018.8671] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 05/04/2018] [Indexed: 12/25/2022] Open
Abstract
MicroRNAs (miRNAs) have been proven to regulate gene expression at the protein translation level. miRNA abnormal expression has been associated with the development of lung cancer. In the present study, we aimed to investigate the mechanism of miR-196 in non-small cell lung cancer (NSCLC). The miR-196b and GATA-6 (GATA6) expression levels were examined in NSCLC by RT-qPCR and western blot analysis. Transwell assay was used to assess cell migration and invasion. Moreover, the specific target of miR-196b in NSCLC was verified by the luciferase reporter assay. The expression of miR-196b was higher in both NSCLC tissues and cells than the normal levels. Specifically, the miR-196b mimic group in NSCLC cells markedly promoted cell migration and invasion, while the miR-196b inhibitor group exhibited the opposite effect. Furthermore, GATA6 was verified as a specific target of miR-196b in NSCLC cells and GATA6 could attenuate the migratory and invasive ability of NSCLC cells regulated by miR-196b. In addition, the relationship between GATA6 and miR-196b expression was negatively correlated in NSCLC tissues. Thus, miR-196b enhanced NSCLC cell migration and invasion via the downregulation of GATA6, indicating its potential application in NSCLC diagnosis and therapy.
Collapse
Affiliation(s)
- Hongli Li
- Department of Operation Room, Eastern Medical District of Linyi People's Hospital, Linyi, Shandong 276034, P.R. China
| | - Chao Feng
- Department of Surgery, Eastern Medical District of Linyi People's Hospital, Linyi, Shandong 276034, P.R. China
| | - Songtao Shi
- Department of Thoracic Surgery, Eastern Medical District of Linyi People's Hospital, Linyi, Shandong 276034, P.R. China
| |
Collapse
|
16
|
Upregulation of bone morphogenetic protein 1 is associated with poor prognosis of late-stage gastric Cancer patients. BMC Cancer 2018; 18:508. [PMID: 29720137 PMCID: PMC5930761 DOI: 10.1186/s12885-018-4383-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 04/17/2018] [Indexed: 01/02/2023] Open
Abstract
Background Gastric cancer is the eighth most common cancer in Taiwan, with a 40% 5-year survival rate. Approximately 40% of patients are refractory to chemotherapy. Currently, the anti-HER2 therapy is the only clinically employed targeted therapy. However, only 7% patients in Taiwan are HER2-positive. Identifying candidate target genes will facilitate the development of adjuvant targeted therapy to increase the efficacy of gastric cancer treatment. Methods Clinical specimens were analyzed by targeted RNA sequencing to assess the expression levels of target genes. Statistical significance of differential expression and correlation between specimens was evaluated. The correlation with patient survival was analyzed as well. In vitro cell mobility was determined using wound-healing and transwell mobility assays. Results Expression of BMP1, COL1A1, STAT3, SOX2, FOXA2, and GATA6 was progressively dysregulated through the stages of gastric oncogenesis. The expression profile of these six genes forms an ubiquitously biomarker signature that is sufficient to differentiate cancer from non-cancerous specimens. High expression status of BMP1 correlates with poor long-term survival of late-stage patients. In vitro, suppression of BMP1 inhibits the mobility of the gastric cancer cell lines, indicating a role of BMP1 in metastasis. Conclusions BMP1 is upregulated in gastric cancer and is correlated with poor patient survival. Suppression of BMP1 reduced gastric cancer mobility in vitro. Our finding suggests that anti-BMP1 therapy will likely augment the efficacy of standard chemotherapy and improve the treatment outcome.
Collapse
|
17
|
Soini T, Pihlajoki M, Andersson N, Lohi J, Huppert KA, Rudnick DA, Huppert SS, Wilson DB, Pakarinen MP, Heikinheimo M. Transcription factor GATA6: a novel marker and putative inducer of ductal metaplasia in biliary atresia. Am J Physiol Gastrointest Liver Physiol 2018; 314:G547-G558. [PMID: 29388792 PMCID: PMC6008062 DOI: 10.1152/ajpgi.00362.2017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Biliary atresia (BA), a neonatal liver disease, is characterized by obstruction of extrahepatic bile ducts with subsequent cholestasis, inflammation, and progressive liver fibrosis. To gain insights into the pathophysiology of BA, we focused attention on GATA6, a transcription factor implicated in biliary development. Early in fetal development GATA6 expression is evident in cholangiocytes and hepatocytes, but by late gestation it is extinguished in hepatocytes. Utilizing a unique set of BA liver samples collected before and after successful portoenterostomy (PE), we found that GATA6 expression is markedly upregulated in hepatocytes of patients with BA compared with healthy and cholestatic disease controls. This upregulation is recapitulated in two murine models simulating bile duct obstruction and intrahepatic bile ductule expansion. GATA6 expression in BA livers correlates with two established negative prognostic indicators (age at PE, degree of intrahepatic bile ductule expansion) and decreases after normalization of serum bilirubin by PE. GATA6 expression in BA livers correlates with expression of known regulators of cholangiocyte differentiation ( JAGGED1, HNF1β, and HNF6). These same genes are upregulated after enforced expression of GATA6 in human hepatocyte cell models. In conclusion, GATA6 is a novel marker and a putative driver of hepatocyte-cholangiocyte metaplasia in BA, and its expression in hepatocytes is downregulated after successful PE. NEW & NOTEWORTHY A pathological hallmark in the liver of patients with biliary atresia is ductular reaction, an expansion of new bile ductules that are thought to arise from conversion of mature hepatocytes. Here, we show that transcription factor GATA6 is a marker and potential driver of hepatocyte ductal metaplasia in biliary atresia. Hepatocyte GATA6 expression is elevated in biliary atresia, correlates with bile duct expansion, and decreases after successful portoenterostomy.
Collapse
Affiliation(s)
- Tea Soini
- 1Pediatric Research Center, Children’s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Marjut Pihlajoki
- 1Pediatric Research Center, Children’s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland,2Department of Pediatrics, Saint Louis Children’s Hospital, Washington University School of Medicine, Saint Louis, Missouri
| | - Noora Andersson
- 1Pediatric Research Center, Children’s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Jouko Lohi
- 3Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Kari A. Huppert
- 4Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Research Foundation and the University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - David A. Rudnick
- 2Department of Pediatrics, Saint Louis Children’s Hospital, Washington University School of Medicine, Saint Louis, Missouri,5Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Stacey S. Huppert
- 4Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Research Foundation and the University of Cincinnati College of Medicine, Cincinnati, Ohio,5Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - David B. Wilson
- 2Department of Pediatrics, Saint Louis Children’s Hospital, Washington University School of Medicine, Saint Louis, Missouri,6Department of Developmental Biology, Washington University School of Medicine, Saint Louis, Missouri
| | - Mikko P. Pakarinen
- 1Pediatric Research Center, Children’s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland,7Pediatric Surgery and Pediatric Liver and Gut Research Group, Children’s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Markku Heikinheimo
- 1Pediatric Research Center, Children’s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland,2Department of Pediatrics, Saint Louis Children’s Hospital, Washington University School of Medicine, Saint Louis, Missouri
| |
Collapse
|
18
|
Nakajima N, Yoshizawa A, Nakajima T, Hirata M, Furuhata A, Sumiyoshi S, Rokutan-Kurata M, Sonobe M, Menju T, Miyamoto E, Chen-Yoshikawa TF, Date H, Haga H. GATA6-positive lung adenocarcinomas are associated with invasive mucinous adenocarcinoma morphology, hepatocyte nuclear factor 4α expression, and KRAS mutations. Histopathology 2018; 73:38-48. [PMID: 29469192 DOI: 10.1111/his.13500] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 02/18/2018] [Indexed: 02/06/2023]
Abstract
AIMS GATA6 is known to play a role in lung development. However, its role in the carcinogenesis of lung cancer is not well studied. The aim of this study was to analyse GATA6 expression in lung adenocarcinomas (LAs) by immunohistochemistry (IHC) in order to define its association with clinicopathological characteristics. METHODS AND RESULTS IHC analysis of GATA6 was performed with tissue microarray slides containing 348 LAs. The association between GATA6 expression and clinicopathological parameters was evaluated. GATA6 expression in epithelial tumours other than lung cancer was also evaluated. GATA6 expression was found in 47 LAs (13.5%). This occurred more frequently in younger patients (P = 0.005), and was associated with the absence of lymph node metastasis (P =0.024), well-differentiated to moderately differentiated tumours (P < 0.001), the absence of lymphatic invasion (P = 0.020), and the absence of vascular invasion (P = 0.011). GATA6 expression was associated with mucin production (P < 0.001), the invasive mucinous adenocarcinoma subtype (P < 0.001), KRAS mutations (P = 0.026), expression of MUC2 (P < 0.001), CDX2 (P = 0.049), and MUC5AC (P < 0.001), and absence of expression of TTF-1 (P = 0.002). GATA6 expression was also associated with hepatocyte nuclear factor 4α (HNF4α) expression (P < 0.001). GATA6 expression tended to indicate better prognoses, whereas patients with HNF4α expression had significantly worse prognoses (P = 0.033). Of 270 tumours other than lung cancer, 110 expressed GATA6. CONCLUSIONS These findings suggest that GATA6 might interact with HNF4α and contribute to the development of mucinous-type LAs.
Collapse
Affiliation(s)
- Naoki Nakajima
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan
| | - Akihiko Yoshizawa
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan
| | - Tomoyuki Nakajima
- Department of Laboratory Medicine, Shinshu University Hospital, Matsumoto, Japan
| | - Masahiro Hirata
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan
| | - Ayako Furuhata
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan
| | - Shinji Sumiyoshi
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan
| | | | - Makoto Sonobe
- Department of Thoracic Surgery, Kyoto University Hospital, Kyoto, Japan
| | - Toshi Menju
- Department of Thoracic Surgery, Kyoto University Hospital, Kyoto, Japan
| | - Ei Miyamoto
- Department of Thoracic Surgery, Kyoto University Hospital, Kyoto, Japan
| | | | - Hiroshi Date
- Department of Thoracic Surgery, Kyoto University Hospital, Kyoto, Japan
| | - Hironori Haga
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan
| |
Collapse
|
19
|
|
20
|
Thompson CA, DeLaForest A, Battle MA. Patterning the gastrointestinal epithelium to confer regional-specific functions. Dev Biol 2018; 435:97-108. [PMID: 29339095 PMCID: PMC6615902 DOI: 10.1016/j.ydbio.2018.01.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 01/01/2018] [Accepted: 01/10/2018] [Indexed: 12/12/2022]
Abstract
The gastrointestinal (GI) tract, in simplest terms, can be described as an epithelial-lined muscular tube extending along the cephalocaudal axis from the oral cavity to the anus. Although the general architecture of the GI tract organs is conserved from end to end, the presence of different epithelial tissue structures and unique epithelial cell types within each organ enables each to perform the distinct digestive functions required for efficient nutrient assimilation. Spatiotemporal regulation of signaling pathways and downstream transcription factors controls GI epithelial morphogenesis during development to confer essential regional-specific epithelial structures and functions. Here, we discuss the fundamental functions of each GI tract organ and summarize the diversity of epithelial structures present along the cephalocaudal axis of the GI tract. Next, we discuss findings, primarily from genetic mouse models, that have defined the roles of key transcription factors during epithelial morphogenesis, including p63, SOX2, SOX15, GATA4, GATA6, HNF4A, and HNF4G. Additionally, we examine how the Hedgehog, WNT, and BMP signaling pathways contribute to defining unique epithelial features along the cephalocaudal axis of the GI tract. Lastly, we examine the molecular mechanisms controlling regionalized cytodifferentiation of organ-specific epithelial cell types within the GI tract, concentrating on the stomach and small intestine. The delineation of GI epithelial patterning mechanisms in mice has provided fundamental knowledge to guide the development and refinement of three-dimensional GI organotypic culture models such as those derived from directed differentiation of human pluripotent stem cells and those derived directly from human tissue samples. Continued examination of these pathways will undoubtedly provide vital insights into the mechanisms of GI development and disease and may afford new avenues for innovative tissue engineering and personalized medicine approaches to treating GI diseases.
Collapse
Affiliation(s)
- Cayla A Thompson
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Ann DeLaForest
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Michele A Battle
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.
| |
Collapse
|
21
|
The miR-196b miRNA inhibits the GATA6 intestinal transcription factor and is upregulated in colon cancer patients. Oncotarget 2018; 8:4747-4759. [PMID: 27902469 PMCID: PMC5354868 DOI: 10.18632/oncotarget.13580] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 11/11/2016] [Indexed: 12/22/2022] Open
Abstract
Objective To explore the possible misexpression of the microRNA miR-196b in colorectal cancer (CRC) and its role in controlling the expression of GATA6, a putative target gene crucial to intestinal cell homeostasis and tumorigenesis. Design The expression of miR-196b was analysed by qRT-PCR in surgical resection samples from a cohort of sporadic colon cancer patients. Manipulations of miR-196b expression were performed to demonstrate its inhibition of GATA6 protein levels. Results We found that miR-196b is significantly upregulated in pre-treatment surgical resection samples from a cohort of sporadic colon cancer patients. The upregulation of miR-196b correlates with less severe clinicopathological characteristics, such as early tumor stage and absence of lymph node metastases. We show that in CRC cells, miR-196b targets the mRNA of GATA6, a transcription factor involved in the homeostasis and differentiation of intestinal epithelial cells, and a positive regulator of the Wnt/β-catenin pathway. We moreover found that the increase of miR-196b correlates with a reduced GATA6 protein expression in colon cancer patients. Conclusion Our results establish miR-196b as a post-transcriptional inhibitor of GATA6 in CRC cells, implicating miR-196b function in gene regulatory pathways crucial to intestinal cell homeostasis and tumorigenesis. Our results furthermore suggest a role of miR-196b expression in CRC, as an antagonist of GATA6 function in tumor cells, thus providing the basis for a potential targeting strategy for the treatment of CRC.
Collapse
|
22
|
Aberrant GATA2 epigenetic dysregulation induces a GATA2/GATA6 switch in human gastric cancer. Oncogene 2017; 37:993-1004. [PMID: 29106391 DOI: 10.1038/onc.2017.397] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 08/08/2017] [Accepted: 09/15/2017] [Indexed: 02/07/2023]
Abstract
Six GATA transcription factors play important roles in eukaryotic development. Among these, GATA2, an essential factor for the hematopoietic cell lineage, exhibits low expression in human gastric tissues, whereas GATA6, which is crucial for gastrointestinal development and differentiation, is frequently amplified and/or overexpressed in human gastric cancer. Interestingly, we found that GATA6 was overexpressed in human gastric cancer cells only when GATA2 expression was completely absent, thereby showing an inverse correlation between GATA2 and GATA6. In gastric cancer cells that express high GATA6 levels, a GATA2 CpG island is hypermethylated, repressing expression in these cells. In contrast, GATA6 expression is undetectable in GATA2-overexpressing gastric cancer cells, which lack GATA2 DNA methylation. Furthermore, PRC2 complex-mediated transcriptional silencing of GATA6 was observed in the GATA2-overexpressing cells. We also show that the GATA2 and PRC2 complexes are enriched within the GATA6 locus, and that the recruitment of the PRC2 complex is impaired by disrupting GATA2 expression, resulting in GATA6 upregulation. In addition, ectopic GATA2 expression significantly downregulates GATA6 expression, suggesting GATA2 directly represses GATA6. Furthermore, GATA6 downregulation showed antitumor activity by inducing growth arrest. Finally, we show that aberrant GATA2 methylation occurs early during the multistep process of gastric carcinogenesis regardless of Helicobacter pylori infection. Taken together, GATA2 dysregulation by epigenetic modification is associated with unfavorable phenotypes in human gastric cancer cells by allowing GATA6 expression.
Collapse
|
23
|
Lu Y, Zhao X, Liu Q, Li C, Graves-Deal R, Cao Z, Singh B, Franklin JL, Wang J, Hu H, Wei T, Yang M, Yeatman TJ, Lee E, Saito-Diaz K, Hinger S, Patton JG, Chung CH, Emmrich S, Klusmann JH, Fan D, Coffey RJ. lncRNA MIR100HG-derived miR-100 and miR-125b mediate cetuximab resistance via Wnt/β-catenin signaling. Nat Med 2017; 23:1331-1341. [PMID: 29035371 PMCID: PMC5961502 DOI: 10.1038/nm.4424] [Citation(s) in RCA: 311] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 09/08/2017] [Indexed: 12/11/2022]
Abstract
De novo and acquired resistance, which are largely attributed to genetic alterations, are barriers to effective anti-epidermal-growth-factor-receptor (EGFR) therapy. To generate cetuximab-resistant cells, we exposed cetuximab-sensitive colorectal cancer cells to cetuximab in three-dimensional culture. Using whole-exome sequencing and transcriptional profiling, we found that the long non-coding RNA MIR100HG and two embedded microRNAs, miR-100 and miR-125b, were overexpressed in the absence of known genetic events linked to cetuximab resistance. MIR100HG, miR-100 and miR-125b overexpression was also observed in cetuximab-resistant colorectal cancer and head and neck squamous cell cancer cell lines and in tumors from colorectal cancer patients that progressed on cetuximab. miR-100 and miR-125b coordinately repressed five Wnt/β-catenin negative regulators, resulting in increased Wnt signaling, and Wnt inhibition in cetuximab-resistant cells restored cetuximab responsiveness. Our results describe a double-negative feedback loop between MIR100HG and the transcription factor GATA6, whereby GATA6 represses MIR100HG, but this repression is relieved by miR-125b targeting of GATA6. These findings identify a clinically actionable, epigenetic cause of cetuximab resistance.
Collapse
Affiliation(s)
- Yuanyuan Lu
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Xiaodi Zhao
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Qi Liu
- Department of Biomedical Informatics and Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Cunxi Li
- Jiaen Genetics Laboratory, Beijing Jiaen Hospital, Beijing, China, and Molecular Pathology, Cancer Research Center, Medical College of Xiamen University, Xiamen, China
| | - Ramona Graves-Deal
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Zheng Cao
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Bhuminder Singh
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jeffrey L Franklin
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jing Wang
- Department of Biomedical Informatics and Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Huaying Hu
- Jiaen Genetics Laboratory, Beijing Jiaen Hospital, Beijing, China, and Molecular Pathology, Cancer Research Center, Medical College of Xiamen University, Xiamen, China
| | - Tianying Wei
- Jiaen Genetics Laboratory, Beijing Jiaen Hospital, Beijing, China, and Molecular Pathology, Cancer Research Center, Medical College of Xiamen University, Xiamen, China
| | - Mingli Yang
- Gibbs Cancer Center & Research Institute, Spartanburg, South Carolina, USA
| | - Timothy J Yeatman
- Gibbs Cancer Center & Research Institute, Spartanburg, South Carolina, USA
| | - Ethan Lee
- Department of Cell and Developmental Biology and Vanderbilt Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Kenyi Saito-Diaz
- Department of Cell and Developmental Biology and Vanderbilt Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Scott Hinger
- Department of Biological Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - James G Patton
- Department of Biological Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | | | - Stephan Emmrich
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | | | - Daiming Fan
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Robert J Coffey
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Veterans Affairs Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
24
|
Esser D, Holze N, Haag J, Schreiber S, Krüger S, Warneke V, Rosenstiel P, Röcken C. Interpreting whole genome and exome sequencing data of individual gastric cancer samples. BMC Genomics 2017; 18:517. [PMID: 28683819 PMCID: PMC5501078 DOI: 10.1186/s12864-017-3895-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Accepted: 06/22/2017] [Indexed: 01/18/2023] Open
Abstract
Background Gastric cancer is the fourth most common cancer and the second leading cause of cancer death worldwide. In order to understand the genetic background, we sequenced the whole exome and the whole genome of one microsatellite stable as well as one microsatellite unstable tumor and the matched healthy tissue on two different NGS platforms. We here aimed to provide a comparative approach for individual clinical tumor sequencing and annotation using different sequencing technologies and mutation calling algorithms. Results We applied a population-based whole genome resource as a novel pathway-based filter for interpretation of genomic alterations from single nucleotide variations (SNV), indels, and large structural variations. In addition to a comparison with tumor genome database resources and a filtering approach using data from the 1000 Genomes Project, we performed pyrosequencing analysis and immunohistochemistry in a large cohort of 428 independent gastric cancer cases. Conclusion We here provide an example comparing the usefulness and potential pitfalls of different technologies for a clinical interpretation of genomic sequence data of individual gastric cancer samples. Using different filtering approaches, we identified a multitude of novel potentially damaging mutations and could show a validated association between a mutation in GNAS and gastric cancer. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3895-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Daniela Esser
- Institute for Clinical Molecular Biology, Christian-Albrechts-University, 24105, Kiel, Germany.,Institute for Experimental Medicine, Christian-Albrechts-University, 24105, Kiel, Germany
| | - Niklas Holze
- Institute of Pathology, Christian-Albrechts-University, Arnold-Heller-Str. 3, Haus 14, D-24105, Kiel, Germany
| | - Jochen Haag
- Institute of Pathology, Christian-Albrechts-University, Arnold-Heller-Str. 3, Haus 14, D-24105, Kiel, Germany
| | - Stefan Schreiber
- Institute for Clinical Molecular Biology, Christian-Albrechts-University, 24105, Kiel, Germany.,Department of General Internal Medicine, University Hospital Schleswig-Holstein, 24105, Kiel, Germany
| | - Sandra Krüger
- Institute of Pathology, Christian-Albrechts-University, Arnold-Heller-Str. 3, Haus 14, D-24105, Kiel, Germany
| | - Viktoria Warneke
- Institute of Pathology, Christian-Albrechts-University, Arnold-Heller-Str. 3, Haus 14, D-24105, Kiel, Germany
| | - Philip Rosenstiel
- Institute for Clinical Molecular Biology, Christian-Albrechts-University, 24105, Kiel, Germany
| | - Christoph Röcken
- Institute of Pathology, Christian-Albrechts-University, Arnold-Heller-Str. 3, Haus 14, D-24105, Kiel, Germany.
| |
Collapse
|
25
|
Wu C, Zhu X, Liu W, Ruan T, Tao K. Hedgehog signaling pathway in colorectal cancer: function, mechanism, and therapy. Onco Targets Ther 2017; 10:3249-3259. [PMID: 28721076 PMCID: PMC5501640 DOI: 10.2147/ott.s139639] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common gastrointestinal cancers worldwide. It is a complicated and often fatal cancer, and is related to a high disease-related mortality. Around 90% of mortalities are caused by the metastasis of CRC. Current treatment statistics shows a less than 5% 5-year survival for patients with metastatic disease. The development and metastasis of CRC involve multiple factors and mechanisms. The Hedgehog (Hh) signaling plays an important role in embryogenesis and somatic development. Abnormal activation of the Hh pathway has been proven to be related to several types of human cancers. The role of Hh signaling in CRC, however, remains controversial. In this review, we will go through previous literature on the Hh signaling and its functions in the formation, proliferation, and metastasis of CRC. We will also discuss the potential of targeting Hh signaling pathway in the treatment, prognosis, and prevention of CRC.
Collapse
Affiliation(s)
- Chuanqing Wu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaojie Zhu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weizhen Liu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tuo Ruan
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kaixiong Tao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
26
|
Zhang F, Tang H, Jiang Y, Mao Z. The transcription factor GATA3 is required for homologous recombination repair by regulating CtIP expression. Oncogene 2017; 36:5168-5176. [PMID: 28481869 DOI: 10.1038/onc.2017.127] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 03/09/2017] [Accepted: 03/27/2017] [Indexed: 11/09/2022]
Abstract
GATA3, a critical transcription factor involved in the development of the mammary gland, also plays important roles in mammary tumorigenesis by regulating transcription in coordination with two essential DNA repair factors, PARP1 and BRCA1. However, whether and how GATA3 participates in the process of DNA repair, which is often associated with tumorigenesis, has not been investigated. Here we demonstrate that GATA3 is required for the repair of DNA double-strand breaks (DSBs) by homologous recominbation (HR). Mechanistic studies indicate that at both the protein and the mRNA level, depleting GATA3 leads to reduced expression of CtIP, an essential HR factor involved in end resection, thereby suppressing the repair of DSBs by HR and sensitizing cells to etoposide induced DNA DSBs. Further studies indicate that upon the occurrence of DNA DSBs GATA3 directly binds to the CtIP promoter at the region of -2119 to -2130 and -2274 to -2285, and promotes the transcription of CtIP. Overexpression of CtIP in GATA3 depleted cells rescues the decline of HR, and cell survival in the presence of etoposide. In addition, through data mining analysis, we observed an extremely strong correlation between the expression levels of GATA3 and CtIP in paratumors, but the correlation turned insignificant in mammary tumors. Using vectors encoding GATA3 with mutations frequently occurring in mammary tumors, we found that several mutations on GATA3 led to a dysregulation of CtIP, and therefore HR repair. In summary, our data delineates the regulatory mechanisms of GATA3 in DNA DSB repair and strongly suggests that it might act as a tumor suppressor by promoting CtIP expression and HR to stabilize genomes.
Collapse
Affiliation(s)
- F Zhang
- Clinical and Translational Research Center of Shanghai First Maternity &Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - H Tang
- Clinical and Translational Research Center of Shanghai First Maternity &Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Y Jiang
- Clinical and Translational Research Center of Shanghai First Maternity &Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Z Mao
- Clinical and Translational Research Center of Shanghai First Maternity &Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| |
Collapse
|
27
|
Regulator of G protein signaling 4 is a novel target of GATA-6 transcription factor. Biochem Biophys Res Commun 2016; 483:923-929. [PMID: 27746176 DOI: 10.1016/j.bbrc.2016.10.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 10/11/2016] [Indexed: 12/12/2022]
Abstract
GATA transcription factors regulate an array of genes important in cell proliferation and differentiation. Here we report the identification of regulator of G protein signaling 4 (RGS4) as a novel target for GATA-6 transcription factor. Although three sites (a, b, c) within the proximal region of rabbit RGS4 promoter for GATA transcription factors were predicted by bioinformatics analysis, only GATA-a site (16 bp from the core TATA box) is essential for RGS4 transcriptional regulation. RT-PCR analysis demonstrated that only GATA-6 was highly expressed in rabbit colonic smooth muscle cells but GATA-4/6 were expressed in cardiac myocytes and GATA-1/2/3 expressed in blood cells. Adenovirus-mediated expression of GATA-6 but not GATA-1 significantly increased the constitutive and IL-1β-induced mRNA expression of the endogenous RGS4 in colonic smooth muscle cells. IL-1β stimulation induced GATA-6 nuclear translocation and increased GATA-6 binding to RGS4 promoter. These data suggest that GATA factor could affect G protein signaling through regulating RGS4 expression, and GATA signaling may develop as a future therapeutic target for RGS4-related diseases.
Collapse
|
28
|
Song B, Du J, Deng N, Ren JC, Shu ZB. Comparative analysis of gene expression profiles of gastric cardia adenocarcinoma and gastric non-cardia adenocarcinoma. Oncol Lett 2016; 12:3866-3874. [PMID: 27895742 PMCID: PMC5104197 DOI: 10.3892/ol.2016.5161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 08/04/2016] [Indexed: 12/17/2022] Open
Abstract
In the present study, gene expression profiles were analyzed to identify the molecular mechanisms underlying gastric cardia adenocarcinoma (GCA) and gastric non-cardia adenocarcinoma (GNCA). A gene expression dataset (accession number GSE29272) was downloaded from Gene Expression Omnibus, and consisted of 62 GCA samples and 62 normal controls, as well as 72 GNCA samples and 72 normal controls. The two groups of differentially-expressed genes (DEGs) were compared to obtain common and unique DEGs. A differential analysis was performed using the Linear Models for Microarray Data package in R. Functional enrichment analysis was conducted for the DEGs using the Database for Annotation, Visualization and Integrated Discovery. Protein-protein interaction (PPI) networks were constructed for the DEGs with information from the Search Tool for the Retrieval of Interacting Genes. Subnetworks were extracted from the whole network with Cytoscape. Compared with the control, 284 and 268 genes were differentially-expressed in GCA and GNCA, respectively, of which 194 DEGs were common between GCA and GNCA. Common DEGs [e.g., claudin (CLDN)7, CLDN4 and CLDN3] were associated with cell adhesion and digestion. GCA-unique DEGs [e.g., MAD1 mitotic arrest deficient like 1, cyclin (CCN)B1, CCNB2 and CCNE1] were associated with the cell cycle and the regulation of cell proliferation, while GNCA-unique DEGs (e.g., GATA binding protein 6 and hyaluronoglucosaminidase 1) were implicated in cell death. A PPI network with 141 nodes and 446 edges were obtained, from which two subnetworks were extracted. Genes [e.g., fibronectin 1, collagen type I α2 chain (COL1A2) and COL1A1] from the two subnetworks were implicated in extracellular matrix organization. These common DEGs could advance our understanding of the etiology of gastric cancer, while the unique DEGs in GCA and GNCA could better define the properties of specific cancers and provide potential biomarkers for diagnosis, prognosis or therapy.
Collapse
Affiliation(s)
- Bin Song
- Department of Gastrointestinal Surgery, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130033, P.R. China
| | - Juan Du
- Second Department of Internal Medicine, The Tumor Hospital of Jilin, Changchun, Jilin 130012, P.R. China
| | - Neng Deng
- Department of Gastrointestinal Surgery, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130033, P.R. China
| | - Ji-Chen Ren
- Second Department of Internal Medicine, The Tumor Hospital of Jilin, Changchun, Jilin 130012, P.R. China
| | - Zhen-Bo Shu
- Department of Gastrointestinal Surgery, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130033, P.R. China
| |
Collapse
|
29
|
Ushijima H, Horyozaki A, Maeda M. Anisomycin-induced GATA-6 degradation accompanying a decrease of proliferation of colorectal cancer cell. Biochem Biophys Res Commun 2016; 478:481-485. [PMID: 27404124 DOI: 10.1016/j.bbrc.2016.05.139] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 05/26/2016] [Indexed: 10/21/2022]
Abstract
Transcription factor GATA-6 plays a key role in normal cell differentiation of the mesoderm and endoderm. On the other hand, GATA-6 is abnormally overexpressed in many clinical gastrointestinal cancer tissue samples, and accelerates cell proliferation or an anti-apoptotic response in cancerous tissues. We previously showed that activation of the JNK signaling cascade causes proteolysis of GATA-6. In this study, we demonstrated that anisomycin, a JNK activator, stimulates nuclear export of GATA-6 in a colorectal cancer cell line, DLD-1. Concomitantly, anisomycin remarkably inhibits the proliferation of DLD-1 cells via G2/M arrest in a plate culture. However, it did not induce apoptosis under growth arrest conditions. Furthermore, the growth of DLD-1 cells in a spheroid culture was suppressed by anisomycin. Although 5-FU showed only a slight inhibitory effect on 3D spheroid cultures, the same concentration of 5-FU together with a low concentration of anisomycin exhibited strong growth inhibition. These results suggest that the induction of GATA-6 dysfunction may be more effective for chemotherapy for colorectal cancer, although the mechanism underlying the synergistic effect of 5-FU and anisomycin remains unknown.
Collapse
Affiliation(s)
- Hironori Ushijima
- Department of Molecular Biology, School of Pharmacy, Iwate Medical University, 2-1-1, Nishitokuta, Yahaba, Shiwagun, Iwate 028-3694, Japan
| | - Akiko Horyozaki
- Department of Molecular Biology, School of Pharmacy, Iwate Medical University, 2-1-1, Nishitokuta, Yahaba, Shiwagun, Iwate 028-3694, Japan
| | - Masatomo Maeda
- Department of Molecular Biology, School of Pharmacy, Iwate Medical University, 2-1-1, Nishitokuta, Yahaba, Shiwagun, Iwate 028-3694, Japan.
| |
Collapse
|
30
|
GATAe regulates intestinal stem cell maintenance and differentiation in Drosophila adult midgut. Dev Biol 2015; 410:24-35. [PMID: 26719127 DOI: 10.1016/j.ydbio.2015.12.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 11/30/2015] [Accepted: 12/19/2015] [Indexed: 12/24/2022]
Abstract
Adult intestinal tissues, exposed to the external environment, play important roles including barrier and nutrient-absorption functions. These functions are ensured by adequately controlled rapid-cell metabolism. GATA transcription factors play essential roles in the development and maintenance of adult intestinal tissues both in vertebrates and invertebrates. We investigated the roles of GATAe, the Drosophila intestinal GATA factor, in adult midgut homeostasis with its first-generated knock-out mutant as well as cell type-specific RNAi and overexpression experiments. Our results indicate that GATAe is essential for proliferation and maintenance of intestinal stem cells (ISCs). Also, GATAe is involved in the differentiation of enterocyte (EC) and enteroendocrine (ee) cells in both Notch (N)-dependent and -independent manner. The results also indicate that GATAe has pivotal roles in maintaining normal epithelial homeostasis of the Drosophila adult midgut through interaction of N signaling. Since recent reports showed that mammalian GATA-6 regulates normal and cancer stem cells in the adult intestinal tract, our data also provide information on the evolutionally conserved roles of GATA factors in stem-cell regulation.
Collapse
|
31
|
Song Y, Tian T, Fu X, Wang W, Li S, Shi T, Suo A, Ruan Z, Guo H, Yao Y. GATA6 is overexpressed in breast cancer and promotes breast cancer cell epithelial-mesenchymal transition by upregulating slug expression. Exp Mol Pathol 2015; 99:617-27. [PMID: 26505174 DOI: 10.1016/j.yexmp.2015.10.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Revised: 10/08/2015] [Accepted: 10/21/2015] [Indexed: 12/18/2022]
Abstract
Metastasis is the leading cause of death in breast cancer (BC) patients. However, until now, the mechanisms of BC metastasis remain elusive. GATA6 is a member of the GATA transcription factor family that plays critical regulatory roles in tissue development, which has been proposed as an oncogene in many types of tumors; however, its role and underlying mechanisms in BC remain unclear. Here we show that GATA6 is elevated in BC and its expression level is positively correlated with metastasis. In addition Kaplan-Meier survival analysis showed that high expression of GATA6 was associated with decreased overall survival of BC patients. Overexpression of GATA6 in BC cells increased epithelial-mesenchymal transition. In contrast, silencing GATA6 in aggressive BC cells inhibited this process. Mechanistically, we found GATA6 exerts its function through active slug transcription. Slug knockdown blocked the GATA6-driven EMT. Furthermore, slug expression in human BC is positively correlated with GATA6 expression. Our results, for the first time, portray a pivotal role of GATA6 in regulating metastatic behaviors of BC cells, suggesting GATA6 is a potential therapeutic target in metastatic BCs.
Collapse
Affiliation(s)
- Yongchun Song
- Department of Oncological Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Tao Tian
- Department of Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Xiao Fu
- Department of Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Wenjuan Wang
- Department of Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Suoni Li
- Department of Oncology, Shaanxi Provincial Tumor Hospital, Xi'an, Shaanxi 710061, China
| | - Tingting Shi
- Department of Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Aili Suo
- Department of Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Zhiping Ruan
- Department of Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Hui Guo
- Department of Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Yu Yao
- Department of Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| |
Collapse
|
32
|
Tan P, Yeoh KG. Genetics and Molecular Pathogenesis of Gastric Adenocarcinoma. Gastroenterology 2015; 149:1153-1162.e3. [PMID: 26073375 DOI: 10.1053/j.gastro.2015.05.059] [Citation(s) in RCA: 324] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 05/18/2015] [Accepted: 05/20/2015] [Indexed: 02/07/2023]
Abstract
Gastric cancer (GC) is globally the fifth most common cancer and third leading cause of cancer death. A complex disease arising from the interaction of environmental and host-associated factors, key contributors to GC's high mortality include its silent nature, late clinical presentation, and underlying biological and genetic heterogeneity. Achieving a detailed molecular understanding of the various genomic aberrations associated with GC will be critical to improving patient outcomes. The recent years has seen considerable progress in deciphering the genomic landscape of GC, identifying new molecular components such as ARID1A and RHOA, cellular pathways, and tissue populations associated with gastric malignancy and progression. The Cancer Genome Atlas (TCGA) project is a landmark in the molecular characterization of GC. Key challenges for the future will involve the translation of these molecular findings to clinical utility, by enabling novel strategies for early GC detection, and precision therapies for individual GC patients.
Collapse
Affiliation(s)
- Patrick Tan
- Cancer and Stem Cell Biology Program, Duke-National University of Singapore Graduate Medical School, Singapore; Genome Institute of Singapore, Agency for Science, Technology, and Research, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Singapore; Cellular and Molecular Research, National Cancer Centre Singapore, Singapore; Singapore Gastric Cancer Consortium, Singapore.
| | - Khay-Guan Yeoh
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Gastroenterology and Hepatology, National University Health System, Singapore; Singapore Gastric Cancer Consortium, Singapore.
| |
Collapse
|
33
|
Janmaat VT, Van De Winkel A, Peppelenbosch MP, Spaander MCW, Uitterlinden AG, Pourfarzad F, Tilanus HW, Rygiel AM, Moons LMG, Arp PP, Krishnadath KK, Kuipers EJ, Van Der Laan LJW. Vitamin D Receptor Polymorphisms Are Associated with Reduced Esophageal Vitamin D Receptor Expression and Reduced Esophageal Adenocarcinoma Risk. Mol Med 2015; 21:346-54. [PMID: 25910066 DOI: 10.2119/molmed.2012.00336] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 04/21/2015] [Indexed: 12/22/2022] Open
Abstract
Epidemiological studies indicate that vitamin D exerts a protective effect on the development of various solid cancers. However, concerns have been raised regarding the potential deleterious role of high vitamin D levels in the development of esophageal adenocarcinoma (EAC). This study investigated genetic variation in the vitamin D receptor (VDR) in relation to its expression and risk of Barrett esophagus (BE) and EAC. VDR gene regulation was investigated by immunohistochemistry, reverse transcriptase-polymerase chain reaction (RT-PCR) and gel shift assays. Fifteen haplotype tagging single-nucleotide polymorphisms (SNPs) of the VDR gene were analyzed in 858 patients with reflux esophagitis (RE), BE or EAC and 202 healthy controls. VDR mRNA expression was higher in BE compared with squamous epithelium. VDR protein was located in the nucleus in BE. An rs1989969T/rs2238135G haplotype was identified in the 5' regulatory region of the VDR gene. It was associated with an approximately two-fold reduced risk of RE, BE and EAC. Analysis of a replication cohort was done for BE that confirmed this. The rs1989969T allele causes a GATA-1 transcription factor binding site to appear. The signaling of GATA-1, which is regarded as a negative transcriptional regulator, could explain the findings for rs1989969. The rs2238135G allele was associated with a significantly reduced VDR expression in BE; for the rs1989969T allele, a trend in reduced VDR expression was observed. We identified a VDR haplotype associated with reduced esophageal VDR expression and a reduced incidence of RE, BE and EAC. This VDR haplotype could be useful in identifying individuals who benefit most from vitamin D chemoprevention.
Collapse
Affiliation(s)
- Vincent T Janmaat
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Anouk Van De Winkel
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Maikel P Peppelenbosch
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Manon C W Spaander
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - André G Uitterlinden
- Department of Internal Medicine, Epidemiology and Clinical Chemistry, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Farzin Pourfarzad
- Department of Cell Biology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Hugo W Tilanus
- Department of Surgery, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Agnieszka M Rygiel
- Center for Experimental Molecular Medicine, Academic Medical Center, Amsterdam, the Netherlands
| | - Leon M G Moons
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Pascal P Arp
- Department of Internal Medicine, Epidemiology and Clinical Chemistry, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Kausilia K Krishnadath
- Center for Experimental Molecular Medicine, Academic Medical Center, Amsterdam, the Netherlands
| | - Ernst J Kuipers
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands.,Department of Internal Medicine, Epidemiology and Clinical Chemistry, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Luc J W Van Der Laan
- Department of Surgery, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
34
|
Pavlov K, Honing J, Meijer C, Boersma-van Ek W, Peters FTM, van den Berg A, Karrenbeld A, Plukker JTM, Kruyt FAE, Kleibeuker JH. GATA6 expression in Barrett's oesophagus and oesophageal adenocarcinoma. Dig Liver Dis 2015; 47:73-80. [PMID: 25445407 DOI: 10.1016/j.dld.2014.09.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 09/15/2014] [Accepted: 09/18/2014] [Indexed: 02/06/2023]
Abstract
BACKGROUND Barrett's oesophagus can progress towards oesophageal adenocarcinoma through a metaplasia-dysplasia-carcinoma sequence, but the underlying mechanisms are poorly understood. The transcription factor GATA6 is known to be involved in columnar differentiation and proliferation, and GATA6 gene amplification was recently linked with poor survival in oesophageal adenocarcinoma. AIM To study the expression of GATA6 during Barrett's oesophagus development and malignant transformation. To determine the prognostic value of GATA6 in oesophageal adenocarcinoma. METHODS Two retrospective cohorts were derived from the pathological archive of the University Medical Center Groningen. The first cohort contained 130 tissue samples of normal squamous epithelium, metaplasia, dysplasia and oesophageal adenocarcinoma. The second cohort consisted of a tissue microarray containing tissue from 92 oesophageal adenocarcinoma patients. Immunohistochemistry was used to examine GATA6 protein expression and to correlate GATA6 expression in oesophageal adenocarcinoma with overall and disease-free survival. RESULTS The percentage of GATA6-positive cells was low in squamous epithelium (10%) but increased progressively in Barrett's oesophagus (30%, P < 0.001) and high-grade dysplasia (82%, P = 0.005). GATA6 expression was not associated with overall or disease-free survival in oesophageal adenocarcinoma patients (P = 0.599 and P = 0.700 respectively). CONCLUSION GATA6 expression is progressively increased during Barrett's oesophagus development and its malignant transformation. However, no prognostic value of GATA6 expression could be found in oesophageal adenocarcinoma.
Collapse
Affiliation(s)
- Kirill Pavlov
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Judith Honing
- Department of Surgical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Coby Meijer
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Wytske Boersma-van Ek
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Frans T M Peters
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Anke van den Berg
- Department of Pathology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Arend Karrenbeld
- Department of Pathology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - John T M Plukker
- Department of Surgical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Frank A E Kruyt
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jan H Kleibeuker
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
35
|
Middendorp S, Schneeberger K, Wiegerinck CL, Mokry M, Akkerman RDL, van Wijngaarden S, Clevers H, Nieuwenhuis EES. Adult stem cells in the small intestine are intrinsically programmed with their location-specific function. Stem Cells 2014; 32:1083-91. [PMID: 24496776 DOI: 10.1002/stem.1655] [Citation(s) in RCA: 187] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 12/21/2013] [Accepted: 12/28/2013] [Indexed: 12/22/2022]
Abstract
Differentiation and specialization of epithelial cells in the small intestine are regulated in two ways. First, there is differentiation along the crypt-villus axis of the intestinal stem cells into absorptive enterocytes, Paneth, goblet, tuft, enteroendocrine, or M cells, which is mainly regulated by WNT. Second, there is specialization along the cephalocaudal axis with different absorptive and digestive functions in duodenum, jejunum, and ileum that is controlled by several transcription factors such as GATA4. However, so far it is unknown whether location-specific functional properties are intrinsically programmed within stem cells or if continuous signaling from mesenchymal cells is necessary to maintain the location-specific identity of the small intestine. Using the pure epithelial organoid technique, we show that region-specific gene expression profiles are conserved throughout long-term cultures of both mouse and human intestinal stem cells and correlated with differential Gata4 expression. Furthermore, the human organoid culture system demonstrates that Gata4-regulated gene expression is only allowed in absence of WNT signaling. These data show that location-specific function is intrinsically programmed in the adult stem cells of the small intestine and that their differentiation fate is independent of location-specific extracellular signals. In light of the potential future clinical application of small intestine-derived organoids, our data imply that it is important to generate GATA4-positive and GATA4-negative cultures to regenerate all essential functions of the small intestine.
Collapse
Affiliation(s)
- Sabine Middendorp
- Pediatric Gastroenterology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Gordon WM, Zeller MD, Klein RH, Swindell WR, Ho H, Espetia F, Gudjonsson JE, Baldi PF, Andersen B. A GRHL3-regulated repair pathway suppresses immune-mediated epidermal hyperplasia. J Clin Invest 2014; 124:5205-18. [PMID: 25347468 DOI: 10.1172/jci77138] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 09/18/2014] [Indexed: 12/27/2022] Open
Abstract
Dermal infiltration of T cells is an important step in the onset and progression of immune-mediated skin diseases such as psoriasis; however, it is not known whether epidermal factors play a primary role in the development of these diseases. Here, we determined that the prodifferentiation transcription factor grainyhead-like 3 (GRHL3), which is essential during epidermal development, is dispensable for adult skin homeostasis, but required for barrier repair after adult epidermal injury. Consistent with activation of a GRHL3-regulated repair pathway in psoriasis, we found that GRHL3 is upregulated in lesional skin and binds known epidermal differentiation gene targets. Using an imiquimod-induced model of immune-mediated epidermal hyperplasia, we found that mice lacking GRHL3 have an exacerbated epidermal damage response, greater sensitivity to disease induction, delayed resolution of epidermal lesions, and resistance to anti-IL-22 therapy compared with WT animals. ChIP-Seq and gene expression profiling of murine skin revealed that while GRHL3 regulates differentiation pathways both during development and during repair from immune-mediated damage, it targets distinct sets of genes in the 2 processes. In particular, GRHL3 suppressed a number of alarmin and other proinflammatory genes after immune injury. This study identifies a GRHL3-regulated epidermal barrier repair pathway that suppresses disease initiation and helps resolve existing lesions in immune-mediated epidermal hyperplasia.
Collapse
|
37
|
Aronson BE, Stapleton KA, Krasinski SD. Role of GATA factors in development, differentiation, and homeostasis of the small intestinal epithelium. Am J Physiol Gastrointest Liver Physiol 2014; 306:G474-90. [PMID: 24436352 PMCID: PMC3949026 DOI: 10.1152/ajpgi.00119.2013] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The small intestinal epithelium develops from embryonic endoderm into a highly specialized layer of cells perfectly suited for the digestion and absorption of nutrients. The development, differentiation, and regeneration of the small intestinal epithelium require complex gene regulatory networks involving multiple context-specific transcription factors. The evolutionarily conserved GATA family of transcription factors, well known for its role in hematopoiesis, is essential for the development of endoderm during embryogenesis and the renewal of the differentiated epithelium in the mature gut. We review the role of GATA factors in the evolution and development of endoderm and summarize our current understanding of the function of GATA factors in the mature small intestine. We offer perspective on the application of epigenetics approaches to define the mechanisms underlying context-specific GATA gene regulation during intestinal development.
Collapse
Affiliation(s)
- Boaz E. Aronson
- 1Division of Gastroenterology and Nutrition, Department of Medicine, Children's Hospital Boston, and Harvard Medical School, Boston, Massachusetts; ,2Department of Pediatrics, Emma Children's Hospital, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; and
| | - Kelly A. Stapleton
- 1Division of Gastroenterology and Nutrition, Department of Medicine, Children's Hospital Boston, and Harvard Medical School, Boston, Massachusetts;
| | - Stephen D. Krasinski
- 1Division of Gastroenterology and Nutrition, Department of Medicine, Children's Hospital Boston, and Harvard Medical School, Boston, Massachusetts; ,3Gerald J. and Dorothy R. Friedman School of Nutrition Science and Policy, Tufts University, Boston, Massachusetts
| |
Collapse
|
38
|
Aronson BE, Stapleton KA, Vissers LATM, Stokhuijzen E, Bruijnzeel H, Krasinski SD. Spdef deletion rescues the crypt cell proliferation defect in conditional Gata6 null mouse small intestine. BMC Mol Biol 2014; 15:3. [PMID: 24472151 PMCID: PMC3917371 DOI: 10.1186/1471-2199-15-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 01/11/2014] [Indexed: 11/12/2022] Open
Abstract
Background GATA transcription factors are essential for self-renewal of the small intestinal epithelium. Gata4 is expressed in the proximal 85% of small intestine while Gata6 is expressed throughout the length of small intestine. Deletion of intestinal Gata4 and Gata6 results in an altered proliferation/differentiation phenotype, and an up-regulation of SAM pointed domain containing ETS transcription factor (Spdef), a transcription factor recently shown to act as a tumor suppressor. The goal of this study is to determine to what extent SPDEF mediates the downstream functions of GATA4/GATA6 in the small intestine. The hypothesis to be tested is that intestinal GATA4/GATA6 functions through SPDEF by repressing Spdef gene expression. To test this hypothesis, we defined the functions most likely regulated by the overlapping GATA6/SPDEF target gene set in mouse intestine, delineated the relationship between GATA6 chromatin occupancy and Spdef gene regulation in Caco-2 cells, and determined the extent to which prevention of Spdef up-regulation by Spdef knockout rescues the GATA6 phenotype in conditional Gata6 knockout mouse ileum. Results Using publicly available profiling data, we found that 83% of GATA6-regulated genes are also regulated by SPDEF, and that proliferation/cancer is the function most likely to be modulated by this overlapping gene set. In human Caco-2 cells, GATA6 knockdown results in an up-regulation of Spdef gene expression, modeling our mouse Gata6 knockout data. GATA6 occupies a genetic locus located 40 kb upstream of the Spdef transcription start site, consistent with direct regulation of Spdef gene expression by GATA6. Prevention of Spdef up-regulation in conditional Gata6 knockout mouse ileum by the additional deletion of Spdef rescued the crypt cell proliferation defect, but had little effect on altered lineage differentiation or absorptive enterocytes gene expression. Conclusion SPDEF is a key, immediate downstream effecter of the crypt cell proliferation function of GATA4/GATA6 in the small intestine.
Collapse
Affiliation(s)
| | | | | | | | | | - Stephen D Krasinski
- Division of Gastroenterology and Nutrition, Department of Medicine, Children's Hospital Boston, and Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
39
|
Tang Y, Wei Y, He W, Wang Y, Zhong J, Qin C. GATA transcription factors in vertebrates: evolutionary, structural and functional interplay. Mol Genet Genomics 2013; 289:203-14. [PMID: 24368683 DOI: 10.1007/s00438-013-0802-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 12/09/2013] [Indexed: 01/09/2023]
Abstract
GATA transcription factors perform conserved and essential roles during animal development, including germ-layer specification, hematopoiesis, and cardiogenesis. The evolutionary history and the changes in selection pressures following duplication of the six GATA family members in vertebrates have not been completely understood. Recently, we explored multiple databases to find GATAs in different vertebrate species. Using these sequences, we have performed molecular phylogenetic analyses using Maximum Likelihood and Bayesian methods, and statistical tests of tree topologies, to ascertain the phylogenetic relationship and selection pressures among GATA proteins. Seventy-one full-length cDNA sequences from 24 vertebrate species were extracted from multiple databases. By phylogenetic analyses, we investigated the origin, conservation, and evolution of the GATAs. Six GATA genes in vertebrates might be formed by gene duplication. The inferred evolutionary transitions that separate members which belong to different gene clusters correlated with changes in functional properties. Selection analysis and protein structure analysis were combined to explain Darwinian selection in GATA sequences and these changes brought putative biological significance. 26 positive selection sites were detected in this process. This study reveals the evolutionary history of vertebrate GATA paralogous and positively selected sites likely relevant for the distinct functional properties of the paralogs. It provides a new perspective for understanding the origin and evolution and biological functions of GATAs, which will help to uncover the GATAs' biological roles, evolution and their relationship with associated diseases; in addition, other complex multidomain families and also larger superfamilies can be investigated in a similar way.
Collapse
Affiliation(s)
- Yanyan Tang
- Department of Neurology, The First Affiliated Hospital, Guangxi Medical University, No. 22, Shuang Yong Road, Nanning, 530021, China,
| | | | | | | | | | | |
Collapse
|
40
|
Chen WB, Huang FT, Zhuang YY, Tang J, Zhuang XH, Cheng WJ, Gu ZQ, Zhang SN. Silencing of GATA6 suppresses SW1990 pancreatic cancer cell growth in vitro and up-regulates reactive oxygen species. Dig Dis Sci 2013; 58:2518-27. [PMID: 23832791 DOI: 10.1007/s10620-013-2752-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2012] [Accepted: 06/06/2013] [Indexed: 01/02/2023]
Abstract
BACKGROUND/AIMS Pancreatic cancer has the worst prognosis of any gastrointestinal cancer with a mortality rate approaching its incidence. Previous studies have indicated that GATA6 plays a key role in organ development and function, and that abnormal expression of GATA6 may induce tumorigenesis. Meanwhile, it has been reported that generation of reactive oxygen species contributes to carcinogenesis. In this study, we set out to study the role of GATA6 expression on proliferation and apoptosis of pancreatic cancer cells and the role of reactive oxygen species. METHODS Four target miRNA sequences against GATA6 mRNA were synthesized and used to transfect SW1990 cells. Then, GATA6 expression in SW1990 cells was examined by western blot and quantative real-time polymerase chain reaction. Cell proliferation was examined by WST-8 and colony formation assay. Cell cycle progression and apoptosis were measured by flow cytometry. We also measured the generation of reactive oxygen species by immunofluorescence and flow cytometry. RESULTS RNA interference against GATA6 successfully inhibited mRNA and protein expression of GATA6 in the SW1990 pancreatic cancer cell line. Silencing of GATA6 by RNA interference inhibited cell proliferation and increased apoptosis of SW1990, and enhanced the expression of reactive oxygen species. CONCLUSIONS These results suggest that the RNA interference approach against GATA6 may be an effective therapeutic approach for treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Wen-Bo Chen
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiang West Road, Guangzhou, 510120, Guangdong, People's Republic of China.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Liu Q, Zhou JP, Li B, Huang ZC, Dong HY, Li GY, Zhou K, Nie SL. Basic transcription factor 3 is involved in gastric cancer development and progression. World J Gastroenterol 2013; 19:4495-4503. [PMID: 23901224 PMCID: PMC3725373 DOI: 10.3748/wjg.v19.i28.4495] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 04/25/2013] [Accepted: 06/04/2013] [Indexed: 02/06/2023] Open
Abstract
AIM: To further analyse cancer involvement of basic transcription factor 3 (BTF3) after detection of its upregulation in gastric tumor samples.
METHODS: BTF3 transcription rates in human gastric tumor tissue samples (n = 20) and adjacent normal tissue (n = 18) specimens as well as in the gastric cancer cell lines AGS, SGC-7901, MKN-28, MKN-45 and MGC803 were analyzed via quantitative real-time polymerase chain reaction. The effect of stable BTF3 silencing via infection with a small interfering RNA (siRNA)-BTF3 expressing lentivirus on SGC-7901 cells was measured via Western blotting analysis, proliferation assays, cell cycle and apoptosis profiling by flow cytometry as well as colony forming assays with a Cellomic Assay System.
RESULTS: A significant higher expression of BTF3 mRNA was detected in tumors compared to normal gastric tissues (P < 0.01), especially in section tissues from female patients compared to male patients, and all tested gastric cancer cell lines expressed high levels of BTF3. From days 1 to 5, the relative proliferation rates of stable BTF3-siRNA transfected SGC7901 cells were 82%, 70%, 57%, 49% and 44% compared to the control, while the percentage of cells arrested in the G1 phase was significantly decreased (P = 0.000) and the percentages of cells in the S (P = 0.031) and G2/M (P = 0.027) phases were significantly increased. In addition, the colony forming tendency was significantly decreased (P = 0.014) and the apoptosis rate increased from 5.73% to 8.59% (P = 0.014) after BTF3 was silenced in SGC7901 cells.
CONCLUSION: BTF3 expression is associated with enhanced cell proliferation, reduced cell cycle regulation and apoptosis and its silencing decreased colony forming and proliferation of gastric cancer cells.
Collapse
|
42
|
SHEN FEI, LI JIANGLIN, CAI WENSONG, ZHU GUANGHUI, GU WEILI, JIA LIN, XU BO. GATA6 predicts prognosis and hepatic metastasis of colorectal cancer. Oncol Rep 2013; 30:1355-61. [DOI: 10.3892/or.2013.2544] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Accepted: 04/29/2013] [Indexed: 11/06/2022] Open
|
43
|
Yang L, Huang S, Bian Y, Ma X, Zhang H, Xie J. Identification of signature genes for detecting hedgehog signaling activation in gastric cancer. Mol Med Rep 2012; 3:473-8. [PMID: 21472265 DOI: 10.3892/mmr_00000283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The aim of this study was to investigate the expression of hedgehog signaling molecules in gastric cancer. In situ hybridization, immunohistochemistry and RT-PCR for hedgehog signaling molecules, smoothened (SMO), suppressor of fused [Su(Fu)], and the target genes hedgehog-interacting protein (HIP) and platelet-derived growth factor receptor α (PDGFRα) were performed in 30 gastric cancer and two gastritis specimens. Using in situ hybridization, SMO expression was detected in 18/30 cancerous specimens (60%) as well as in 1/2 gastritis specimens (50%). Su(Fu) was expressed in 15/30 (50%), HIP in 14/30 (≈47%), and PDGFRα in 6/30 (20%) gastric cancer specimens. Despite the heterogeneous expression pattern, SMO, Su(Fu) and PDGFRα transcripts were highly correlated with the HIP transcript in the 30 gastric cancer specimens (p=0.0006, 0.0003 and 0.0441, respectively). Results from the in situ hybridization were further confirmed by RT-PCR for the expression of all of the genes and by immunohistochemistry for SMO expression. The findings revealed a set of genes for detecting Hh signaling activation in gastric cancer.
Collapse
Affiliation(s)
- Ling Yang
- Institute of Developmental Biology, School of Life Sciences, Shandong University, Shandong 250100, P.R. China
| | | | | | | | | | | |
Collapse
|
44
|
Sun L, Wang W, Xiao W, Liang H, Yang Y, Yang H. Angiotensin II induces apoptosis in intestinal epithelial cells through the AT2 receptor, GATA-6 and the Bax pathway. Biochem Biophys Res Commun 2012; 424:663-8. [PMID: 22776205 DOI: 10.1016/j.bbrc.2012.07.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 07/02/2012] [Indexed: 12/26/2022]
Abstract
Angiotensin II (Ang II) has been shown to play an important role in cell apoptosis. However, the mechanisms of Ang-II-induced apoptosis in intestinal epithelial cells are not fully understood. GATA-6 is a zinc finger transcription factor expressed in the colorectal epithelium, which directs cell proliferation, differentiation and apoptosis. In the present study we investigated the underlying mechanism of which GATA-6 affects Ang-II induced apoptosis in intestinal epithelial cells. The in vitro intestinal epithelial cell apoptosis model was established by co-culturing Caco-2 cells with Ang II. Pretreatment with Angiotensin type 2 (AT2) receptor antagonist, PD123319, significantly reduced the expression of Bax and prevented the Caco-2 cells apoptosis induced by Ang II. In addition, Ang II up-regulated the expression of GATA-6. Interestingly, GATA-6 short hairpin RNA prevented Ang II-induced intestinal epithelial cells apoptosis and reduced the expression of Bax, but not Bcl-2. Taken together, the present study suggests that Angiotensin II promotes apoptosis in intestinal epithelial cells through GATA-6 and the Bax pathway in an AT2 receptor-dependent manner.
Collapse
Affiliation(s)
- Lihua Sun
- Department of General Surgery, Xingqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | | | | | | | | | | |
Collapse
|
45
|
GATA6 is required for proliferation, migration, secretory cell maturation, and gene expression in the mature mouse colon. Mol Cell Biol 2012; 32:3392-402. [PMID: 22733991 DOI: 10.1128/mcb.00070-12] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Controlled renewal of the epithelium with precise cell distribution and gene expression patterns is essential for colonic function. GATA6 is expressed in the colonic epithelium, but its function in the colon is currently unknown. To define GATA6 function in the colon, we conditionally deleted Gata6 throughout the epithelium of small and large intestines of adult mice. In the colon, Gata6 deletion resulted in shorter, wider crypts, a decrease in proliferation, and a delayed crypt-to-surface epithelial migration rate. Staining techniques and electron microscopy indicated deficient maturation of goblet cells, and coimmunofluorescence demonstrated alterations in specific hormones produced by the endocrine L cells and serotonin-producing cells. Specific colonocyte genes were significantly downregulated. In LS174T, the colonic adenocarcinoma cell line, Gata6 knockdown resulted in a significant downregulation of a similar subset of goblet cell and colonocyte genes, and GATA6 was found to occupy active loci in enhancers and promoters of some of these genes, suggesting that they are direct targets of GATA6. These data demonstrate that GATA6 is necessary for proliferation, migration, lineage maturation, and gene expression in the mature colonic epithelium.
Collapse
|
46
|
Skiriute D, Vaitkiene P, Saferis V, Asmoniene V, Skauminas K, Deltuva VP, Tamasauskas A. MGMT, GATA6, CD81, DR4, and CASP8 gene promoter methylation in glioblastoma. BMC Cancer 2012; 12:218. [PMID: 22672670 PMCID: PMC3404983 DOI: 10.1186/1471-2407-12-218] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 06/06/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Methylation of promoter region is the major mechanism affecting gene expression in tumors. Recent methylome studies of brain tumors revealed a list of new epigenetically modified genes. Our aim was to study promoter methylation of newly identified epigenetically silenced genes together with already known epigenetic markers and evaluate its separate and concomitant role in glioblastoma genesis and patient outcome. METHODS The methylation status of MGMT, CD81, GATA6, DR4, and CASP8 in 76 patients with primary glioblastomas was investigated. Methylation-specific PCR reaction was performed using bisulfite treated DNA. Evaluating glioblastoma patient survival time after operation, patient data and gene methylation effect on survival was estimated using survival analysis. RESULTS The overwhelming majority (97.3%) of tumors were methylated in at least one of five genes tested. In glioblastoma specimens gene methylation was observed as follows: MGMT in 51.3%, GATA6 in 68.4%, CD81 in 46.1%, DR4 in 41.3% and CASP8 in 56.8% of tumors. Methylation of MGMT was associated with younger patient age (p < 0.05), while CASP8 with older (p < 0.01). MGMT methylation was significantly more frequent event in patient group who survived longer than 36 months after operation (p < 0.05), while methylation of CASP8 was more frequent in patients who survived shorter than 36 months (p < 0.05). Cox regression analysis showed patient age, treatment, MGMT, GATA6 and CASP8 as independent predictors for glioblastoma patient outcome (p < 0.05). MGMT and GATA6 were independent predictors for patient survival in younger patients' group, while there were no significant associations observed in older patients' group when adjusted for therapy. CONCLUSIONS High methylation frequency of tested genes shows heterogeneity of glioblastoma epigenome and the importance of MGMT, GATA6 and CASP8 genes methylation in glioblastoma patient outcome.
Collapse
Affiliation(s)
- Daina Skiriute
- Laboratory of Neurooncology and Genetics, Neuroscience Institute, Medical Academy, Lithuanian University of Health Sciences, Eiveniu str, 4, Kaunas, LT, 50009, Lithuania.
| | | | | | | | | | | | | |
Collapse
|
47
|
Activation of GATA binding protein 6 (GATA6) sustains oncogenic lineage-survival in esophageal adenocarcinoma. Proc Natl Acad Sci U S A 2012; 109:4251-6. [PMID: 22375031 DOI: 10.1073/pnas.1011989109] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Gene amplification is a tumor-specific event during malignant transformation. Recent studies have proposed a lineage-dependency (addiction) model of human cancer whereby amplification of certain lineage transcription factors predisposes a survival mechanism in tumor cells. These tumor cells are derived from tissues where the lineage factors play essential developmental and maintenance roles. Here, we show that recurrent amplification at 18q11.2 occurs in 21% of esophageal adenocarcinomas (EAC). Utilization of an integrative genomic strategy reveals a single gene, the embryonic endoderm transcription factor GATA6, as the selected target of the amplification. Overexpression of GATA6 is found in EACs that contain gene amplification. We find that EAC patients whose tumors carry GATA6 amplification have a poorer survival. We show that ectopic expression of GATA6, together with FGFR2 isoform IIIb, increases anchorage-independent growth in immortalized Barrett's esophageal cells. Conversely, siRNA-mediated silencing of GATA6 significantly reduces both cell proliferation and anchorage-independent growth in EAC cells. We further demonstrate that induction of apoptotic/anoikis pathways is triggered upon silencing of GATA6 in EAC cells but not in esophageal squamous cells. We show that activation of p38α signaling and up-regulation of TNF-related apoptosis-inducing ligand are detected in apoptotic EAC cells upon GATA6 deprivation. We conclude that selective gene amplification of GATA6 during EAC development sustains oncogenic lineage-survival of esophageal adenocarcinoma.
Collapse
|
48
|
SOX9 expression and its methylation status in gastric cancer. Virchows Arch 2012; 460:271-9. [DOI: 10.1007/s00428-012-1201-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 01/11/2012] [Accepted: 01/22/2012] [Indexed: 10/28/2022]
|
49
|
Campbell K, Whissell G, Franch-Marro X, Batlle E, Casanova J. Specific GATA factors act as conserved inducers of an endodermal-EMT. Dev Cell 2012; 21:1051-61. [PMID: 22172671 DOI: 10.1016/j.devcel.2011.10.005] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 08/30/2011] [Accepted: 10/06/2011] [Indexed: 01/16/2023]
Abstract
The epithelial-to-mesenchymal transition (EMT) converts cells from static epithelial to migratory mesenchymal states (Hay, 1995). Here, we demonstrate that EMT in the Drosophila endoderm is dependent on the GATA-factor Serpent (Srp), and that Srp acts as a potent trigger for this transition when activated ectopically. We show that Srp affects endodermal-EMT through a downregulation of junctional dE-Cadherin (dE-Cad) protein, without a block in its transcription. Moreover, the relocalization of dE-Cad is achieved through the direct repression of crumbs (crb) by Srp. Finally, we show that hGATA-6, an ortholog of Srp, induces a similar transition in mammalian cells. Similar to Srp, hGATA-6 acts through the downregulation of junctional E-Cad, without blocking its transcription, and induces the repression of a Crumbs ortholog, crb2. Together, these results identify a set of GATA factors as a conserved alternative trigger to repress epithelial characteristics and confer migratory capabilities on epithelial cells in development and pathogenesis.
Collapse
Affiliation(s)
- Kyra Campbell
- Institut de Biologia Molecular de Barcelona-CSIC, Parc Cientific de Barcelona, 08028 Barcelona, Spain
| | | | | | | | | |
Collapse
|
50
|
Yang L, Su X, Xie J. Activation of Hedgehog pathway in gastrointestinal cancers. VITAMINS AND HORMONES 2012; 88:461-72. [PMID: 22391316 DOI: 10.1016/b978-0-12-394622-5.00020-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The hedgehog (Hh) pathway is a major regulator for cell differentiation, tissue polarity, and cell proliferation in embryonic development and homeostasis in adult tissue. Studies from many laboratories reveal activation of this pathway in a variety of human cancer, including basal cell carcinomas (BCCs), medulloblastomas, leukemia, gastrointestinal, lung, ovarian, breast, and prostate cancers. It is thus believed that targeted inhibition of Hh signaling may be effective in treatment and prevention of human cancer. Even more exciting is the discovery and synthesis of specific signaling antagonists for the Hh pathway, which have significant clinical implications in novel cancer therapeutics. In this review, we summarize major advances in the past 2 years in our understanding of Hh signaling activation in human gastrointestinal cancer and their potential in clinical treatment with Hh pathway inhibitors.
Collapse
Affiliation(s)
- Ling Yang
- Clinical Research Center of the Affiliated Hospital, Inner Mongolia Medical College, Hohhot, Inner Mongolia, China
| | | | | |
Collapse
|