1
|
Cox CA, Manavathu EK, Wakade S, Myntti M, Vazquez JA. Efficacy of biofilm disrupters against Candida auris and other Candida species in monomicrobial and polymicrobial biofilms. Mycoses 2024; 67:e13684. [PMID: 38214428 DOI: 10.1111/myc.13684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 10/19/2023] [Accepted: 11/28/2023] [Indexed: 01/13/2024]
Abstract
Candida species are now considered global threats by the CDC and WHO. Candida auris specifically is on the critical pathogen threat list along with Candida albicans. In addition, it is not uncommon to find Candida spp. in a mixed culture with bacterial organisms, especially Staphylococcus aureus producing polymicrobial infections. To eradicate these organisms from the environment and from patient surfaces, surface agents such as chlorhexidine (CHD) and Puracyn are used. Biofilm disrupters (BDs) are novel agents with a broad spectrum of antimicrobial activity and have been used in the management of chronic wounds and to sterilise environmental surfaces for the past several years. The goal of this study was to evaluate BDs (BlastX, Torrent, NSSD) and CHD against Candida spp. and S. aureus using zone of inhibition assays, biofilm and time-kill assays. All BDs and CHD inhibited C. auris growth effectively in a concentration-dependent manner. Additionally, CHD and the BDs showed excellent antimicrobial activity within polymicrobial biofilms. A comparative analysis of the BDs and CHD against C. auris and C. albicans using biofilm kill-curves showed at least 99.999% killing. All three BDs and CHD have excellent activity against different Candida species, including C. auris. However, one isolate of C. auris in a polymicrobial biofilm assay showed resistance/tolerance to CHD, but not to the BDs. The fungicidal activity of these novel agents will be valuable in eradicating surface colonisation of Candida spp, especially C. auris from colonised environmental surfaces and from wounds in colonised patients.
Collapse
Affiliation(s)
- Claudia A Cox
- Division of Infectious Diseases, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Elias K Manavathu
- Division of Infectious Diseases, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Sushama Wakade
- Division of Infectious Diseases, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | | | - Jose A Vazquez
- Division of Infectious Diseases, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| |
Collapse
|
2
|
Tomičić R, Tomičić Z, Nićetin M, Knežević V, Kocić-Tanackov S, Raspor P. Food grade disinfectants based on hydrogen peroxide/peracetic acid and sodium hypochlorite interfere with the adhesion of Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Listeria monocytogenes to stainless steel of differing surface roughness. BIOFOULING 2023; 39:990-1003. [PMID: 38078346 DOI: 10.1080/08927014.2023.2288886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 11/23/2023] [Indexed: 02/27/2024]
Abstract
This study aimed to evaluate the potential of the bacterium Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Listeria monocytogenes to adhere to stainless steel discs with differing degrees of surface roughness (Ra = 25.20-961.90 nm). Stainless steel is a material commonly used in the food industry for processing equipment, which is regularly exposed to cleaning procedures. The investigation included the commercial disinfectants hydrogen peroxide/peracetic acid and sodium hypochlorite which were evaluated for their antibacterial and anti-adhesion activity. The adhesion was assessed by the standard plate count method, while the broth microdilution method CLSI M07-A10 was used to determine the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of the disinfectants. Based on the MIC values, both disinfectants exerted significant inhibitory effects with MIC values for hydrogen peroxide/peracetic acid and sodium hypochlorite of 250 µg ml-1 and 500 µg ml-1, respectively. Whereas the MBC values were equal to the MIC for all bacteria except for E. coli with values 2-fold higher than the MIC. Obtained results also revealed that all tested bacteria were able to adhere to stainless steel surfaces, although differences were found for strains and surface roughness. The lowest adhesion rate of each strain was recorded on the roughest stainless steel disc at a Ra of 961.90 nm. Further, at a concentration of 1 MIC, the disinfectant sodium hypochlorite reduced initial bacterial adhesion to stainless steel surfaces to a significantly greater extent than the disinfectant hydrogen peroxide/peracetic acid. These findings are consistent with the results obtained by Scanning Electron Microscopy (SEM) analysis, which indicates the great applicability of the tested disinfectants for the control of bacterial adhesion in the food industry.
Collapse
Affiliation(s)
- Ružica Tomičić
- Faculty of Technology, University of Novi Sad, Novi Sad, Serbia
| | - Zorica Tomičić
- Institute of Food Technology, University of Novi Sad, Novi Sad, Serbia
| | - Milica Nićetin
- Faculty of Technology, University of Novi Sad, Novi Sad, Serbia
| | | | | | - Peter Raspor
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
3
|
Maestri C, Plancher L, Duthoit A, Hébert RL, Di Martino P. Fungal Biodegradation of Polyurethanes. J Fungi (Basel) 2023; 9:760. [PMID: 37504748 PMCID: PMC10381151 DOI: 10.3390/jof9070760] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/29/2023] Open
Abstract
Polyurethanes (PURs) are versatile polymers used in a wide variety of fields, such as the medical, automotive, textile, thermal insulation, and coating industries as well as many everyday objects. Many PURs have applications that require a long service life, sometimes with exposure to aggressive conditions. They can undergo different types of physicochemical and biological degradation, but they are not compostable, and many of them constitute persistent waste in the environment. Although both bacteria and fungi can be involved in the degradation of PURs, fungi are often the main biodegradation agents. The chemical structure of PURs determines their degree of biodegradation. Fungal biodegradation of PURs is linked to the production of enzymes, mainly esterases and proteases, alongside laccases, peroxidases, and tyrosinases, which can modify the structure of polyurethane compounds by forming carbonyl groups. The experimental analysis of the biodegradation of PUR can be carried out by bringing the polymer into contact with a mold in pure culture or with a microbial consortium. Then, global measurements can be taken, such as weight loss, tensile tests, or the ability of microorganisms to grow in the presence of PUR as the sole carbon source. The analysis of the chemical structure of the polymer and its degradation products after fungal growth can confirm biodegradation and specify the mechanism. The main avenues of future research are directed towards the development of fully biodegradable PURs and, on the contrary, towards the development of PURs that are more resistant to degradation phenomena, in particular biodegradation, for applications where the material is in contact with living organisms.
Collapse
Affiliation(s)
- Clotilde Maestri
- Laboratoire ERRMECe, Cergy Paris University, 1 Rue Descartes, 95000 Neuville-sur-Oise, France
- Laboratoire GEC, Cergy Paris University, 1 Rue Descartes, 95000 Neuville-sur-Oise, France
- SPPM-27 Rue Raffet, 75016 Paris, France
| | - Lionel Plancher
- Laboratoire ERRMECe, Cergy Paris University, 1 Rue Descartes, 95000 Neuville-sur-Oise, France
- Laboratoire GEC, Cergy Paris University, 1 Rue Descartes, 95000 Neuville-sur-Oise, France
| | | | - Ronan L Hébert
- Laboratoire GEC, Cergy Paris University, 1 Rue Descartes, 95000 Neuville-sur-Oise, France
| | - Patrick Di Martino
- Laboratoire ERRMECe, Cergy Paris University, 1 Rue Descartes, 95000 Neuville-sur-Oise, France
| |
Collapse
|
4
|
Guruprasad Reddy P, Hu T, Reches M, Domb AJ. Antimicrobial dichloroisocyanurate-salts for controlled release of chlorine. Org Biomol Chem 2023. [PMID: 37335547 DOI: 10.1039/d3ob00755c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Sodium dichloroisocyanurate (Na-DCC), a disinfectant known for rapid decomposition in water, loses its effectiveness with complete release of free available chlorine (FAC) in under an hour. To overcome this, a series of chlorine rich transition metal complexes/tetrabutylammonium (TBA) salts of DCC, including 2Na[Cu(DCC)4], 2Na[Fe(DCC)4], 2Na[Co(DCC)4]·6H2O, 2Na[Ni(DCC)4]·6H2O, and TBA[DCC]·4H2O have been developed for extended chlorine release studies. The DCC-salts are synthesized based on the metathesis reaction process and are characterized using IR, NMR, CHN analyses, TGA,DSC, and Lovi bond colorimeter. The DCC-salts displayed poor water solubility and low decomposition chlorine release profile compared to Na-DCC. The water solubility of DCC-salts was reduced by a factor of 5.37 to 2500 compared to Na-DCC. The decomposition release of FAC from DCC-salts has been studied over time in comparison to Na-DCC in distilled water using a Lovi-bond colorimeter. DCC-salts displayed controlled FAC release profiles that varied from 1-13 days depending on the type of metal/TBA unit in them, whereas the parent Na-DCC displayed complete FAC release in about 0.91 h. For a proof of concept, the controlled release of metal from one of the DCC-metal complex salts, i.e., copper from the Cu-DCC is also investigated with a function of time in distilled water at RT. The 100% release of copper from Cu-DCC was identified over a period of 10 days. In addition, the applicability of DCC-salts as excellent antiviral agents against the bacteriophage T4 and antibacterial agents against Erwinia, Pseudomonas aeruginosa PA014 (Gram-negative), and Staphylococcus epidermidis (Gram-positive) compared to Na-DCC has been demonstrated.
Collapse
Affiliation(s)
- Pulikanti Guruprasad Reddy
- The Alex Grass Center for Drug Design and Synthesis and Center for Cannabis Research and the Institute of Drug Research, School of Pharmacy-Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel.
| | - Tan Hu
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Meital Reches
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Abraham J Domb
- The Alex Grass Center for Drug Design and Synthesis and Center for Cannabis Research and the Institute of Drug Research, School of Pharmacy-Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel.
| |
Collapse
|
5
|
Oliveira IM, Gomes IB, Simões LC, Simões M. Chlorinated cyanurates and potassium salt of peroxymonosulphate as antimicrobial and antibiofilm agents for drinking water disinfection. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 811:152355. [PMID: 34921876 DOI: 10.1016/j.scitotenv.2021.152355] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
The understanding of microbial susceptibility to disinfectants is an important step to provide drinking water (DW) of adequate microbiological quality. In drinking water distribution systems (DWDS) the application of disinfectants is the main approach to control microorganisms. Although chlorine has been commonly used for DW treatment, the increase of microbial resistance and the production of harmful disinfection by-products promote the necessity to seek new alternatives. This study evaluated the antimicrobial activity of sodium dichloroisocyanurate (NaDCC), trichloroisocyanuric acid (TCCA), and pentapotassium bis(peroxymonosulphate) bis(sulphate) (OXONE) against two emerging pathogens isolated from DW, Acinetobacter calcoaceticus and Stenotrophomonas maltophilia. Free chlorine from calcium hypochlorite was used for comparison. The dose and time-responses against planktonic bacteria were performed as well as the assessment of the effects on membrane integrity. Moreover, the effects against 48 h-old biofilms formed on polyvinyl chloride and stainless steel were evaluated in terms of biofilm culturability and removal. Minimum bactericidal concentrations of 2.1 and 3.1 mg/L for NaDCC, 2.5 and 3.8 mg/L for TCCA, 340 and 690 mg/L for OXONE, and 0.80 and 1.0 mg/L for free chlorine alone were obtained against S. maltophilia and A. calcoaceticus, respectively. The kinetic modeling revealed that NaDCC and TCCA caused similar inactivation rates and the time for first log reduction by OXONE was less than 10 min, for both bacteria. All the disinfectants triggered significant bacterial cytoplasmic membrane destabilization, even at sub-lethal concentrations. A 30 min treatment with the disinfectants allowed a reduction in the biofilm culturability up to 5 log. OXONE was the disinfectant with the best efficiency against both bacterial biofilms. However, none of the disinfectants caused significant biofilm removal (reduction < 1 log cells/cm2). This study highlights NaDCC, TCCA, and OXONE as promising alternatives to free chlorine for DW disinfection, particularly for planktonic growth control and biofilm culturability reduction.
Collapse
Affiliation(s)
- Isabel Maria Oliveira
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Inês Bezerra Gomes
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Lúcia Chaves Simões
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Manuel Simões
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| |
Collapse
|
6
|
Reduced Susceptibility and Increased Resistance of Bacteria against Disinfectants: A Systematic Review. Microorganisms 2021; 9:microorganisms9122550. [PMID: 34946151 PMCID: PMC8706950 DOI: 10.3390/microorganisms9122550] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 01/22/2023] Open
Abstract
Disinfectants are used to reduce the concentration of pathogenic microorganisms to a safe level and help to prevent the transmission of infectious diseases. However, bacteria have a tremendous ability to respond to chemical stress caused by biocides, where overuse and improper use of disinfectants can be reflected in a reduced susceptibility of microorganisms. This review aims to describe whether mutations and thus decreased susceptibility to disinfectants occur in bacteria during disinfectant exposure. A systematic literature review following PRISMA guidelines was conducted with the databases PubMed, Science Direct and Web of Science. For the final analysis, 28 sources that remained of interest were included. Articles describing reduced susceptibility or the resistance of bacteria against seven different disinfectants were identified. The important deviation of the minimum inhibitory concentration was observed in multiple studies for disinfectants based on triclosan and chlorhexidine. A reduced susceptibility to disinfectants and potentially related problems with antibiotic resistance in clinically important bacterial strains are increasing. Since the use of disinfectants in the community is rising, it is clear that reasonable use of available and effective disinfectants is needed. It is necessary to develop and adopt strategies to control disinfectant resistance.
Collapse
|
7
|
McSharry S, Koolman L, Whyte P, Bolton D. Investigation of the Effectiveness of Disinfectants Used in Meat-Processing Facilities to Control Clostridium sporogenes and Clostridioides difficile Spores. Foods 2021; 10:foods10061436. [PMID: 34205779 PMCID: PMC8234884 DOI: 10.3390/foods10061436] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/28/2021] [Accepted: 06/17/2021] [Indexed: 11/26/2022] Open
Abstract
Spore-forming bacteria are a major concern for the food industry as they cause both spoilage and food safety issues. Moreover, as they are more resistant than vegetative cells, their removal from the food processing environment may be difficult to achieve. This study investigated the efficacy of the ten most commonly used disinfectant agents (assigned 1–10), used at the recommended concentrations in the meat industry, for their ability to eliminate Clostridium sporogenes and Clostridioides difficile spores. Test-tube based suspension assays suggested that disinfectants 2 (10% v/v preparation of a mixture of hydrogen peroxide (10–30%), acetic acid (1–10%) and peracetic acid (1–10%)), 7 (4% w/v preparation of a mixture of peroxymonosulphate (30–50%), sulphamic acid (1–10%) and troclosene sodium (1–10%)) and 10 (2% v/v preparation of a mixture of glutaraldehyde (10–30%), benzalkonium chloride (1–10%)) were the most effective formulations. D-values for these ranged from 2.1 to 8.4 min at 20 °C for the target spores. Based on these findings, it is recommended that these disinfectants are used to control Clostridium spores in the meat plant environment.
Collapse
Affiliation(s)
- Siobhán McSharry
- Teagasc Food Research Centre, Ashtown, 15 Dublin, Ireland; (S.M.); (L.K.)
- School of Veterinary Medicine, University College Dublin, Belfield, 4 Dublin, Ireland;
| | - Leonard Koolman
- Teagasc Food Research Centre, Ashtown, 15 Dublin, Ireland; (S.M.); (L.K.)
| | - Paul Whyte
- School of Veterinary Medicine, University College Dublin, Belfield, 4 Dublin, Ireland;
| | - Declan Bolton
- Teagasc Food Research Centre, Ashtown, 15 Dublin, Ireland; (S.M.); (L.K.)
- Correspondence: ; Tel.: +353-0-1-805-9539
| |
Collapse
|
8
|
Lei Q, Lai X, Zhang Y, Li Z, Li R, Zhang W, Ao N, Zhang H. PEGylated Bis-Quaternary Triphenyl-Phosphonium Tosylate Allows for Balanced Antibacterial Activity and Cytotoxicity. ACS APPLIED BIO MATERIALS 2020; 3:6400-6407. [PMID: 35021771 DOI: 10.1021/acsabm.0c00837] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Quaternary triphenylphosphonium compounds (TPP+) have been widely recognized as an important antimicrobial because of their fast antimicrobial speed and broad antimicrobial spectrum. However, small-molecule TPP+ compounds have the defects of toxicity, which is the key factor that limits their practical applications. Here, two mono- and one bis-quaternary phosphonium tosylate compounds with different lengths of oligo(ethylene glycol) (OEG) chains and TPP+ as the active moiety were synthesized. Bis-TPP+ have a short OEG chain coupling two TPP+ at both ends, while mono-TPP+ attaches the OEG chain at one end in one molecule. In vitro antibacterial activities were evaluated against both Gram-positive as well as Gram-negative bacteria in terms of the inhibition zone (ZOI) and minimum inhibitory concentration (MIC). To investigate the antibacterial mechanism, β-galactosidase activity was monitored for measuring the degree of membrane permeability correlated to the abilities to disrupt the membranes of bacteria. Moreover, their structure-antibacterial activity and structure-cytotoxicity relationships were further analyzed. The results indicated that bis-TPP+ synthesized can reach the sterilization rate 90% or more against Escherichia coli and Staphylococcus aureus at MICs of 3.1 and 1.5 mg/mL, respectively, and meanwhile, the cell proliferation can reach more than 80%. This paper represents an excellent approach for development of bis-TPP+ bactericidal molecules that would achieve an optimal balance between antimicrobial activity and cytotoxicity.
Collapse
Affiliation(s)
- Qiqi Lei
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Xuexu Lai
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Yuwei Zhang
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Zhou Li
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Riwang Li
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Wenning Zhang
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Ningjian Ao
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Hong Zhang
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| |
Collapse
|
9
|
Amini Tapouk F, Nabizadeh R, Mirzaei N, Hosseini Jazani N, Yousefi M, Valizade Hasanloei MA. Comparative efficacy of hospital disinfectants against nosocomial infection pathogens. Antimicrob Resist Infect Control 2020; 9:115. [PMID: 32698895 PMCID: PMC7374963 DOI: 10.1186/s13756-020-00781-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/09/2020] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Due to the increasing rate of hospital-acquired infections, it is essential to select appropriate disinfectant agents. In this study, the efficacy of hospital disinfectants against nosocomial infection pathogens was compared. METHODS High level disinfectants (Steranios 2%, Deconex HLDPA, and Microzed Quatenol) were tested for their antibacterial effects by determining their minimum inhibitory (MIC) and minimum bactericidal concentrations (MBC) against Enterococcus faecalis ATCC 29212 and Burkholderia cepacia ATCC 10673. RESULTS E. faecalis, as gram-positive bacterium, was more susceptible to high level disinfectants compared to gram-negative B.cepacia. The MIC = MBC values of 2% Steranios, Deconex HLDPA and Microzed Quatenol against E. faecalis and B.cepacia were 0.31, 9.77, 2.2 mg/L and 9.8, 78.13, 70.31 mg/L, respectively. CONCLUSIONS According to the findings of this study, the most effective disinfectants against both E. faecalis and B.cepacia were Steranios 2%, Microzed Quatenol, and Deconex HLDPA in order. Considering the importance of these bacterial strains in healthcare-associated infections, the use of these effective disinfectants is recommended in the hospitals.
Collapse
Affiliation(s)
- Fahim Amini Tapouk
- Department of Environmental Health Engineering, School of Public Health, International Campus, Tehran University of Medical Sciences (IC-TUMS), Tehran, Iran
| | - Ramin Nabizadeh
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran. .,Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran.
| | - Nezam Mirzaei
- Department of Environmental Health Engineering, Faculty of Health, Kashan University of Medical Sciences, Kashan, Iran
| | - Nima Hosseini Jazani
- Department of Microbiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Mahmood Yousefi
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
10
|
Amin M, Ardaneh M, Hashemzadeh M, Asarehzadegan Dezfuli A, JafarZadeh E. More Caution Needs in Study Design and Method Selection for "In vitro Antibacterial Effect of Deconex and Sodium Hypochlorite Against Bacterial Taxa Isolated from Dental Units" [Response to Letter]. Infect Drug Resist 2019. [PMID: 32021314 PMCID: PMC6948156 DOI: 10.2147/idr.s242240, 10.2147/idr.s197988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Affiliation(s)
- Mansour Amin
- Department of Microbiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran,Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Marieh Ardaneh
- Department of Microbiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Hashemzadeh
- Department of Microbiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran,Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran,Correspondence: Mohammad Hashemzadeh Department of Microbiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, IranTel +98 9166034584 Email
| | - Aram Asarehzadegan Dezfuli
- Department of Microbiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Elham JafarZadeh
- Laboratory of Taleqhani Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
11
|
Amin M, Ardaneh M, Hashemzadeh M, Asarehzadegan Dezfuli A, JafarZadeh E. More Caution Needs in Study Design and Method Selection for "In vitro Antibacterial Effect of Deconex and Sodium Hypochlorite Against Bacterial Taxa Isolated from Dental Units" [Response to Letter]. Infect Drug Resist 2019; 12:3987-3988. [PMID: 32021314 PMCID: PMC6948156 DOI: 10.2147/idr.s242240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 12/17/2019] [Indexed: 11/23/2022] Open
Affiliation(s)
- Mansour Amin
- Department of Microbiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Marieh Ardaneh
- Department of Microbiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Hashemzadeh
- Department of Microbiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Aram Asarehzadegan Dezfuli
- Department of Microbiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Elham JafarZadeh
- Laboratory of Taleqhani Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
12
|
Tissue storage solution for preservation and transfer of forensic specimen in high ambient-temperature. FORENSIC SCIENCE INTERNATIONAL GENETICS SUPPLEMENT SERIES 2019. [DOI: 10.1016/j.fsigss.2019.09.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Barros PPD, Rossoni RD, Ribeiro FDC, Silva MP, Souza CMD, Jorge AOC, Junqueira JC. Two sporulated Bacillus enhance immunity in Galleria mellonella protecting against Candida albicans. Microb Pathog 2019; 132:335-342. [PMID: 31100407 DOI: 10.1016/j.micpath.2019.05.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/30/2019] [Accepted: 05/13/2019] [Indexed: 02/07/2023]
Abstract
The aim of this study was to evaluate the effects of Bacillus subtilis and Bacillus atrophaeus on Galleria mellonella immunity challenged by Candida albicans. Firstly, we analyzed the susceptibility of G. mellonella to bacilli (vegetative and sporulating forms). It was found that both vegetative and sporulating forms were not pathogenic to G. mellonella at a concentration of 1 × 104 cells/larva. Next, larvae were pretreated with two species of Bacillus, in the vegetative and sporulating forms, and then challenged with C. albicans. In addition, the gene expression of antimicrobial peptides (AMPs) such as Gallerimycin, Gloverin, Cecropin-D and Galiomicin was investigated. Survival rates increased in the Bacillus treated larvae compared with control larvae inoculated with C. albicans only. Cells and spores of Bacillus spp. upregulated Gloverin, Galiomicin and Gallerimycin genes in relation to the control group (PBS + PBS). When these larvae were infected with C. albicans, the group pretreated with spores of B. atrophaeus and B. subtilis showed a greater increase in expression of Galiomycin (49.08-fold and 13.50-fold) and Gallerimycin (27.88-fold and 68.15-fold), respectively, compared to the group infected with C. albicans only (p = 0.0001). After that, we investigated the effects of B. subtilis and B. atrophaeus on immune system of G. mellonella evaluating the number of hemocytes, quantification of melanization, cocoon formation and colony forming units (CFU) count. Hemocyte count increased in response to stimulation by Bacillus, and a higher increase was achieved when larvae were inoculated with B. subtilis spores (p = 0.0011). In the melanization assay, all groups tested demonstrated lower production of melanin compared to that in the phosphate-buffered saline (PBS) group. In addition, full cocoon formation was observed in all groups analyzed, which corresponded to a healthier wax worm. Hemolymph culture revealed higher growth of B. atrophaeus and B. subtilis in the groups inoculated with spores. We concluded that spores and cells of B. atrophaeus and B. subtilis stimulated the immune system of G. mellonella larvae and protected them of C. albicans infection.
Collapse
Affiliation(s)
- Patrícia Pimentel de Barros
- Department of Biosciences and Oral Diagnosis, São Paulo State University (Unesp), Institute of Science and Technology, São José dos Campos, Avenida Engenheiro Francisco José Longo 777, São Dimsas, São José dos Campos, CEP: 12245-000, SP, Brazil.
| | - Rodnei Dennis Rossoni
- Department of Biosciences and Oral Diagnosis, São Paulo State University (Unesp), Institute of Science and Technology, São José dos Campos, Avenida Engenheiro Francisco José Longo 777, São Dimsas, São José dos Campos, CEP: 12245-000, SP, Brazil.
| | - Felipe de Camargo Ribeiro
- Department of Biosciences and Oral Diagnosis, São Paulo State University (Unesp), Institute of Science and Technology, São José dos Campos, Avenida Engenheiro Francisco José Longo 777, São Dimsas, São José dos Campos, CEP: 12245-000, SP, Brazil.
| | - Michelle Peneluppi Silva
- Department of Biosciences and Oral Diagnosis, São Paulo State University (Unesp), Institute of Science and Technology, São José dos Campos, Avenida Engenheiro Francisco José Longo 777, São Dimsas, São José dos Campos, CEP: 12245-000, SP, Brazil.
| | - Cheyenne Marçal de Souza
- Department of Biosciences and Oral Diagnosis, São Paulo State University (Unesp), Institute of Science and Technology, São José dos Campos, Avenida Engenheiro Francisco José Longo 777, São Dimsas, São José dos Campos, CEP: 12245-000, SP, Brazil.
| | - Antonio Olavo Cardoso Jorge
- Department of Biosciences and Oral Diagnosis, São Paulo State University (Unesp), Institute of Science and Technology, São José dos Campos, Avenida Engenheiro Francisco José Longo 777, São Dimsas, São José dos Campos, CEP: 12245-000, SP, Brazil.
| | - Juliana Campos Junqueira
- Department of Biosciences and Oral Diagnosis, São Paulo State University (Unesp), Institute of Science and Technology, São José dos Campos, Avenida Engenheiro Francisco José Longo 777, São Dimsas, São José dos Campos, CEP: 12245-000, SP, Brazil.
| |
Collapse
|
14
|
Efficacy of sodium hypochlorite against multidrug-resistant Gram-negative bacteria. J Hosp Infect 2018; 100:e40-e46. [PMID: 30026008 DOI: 10.1016/j.jhin.2018.07.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 07/10/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND Increased antimicrobial resistance has been observed among many bacteria leading to treatment failures in human and veterinary medicine. Disinfection is a prerequisite for infection control and prevention in healthcare settings. Chlorine compounds are cost-effective and accessible worldwide. AIM To determine the efficacy of sodium hypochlorite (NaOCl) against multidrug-resistant Gram-negative bacteria (MDR-GNB). METHODS Minimum inhibitory concentrations (MICs) were determined using broth macro-dilution. Bactericidal efficacy was measured by qualitative and quantitative suspension tests followed by practical tests without mechanical action on stainless steel carriers. The guidelines of the German Association for Applied Hygiene were followed. FINDINGS Results varied remarkably depending on the method. MICs were 0.1% or 0.2% NaOCl. Qualitative suspension tests revealed up to 500-fold lower bactericidal concentrations. Pseudomonas aeruginosa (P = 0.0025) was significantly less susceptible in these tests whereas quantitative suspension tests revealed no significant differences between strains (P > 0.05). Practical tests determined bactericidal concentrations of 0.8-0.32% NaOCl at 1 min of contact and even lower concentrations for longer contact times. At 1 min, five Klebsiella were significantly less susceptible (P = 0.0124), whereas the lower susceptibility of P. aeruginosa was not confirmed. Organic load inhibited bactericidal activity significantly, whereas contact time had a marginal effect. Differing test results underline that MIC determination and qualitative suspension tests may be insufficient approaches to evaluate bacterial susceptibility or resistance. CONCLUSION NaOCl efficiently reduced Pseudomonas aeruginosa, Acinetobacter spp., and Klebsiella spp., most notably in the absence of organic matter. Strain- and species-specific differences in susceptibility were noticed, but in general MDR-GNB revealed no higher tolerance to NaOCl.
Collapse
|
15
|
Pacífico C, Fernandes P, de Carvalho CCCR. Mycobacterial Response to Organic Solvents and Possible Implications on Cross-Resistance With Antimicrobial Agents. Front Microbiol 2018; 9:961. [PMID: 29867865 PMCID: PMC5962743 DOI: 10.3389/fmicb.2018.00961] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 04/24/2018] [Indexed: 02/02/2023] Open
Abstract
Mycobacterium vaccae, a bacterium found in soil, has been receiving attention as adjuvant to antituberculosis treatment, vaccines and immunotherapies and even as antidepressant. This bacterium is also able to degrade several pollutants, including aromatic compounds. The increasing presence of organic solvents in the environment may lead to M. vaccae adapted populations. A possible relationship between solvent tolerance and decreased susceptibility to other types of chemicals, including antibiotics, may pose a problem during opportunistic infections. The present study thus aimed at assessing if solvent adapted cells presented higher tolerance to antibiotics and efflux pump inhibitors (EPIs). M. vaccae cells were able to thrive and grow in the presence of up 20% (v/v) glycerol, 5% (v/v) ethanol, 1% (v/v) methyl tert-butyl ether (MTBE) and 0.1% (v/v) toluene. During adaptation to increasing concentration of ethanol and MTBE, the cells changed their fatty acid profile, zeta potential and morphology. Adapted cells acquired an improved tolerance toward the EPIs thioridazine and omeprazole, but became more susceptible to the antibiotics levofloxacin and teicoplanin when compared with non-adapted cells.
Collapse
Affiliation(s)
- Cátia Pacífico
- Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Pedro Fernandes
- Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Faculty of Engineering, Universidade Lusófona, Lisbon, Portugal
| | - Carla C. C. R. de Carvalho
- Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
16
|
Khan MF, Luong N, Kurian J, Brook MA. Superwetting comonomers reduce adhesion of E. coli BL21. Chem Commun (Camb) 2017; 53:3050-3053. [PMID: 28239720 DOI: 10.1039/c6cc09984j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The adhesion of Escherichia coli to copolymers of methacrylates and a trisiloxane-polyether acrylate surfactant was found to be at a minimum with copolymers containing a low (20%) fraction of the surfactant monomer. Rather than wettability, hardness, or water uptake, adhesion was found to be limited by the presence of low concentrations of bound surfactant that can interact with hydrophobic domains on the bacterium inhibiting anchoring to the polymer surface.
Collapse
Affiliation(s)
- Madiha F Khan
- School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada
| | - Nicholas Luong
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main St. W., Hamilton, ON L8S 4M1, Canada.
| | - Jerry Kurian
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main St. W., Hamilton, ON L8S 4M1, Canada.
| | - Michael A Brook
- School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada and Department of Chemistry and Chemical Biology, McMaster University, 1280 Main St. W., Hamilton, ON L8S 4M1, Canada.
| |
Collapse
|
17
|
Malheiro J, Gomes I, Borges A, Bastos MMSM, Maillard JY, Borges F, Simões M. Phytochemical profiling as a solution to palliate disinfectant limitations. BIOFOULING 2016; 32:1007-1016. [PMID: 27552663 DOI: 10.1080/08927014.2016.1220550] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 07/30/2016] [Indexed: 06/06/2023]
Abstract
The indiscriminate use of biocides for general disinfection has contributed to the increased incidence of antimicrobial tolerant microorganisms. This study aims to assess the potential of seven phytochemicals (tyrosol, caffeic acid, ferulic acid, cinnamaldehyde, coumaric acid, cinnamic acid and eugenol) in the control of planktonic and sessile cells of Staphylococcus aureus and Escherichia coli. Cinnamaldehyde and eugenol showed antimicrobial properties, minimum inhibitory concentrations of 3-5 and 5-12 mM and minimum bactericidal concentrations of 10-12 and 10-14 mM against S. aureus and E. coli, respectively. Cinnamic acid was able to completely control adhered bacteria with effects comparable to peracetic acid and sodium hypochlorite and it was more effective than hydrogen peroxide (all at 10 mM). This phytochemical caused significant changes in bacterial membrane hydrophilicity. The observed effectiveness of phytochemicals makes them interesting alternatives and/or complementary products to commonly used biocidal products. Cinnamic acid is of particular interest for the control of sessile cells.
Collapse
Affiliation(s)
- J Malheiro
- a LEPABE, Department of Chemical Engineering, Faculty of Engineering of University of Porto , Porto , Portugal
- b CIQUP, Department of Chemistry and Biochemistry, Faculty of Sciences University of Porto , Porto , Portugal
- c Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University , Cardiff , UK
| | - I Gomes
- a LEPABE, Department of Chemical Engineering, Faculty of Engineering of University of Porto , Porto , Portugal
| | - A Borges
- a LEPABE, Department of Chemical Engineering, Faculty of Engineering of University of Porto , Porto , Portugal
- b CIQUP, Department of Chemistry and Biochemistry, Faculty of Sciences University of Porto , Porto , Portugal
| | - M M S M Bastos
- a LEPABE, Department of Chemical Engineering, Faculty of Engineering of University of Porto , Porto , Portugal
| | - J-Y Maillard
- c Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University , Cardiff , UK
| | - F Borges
- b CIQUP, Department of Chemistry and Biochemistry, Faculty of Sciences University of Porto , Porto , Portugal
| | - M Simões
- a LEPABE, Department of Chemical Engineering, Faculty of Engineering of University of Porto , Porto , Portugal
| |
Collapse
|
18
|
Gomes IB, Simões M, Simões LC. The effects of sodium hypochlorite against selected drinking water-isolated bacteria in planktonic and sessile states. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 565:40-48. [PMID: 27156214 DOI: 10.1016/j.scitotenv.2016.04.136] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 04/16/2016] [Accepted: 04/17/2016] [Indexed: 06/05/2023]
Affiliation(s)
- I B Gomes
- LEPABE, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal.
| | - M Simões
- LEPABE, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal.
| | - L C Simões
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| |
Collapse
|
19
|
Characterization of the variable region in the class 1 integron of antimicrobial-resistant Escherichia coli isolated from surface water. Braz J Microbiol 2016; 47:337-44. [PMID: 26991286 PMCID: PMC4874607 DOI: 10.1016/j.bjm.2016.01.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 08/17/2015] [Indexed: 11/24/2022] Open
Abstract
Fecal bacteria are considered to be a potential reservoir of antimicrobial resistance genes in the aquatic environment and could horizontally transfer these genes to autochthonous bacteria when carried on transferable and/or mobile genetic elements. Such circulation of resistance genes constitutes a latent public health hazard. The aim of this study was to characterize the variable region of the class 1 integron and relate its genetic content to resistance patterns observed in antimicrobial-resistant Escherichia coli isolated from the surface waters of Patos Lagoon, Southern Brazil. Genetic diversity of the isolates and presence of the qacEΔ1 gene, which confers resistance to quaternary ammonium compounds, were also investigated. A total of 27 isolates were analyzed. The variable region harbored dfrA17, dfrA1 and dfrA12 genes, which confer resistance to trimethoprim, and aadA1, aadA5 and aadA22 genes that encode resistance to streptomycin/spectinomycin. Most of the isolates were considered resistant to quaternary ammonium compounds and all of them carried the qacEΔ1 gene at the 3′ conserved segment of the integron. ERIC-PCR analyses of E. coli isolates that presented the integrons showed great genetic diversity, indicating diverse sources of contamination in this environment. These results suggest that fecal bacteria with class 1 integrons in aquatic environments are potentially important reservoirs of antibiotic-resistance genes and may transfer these elements to other bacteria that are capable of infecting humans.
Collapse
|
20
|
Efficacy of antimicrobial combinations to reduce the use of sodium hypochlorite in the control of planktonic and sessile Escherichia coli. Biochem Eng J 2015. [DOI: 10.1016/j.bej.2015.02.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
Khan MF, Zepeda-Velazquez L, Brook MA. Tunable, antibacterial activity of silicone polyether surfactants. Colloids Surf B Biointerfaces 2015; 132:216-24. [DOI: 10.1016/j.colsurfb.2015.05.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 04/18/2015] [Accepted: 05/10/2015] [Indexed: 11/16/2022]
|
22
|
Kampf G, Fliss PM, Martiny H. Is peracetic acid suitable for the cleaning step of reprocessing flexible endoscopes? World J Gastrointest Endosc 2014; 6:390-406. [PMID: 25228941 PMCID: PMC4163721 DOI: 10.4253/wjge.v6.i9.390] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 08/01/2014] [Accepted: 09/04/2014] [Indexed: 02/05/2023] Open
Abstract
The bioburden (blood, protein, pathogens and biofilm) on flexible endoscopes after use is often high and its removal is essential to allow effective disinfection, especially in the case of peracetic acid-based disinfectants, which are easily inactivated by organic material. Cleaning processes using conventional cleaners remove a variable but often sufficient amount of the bioburden. Some formulations based on peracetic acid are recommended by manufacturers for the cleaning step. We performed a systematic literature search and reviewed the available evidence to clarify the suitability of peracetic acid-based formulations for cleaning flexible endoscopes. A total of 243 studies were evaluated. No studies have yet demonstrated that peracetic acid-based cleaners are as effective as conventional cleaners. Some peracetic acid-based formulations have demonstrated some biofilm-cleaning effects and no biofilm-fixation potential, while others have a limited cleaning effect and a clear biofilm-fixation potential. All published data demonstrated a limited blood cleaning effect and a substantial blood and nerve tissue fixation potential of peracetic acid. No evidence-based guidelines on reprocessing flexible endoscopes currently recommend using cleaners containing peracetic acid, but some guidelines clearly recommend not using them because of their fixation potential. Evidence from some outbreaks, especially those involving highly multidrug-resistant gram-negative pathogens, indicated that disinfection using peracetic acid may be insufficient if the preceding cleaning step is not performed adequately. Based on this review we conclude that peracetic acid-based formulations should not be used for cleaning flexible endoscopes.
Collapse
|
23
|
Doane M, Sarenbo S. Exposure of farm laborers and dairy cattle to formaldehyde from footbath use at a dairy farm in New York State. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 487:65-71. [PMID: 24768913 DOI: 10.1016/j.scitotenv.2014.04.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 04/01/2014] [Accepted: 04/01/2014] [Indexed: 06/03/2023]
Abstract
Formalin footbaths are commonly used in the dairy industry to prevent cattle hoof diseases. Although formalin is a well-documented disinfectant, it is also a carcinogen and irritant. The aim of this study was to estimate the exposure of farm workers and dairy cattle to formaldehyde from footbaths located in a milking facility and a heifer facility at a dairy farm in western New York, USA. The dairy farm included approximately 3900 dairy cattle including young stock; of these, 1670 cows were milked three times per day in a 60-stall carousel milking parlor, and approximately 800 heifers were located at the heifer facility where footbaths with formalin were in use. The formaldehyde concentration of the air was measured using a Formaldemeter™ htV approximately 50cm above the 3% formalin footbaths in the milking (one footbath location) and heifer (three footbath locations) facilities on three consecutive days. The measured formaldehyde concentrations varied between 0.00 and 2.28ppm, falling within the safety guidelines established by the Occupation Safety and Health Administration (OSHA) of the United States. Significant differences were found in the formaldehyde concentrations at the different footbath locations in the heifer facility, potentially due to the varying levels of ventilation at each location. Changes in the ambient temperature during the 3-day sampling period did not significantly affect the concentrations. We believe that the substantial ventilation at both the heifer and milking facilities ensured that the formaldehyde concentrations did not exceed OSHA guidelines, thus permitting the safe use of formalin footbaths in this farm.
Collapse
Affiliation(s)
- M Doane
- University of Linnaeus, Faculty of Health and Life Sciences, Department of Biology and Environmental Sciences, Barlastgatan 11, SE-39182 Kalmar, Sweden
| | - S Sarenbo
- University of Linnaeus, Faculty of Health and Life Sciences, Department of Biology and Environmental Sciences, Barlastgatan 11, SE-39182 Kalmar, Sweden.
| |
Collapse
|
24
|
Safdar N, O’Horo JC, Ghufran A, Bearden A, Didier ME, Chateau D, Maki DG. Chlorhexidine-impregnated dressing for prevention of catheter-related bloodstream infection: a meta-analysis*. Crit Care Med 2014; 42:1703-13. [PMID: 24674924 PMCID: PMC4258905 DOI: 10.1097/ccm.0000000000000319] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To assess the efficacy of a chlorhexidine-impregnated dressing for prevention of central venous catheter-related colonization and catheter-related bloodstream infection using meta-analysis. DATA SOURCES Multiple computerized database searches supplemented by manual searches including relevant conference proceedings. STUDY SELECTION Randomized controlled trials evaluating the efficacy of a chlorhexidine-impregnated dressing compared with conventional dressings for prevention of catheter colonization and catheter-related bloodstream infection. DATA EXTRACTION Data were extracted on patient and catheter characteristics and outcomes. DATA SYNTHESIS Nine randomized controlled trials met the inclusion criteria. Use of a chlorhexidine-impregnated dressing resulted in a reduced prevalence of catheter-related bloodstream infection (random effects relative risk, 0.60; 95% CI, 0.41-0.88, p = 0.009). The prevalence of catheter colonization was also markedly reduced in the chlorhexidine-impregnated dressing group (random effects relative risk, 0.52; 95% CI, 0.43-0.64; p < 0.001). There was significant benefit for prevention of catheter colonization and catheter-related bloodstream infection, including arterial catheters used for hemodynamic monitoring. Other than in low birth weight infants, adverse effects were rare and minor. CONCLUSIONS Our analysis shows that a chlorhexidine-impregnated dressing is beneficial in preventing catheter colonization and, more importantly, catheter-related bloodstream infection and warrants routine use in patients at high risk of catheter-related bloodstream infection and central venous catheter or arterial catheter colonization.
Collapse
Affiliation(s)
- Nasia Safdar
- Section of Infectious Diseases, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI (NS, AB, MD, DGM, AG), Department of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester MN (JCO) and the Biostatistical Consulting Unit (DC), Department of Community Health Sciences, University of Manitoba, Winnipeg, MB.(DC)
| | - John C. O’Horo
- Section of Infectious Diseases, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI (NS, AB, MD, DGM, AG), Department of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester MN (JCO) and the Biostatistical Consulting Unit (DC), Department of Community Health Sciences, University of Manitoba, Winnipeg, MB.(DC)
| | - Aiman Ghufran
- Section of Infectious Diseases, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI (NS, AB, MD, DGM, AG), Department of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester MN (JCO) and the Biostatistical Consulting Unit (DC), Department of Community Health Sciences, University of Manitoba, Winnipeg, MB.(DC)
| | - Allison Bearden
- Section of Infectious Diseases, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI (NS, AB, MD, DGM, AG), Department of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester MN (JCO) and the Biostatistical Consulting Unit (DC), Department of Community Health Sciences, University of Manitoba, Winnipeg, MB.(DC)
| | - Maria Eugenia Didier
- Section of Infectious Diseases, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI (NS, AB, MD, DGM, AG), Department of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester MN (JCO) and the Biostatistical Consulting Unit (DC), Department of Community Health Sciences, University of Manitoba, Winnipeg, MB.(DC)
| | - Dan Chateau
- Section of Infectious Diseases, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI (NS, AB, MD, DGM, AG), Department of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester MN (JCO) and the Biostatistical Consulting Unit (DC), Department of Community Health Sciences, University of Manitoba, Winnipeg, MB.(DC)
| | - Dennis G. Maki
- Section of Infectious Diseases, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI (NS, AB, MD, DGM, AG), Department of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester MN (JCO) and the Biostatistical Consulting Unit (DC), Department of Community Health Sciences, University of Manitoba, Winnipeg, MB.(DC)
| |
Collapse
|
25
|
Buś MM, Allen M. Collecting and Preserving Biological Samples from Challenging Environments for DNA Analysis. Biopreserv Biobank 2014; 12:17-22. [DOI: 10.1089/bio.2013.0060] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Magdalena M. Buś
- Department of Immunology, Genetics, and Pathology (IGP), Uppsala Biomedical Centre (BMC), Uppsala University, Uppsala, Sweden
| | - Marie Allen
- Department of Immunology, Genetics, and Pathology (IGP), Uppsala Biomedical Centre (BMC), Uppsala University, Uppsala, Sweden
| |
Collapse
|
26
|
Heffernan R, Semião A, Desmond P, Cao H, Safari A, Habimana O, Casey E. Disinfection of a polyamide nanofiltration membrane using ethanol. J Memb Sci 2013. [DOI: 10.1016/j.memsci.2013.07.069] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
27
|
Randhawa V, Thakkar M, Wei L. Effect of algal growth phase on Aureococcus anophagefferens susceptibility to hydrogen peroxide. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 142-143:230-238. [PMID: 24055756 DOI: 10.1016/j.aquatox.2013.08.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Revised: 08/24/2013] [Accepted: 08/26/2013] [Indexed: 06/02/2023]
Abstract
A cell's growth phase could affect its susceptibility to a biocide in microbial control. This study examines the growth phase dependent susceptibility of a brown tide bloom alga Aureococcus anophagefferens to microbial biocide hydrogen peroxide (H2O2). Test cultures of A. anophagefferens cells in exponential and stationary growth phase and similar initial cell density (1.6×10(6) cells mL(-1)) were exposed to 0.4-1.6 mg L(-1) H2O2. Changes in algal growth (in vivo fluorescence, total chlorophyll a, and cell density), cell physiology (maximum quantum yield of photosystem II, and total intracellular non-protein thiols), and H2O2 decomposition were quantified. Results show that the stationary phase cells are more susceptible to H2O2 than the exponential phase cells, and this is attributed to the weaker ROS (reactive oxygen species) scavenging system and consequently greater cell damage in stationary phase cells. The stationary phase cells potentially require 30-40% less H2O2 to reach 90% removal within 12 h of treatment as compared to the exponential phase cells. The results have practical implications in brown tide bloom control with respect to the timing and the dosage of H2O2 application.
Collapse
Affiliation(s)
- Varunpreet Randhawa
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ, United States
| | | | | |
Collapse
|
28
|
Seier-Petersen MA, Jasni A, Aarestrup FM, Vigre H, Mullany P, Roberts AP, Agersø Y. Effect of subinhibitory concentrations of four commonly used biocides on the conjugative transfer of Tn916 in Bacillus subtilis. J Antimicrob Chemother 2013; 69:343-8. [PMID: 24092655 PMCID: PMC3886932 DOI: 10.1093/jac/dkt370] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Objectives Large amounts of biocides are used to reduce and control bacterial growth in the healthcare sector, food production and agriculture. This work explores the effect of subinhibitory concentrations of four commonly used biocides (ethanol, hydrogen peroxide, chlorhexidine digluconate and sodium hypochlorite) on the conjugative transposition of the mobile genetic element Tn916. Methods Conjugation assays were carried out between Bacillus subtilis strains. The donor containing Tn916 was pre-exposed to subinhibitory concentrations of each biocide for a defined length of time, which was determined by an analysis of the transcriptional response of the promoter upstream of tet(M) using β-glucuronidase reporter assays. Results Ethanol significantly (P = 0.01) increased the transfer of Tn916 by 5-fold, whereas hydrogen peroxide, chlorhexidine digluconate and sodium hypochlorite did not significantly affect the transfer frequency. Conclusions These results suggest that exposure to subinhibitory concentrations of ethanol may induce the transfer of Tn916-like elements and any resistance genes they contain.
Collapse
Affiliation(s)
- M A Seier-Petersen
- Division for Epidemiology and Microbial Genomics, National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | | | | | | | | | | | | |
Collapse
|
29
|
Chen W, Li S, Li L, Wu X, Zhang W. Effects of daily bathing with chlorhexidine and acquired infection of methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus: a meta-analysis. J Thorac Dis 2013; 5:518-24. [PMID: 23991311 DOI: 10.3978/j.issn.2072-1439.2013.08.30] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 08/16/2013] [Indexed: 11/14/2022]
Abstract
OBJECTIVE Chlorhexidine gluconate (CHG) is a common and safe antimicrobial agent and has been used widely in hand hygiene and skin disinfection; however, whether daily bathing with CHG results in the reduced acquired infection of methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus (VRE) remains inconclusive. METHODS We did a meta-analysis searching PubMed, Embase and the Cochrane Central Register database for available studies. Primary outcomes were acquired infection of MRSA, VRE. RESULTS In all, twelve articles were available in this review. We found that daily application of chlorhexidine bathing would significantly low the acquired colonization of MRSA [incidence rate ratio (IRR) =0.58, 95% confidence interval (CI): 0.41-0.82] or VRE (IRR =0.51, 95% CI: 0.36-0.73). Remarkably, the using of CHG bathing would significantly reduce the MRSA infection (IRR =0.56, 95% CI: 0.37-0.85), MRSA ventilator associated pneumonia (VAP) (IRR =0.22, 95% CI: 0.07-0.64) and VRE infection (IRR =0.57, 95% CI: 0.33-0.97). No significant publication bias was found in this meta-analysis. CONCLUSIONS The application of CHG bathing would significantly decrease acquired infection of MRSA or VRE, which may be an important complementary intervention to barrier precautions.
Collapse
Affiliation(s)
- Wensen Chen
- First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China
| | | | | | | | | |
Collapse
|
30
|
Randhawa V, Thakkar M, Wei L. Applicability of hydrogen peroxide in brown tide control - culture and microcosm studies. PLoS One 2012; 7:e47844. [PMID: 23082223 PMCID: PMC3474721 DOI: 10.1371/journal.pone.0047844] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 09/21/2012] [Indexed: 11/18/2022] Open
Abstract
Brown tide algal blooms, caused by the excessive growth of Aureococcus anophagefferens, recur in several northeastern US coastal bays. Direct bloom control could alleviate the ecological and economic damage associated with bloom outbreak. This paper explored the effectiveness and safety of natural chemical biocide hydrogen peroxide (H(2)O(2)) for brown tide bloom control. Culture studies showed that H(2)O(2) at 1.6 mg L(-1) effectively eradicated high density A. anophagefferens within 24-hr, but caused no significant growth inhibition in the diatoms, prymnesiophytes, green algae and dinoflagellates of >2-3 μm cell sizes among 12 phytoplankton species tested over 1-week observation. When applied to brown tide bloom prone natural seawater in a microcosm study, this treatment effectively removed the developing brown tide bloom, while the rest of phytoplankton assemblage (quantified via HPLC based marker pigment analyses), particularly the diatoms and green algae, experienced only transient suppression then recovered with total chlorophyll a exceeding that in the controls within 72-hr; cyanobacteria was not eradicated but was still reduced about 50% at 72-hr, as compared to the controls. The action of H(2)O(2) against phytoplankton as a function of cell size and cell wall structure, and a realistic scenario of H(2)O(2) application were discussed.
Collapse
Affiliation(s)
- Varunpreet Randhawa
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey, United States of America
| | - Megha Thakkar
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey, United States of America
| | - Liping Wei
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
31
|
Ayfer B, Dizman B, Elasri MO, Mathias LJ, Avci D. Synthesis and antibacterial activities of new quaternary ammonium monomers. Des Monomers Polym 2012. [DOI: 10.1163/1568555054937935] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
32
|
Emergence of resistance to antibacterial agents: the role of quaternary ammonium compounds--a critical review. Int J Antimicrob Agents 2012; 39:381-9. [PMID: 22421329 DOI: 10.1016/j.ijantimicag.2012.01.011] [Citation(s) in RCA: 349] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 01/12/2012] [Indexed: 12/11/2022]
Abstract
Quaternary ammonium compounds (QACs) are widely distributed in hospitals, industry and cosmetics. Little attention has been focused on the potential impact of QACs on the emergence of antibiotic resistance in patients and the environment. To assess this issue, we conducted a literature review on QAC chemical structure, fields of application, mechanism of action, susceptibility testing, prevalence, and co- or cross-resistance to antibiotics. Special attention was paid to the effects of QACs on microflora; in particular, the issue of the potential of QACs for applying selective pressure on multiple-antibiotic-resistant organisms was raised. It was found that there is a lack of standardised procedures for interpreting susceptibility test results. QACs have different impacts on the minimum inhibitory concentrations of antibacterials depending on the antibacterial compound investigated, the resistance genes involved, the measuring methodology and the interpretative criteria. The unmet needs for adequate detection of reduced susceptibility to QACs and antibiotics include (i) a consensus definition for resistance, (ii) epidemiological cut-off values and (iii) clinical resistance breakpoints. This review advocates the design of international guidelines for QAC use.
Collapse
|
33
|
Ghotaslou R, Bahrami N. Antimicrobial Activity of Chlorhexidine, Peracetic acid/ Peroxide hydrogen and Alcohol based compound on Isolated Bacteria in Madani Heart Hospital, Tabriz, Azerbaijan, Iran. Adv Pharm Bull 2012; 2:57-9. [PMID: 24312771 PMCID: PMC3846015 DOI: 10.5681/apb.2012.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 01/30/2012] [Indexed: 05/05/2023] Open
Abstract
PURPOSE The aim of present study was to investigate the effect of chemical agents on the clinical isolates in Madani Heart Hospital, Tabriz, Iran. METHODS The minimum bactericide concentration (MBC) of disinfectants including chlorhexidine (Fort), peracetic acid (Micro) and an alcohol based compound (Deconex) on selected bacteria at various dilutions were determined by the standard suspension technique. RESULTS MBC of Micro, Fort and Deconex were 2-128 mg/L, 2-64 mg/L and 4 - 32 mg/L, respectively. The Gram negative bacteria were more resistance to disinfectant relation to Gram positive bacteria. CONCLUSION The results showed that these agents are able to eradicate the bacteria and they can be used lonely.
Collapse
Affiliation(s)
- Reza Ghotaslou
- Department of Microbiology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Corresponding author: Reza Ghotaslou (PHD), Tabriz University of Medical Sciences, School of Medicine, Department of Microbiology. Telefax: +98 (411) 336 4661,
| | - Nashmil Bahrami
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
34
|
Effect of higher minimum inhibitory concentrations of quaternary ammonium compounds in clinical E. coli isolates on antibiotic susceptibilities and clinical outcomes. J Hosp Infect 2011; 79:141-6. [PMID: 21807440 DOI: 10.1016/j.jhin.2011.06.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Accepted: 06/12/2011] [Indexed: 11/22/2022]
Abstract
Quaternary ammonium compounds (QACs) are cationic surfactants used as preservatives and environmental disinfectants. Limited data are available regarding the effect of QACs in the clinical setting. We performed a prospective cohort study in 153 patients with Escherichia coli bacteraemia from February to September 2008 at University Hospital in Rennes. The minimum inhibitory concentrations (MICs) of antibiotics and QACs alkyldimethylbenzylammonium chloride (ADBAC) and didecyldimethylammonium chloride (DDAC) were determined by the agar dilution method. The capacity of biofilm production was assayed using the Crystal Violet method, and mutation frequencies by measuring the capacity of strains to generate resistance to rifampicin. Logistic regression analysis showed that one of the significant factors related to low MICs for ADBAC (≤16 mg/L) and DDAC (≤8 mg/L), was cotrimoxazole susceptibility (odds ratio: 3.72; 95% confidence interval: 1.22-11.24; P=0.02 and OR: 3.61; 95% CI: 1.56-7.56; P<0.01, respectively). Antibiotic susceptibility to cotrimoxazole was strongly associated with susceptibility to amoxicillin and nalidixic acid (P<0.01). Community-acquired or healthcare-associated bacteraemia, severity of bacteraemia, and patient outcome were independent of the MICs of ADBAC and DDAC. Our findings demonstrate an epidemiological relationship between higher MIC values of QACs in clinical E. coli isolates and antibiotic resistance.
Collapse
|
35
|
Abstract
Successful DNA-based identification of mass disaster victims depends on acquiring tissues that are not highly degraded. In this study, multiple protocols for field preservation of tissues for later DNA analysis were tested. Skin and muscle samples were collected from decaying pig carcasses. Tissues were preserved using cold storage, desiccation, or room temperature storage in preservative solutions for up to 6 months. DNA quality was assessed through amplification of successively larger segments of nuclear DNA. Solution-based storage, including a DMSO/NaCl/EDTA mixture, alcohols, and RNAlater preserved DNA of the highest quality, refrigeration was intermediate, and desiccation was least effective. Tissue type and extent of decomposition significantly affected stored DNA quality. Overall, the results indicate that any tissue preservation attempt is far superior to delaying or forgoing preservation efforts, and that simple, inexpensive methods can be highly effective in preserving DNA, thus should be initiated as quickly as possible.
Collapse
Affiliation(s)
- Corinne L Michaud
- Forensic Science Program, School of Criminal Justice, Michigan State University, East Lansing, MI 48824, USA
| | | |
Collapse
|
36
|
Marino M, Frigo F, Bartolomeoli I, Maifreni M. Safety-related properties of staphylococci isolated from food and food environments. J Appl Microbiol 2010; 110:550-61. [PMID: 21143714 DOI: 10.1111/j.1365-2672.2010.04909.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
AIMS To test some safety-related properties within 321 staphylococci strains isolated from food and food environments. METHODS AND RESULTS The isolates were identified as Staphylococcus aureus, Staphylococcus epidermidis, Staphylococcus saprophyticus, Staphylococcus pasteuri, Staphylococcus sciuri, Staphylococcus warneri and Staphylococcus xylosus. Decarboxylase activity was quite common for the various Staphylococcus spp., and tyrosine was the most frequently decarboxylated amino acid. The frequency of antibiotic resistance was highest in Staph. pasteuri and Staph. xylosus. Several of the isolates were tolerant to QAC compounds, and in some cases, QAC tolerance was present in antibiotic-resistant strains. Most of the strains displayed moderate to high adhesion rates to stainless steel and Teflon(®). The strains that readily formed biofilms belonged to the species Staph. aureus, Staph. epidermidis and Staph. pasteuri. CONCLUSIONS An high incidence of some safety hazards was found within the staphylococcal strains of food origin tested in this study. In particular, amino acid decarboxylase activity and biofilm-forming ability were common within strains, and antibiotic resistance and tolerance to QAC-based compounds occurred frequently as well. These characteristics are an important safety concern for food industry. SIGNIFICANCE AND IMPACT OF THE STUDY This work gives a first picture of safety hazards within staphylococcal species isolated from food environments. The presence of disinfectant-resistant staphylococci is a concern because resistance can be genetically transferred between the various Staphylococcus species. This could lead an increase and spread of resistant enterotoxic staphylococci and/or pathogenic staphylococci.
Collapse
Affiliation(s)
- M Marino
- Department of Food Science, University of Udine, Udine, Italy.
| | | | | | | |
Collapse
|
37
|
Bactericidal efficacy of some commercial disinfectants on biofilm on stainless steel surfaces of food equipment. ANN MICROBIOL 2010. [DOI: 10.1007/s13213-010-0172-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
38
|
Susceptibility of Candida spp. clinical isolates to antimycotics and disinfectants. Open Life Sci 2010. [DOI: 10.2478/s11535-010-0068-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractThe incidence of candidiasis among immunocompromised patients and emergence of antimycotics resistant strains has increased significantly. The aims of this study were: to examine the in vitro activity of antimycotics and biocides against Candida clinical isolates; to detect cross-resistance of fungi to these preparations and to estimate whether disinfectants applied in hospital areas are active against clinical Candida isolates. In vitro susceptibility of 102 Candida isolates to eight antimycotics was examined by Etest and ATB Fungus. Sensitivity of these strains to four disinfectants and an antiseptic agent was tested according to EN 1275:2005. Amphotericin B, caspofungin and 5-fluorocytosine were the most effective antimycotics against all Candida isolates. Resistance to itraconazole and fluconazole was observed among C. krusei and C. glabrata. The MICs (Minimal Inhibitory Concentrations) for ketoconazole, voriconazole and posaconazole against Candida albicans ranged: 0.003 - >32 μg/ml and one strain was resistant to three agents tested. All analysed Candida strains were sensitive to biocides containing either chlorine, aldehyde, alcohol mixtures, glucoprotamin or chlorhexidine gluconate with isopropanol. Sensitivity to these agents was observed at concentrations lower than those concentrations recommended by manufacturers to achieve proper biocidal activity to those preparations. Our data suggest that these disinfectants can be effectively applied in clinical wards to prevent nosocomial Candida infections.
Collapse
|
39
|
Omidbakhsh N. Evaluation of sporicidal activities of selected environmental surface disinfectants: carrier tests with the spores of Clostridium difficile and its surrogates. Am J Infect Control 2010; 38:718-22. [PMID: 21034981 DOI: 10.1016/j.ajic.2010.02.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Revised: 02/16/2010] [Accepted: 02/19/2010] [Indexed: 11/28/2022]
Abstract
BACKGROUND The emergence of Clostridium difficile as a major nosocomial pathogen points to the need for safe, effective, and fast-acting environmental sporicides for infection prevention and control. Available and fast-acting sporicides are generally corrosive and unsafe for both humans and the environment. METHODS We evaluated chlorine bleach (500 and 5000 ppm) and a gel containing 4.5% of accelerated hydrogen peroxide against the spores of C difficile and its surrogates Bacillus subtilis and Clostridium sporogenes with contact times of 1, 5, and 10 minutes at 20°C ± 2°C using a quantitative carrier test (QCT-2), which is a standard (ASTME2197) of American Society for Testing and Materials International. RESULTS The gel and the higher level of bleach inactivated ≥6-log(10) of viable spores of all 3 types in 10 minutes but were unable to do so after 1 and 5 minutes. The lower level of bleach showed virtually no activity even after 10 minutes. The gel could keep the treated surface wet for the entire 10 minutes, whereas the bleach became visibly dry in approximately 4 minutes and needed reapplication. CONCLUSION The gel, with no off-gassing and designed especially for use on toilet bowls to allow for the required dwell time on vertical surfaces with one application, is a potential alternative to high levels of bleach.
Collapse
Affiliation(s)
- Navid Omidbakhsh
- Department of Open Innovation and Intellectual Property, Virox Technologies Inc., 2770 Coventry Road, Oakville, Ontario, Canada.
| |
Collapse
|
40
|
Antimicrobial activity of simulated solar disinfection against bacterial, fungal, and protozoan pathogens and its enhancement by riboflavin. Appl Environ Microbiol 2010; 76:6010-2. [PMID: 20639371 DOI: 10.1128/aem.00445-10] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Riboflavin significantly enhanced the efficacy of simulated solar disinfection (SODIS) at 150 watts per square meter (W m(-2)) against a variety of microorganisms, including Escherichia coli, Fusarium solani, Candida albicans, and Acanthamoeba polyphaga trophozoites (>3 to 4 log(10) after 2 to 6 h; P < 0.001). With A. polyphaga cysts, the kill (3.5 log(10) after 6 h) was obtained only in the presence of riboflavin and 250 W m(-2) irradiance.
Collapse
|
41
|
Heaselgrave W, Andrew PW, Kilvington S. Acidified nitrite enhances hydrogen peroxide disinfection of Acanthamoeba, bacteria and fungi. J Antimicrob Chemother 2010; 65:1207-14. [DOI: 10.1093/jac/dkq075] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
42
|
Mazzola PG, Jozala AF, Novaes LCDL, Moriel P, Penna TCV. Choice of sterilizing/disinfecting agent: determination of the Decimal ReductionTime (D-Value). BRAZ J PHARM SCI 2009. [DOI: 10.1590/s1984-82502009000400013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Efforts to diminish the transmission of infections include programs in which disinfectants play a crucial role. Hospital surfaces and medical devices are potential sources of cross contamination, and each instrument, surface or area in a health care unit can be responsible for spread of infection. The decimal reduction time was used to study and compare the behavior of selected strains of microorganisms. The highest D-values for various bacteria were obtained for the following solutions: (i) 0.1% sodium dichloroisocyanurate (pH 7.0) - E. coli and A. calcoaceticus (D = 5.9 min); (ii) sodium hypochlorite (pH 7.0) at 0.025% for B. stearothermophilus (D = 24 min), E. coli and E. cloacae (D = 7.5 min); at 0.05% for B. stearothermophilus (D = 9.4 min) and E. coli (D = 6.1 min). The suspension studies were an indication of the disinfectant efficacy on a surface. The data in this study reflect the formulations used and may vary from product to product. The expected effectiveness from the studied formulations shows that the tested agents can be recommended for surface disinfection as stated in present guidelines and emphasize the importance and need to develop routine and novel programs to evaluate product utility.
Collapse
|
43
|
Eigenbrode J, Benning LG, Maule J, Wainwright N, Steele A, Amundsen HEF. A field-based cleaning protocol for sampling devices used in life-detection studies. ASTROBIOLOGY 2009; 9:455-465. [PMID: 19496672 DOI: 10.1089/ast.2008.0275] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Analytical approaches to extant and extinct life detection involve molecular detection often at trace levels. Thus, removal of biological materials and other organic molecules from the surfaces of devices used for sampling is essential for ascertaining meaningful results. Organic decontamination to levels consistent with null values on life-detection instruments is particularly challenging at remote field locations where Mars analog field investigations are carried out. Here, we present a seven-step, multi-reagent decontamination method that can be applied to sampling devices while in the field. In situ lipopolysaccharide detection via low-level endotoxin assays and molecular detection via gas chromatography-mass spectrometry were used to test the effectiveness of the decontamination protocol for sampling of glacial ice with a coring device and for sampling of sediments with a rover scoop during deployment at Arctic Mars-analog sites in Svalbard, Norway. Our results indicate that the protocols and detection technique sufficiently remove and detect low levels of molecular constituents necessary for life-detection tests.
Collapse
Affiliation(s)
- Jennifer Eigenbrode
- Geophysical Laboratory, Carnegie Institution of Washington, Washington, DC, USA.
| | | | | | | | | | | |
Collapse
|
44
|
The effect of daily bathing with chlorhexidine on the acquisition of methicillin-resistant Staphylococcus aureus, vancomycin-resistant Enterococcus, and healthcare-associated bloodstream infections: Results of a quasi-experimental multicenter trial*. Crit Care Med 2009; 37:1858-65. [DOI: 10.1097/ccm.0b013e31819ffe6d] [Citation(s) in RCA: 253] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
45
|
Mazzola PG, Jozala AF, Novaes LCDL, Moriel P, Penna TCV. Minimal inhibitory concentration (MIC) determination of disinfectant and/or sterilizing agents. BRAZ J PHARM SCI 2009. [DOI: 10.1590/s1984-82502009000200008] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Due to the growing number of outbreaks of infection in hospital and nurseries, it becomes essential to set up a sanitation program that indicates that the appropriate chemical agent was chosen for application in the most effective way. Validating the effectiveness of decontamination and disinfection is an important and often challenging task. In order to study and compare the behavior of selected microorganisms, they were submitted to minimal inhibitory concentration (MIC). The MIC intervals, which reduced bacteria populations over 6 log10, were: 59 to 156 mg/L of quaternary ammonium compounds (QACs); 63 to 10000 mg/L of chlorhexidine; 1375 to 3250 mg/L of glutaraldehyde; 39 to 246 mg/L of formaldehyde; 43750 to 87500 mg/L of ethanol; 1250 to 6250 mg/L of iodine in polyvinyl-pyrolidone complexes, 150 to 4491 mg/L of chlorine-releasing-agents (CRAs) and 469 to 2500 mg/L of hydrogen peroxide. Chlorhexidine showed non inhibitory activity over germinating spores. A. calcoaceticus showed resistance to the majority of the agents tested, followed by E. cloacae and S. marcescens.
Collapse
|
46
|
Selection and Optimization of Bacillus atrophaeus Inoculum Medium and its Effect on Spore Yield and Thermal Resistance. Appl Biochem Biotechnol 2008; 151:380-92. [DOI: 10.1007/s12010-008-8206-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Accepted: 03/07/2008] [Indexed: 11/26/2022]
|
47
|
Chang MW, Toghrol F, Bentley WE. Toxicogenomic response to chlorination includes induction of major virulence genes in Staphylococcus aureus. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2007; 41:7570-7575. [PMID: 18044543 DOI: 10.1021/es070929k] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Despite the widespread use of chlorination for microbial control in aqueous environments, cellular response mechanisms of human pathogens, such as Staphylococcus aureus, against chlorination remain unknown. In this work, genome-wide transcriptional analysis was performed to elucidate cellular response of S. aureusto hypochlorous acid, an active antimicrobial product of chlorination in aqueous solution. Our results suggest that hypochlorous acid repressed transcription of genes involved in cell wall synthesis, membrane transport, protein synthesis, and primary metabolism, while amino acid synthesis genes were induced. Furthermore, hypochlorous acid induced transcription of genes encoding major virulence factors of S. aureus, such as exotoxins, hemolysins, leukocidins, coagulases, and surface adhesion proteins, which all play essential roles in staphylococcal virulence. This work implies that chlorination may stimulate production of virulence factors, which provides new insight into host-pathogen interactions and effects of chlorine application for microbial control.
Collapse
Affiliation(s)
- Matthew Wook Chang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore
| | | | | |
Collapse
|
48
|
Kipp F, Angermeier K, Koller A, Wetz HH, Hornberg C. [Significance of microbial colonisation in materials for orthopaedic technology. New insights]. DER ORTHOPADE 2006; 35:1146, 1148-51. [PMID: 17036234 DOI: 10.1007/s00132-006-1012-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
A great problem in the treatment of diabetes are infections of diabetic feet. A likely reservoir of microorganisms are contaminated orthopaedic materials. Insoles from 70 patients were examined for potential microbial colonisation. Commonly employed materials were contaminated in vitro under standardised conditions using known microorganisms. After treating with an alcoholic skin disinfectant, the organisms were counted semiquantitatively. In addition to pathogens, the surfaces showed mainly microorganisms present in the normal skin flora. In all materials tested, disinfection reduced the number of organisms by 4-5 log orders. It could be shown that simple disinfection (wiping) reduces the microorganisms present on orthopaedic materials to an acceptable number. Further studies are needed to determine whether this also reduces the incidence of diabetic skin and soft tissue infection.
Collapse
Affiliation(s)
- F Kipp
- Institut für Medizinische Mikrobiologie, Universitätsklinikum, Münster
| | | | | | | | | |
Collapse
|
49
|
Mazzola PG, Martins AMS, Penna TCV. Chemical resistance of the gram-negative bacteria to different sanitizers in a water purification system. BMC Infect Dis 2006; 6:131. [PMID: 16914053 PMCID: PMC1559695 DOI: 10.1186/1471-2334-6-131] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2006] [Accepted: 08/16/2006] [Indexed: 11/10/2022] Open
Abstract
Background Purified water for pharmaceutical purposes must be free of microbial contamination and pyrogens. Even with the additional sanitary and disinfecting treatments applied to the system (sequential operational stages), Pseudomonas aeruginosa, Pseudomonas fluorescens, Pseudomonas alcaligenes, Pseudomonas picketti, Flavobacterium aureum, Acinetobacter lowffi and Pseudomonas diminuta were isolated and identified from a thirteen-stage purification system. To evaluate the efficacy of the chemical agents used in the disinfecting process along with those used to adjust chemical characteristics of the system, over the identified bacteria, the kinetic parameter of killing time (D-value) necessary to inactivate 90% of the initial bioburden (decimal reduction time) was experimentally determined. Methods Pseudomonas aeruginosa, Pseudomonas fluorescens, Pseudomonas alcaligenes, Pseudomonas picketti, Flavobacterium aureum, Acinetobacter lowffi and Pseudomonas diminuta were called in house (wild) bacteria. Pseudomonas diminuta ATCC 11568, Pseudomonas alcaligenes INCQS , Pseudomonas aeruginosa ATCC 15442, Pseudomonas fluorescens ATCC 3178, Pseudomonas picketti ATCC 5031, Bacillus subtilis ATCC 937 and Escherichia coli ATCC 25922 were used as 'standard' bacteria to evaluate resistance at 25°C against either 0.5% citric acid, 0.5% hydrochloric acid, 70% ethanol, 0.5% sodium bisulfite, 0.4% sodium hydroxide, 0.5% sodium hypochlorite, or a mixture of 2.2% hydrogen peroxide (H2O2) and 0.45% peracetic acid. Results The efficacy of the sanitizers varied with concentration and contact time to reduce decimal logarithmic (log10) population (n cycles). To kill 90% of the initial population (or one log10 cycle), the necessary time (D-value) was for P. aeruginosa into: (i) 0.5% citric acid, D = 3.8 min; (ii) 0.5% hydrochloric acid, D = 6.9 min; (iii) 70% ethanol, D = 9.7 min; (iv) 0.5% sodium bisulfite, D = 5.3 min; (v) 0.4% sodium hydroxide, D = 14.2 min; (vi) 0.5% sodium hypochlorite, D = 7.9 min; (vii) mixture of hydrogen peroxide (2.2%) plus peracetic acid (0.45%), D = 5.5 min. Conclusion The contact time of 180 min of the system with the mixture of H2O2+ peracetic acid, a total theoretical reduction of 6 log10 cycles was attained in the water purified storage tank and distribution loop. The contact time between the water purification system (WPS) and the sanitary agents should be reviewed to reach sufficient bioburden reduction (over 6 log10).
Collapse
Affiliation(s)
- Priscila G Mazzola
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, Avda. Professor Lineu Prestes, 580, Bloco 16, 05508–900, São Paulo, São Paulo, Brazil
| | - Alzira MS Martins
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, Avda. Professor Lineu Prestes, 580, Bloco 16, 05508–900, São Paulo, São Paulo, Brazil
| | - Thereza CV Penna
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, Avda. Professor Lineu Prestes, 580, Bloco 16, 05508–900, São Paulo, São Paulo, Brazil
| |
Collapse
|
50
|
Mazzola PG, Lam H, Kavoosi M, Haynes CA, Pessoa A, Penna TCV, Wang DIC, Blankschtein D. Affinity-tagged green fluorescent protein (GFP) extraction from a clarifiedE. coli cell lysate using a two-phase aqueous micellar system. Biotechnol Bioeng 2006; 93:998-1004. [PMID: 16470873 DOI: 10.1002/bit.20806] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Green fluorescent protein (GFP) has been proposed as an ideal choice for a protein-based biological indicator for use in the validation of decontamination or disinfection treatments. In this article, we present a potentially scalable and cost-effective way to purify recombinant GFP, produced by fermentation in Escherichia coli, by affinity-enhanced extraction in a two-phase aqueous micellar system. Affinity-enhanced partitioning, which improves the specificity and yield of the target protein by specific bioaffinity interactions, has been demonstrated. A novel affinity tag, family 9 carbohydrate-binding module (CBM9) is fused to GFP, and the resulting fusion protein is affinity-extracted in a decyl beta-D-glucopyranoside (C10G1) two-phase aqueous micellar system. In this system, C10G1 acts as phase forming and as affinity surfactant. We will further demonstrate the implementation of this concept to attain partial recovery of affinity-tagged GFP from a clarified E. coli cell lysate, including the simultaneous removal of other contaminating proteins. The cell lysate was partitioned at three levels of dilution (5x, 10x, and 40x). Irrespective of the dilution level, CBM9-GFP was found to partition preferentially to the micelle-rich phase, with the same partition coefficient value as that found in the absence of the cell lysate. The host cell proteins from the cell lysate were found to partition preferentially to the micelle-poor phase, where they experience less excluded-volume interactions. The demonstration of proof-of-principle of the direct affinity-enhanced extraction of CBM9-GFP from the cell lysate represents an important first step towards developing a cost-effective separation method for GFP, and more generally, for other proteins of interest.
Collapse
Affiliation(s)
- Priscila G Mazzola
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | | | | | | | |
Collapse
|