1
|
Priyanka, Sharma S, Varma-Basil M, Sharma M. C-terminal region of Rv1039c (PPE15) protein of Mycobacterium tuberculosis targets host mitochondria to induce macrophage apoptosis. Apoptosis 2024; 29:1757-1779. [PMID: 38615303 DOI: 10.1007/s10495-024-01965-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2024] [Indexed: 04/15/2024]
Abstract
Mycobacterium tuberculosis (Mtb) genome possesses a unique family called Proline-Glutamate/Proline-Proline-Glutamate (PE/PPE) gene family, exclusive to pathogenic mycobacterium. Some of these proteins are known to play role in virulence and immune response modulation, but many are still uncharacterized. This study investigated the role of C-terminal region of Rv1039c (PPE15) in inducing mitochondrial perturbations and macrophage apoptosis. Our in-silico studies revealed the disordered, coiled, and hydrophobic C-terminal region in Rv1039c has similarity with C-terminal of mitochondria-targeting pro-apoptotic host proteins. Wild type Rv1039c and C-terminal deleted Rv1039c (Rv1039c-/-Cterm) recombinant proteins were purified and their M. smegmatis knock-in strains were constructed which were used for in-vitro experiments. Confocal microscopy showed localization of Rv1039c to mitochondria of PMA-differentiated THP1 macrophages; and reduced mitochondrial membrane depolarization and production of mitochondrial superoxides were observed in response to Rv1039c-/-Cterm in comparison to full-length Rv1039c. The C-terminal region of Rv1039c was found to activate caspases 3, 7 and 9 along with upregulated expression of pro-apoptotic genes like Bax and Bim. Rv1039c-/-Cterm also reduced the Cytochrome-C release from the mitochondria and the expression of AnnexinV/PI positive and TUNEL positive cells as compared to Rv1039c. Additionally, Rv1039c was observed to upregulate the TLR4-NF-κB-TNF-α signalling whereas the same was downregulated in response to Rv1039c-/-Cterm. These findings suggested that the C-terminal region of Rv1039c is a molecular mimic of pro-apoptotic host proteins which induce mitochondria-dependent macrophage apoptosis and evoke host immune response. These observations enhance our understanding about the role of PE/PPE proteins at host-pathogen interface.
Collapse
Affiliation(s)
- Priyanka
- DSKC BioDiscovery Laboratory, Department of Zoology, Miranda House, University of Delhi, Delhi, India
| | - Sadhna Sharma
- DSKC BioDiscovery Laboratory, Department of Zoology, Miranda House, University of Delhi, Delhi, India
| | - Mandira Varma-Basil
- Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Monika Sharma
- DSKC BioDiscovery Laboratory, Department of Zoology, Miranda House, University of Delhi, Delhi, India.
| |
Collapse
|
2
|
Gutka HJ, Bondoc JMG, Patwell R, Khan S, Grzelak EM, Goswami R, Voskuil MI, Movahedzadeh F. Rv0100: An essential acyl carrier protein from M. tuberculosis important in dormancy. PLoS One 2024; 19:e0304876. [PMID: 38848336 PMCID: PMC11161019 DOI: 10.1371/journal.pone.0304876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 05/20/2024] [Indexed: 06/09/2024] Open
Abstract
We have identified an acyl-carrier protein, Rv0100, that is up-regulated in a dormancy model. This protein plays a critical role in the fatty acid biosynthesis pathway, which is important for energy storage and cell wall synthesis in Mycobacterium tuberculosis (MTB). Knocking out the Rv0100 gene resulted in a significant reduction of growth compared to wild-type MTB in the Wayne model of non-replicating persistence. We have also shown that Rv0100 is essential for the growth and survival of this pathogen during infection in mice and a macrophage model. Furthermore, knocking out Rv0100 disrupted the synthesis of phthiocerol dimycocerosates, the virulence-enhancing lipids produced by MTB and Mycobacterium bovis. We hypothesize that this essential gene contributes to MTB virulence in the state of latent infection. Therefore, inhibitors targeting this gene could prove to be potent antibacterial agents against this pathogen.
Collapse
Affiliation(s)
- Hiten J. Gutka
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Jasper Marc G. Bondoc
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Ryan Patwell
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Department of Neuropeptide Research, Central Institute for Mental Health, Mannheim, Germany
| | - Shahebraj Khan
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Edyta M. Grzelak
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Rajendra Goswami
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Martin I. Voskuil
- Department of Microbiology, School of Medicine, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Farahnaz Movahedzadeh
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
3
|
Priyanka, Sharma S, Joshi H, Kumar C, Waseem R, Sharma M. Mycobacterium tuberculosis protein PPE15 (Rv1039c) possesses eukaryote-like SH3 domain that interferes with NADPH Oxidase assembly and Reactive Oxygen Species production. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119702. [PMID: 38408543 DOI: 10.1016/j.bbamcr.2024.119702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 02/28/2024]
Abstract
Inhibition of Reactive Oxygen Species (ROS) is one of the strategies that Mycobacterium tuberculosis (Mtb) employs as its defence mechanism. In this study, the role of PPE15 (Rv1039c), a late-stage protein, has been investigated in modulating the cellular ROS. We discovered PPE15 to be a secretory protein that downregulates ROS generation in THP1 macrophages. Our in-silico analysis revealed the presence of a eukaryote-like SH3 (SH3e) domain in PPE15. The predicted SH3e-domain of PPE15 was found to interact with cytosolic components of NADPH Oxidase (NOX), p67phox and p47phox through molecular docking. In-vitro experiments using THP1 macrophages showed a diminished NADP/NADPH ratio, indicating reduced NOX activity. We also observed increased levels of p67phox and p47phox in the cytoplasmic fraction of PPE15 treated macrophages as compared to the plasma membrane fraction. To understand the role of the SH3e-domain in ROS modulation, this domain was deleted from the full-length PPE15 (PPE15-/-SH3). We observed an increase in cellular ROS and NADP/NADPH ratio in response to PPE15-/-SH3 protein. The interaction of PPE15-/-SH3 with p67phox or p47phox was also reduced in the cytoplasm, indicating migration of NOX subunits to the plasma membrane. Additionally, M. smegmatis expressing PPE15 was observed to be resistant to oxidative stress with significant intracellular survival in THP1 macrophages as compared to M. smegmatis expressing PPE15-/-SH3. These observations suggest that the SH3e-domain of PPE15 interferes with ROS generation by sequestering NOX components that inhibit NOX assembly at the cell membrane. Therefore, PPE15 acts like a molecular mimic of SH3-domain carrying eukaryotic proteins that can be employed by Mtb at late stages of infection for its survival. These findings give us new insights about the pathogen evading strategy of Mtb which may help in improving the therapeutics for TB treatment.
Collapse
Affiliation(s)
- Priyanka
- DSKC BioDiscovery Laboratory and Department of Zoology, Miranda House, University of Delhi, Delhi, India.
| | - Sadhna Sharma
- DSKC BioDiscovery Laboratory and Department of Zoology, Miranda House, University of Delhi, Delhi, India.
| | - Hemant Joshi
- School of Biotechnology, Jawaharlal Nehru University, Delhi, India
| | - Chanchal Kumar
- Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Rashid Waseem
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Monika Sharma
- DSKC BioDiscovery Laboratory and Department of Zoology, Miranda House, University of Delhi, Delhi, India.
| |
Collapse
|
4
|
Lu Y, Chen H, Shao Z, Sun L, Li C, Lu Y, You X, Yang X. Deletion of the Mycobacterium tuberculosis cyp138 gene leads to changes in membrane-related lipid composition and antibiotic susceptibility. Front Microbiol 2024; 15:1301204. [PMID: 38591032 PMCID: PMC10999552 DOI: 10.3389/fmicb.2024.1301204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 03/01/2024] [Indexed: 04/10/2024] Open
Abstract
Introduction Mycobacterium tuberculosis (Mtb), the main cause of tuberculosis (TB), has brought a great burden to the world's public health. With the widespread use of Mtb drug-resistant strains, the pressure on anti-TB treatment is increasing. Anti-TB drugs with novel structures and targets are urgently needed. Previous studies have revealed a series of CYPs with important roles in the survival and metabolism of Mtb. However, there is little research on the structure and function of CYP138. Methods In our study, to discover the function and targetability of CYP138, a cyp138-knockout strain was built, and the function of CYP138 was speculated by the comparison between cyp138-knockout and wild-type strains through growth curves, growth status under different carbon sources, infection curves, SEM, MIC tests, quantitative proteomics, and lipidomics. Results and discussion The knockout of cyp138 was proven to affect the Mtb's macrophage infection, antibiotics susceptibility, and the levels of fatty acid metabolism, membrane-related proteins, and lipids such as triacylglycerol. We proposed that CYP138 plays an important role in the synthesis and decomposition of lipids related to the cell membrane structure as a new potential anti-tuberculosis drug target.
Collapse
Affiliation(s)
- Yun Lu
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Division for Medicinal Microorganisms-related Strains, CAMS Collection Center of Pathogenic Microorganisms, Beijing, China
| | - Hongtong Chen
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Division for Medicinal Microorganisms-related Strains, CAMS Collection Center of Pathogenic Microorganisms, Beijing, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zhiyuan Shao
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Division for Medicinal Microorganisms-related Strains, CAMS Collection Center of Pathogenic Microorganisms, Beijing, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Lang Sun
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Division for Medicinal Microorganisms-related Strains, CAMS Collection Center of Pathogenic Microorganisms, Beijing, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Congran Li
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Division for Medicinal Microorganisms-related Strains, CAMS Collection Center of Pathogenic Microorganisms, Beijing, China
| | - Yu Lu
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, and Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Xuefu You
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Division for Medicinal Microorganisms-related Strains, CAMS Collection Center of Pathogenic Microorganisms, Beijing, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xinyi Yang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Division for Medicinal Microorganisms-related Strains, CAMS Collection Center of Pathogenic Microorganisms, Beijing, China
| |
Collapse
|
5
|
Pushparajan AR, Edison LK, Ajay Kumar R. Mycobacterium tuberculosis transcriptional regulator Rv1019 is upregulated in hypoxia, and negatively regulates Rv3230c-Rv3229c operon encoding enzymes in the oleic acid biosynthetic pathway. FEBS J 2023; 290:1583-1595. [PMID: 36209365 DOI: 10.1111/febs.16647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/19/2022] [Accepted: 10/05/2022] [Indexed: 11/05/2022]
Abstract
The main obstacle in eradicating tuberculosis is the ability of Mycobacterium tuberculosis to remain dormant in the host, and then to get reactivated even years later under immunocompromised conditions. Transcriptional regulation in intracellular pathogens plays an important role in their adapting to the challenging environment inside the host cells. Previously, we demonstrated that Rv1019, a putative transcriptional regulator of M. tuberculosis H37Rv, is an autorepressor. We showed that Rv1019 is cotranscribed with Rv1020 (mfd) and Rv1021 (mazG) which encode DNA repair proteins and negatively regulates the expression of these genes. In the present study, we show that Rv1019 regulates the expression of the genes Rv3230c and Rv3229c (desA3) also which form a two-gene operon in M. tuberculosis. Overexpression of Rv1019 in M. tuberculosis significantly downregulated the expression of these genes. Employing Wayne's hypoxia-induced dormancy model of M. tuberculosis, we show that Rv1019 is upregulated three-fold under hypoxia. Finally, by reporter assay, using Mycobacterium smegmatis as a model, we validate that Rv1019 is recruited to the promoter of Rv3230c-Rv3229c during hypoxia, and negatively regulates this operon which is involved in the biosynthesis of oleic acid.
Collapse
Affiliation(s)
- Akhil Raj Pushparajan
- Mycobacterium Research Laboratory, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India.,Department of Biotechnology, Faculty of Applied Sciences and Technology, University of Kerala, Thiruvananthapuram, India
| | - Lekshmi K Edison
- Mycobacterium Research Laboratory, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - Ramakrishnan Ajay Kumar
- Mycobacterium Research Laboratory, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| |
Collapse
|
6
|
Yan W, Zheng Y, Dou C, Zhang G, Arnaout T, Cheng W. The pathogenic mechanism of Mycobacterium tuberculosis: implication for new drug development. MOLECULAR BIOMEDICINE 2022; 3:48. [PMID: 36547804 PMCID: PMC9780415 DOI: 10.1186/s43556-022-00106-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 11/15/2022] [Indexed: 12/24/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), is a tenacious pathogen that has latently infected one third of the world's population. However, conventional TB treatment regimens are no longer sufficient to tackle the growing threat of drug resistance, stimulating the development of innovative anti-tuberculosis agents, with special emphasis on new protein targets. The Mtb genome encodes ~4000 predicted proteins, among which many enzymes participate in various cellular metabolisms. For example, more than 200 proteins are involved in fatty acid biosynthesis, which assists in the construction of the cell envelope, and is closely related to the pathogenesis and resistance of mycobacteria. Here we review several essential enzymes responsible for fatty acid and nucleotide biosynthesis, cellular metabolism of lipids or amino acids, energy utilization, and metal uptake. These include InhA, MmpL3, MmaA4, PcaA, CmaA1, CmaA2, isocitrate lyases (ICLs), pantothenate synthase (PS), Lysine-ε amino transferase (LAT), LeuD, IdeR, KatG, Rv1098c, and PyrG. In addition, we summarize the role of the transcriptional regulator PhoP which may regulate the expression of more than 110 genes, and the essential biosynthesis enzyme glutamine synthetase (GlnA1). All these enzymes are either validated drug targets or promising target candidates, with drugs targeting ICLs and LAT expected to solve the problem of persistent TB infection. To better understand how anti-tuberculosis drugs act on these proteins, their structures and the structure-based drug/inhibitor designs are discussed. Overall, this investigation should provide guidance and support for current and future pharmaceutical development efforts against mycobacterial pathogenesis.
Collapse
Affiliation(s)
- Weizhu Yan
- grid.412901.f0000 0004 1770 1022Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041 China
| | - Yanhui Zheng
- grid.412901.f0000 0004 1770 1022Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041 China
| | - Chao Dou
- grid.412901.f0000 0004 1770 1022Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041 China
| | - Guixiang Zhang
- grid.13291.380000 0001 0807 1581Division of Gastrointestinal Surgery, Department of General Surgery and Gastric Cancer center, West China Hospital, Sichuan University, No. 37. Guo Xue Xiang, Chengdu, 610041 China
| | - Toufic Arnaout
- Kappa Crystals Ltd., Dublin, Ireland ,MSD Dunboyne BioNX, Co. Meath, Ireland
| | - Wei Cheng
- grid.412901.f0000 0004 1770 1022Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041 China
| |
Collapse
|
7
|
Verma A, Ghoshal A, Dwivedi VP, Bhaskar A. Tuberculosis: The success tale of less explored dormant Mycobacterium tuberculosis. Front Cell Infect Microbiol 2022; 12:1079569. [PMID: 36619761 PMCID: PMC9813417 DOI: 10.3389/fcimb.2022.1079569] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
Mycobacterium tuberculosis (M.tb) is an intracellular pathogen that predominantly affects the alveolar macrophages in the respiratory tract. Upon infection, the activation of TLR2 and TLR4- mediated signaling pathways leads to lysosomal degradation of the bacteria. However, bacterium counteracts the host immune cells and utilizes them as a cellular niche for its survival. One distinctive mechanism of M.tb to limit the host stress responses such as hypoxia and nutrient starvation is induction of dormancy. As the environmental conditions become favorable, the bacteria resuscitate, resulting in a relapse of clinical symptoms. Different bacterial proteins play a critical role in maintaining the state of dormancy and resuscitation, namely, DevR (DosS), Hrp1, DATIN and RpfA-D, RipA, etc., respectively. Existing knowledge regarding the key proteins associated with dormancy and resuscitation can be employed to develop novel therapies. In this review we aim to highlight the current knowledge of bacterial progression from dormancy to resuscitation and the gaps in understanding the transition from dormant to active state. We have also focused on elucidating a few therapeutic strategies employed to prevent M.tb resuscitation.
Collapse
|
8
|
Shanmuga Priya VG, Bhandare V, Muddapur UM, Swaminathan P, Fandilolu PM, Sonawane KD. Molecular modeling approach to identify inhibitors of Rv2004c (rough morphology and virulent strain gene), a DosR (dormancy survival regulator) regulon protein from Mycobacterium tuberculosis. J Biomol Struct Dyn 2022; 40:3242-3257. [DOI: 10.1080/07391102.2020.1846620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- V. G. Shanmuga Priya
- Department of Biotechnology, KLE Dr.M.S.Sheshgiri College of Engineering and Technology, Belagavi, India
| | - Vishwambhar Bhandare
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai Mumbai, India
| | - Uday M. Muddapur
- Department of Biotechnology, B.V.B College of Engineering and Technology, KLE Technological University, Hubballi, India
| | - Priya Swaminathan
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Chennai, India
| | - Prayagraj M. Fandilolu
- Structural Bioinformatics Unit, Department of Biochemistry, Shivaji University, Kolhapur, India
| | - Kailas D. Sonawane
- Structural Bioinformatics Unit, Department of Biochemistry, Shivaji University, Kolhapur, India
- Department of Microbiology, Shivaji University, Kolhapur, India
| |
Collapse
|
9
|
In Silico Drug Discovery Strategies Identified ADMET Properties of Decoquinate RMB041 and Its Potential Drug Targets against Mycobacterium tuberculosis. Microbiol Spectr 2022; 10:e0231521. [PMID: 35352998 PMCID: PMC9045315 DOI: 10.1128/spectrum.02315-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The highly adaptive cellular response of Mycobacterium tuberculosis to various antibiotics and the high costs for clinical trials, hampers the development of novel antimicrobial agents with improved efficacy and safety. Subsequently, in silico drug screening methods are more commonly being used for the discovery and development of drugs, and have been proven useful for predicting the pharmacokinetics, toxicities, and targets, of prospective new antimicrobial agents. In this investigation we used a reversed target fishing approach to determine potential hit targets and their possible interactions between M. tuberculosis and decoquinate RMB041, a propitious new antituberculosis compound. Two of the 13 identified targets, Cyp130 and BlaI, were strongly proposed as optimal drug-targets for dormant M. tuberculosis, of which the first showed the highest comparative binding affinity to decoquinate RMB041. The metabolic pathways associated with the selected target proteins were compared to previously published molecular mechanisms of decoquinate RMB041 against M. tuberculosis, whereby we confirmed disrupted metabolism of proteins, cell wall components, and DNA. We also described the steps within these pathways that are inhibited and elaborated on decoquinate RMB041’s activity against dormant M. tuberculosis. This compound has previously showed promising in vitro safety and good oral bioavailability, which were both supported by this in silico study. The pharmacokinetic properties and toxicity of this compound were predicted and investigated using the online tools pkCSM and SwissADME, and Discovery Studio software, which furthermore supports previous safety and bioavailability characteristics of decoquinate RMB041 for use as an antimycobacterial medication. IMPORTANCE This article elaborates on the mechanism of action of a novel antibiotic compound against both, active and dormant Mycobacterium tuberculosis and describes its pharmacokinetics (including oral bioavailability and toxicity). Information provided in this article serves useful during the search for drugs that shorten the treatment regimen for Tuberculosis and cause minimal adverse effects.
Collapse
|
10
|
Martínez-Pérez A, Estévez O, González-Fernández Á. Contribution and Future of High-Throughput Transcriptomics in Battling Tuberculosis. Front Microbiol 2022; 13:835620. [PMID: 35283833 PMCID: PMC8908424 DOI: 10.3389/fmicb.2022.835620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/25/2022] [Indexed: 11/13/2022] Open
Abstract
While Tuberculosis (TB) infection remains a serious challenge worldwide, big data and “omic” approaches have greatly contributed to the understanding of the disease. Transcriptomics have been used to tackle a wide variety of queries including diagnosis, treatment evolution, latency and reactivation, novel target discovery, vaccine response or biomarkers of protection. Although a powerful tool, the elevated cost and difficulties in data interpretation may hinder transcriptomics complete potential. Technology evolution and collaborative efforts among multidisciplinary groups might be key in its exploitation. Here, we discuss the main fields explored in TB using transcriptomics, and identify the challenges that need to be addressed for a real implementation in TB diagnosis, prevention and therapy.
Collapse
Affiliation(s)
- Amparo Martínez-Pérez
- Biomedical Research Center (CINBIO), Universidade de Vigo, Vigo, Spain.,Hospital Álvaro Cunqueiro, Galicia Sur Health Research Institute (IIS-GS), Vigo, Spain
| | - Olivia Estévez
- Biomedical Research Center (CINBIO), Universidade de Vigo, Vigo, Spain.,Hospital Álvaro Cunqueiro, Galicia Sur Health Research Institute (IIS-GS), Vigo, Spain
| | - África González-Fernández
- Biomedical Research Center (CINBIO), Universidade de Vigo, Vigo, Spain.,Hospital Álvaro Cunqueiro, Galicia Sur Health Research Institute (IIS-GS), Vigo, Spain
| |
Collapse
|
11
|
Isa MA, Abubakar MB, Mohammed MM, Ibrahim MM, Gubio FA. Identification of potent inhibitors of ATP synthase subunit c (AtpE) from Mycobacterium tuberculosis using in silico approach. Heliyon 2021; 7:e08482. [PMID: 34934830 PMCID: PMC8654640 DOI: 10.1016/j.heliyon.2021.e08482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/11/2021] [Accepted: 11/22/2021] [Indexed: 11/29/2022] Open
Abstract
ATP synthase subunit c (AtpE) is an enzyme that catalyzes the production of ATP from ADP in the presence of sodium or proton gradient from Mycobacterium tuberculosis (MTB). This enzyme considered an essential target for drug design and shares the same pathway with the target of Isoniazid. Thus, this enzyme would serve as an alternative target of the Isoniazid. The three dimensional (3D) model structure of the AtpE was constructed based on the principle of homology modeling using the Modeller9.16. The developed model was subjected to energy minimization and refinement using molecular dynamic (MD) simulation. The minimized model structure was searched against Zinc and PubChem database to determine ligands that bind to the enzyme with minimum binding energy using RASPD and PyRx tool. A total of 4776 compounds capable of bindings to AtpE with minimum binding energy were selected. These compounds further screened for physicochemical properties (Lipinski rule of five). All the compounds that possessed the desirable property selected and used for molecular docking analysis. Five (5) compounds with minimum binding energies ranged between ─8.69, and ─8.44 kcal/mol, less than the free binding energy of ATP were selected. These compounds further screened for the absorption, distribution, metabolism, excretion, and toxicity (ADME and toxicity) properties. Of the five compounds, three (ZINC14732869, ZINC14742188, and ZINC12205447) fitted all the ADME and toxicity properties and subjected to MD simulation and Molecular Mechanics Generalized Born and Surface Area (MM-GBSA) analyses. The results indicated that the ligands formed relatively stable complexes and had free binding energies, less than the binding energy of the ATP. Therefore, these ligands considered as prospective inhibitors of MTB after successful experimental validation.
Collapse
Affiliation(s)
- Mustafa Alhaji Isa
- Department of Microbiology, Faculty of Sciences, University of Maiduguri, P.M.B. 1069, Maiduguri, Nigeria
| | - Mustapha B Abubakar
- Department of Veterinary Microbiology, Faculty of Veterinary Medicine, University of Maiduguri, Nigeria
| | - Mohammed Mustapha Mohammed
- Department of Microbiology, Faculty of Sciences, University of Maiduguri, P.M.B. 1069, Maiduguri, Nigeria
| | - Muhammad Musa Ibrahim
- Department of Microbiology, Faculty of Sciences, University of Maiduguri, P.M.B. 1069, Maiduguri, Nigeria
| | - Falmata Audu Gubio
- Department of Microbiology, Faculty of Sciences, University of Maiduguri, P.M.B. 1069, Maiduguri, Nigeria
| |
Collapse
|
12
|
Willemse D, Moodley C, Mehra S, Kaushal D. Transcriptional Response of Mycobacterium tuberculosis to Cigarette Smoke Condensate. Front Microbiol 2021; 12:744800. [PMID: 34721344 PMCID: PMC8554204 DOI: 10.3389/fmicb.2021.744800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/13/2021] [Indexed: 11/13/2022] Open
Abstract
Smoking is known to be an added risk factor for tuberculosis (TB), with nearly a quarter of the TB cases attributed to cigarette smokers in the 22 countries with the highest TB burden. Many studies have indicated a link between risk of active TB and cigarette smoke. Smoking is also known to significantly decrease TB cure and treatment completion rate and increase mortality rates. Cigarette smoke contains thousands of volatile compounds including carcinogens, toxins, reactive solids, and oxidants in both particulate and gaseous phase. Yet, to date, limited studies have analyzed the impact of cigarette smoke components on Mycobacterium tuberculosis (Mtb), the causative agent of TB. Here we report the impact of cigarette smoke condensate (CSC) on survival, mutation frequency, and gene expression of Mtb in vitro. We show that exposure of virulent Mtb to cigarette smoke increases the mutation frequency of the pathogen and strongly induces the expression of the regulon controlled by SigH—a global transcriptional regulator of oxidative stress. SigH has previously been shown to be required for Mtb to respond to oxidative stress, survival, and granuloma formation in vivo. A high-SigH expression phenotype is known to be associated with greater virulence of Mtb. In patients with pulmonary TB who smoke, these changes may therefore play an important, yet unexplored, role in the treatment efficacy by potentially enhancing the virulence of tubercle bacilli.
Collapse
Affiliation(s)
- Danicke Willemse
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Chivonne Moodley
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, United States.,Tulane National Primate Research Center, Tulane University Health Sciences Center, Covington, LA, United States
| | - Smriti Mehra
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, United States.,Tulane National Primate Research Center, Tulane University Health Sciences Center, Covington, LA, United States
| | - Deepak Kaushal
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, United States
| |
Collapse
|
13
|
Kundu M, Basu J. Applications of Transcriptomics and Proteomics for Understanding Dormancy and Resuscitation in Mycobacterium tuberculosis. Front Microbiol 2021; 12:642487. [PMID: 33868200 PMCID: PMC8044303 DOI: 10.3389/fmicb.2021.642487] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/19/2021] [Indexed: 12/15/2022] Open
Abstract
Mycobacterium tuberculosis can survive within its host for extended periods of time without any clinical symptoms of disease and reactivate when the immune system is weakened. A detailed understanding of how M. tuberculosis enters into and exits out of dormancy, is necessary in order to develop new strategies for tackling tuberculosis. Omics methodologies are unsupervised and unbiased to any hypothesis, making them useful tools for the discovery of new drug targets. This review summarizes the findings of transcriptomic and proteomic approaches toward understanding dormancy and reactivation of M. tuberculosis. Within the granuloma of latently infected individuals, the bacteria are dormant, with a marked slowdown of growth, division and metabolism. In vitro models have attempted to simulate these features by subjecting the bacterium to hypoxia, nutrient starvation, potassium depletion, growth in the presence of vitamin C, or growth in the presence of long-chain fatty acids. The striking feature of all the models is the upregulation of the DosR regulon, which includes the transcriptional regulator Rv0081, one of the central hubs of dormancy. Also upregulated are chaperone proteins, fatty acid and cholesterol degrading enzymes, the sigma factors SigE and SigB, enzymes of the glyoxylate and the methylcitrate cycle, the Clp proteases and the transcriptional regulator ClgR. Further, there is increased expression of genes involved in mycobactin synthesis, fatty acid degradation, the glyoxylate shunt and gluconeogenesis, in granulomas formed in vitro from peripheral blood mononuclear cells from latently infected individuals compared to naïve individuals. Genes linked to aerobic respiration, replication, transcription, translation and cell division, are downregulated during dormancy in vitro, but upregulated during reactivation. Resuscitation in vitro is associated with upregulation of genes linked to the synthesis of mycolic acids, phthiocerol mycocerosate (PDIM) and sulfolipids; ribosome biosynthesis, replication, transcription and translation, cell division, and genes encoding the five resuscitation promoting factors (Rpfs). The expression of proteases, transposases and insertion sequences, suggests genome reorganization during reactivation.
Collapse
Affiliation(s)
| | - Joyoti Basu
- Department of Chemistry, Bose Institute, Kolkata, India
| |
Collapse
|
14
|
Banerjee U, Sankar S, Singh A, Chandra N. A Multi-Pronged Computational Pipeline for Prioritizing Drug Target Strategies for Latent Tuberculosis. Front Chem 2020; 8:593497. [PMID: 33381491 PMCID: PMC7767875 DOI: 10.3389/fchem.2020.593497] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/24/2020] [Indexed: 12/02/2022] Open
Abstract
Tuberculosis is one of the deadliest infectious diseases worldwide and the prevalence of latent tuberculosis acts as a huge roadblock in the global effort to eradicate tuberculosis. Most of the currently available anti-tubercular drugs act against the actively replicating form of Mycobacterium tuberculosis (Mtb), and are not effective against the non-replicating dormant form present in latent tuberculosis. With about 30% of the global population harboring latent tuberculosis and the requirement for prolonged treatment duration with the available drugs in such cases, the rate of adherence and successful completion of therapy is low. This necessitates the discovery of new drugs effective against latent tuberculosis. In this work, we have employed a combination of bioinformatics and chemoinformatics approaches to identify potential targets and lead candidates against latent tuberculosis. Our pipeline adopts transcriptome-integrated metabolic flux analysis combined with an analysis of a transcriptome-integrated protein-protein interaction network to identify perturbations in dormant Mtb which leads to a shortlist of 6 potential drug targets. We perform a further selection of the candidate targets and identify potential leads for 3 targets using a range of bioinformatics methods including structural modeling, binding site association and ligand fingerprint similarities. Put together, we identify potential new strategies for targeting latent tuberculosis, new candidate drug targets as well as important lead clues for drug design.
Collapse
Affiliation(s)
- Ushashi Banerjee
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Santhosh Sankar
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Amit Singh
- Center for Infectious Disease Research, Indian Institute of Science, Bangalore, India
| | - Nagasuma Chandra
- Department of Biochemistry, Indian Institute of Science, Bangalore, India.,Center for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, India
| |
Collapse
|
15
|
Campaniço A, Harjivan SG, Warner DF, Moreira R, Lopes F. Addressing Latent Tuberculosis: New Advances in Mimicking the Disease, Discovering Key Targets, and Designing Hit Compounds. Int J Mol Sci 2020; 21:ijms21228854. [PMID: 33238468 PMCID: PMC7700174 DOI: 10.3390/ijms21228854] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 02/06/2023] Open
Abstract
Despite being discovered and isolated more than one hundred years ago, tuberculosis (TB) remains a global public health concern arch. Our inability to eradicate this bacillus is strongly related with the growing resistance, low compliance to current drugs, and the capacity of the bacteria to coexist in a state of asymptomatic latency. This last state can be sustained for years or even decades, waiting for a breach in the immune system to become active again. Furthermore, most current therapies are not efficacious against this state, failing to completely clear the infection. Over the years, a series of experimental methods have been developed to mimic the latent state, currently used in drug discovery, both in vitro and in vivo. Most of these methods focus in one specific latency inducing factor, with only a few taking into consideration the complexity of the granuloma and the genomic and proteomic consequences of each physiological factor. A series of targets specifically involved in latency have been studied over the years with promising scaffolds being discovered and explored. Taking in account that solving the latency problem is one of the keys to eradicate the disease, herein we compile current therapies and diagnosis techniques, methods to mimic latency and new targets and compounds in the pipeline of drug discovery.
Collapse
Affiliation(s)
- André Campaniço
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (A.C.); (S.G.H.); (R.M.)
| | - Shrika G. Harjivan
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (A.C.); (S.G.H.); (R.M.)
| | - Digby F. Warner
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa;
- Department of Pathology, SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, University of Cape Town, Rondebosch 7701, South Africa
- Welcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Rondebosch 7701, South Africa
| | - Rui Moreira
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (A.C.); (S.G.H.); (R.M.)
| | - Francisca Lopes
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (A.C.); (S.G.H.); (R.M.)
- Correspondence:
| |
Collapse
|
16
|
Abstract
Understanding how Mycobacterium tuberculosis survives during antibiotic treatment is necessary to rationally devise more effective tuberculosis (TB) chemotherapy regimens. Using genome-wide mutant fitness profiling and the mouse model of TB, we identified genes that alter antibiotic efficacy specifically in the infection environment and associated several of these genes with natural genetic variants found in drug-resistant clinical isolates. These data suggest strategies for synergistic therapies that accelerate bacterial clearance, and they identify mechanisms of adaptation to drug exposure that could influence treatment outcome. Effective tuberculosis treatment requires at least 6 months of combination therapy. Alterations in the physiological state of the bacterium during infection are thought to reduce drug efficacy and prolong the necessary treatment period, but the nature of these adaptations remain incompletely defined. To identify specific bacterial functions that limit drug effects during infection, we employed a comprehensive genetic screening approach to identify mutants with altered susceptibility to the first-line antibiotics in the mouse model. We identified many mutations that increase the rate of bacterial clearance, suggesting new strategies for accelerating therapy. In addition, the drug-specific effects of these mutations suggested that different antibiotics are limited by distinct factors. Rifampin efficacy is inferred to be limited by cellular permeability, whereas isoniazid is preferentially affected by replication rate. Many mutations that altered bacterial clearance in the mouse model did not have an obvious effect on drug susceptibility using in vitro assays, indicating that these chemical-genetic interactions tend to be specific to the in vivo environment. This observation suggested that a wide variety of natural genetic variants could influence drug efficacy in vivo without altering behavior in standard drug-susceptibility tests. Indeed, mutations in a number of the genes identified in our study are enriched in drug-resistant clinical isolates, identifying genetic variants that may influence treatment outcome. Together, these observations suggest new avenues for improving therapy, as well as the mechanisms of genetic adaptations that limit it. IMPORTANCE Understanding how Mycobacterium tuberculosis survives during antibiotic treatment is necessary to rationally devise more effective tuberculosis (TB) chemotherapy regimens. Using genome-wide mutant fitness profiling and the mouse model of TB, we identified genes that alter antibiotic efficacy specifically in the infection environment and associated several of these genes with natural genetic variants found in drug-resistant clinical isolates. These data suggest strategies for synergistic therapies that accelerate bacterial clearance, and they identify mechanisms of adaptation to drug exposure that could influence treatment outcome.
Collapse
|
17
|
Pushparajan AR, Ramachandran R, Gopi Reji J, Ajay Kumar R. Mycobacterium
tuberculosis
TetR family transcriptional regulator Rv1019 is a negative regulator of the
mfd‐mazG
operon encoding DNA repair proteins. FEBS Lett 2020; 594:2867-2880. [DOI: 10.1002/1873-3468.13861] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/28/2020] [Accepted: 05/31/2020] [Indexed: 11/10/2022]
Affiliation(s)
- Akhil Raj Pushparajan
- Mycobacterium Research Laboratory Rajiv Gandhi Centre for Biotechnology Thiruvananthapuram Kerala India
- Department of Biotechnology Faculty of Applied Sciences and Technology University of Kerala Thiruvananthapuram Kerala India
| | - Ranjit Ramachandran
- Mycobacterium Research Laboratory Rajiv Gandhi Centre for Biotechnology Thiruvananthapuram Kerala India
- Department of Biotechnology Faculty of Applied Sciences and Technology University of Kerala Thiruvananthapuram Kerala India
| | - Jijimole Gopi Reji
- Mycobacterium Research Laboratory Rajiv Gandhi Centre for Biotechnology Thiruvananthapuram Kerala India
- Department of Biotechnology Faculty of Applied Sciences and Technology University of Kerala Thiruvananthapuram Kerala India
| | - Ramakrishnan Ajay Kumar
- Mycobacterium Research Laboratory Rajiv Gandhi Centre for Biotechnology Thiruvananthapuram Kerala India
| |
Collapse
|
18
|
Gutti G, Arya K, Singh SK. Latent Tuberculosis Infection (LTBI) and Its Potential Targets: An Investigation into Dormant Phase Pathogens. Mini Rev Med Chem 2019; 19:1627-1642. [PMID: 31241015 DOI: 10.2174/1389557519666190625165512] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 02/06/2018] [Accepted: 05/28/2018] [Indexed: 11/22/2022]
Abstract
One-third of the world's population harbours the latent tuberculosis infection (LTBI) with a lifetime risk of reactivation. Although, the treatment of LTBI relies significantly on the first-line therapy, identification of novel drug targets and therapies are the emerging focus for researchers across the globe. The current review provides an insight into the infection, diagnostic methods and epigrammatic explanations of potential molecular targets of dormant phase bacilli. This study also includes current preclinical and clinical aspects of tubercular infections and new approaches in antitubercular drug discovery.
Collapse
Affiliation(s)
- Gopichand Gutti
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (B.H.U.) Varanasi-221005 (U.P.), India
| | - Karan Arya
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (B.H.U.) Varanasi-221005 (U.P.), India
| | - Sushil Kumar Singh
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (B.H.U.) Varanasi-221005 (U.P.), India
| |
Collapse
|
19
|
Batyrshina YR, Schwartz YS. Modeling of Mycobacterium tuberculosis dormancy in bacterial cultures. Tuberculosis (Edinb) 2019; 117:7-17. [DOI: 10.1016/j.tube.2019.05.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 04/18/2019] [Accepted: 05/22/2019] [Indexed: 10/26/2022]
|
20
|
Maan P, Kumar A, Kaur J, Kaur J. Rv1288, a Two Domain, Cell Wall Anchored, Nutrient Stress Inducible Carboxyl-Esterase of Mycobacterium tuberculosis, Modulates Cell Wall Lipid. Front Cell Infect Microbiol 2018; 8:421. [PMID: 30560095 PMCID: PMC6287010 DOI: 10.3389/fcimb.2018.00421] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 11/16/2018] [Indexed: 01/29/2023] Open
Abstract
Rv1288, a conserved hypothetical protein of M. tuberculosis (M.tb), was recently characterized as two-domain esterase enzyme by in silico study. In the present study, Rv1288 and its domains (Est and Lyt) were cloned individually from M.tb into E. coli for expression and purification. The purified rRv1288 and rEst proteins exhibited lipolytic activity with medium chain length esters as optimum substrates, while Lyt domain did not show enzymatic activity. However, presence of Lyt domain resulted in enhanced rate of protein aggregation at higher temperature. Both rRv1288 and rEst followed the similar patterns of substrate specificity, temperature and pH activity. Site directed mutagenesis confirmed the Ser-294, Asp-391 and His-425 as catalytic site residues. Rv1288 was found to be present in cell wall fraction of M.tb H37Ra. Peptidoglycan binding activity of Rv1288 and its domains demonstrated that the Lyt domain is essential for anchoring protein to the cell wall. Expression of rv1288 was up regulated in M.tb under nutrient starved condition. Over expression of rv1288 in surrogate host M. smegmatis led to change in colony morphology, enhanced pellicle and aggregate formation that might be linked with the changed lipid composition of bacterial cell wall. Cell wall of M. smegmatis expressing rv1288 had higher amount of lipids, with a significant increase in trehalose dimycolate content. Rv1288 also leads to increase in drug resistance of M. smegmatis. Rv1288 also enhanced the intracellular survival of M. smegmatis in Raw264.7 cell line. Overall, this study suggested that Rv1288, a cell wall localized carboxyl hydrolase with mycolyl-transferase activity, modulated the cell wall lipids to favor the survival of bacteria under stress condition.
Collapse
Affiliation(s)
- Pratibha Maan
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Arbind Kumar
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Jashandeep Kaur
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Jagdeep Kaur
- Department of Biotechnology, Panjab University, Chandigarh, India
| |
Collapse
|
21
|
Modelling a Silent Epidemic: A Review of the In Vitro Models of Latent Tuberculosis. Pathogens 2018; 7:pathogens7040088. [PMID: 30445695 PMCID: PMC6313694 DOI: 10.3390/pathogens7040088] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/05/2018] [Accepted: 11/13/2018] [Indexed: 12/14/2022] Open
Abstract
Tuberculosis (TB) is the primary cause of death by a single infectious agent; responsible for around two million deaths in 2016. A major virulence factor of TB is the ability to enter a latent or Non-Replicating Persistent (NRP) state which is presumed untreatable. Approximately 1.7 billion people are latently infected with TB and on reactivation many of these infections are drug resistant. As the current treatment is ineffective and diagnosis remains poor, millions of people have the potential to reactivate into active TB disease. The immune system seeks to control the TB infection by containing the bacteria in a granuloma, where it is exposed to stressful anaerobic and nutrient deprived conditions. It is thought to be these environmental conditions that trigger the NRP state. A number of in vitro models have been developed that mimic conditions within the granuloma to a lesser or greater extent. These different models have all been utilised for the research of different characteristics of NRP Mycobacterium tuberculosis, however their disparity in approach and physiological relevance often results in inconsistencies and a lack of consensus between studies. This review provides a summation of the different NRP models and a critical analysis of their respective advantages and disadvantages relating to their physiological relevance.
Collapse
|
22
|
A class of hydrazones are active against non-replicating Mycobacterium tuberculosis. PLoS One 2018; 13:e0198059. [PMID: 30332412 PMCID: PMC6192558 DOI: 10.1371/journal.pone.0198059] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 10/01/2018] [Indexed: 12/18/2022] Open
Abstract
There is an urgent need for the development of shorter, simpler and more tolerable drugs to treat antibiotic tolerant populations of Mycobacterium tuberculosis. We previously identified a series of hydrazones active against M. tuberculosis. We selected five representative compounds for further analysis. All compounds were active against non-replicating M. tuberculosis, with two compounds demonstrating greater activity under hypoxic conditions than aerobic culture. Compounds had bactericidal activity with MBC/MIC of < 4 and demonstrated an inoculum-dependent effect against aerobically replicating bacteria. Bacterial kill kinetics demonstrated a faster rate of kill against non-replicating bacilli generated by nutrient starvation. Compounds had limited activity against other bacterial species. In conclusion, we have demonstrated that hydrazones have some attractive properties in terms of their anti-tubercular activity.
Collapse
|
23
|
Karade SS, Pandey S, Ansari A, Das S, Tripathi S, Arora A, Chopra S, Pratap JV, Dasgupta A. Rv3272 encodes a novel Family III CoA transferase that alters the cell wall lipid profile and protects mycobacteria from acidic and oxidative stress. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2018; 1867:317-330. [PMID: 30342240 DOI: 10.1016/j.bbapap.2018.10.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 10/01/2018] [Accepted: 10/16/2018] [Indexed: 11/26/2022]
Abstract
The availability of complete genome sequence of Mycobacterium tuberculosis has provided an important tool to understand the mycobacterial biology with respect to host-pathogen interaction, which is an unmet need of the hour owing to continuous increasing drug resistance. Hypothetical proteins are often an overlooked pool though half the genome encodes for such proteins of unknown function that could potentially play vital roles in mycobacterial biology. In this context, we report the structural and functional characterization of the hypothetical protein Rv3272. Sequence analysis classifies Rv3272 as a Family III CoA transferase with the classical two domain structure and conserved Aspartate residue (D175). The crystal structure of the wild type protein (2.2 Å) demonstrated the associated inter-locked dimer while that of the D175A mutant co-crystallized with octanoyl-CoA demonstrated relative movement between the two domains. Isothermal titration calorimetry studies indicate that Rv3272 binds to fatty acyl-CoAs of varying carbon chain lengths, with palmitoyl-CoA (C16:0) exhibiting maximum affinity. To determine the functional relevance of Rv3272 in mycobacterial biology, we ectopically expressed Rv3272 in M. smegmatis and assessed that its expression encodes significant alteration in cell surface with marked differences in triacylglycerol accumulation. Additionally, Rv3272 expression protects mycobacteria from acidic, oxidative and antibiotic stress under in vitro conditions. Taken together, these studies indicate a significant role for Rv3272 in host-pathogen interaction.
Collapse
Affiliation(s)
- Sharanbasappa Shrimant Karade
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| | - Shilpika Pandey
- Microbiology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| | - Ahmadullah Ansari
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| | - Swetarka Das
- Microbiology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| | - Sarita Tripathi
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| | - Ashish Arora
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| | - Sidharth Chopra
- Microbiology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| | - J Venkatesh Pratap
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India.
| | - Arunava Dasgupta
- Microbiology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India.
| |
Collapse
|
24
|
Singh A, Vijayan M, Nagaraju G. RecG wed : A probable novel regulator in the resolution of branched DNA structures in mycobacteria. IUBMB Life 2018; 70:786-794. [PMID: 30240108 DOI: 10.1002/iub.1881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/02/2018] [Accepted: 05/04/2018] [Indexed: 01/31/2023]
Abstract
Structure-specific helicases, such as RecG, play an important role in the resolution of recombination intermediates. A bioinformatic analysis of mycobacterial genomes led to the identification of a protein (RecGwed ) with a C-terminal "edge" domain, similar to the wedge domain of RecG. RecGwed is predominately found in the phylum Actinobacteria and in few human pathogens. Mycobacterium smegmatis RecGwed was able to bind branched DNA structures in vitro but failed to interact with single- or double-stranded DNA. The expression of recGwed in M. smegmatis cells was up-regulated during stationary phase/UV damage and down-regulated during MMS/H2 O2 treatment. These observations indicate the possible involvement of RecGwed in transactions during recombination events, that proceed though branched DNA intermediates. © 2018 IUBMB Life, 70(8):786-794, 2018.
Collapse
Affiliation(s)
- Amandeep Singh
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, India
| | - M Vijayan
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, India
| | - Ganesh Nagaraju
- Department of Biochemistry, Indian Institute of Science, Bangalore, Karnataka, India
| |
Collapse
|
25
|
Katiyar A, Singh H, Azad KK. Identification of Missing Carbon Fixation Enzymes as Potential Drug Targets in Mycobacterium Tuberculosis. J Integr Bioinform 2018; 15:/j/jib.2018.15.issue-3/jib-2017-0041/jib-2017-0041.xml. [PMID: 30218604 PMCID: PMC6340126 DOI: 10.1515/jib-2017-0041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Accepted: 02/08/2018] [Indexed: 01/22/2023] Open
Abstract
Metabolic adaptation to the host environment has been recognized as an essential mechanism of pathogenicity and the growth of Mycobacterium tuberculosis (Mtb) in the lungs for decades. The Mtb uses CO2 as a source of carbon during the dormant or non-replicative state. However, there is a lack of biochemical knowledge of its metabolic networks. In this study, we investigated the CO2 fixation pathways (such as ko00710 and ko00720) most likely involved in the energy production and conversion of CO2 in Mtb. Extensive pathway evaluation of 23 completely sequenced strains of Mtb confirmed the existence of a complete list of genes encoding the relevant enzymes of the reductive tricarboxylic acid (rTCA) cycle. This provides the evidence that an rTCA cycle may function to fix CO2 in this bacterium. We also proposed that as CO2 is plentiful in the lungs, inhibition of CO2 fixation pathways (by targeting the relevant CO2 fixation enzymes) could be used in the expansion of new drugs against the dormant Mtb. In support of the suggested hypothesis, the CO2 fixation enzymes were confirmed as a potential drug target by analyzing a number of attributes necessary to be a good bacterial target.
Collapse
Affiliation(s)
- Amit Katiyar
- ICMR-AIIMS Computational Genomics Centre, Indian Council of Medical Research, Ansari Nagar, New Delhi-110029, India.,Department of Biophysics, All India Institute of Medical Sciences, Ansari Nagar, New Delhi-110029, India
| | - Harpreet Singh
- ICMR-AIIMS Computational Genomics Centre, Indian Council of Medical Research, Ansari Nagar, New Delhi-110029, India.,Division of Informatics Systems and Research Management, Indian Council of Medical Research, Ansari Nagar, New Delhi-110029, India, Phone: +91-11-26589556, Fax: +91-11-26588662
| | - Krishna Kant Azad
- Division of Informatics Systems and Research Management, Indian Council of Medical Research, Ansari Nagar, New Delhi-110029, India
| |
Collapse
|
26
|
Data Mining Mycobacterium tuberculosis Pathogenic Gene Transcription Factors and Their Regulatory Network Nodes. Int J Genomics 2018; 2018:3079730. [PMID: 29725597 PMCID: PMC5872665 DOI: 10.1155/2018/3079730] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 11/06/2017] [Accepted: 12/05/2017] [Indexed: 02/06/2023] Open
Abstract
Tuberculosis (TB) is one of the deadliest infectious diseases worldwide. In Mycobacterium tuberculosis, changes in gene expression are highly variable and involve many genes, so traditional single-gene screening of M. tuberculosis targets has been unable to meet the needs of clinical diagnosis. In this study, using the National Center for Biotechnology Information (NCBI) GEO Datasets, whole blood gene expression profile data were obtained in patients with active pulmonary tuberculosis. Linear model-experience Bayesian statistics using the Limma package in R combined with t-tests were applied for nonspecific filtration of the expression profile data, and the differentially expressed human genes were determined. Using DAVID and KEGG, the functional analysis of differentially expressed genes (GO analysis) and the analysis of signaling pathways were performed. Based on the differentially expressed gene, the transcriptional regulatory element databases (TRED) were integrated to construct the M. tuberculosis pathogenic gene regulatory network, and the correlation of the network genes with disease was analyzed with the DAVID online annotation tool. It was predicted that IL-6, JUN, and TP53, along with transcription factors SRC, TNF, and MAPK14, could regulate the immune response, with their function being extracellular region activity and protein binding during infection with M. tuberculosis.
Collapse
|
27
|
Martin A, Daniel J. The ABC transporter Rv1272c of Mycobacterium tuberculosis enhances the import of long-chain fatty acids in Escherichia coli. Biochem Biophys Res Commun 2018; 496:667-672. [DOI: 10.1016/j.bbrc.2018.01.115] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 01/17/2018] [Indexed: 10/18/2022]
|
28
|
Cesur MF, Abdik E, Güven-Gülhan Ü, Durmuş S, Çakır T. Computational Systems Biology of Metabolism in Infection. EXPERIENTIA SUPPLEMENTUM (2012) 2018; 109:235-282. [PMID: 30535602 DOI: 10.1007/978-3-319-74932-7_6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A systems approach to elucidate the effect of infection on cell metabolism provides several opportunities from a better understanding of molecular mechanisms to the identification of potential biomarkers and drug targets. This is obvious from the fact that we have witnessed the accelerated use of computational systems biology in the last five years to study metabolic changes in pathogen and/or host cells in response to infection. In this chapter, we aim to present a comprehensive review of the recent research by focusing on genome-scale metabolic network models of pathogen-host systems and genome-wide metabolomics and fluxomics analysis of infected cells.
Collapse
Affiliation(s)
- Müberra Fatma Cesur
- Computational Systems Biology Group, Department of Bioengineering, Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Ecehan Abdik
- Computational Systems Biology Group, Department of Bioengineering, Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Ünzile Güven-Gülhan
- Computational Systems Biology Group, Department of Bioengineering, Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Saliha Durmuş
- Computational Systems Biology Group, Department of Bioengineering, Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Tunahan Çakır
- Computational Systems Biology Group, Department of Bioengineering, Gebze Technical University, Gebze, Kocaeli, Turkey.
| |
Collapse
|
29
|
The mycobacterial Rv1551 glycerol-3-phosphate acyltransferase enhances phospholipid biosynthesis in cell lysates of Escherichia coli. Microb Pathog 2017; 113:269-275. [DOI: 10.1016/j.micpath.2017.10.050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 09/27/2017] [Accepted: 10/26/2017] [Indexed: 01/03/2023]
|
30
|
Gomez RL, Jose L, Ramachandran R, Raghunandanan S, Muralikrishnan B, Johnson JB, Sivakumar KC, Mundayoor S, Kumar RA. The multiple stress responsive transcriptional regulator Rv3334 of Mycobacterium tuberculosis is an autorepressor and a positive regulator of kstR. FEBS J 2016; 283:3056-71. [PMID: 27334653 DOI: 10.1111/febs.13791] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 06/12/2016] [Accepted: 06/22/2016] [Indexed: 11/26/2022]
Abstract
Rv3334 protein of Mycobacterium tuberculosis belongs to the MerR family of transcriptional regulators and is upregulated during hypoxia and other stress conditions. Employing GFP reporter constructs, mobility shift assays and ChIP assays, we demonstrate that Rv3334 binds to its own promoter and acts as an autorepressor. We were able to locate a 22 bp palindrome in its promoter that we show to be the cognate binding sequence of Rv3334. Using chase experiments, we could conclusively prove the requirement of this palindrome for Rv3334 binding. Recombinant Rv3334 readily formed homodimers in vitro, which could be necessary for its transcriptional regulatory role in vivo. Although the DNA-binding activity of the protein was abrogated by the presence of certain divalent metal cations, the homodimer formation remained unaffected. In silico predictions and subsequent assays using GFP reporter constructs and mobility shift assays revealed that the expression of ketosteroid regulator gene (kstR), involved in lipid catabolism, is positively regulated by Rv3334. ChIP assays with aerobically grown M. tuberculosis as well as dormant bacteria unambiguously prove that Rv3334 specifically upregulates expression of kstR during dormancy. Our study throws light on the possible role of Rv3334 as a master regulator of lipid catabolism during hypoxia-induced dormancy.
Collapse
Affiliation(s)
- Roshna Lawrence Gomez
- Mycobacterium Research Group, Tropical Disease Biology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - Leny Jose
- Mycobacterium Research Group, Tropical Disease Biology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - Ranjit Ramachandran
- Mycobacterium Research Group, Tropical Disease Biology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - Sajith Raghunandanan
- Mycobacterium Research Group, Tropical Disease Biology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - Balaji Muralikrishnan
- Mycobacterium Research Group, Tropical Disease Biology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - John Bernet Johnson
- Viral Disease Biology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | | | - Sathish Mundayoor
- Mycobacterium Research Group, Tropical Disease Biology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - Ramakrishnan Ajay Kumar
- Mycobacterium Research Group, Tropical Disease Biology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| |
Collapse
|
31
|
Daniel J, Kapoor N, Sirakova T, Sinha R, Kolattukudy P. The perilipin-like PPE15 protein in Mycobacterium tuberculosis is required for triacylglycerol accumulation under dormancy-inducing conditions. Mol Microbiol 2016; 101:784-94. [PMID: 27325376 DOI: 10.1111/mmi.13422] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2016] [Indexed: 01/15/2023]
Abstract
Mycobacterium tuberculosis (Mtb) causes latent tuberculosis infection in one-third of the world population and remains quiescent in the human body for decades. The dormant pathogen accumulates lipid droplets containing triacylglycerol (TAG). In mammals, perilipin regulates lipid droplet homeostasis but no such protein has been identified in Mtb. We identified an Mtb protein (PPE15) that showed weak amino acid sequence identities with mammalian perilipin-1 and was upregulated in Mtb dormancy. We generated a ppe15 gene-disrupted mutant of Mtb and examined its ability to metabolically incorporate radiolabeled oleic acid into TAG, accumulate lipid droplets containing TAG and develop phenotypic tolerance to rifampicin in two in vitro models of dormancy including a three-dimensional human granuloma model. The mutant showed a significant decrease in the biosynthesis and accumulation of lipid droplets containing TAG and in its tolerance of rifampicin. Complementation of the mutant with a wild-type copy of the ppe15 gene restored the lost phenotypes. We designate PPE15 as mycobacterial perilipin-1 (MPER1). Our findings suggest that the MPER1 protein plays a critical role in the homeostasis of TAG -containing lipid droplets in Mtb and influences the entry of the pathogen into a dormant state.
Collapse
Affiliation(s)
- Jaiyanth Daniel
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32816, USA.,Department of Biology, Indiana University-Purdue University Fort Wayne, Fort Wayne, IN 46805, USA
| | - Nidhi Kapoor
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32816, USA
| | - Tatiana Sirakova
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32816, USA
| | - Rajesh Sinha
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32816, USA
| | - Pappachan Kolattukudy
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32816, USA
| |
Collapse
|
32
|
Mycobacterium tuberculosis Transcription Machinery: Ready To Respond to Host Attacks. J Bacteriol 2016; 198:1360-73. [PMID: 26883824 DOI: 10.1128/jb.00935-15] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Regulating responses to stress is critical for all bacteria, whether they are environmental, commensal, or pathogenic species. For pathogenic bacteria, successful colonization and survival in the host are dependent on adaptation to diverse conditions imposed by the host tissue architecture and the immune response. Once the bacterium senses a hostile environment, it must enact a change in physiology that contributes to the organism's survival strategy. Inappropriate responses have consequences; hence, the execution of the appropriate response is essential for survival of the bacterium in its niche. Stress responses are most often regulated at the level of gene expression and, more specifically, transcription. This minireview focuses on mechanisms of regulating transcription initiation that are required by Mycobacterium tuberculosis to respond to the arsenal of defenses imposed by the host during infection. In particular, we highlight how certain features of M. tuberculosis physiology allow this pathogen to respond swiftly and effectively to host defenses. By enacting highly integrated and coordinated gene expression changes in response to stress,M. tuberculosis is prepared for battle against the host defense and able to persist within the human population.
Collapse
|
33
|
Benjak A, Uplekar S, Zhang M, Piton J, Cole ST, Sala C. Genomic and transcriptomic analysis of the streptomycin-dependent Mycobacterium tuberculosis strain 18b. BMC Genomics 2016; 17:190. [PMID: 26944551 PMCID: PMC4779234 DOI: 10.1186/s12864-016-2528-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 02/24/2016] [Indexed: 12/05/2022] Open
Abstract
Background The ability of Mycobacterium tuberculosis to establish a latent infection (LTBI) in humans confounds the treatment of tuberculosis. Consequently, there is a need to discover new therapeutic agents that can kill M. tuberculosis both during active disease and LTBI. The streptomycin-dependent strain of M. tuberculosis, 18b, provides a useful tool for this purpose since upon removal of streptomycin (STR) it enters a non-replicating state that mimics latency both in vitro and in animal models. Results The 4.41 Mb genome sequence of M. tuberculosis 18b was determined and this revealed the strain to belong to clade 3 of the ancient ancestral lineage of the Beijing family. STR-dependence was attributable to insertion of a single cytosine in the 530 loop of the 16S rRNA and to a single amino acid insertion in the N-terminal domain of initiation factor 3. RNA-seq was used to understand the genetic programme activated upon STR-withdrawal and hence to gain insight into LTBI. This revealed reconfiguration of gene expression and metabolic pathways showing strong similarities between non-replicating 18b and M. tuberculosis residing within macrophages, and with the core stationary phase and microaerophilic responses. Conclusion The findings of this investigation confirm the validity of 18b as a model for LTBI, and provide insight into both the evolution of tubercle bacilli and the functioning of the ribosome. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2528-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Andrej Benjak
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland.
| | - Swapna Uplekar
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland. .,Current addresses: Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY, USA.
| | - Ming Zhang
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland. .,Current addresses: Department of Biochemistry, University of Lausanne, Quartier UNIL-Epalinges, Ch. des Boveresses 155, CH-1066, Epalinges, Switzerland.
| | - Jérémie Piton
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland.
| | - Stewart T Cole
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland.
| | - Claudia Sala
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland.
| |
Collapse
|
34
|
Abstract
Genetic strategies have yet to come into their own as tools for antibiotic development. While holding a lot of initial promise, they have only recently started to bear fruit in the quest for new drug targets. An ever-increasing body of knowledge is showing that genetics can lead to significant improvements in the success and efficiency of drug discovery. Techniques such as high-frequency transposon mutagenesis and expression modulation have matured and have been applied successfully not only to the identification and characterization of new targets, but also to their validation as tractable weaknesses of bacteria. Past experience shows that choosing targets must not rely on gene essentiality alone, but rather needs to incorporate knowledge of the system as a whole. The ability to manipulate genes and their expression is key to ensuring that we understand the entire set of processes that are affected by drug treatment. Focusing on exacerbating these perturbations, together with the identification of new targets to which resistance has not yet occurred--both enabled by genetic approaches--may point us toward the successful development of new combination therapies engineered based on underlying biology.
Collapse
|
35
|
Vashist A, Prithvi Raj D, Gupta UD, Bhat R, Tyagi JS. The α10 helix of DevR, the Mycobacterium tuberculosis dormancy response regulator, regulates its DNA binding and activity. FEBS J 2016; 283:1286-99. [PMID: 26799615 DOI: 10.1111/febs.13664] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 01/05/2016] [Accepted: 01/18/2016] [Indexed: 11/26/2022]
Abstract
The crystal structures of several bacterial response regulators provide insight into the various interdomain molecular interactions potentially involved in maintaining their 'active' or 'inactive' states. However, the requirement of high concentrations of protein, an optimal pH and ionic strength buffers during crystallization may result in a structure somewhat different from that observed in solution. Therefore, functional assessment of the physiological relevance of the crystal structure data is imperative. DevR/DosR dormancy regulator of Mycobacterium tuberculosis (Mtb) belongs to the NarL subfamily of response regulators. The crystal structure of unphosphorylated DevR revealed that it forms a dimer through the α5/α6 interface. It was proposed that phosphorylation may trigger extensive structural rearrangements in DevR that culminate in the formation of a DNA-binding competent dimeric species via α10-α10 helix interactions. The α10 helix-deleted DevR protein (DevR∆α10 ) was hyperphosphorylated but defective with respect to in vitro DNA binding. Biophysical characterization reveals that DevR∆α10 has an open but less stable conformation. The combined cross-linking and DNA-binding data demonstrate that the α10 helix is essential for the formation and stabilization of the DNA-binding proficient DevR structure in both the phosphorylated and unphosphorylated states. Genetic studies establish that Mtb strains expressing DevR∆α10 are defective with respect to dormancy regulon expression under hypoxia. The present study highlights the indispensable role of the α10 helix in DevR activation and function under hypoxia and establishes the α10-α10 helix interface as a novel target for developing inhibitors against DevR, a key regulator of hypoxia-triggered dormancy.
Collapse
Affiliation(s)
- Atul Vashist
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India.,Experimental Animal Facility, National JALMA Institute of Leprosy and Other Mycobacterial Diseases, Tajganj, Agra, India
| | - D Prithvi Raj
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Umesh Datta Gupta
- Experimental Animal Facility, National JALMA Institute of Leprosy and Other Mycobacterial Diseases, Tajganj, Agra, India
| | - Rajiv Bhat
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Jaya Sivaswami Tyagi
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
36
|
Cloete R, Oppon E, Murungi E, Schubert WD, Christoffels A. Resistance related metabolic pathways for drug target identification in Mycobacterium tuberculosis. BMC Bioinformatics 2016; 17:75. [PMID: 26856535 PMCID: PMC4745158 DOI: 10.1186/s12859-016-0898-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 01/20/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Increasing resistance to anti-tuberculosis drugs has driven the need for developing new drugs. Resources such as the tropical disease research (TDR) target database and AssessDrugTarget can help to prioritize putative drug targets. Hower, these resources do not necessarily map to metabolic pathways and the targets are not involved in dormancy. In this study, we specifically identify drug resistance pathways to allow known drug resistant mutations in one target to be offset by inhibiting another enzyme of the same metabolic pathway. One of the putative targets, Rv1712, was analysed by modelling its three dimensional structure and docking potential inhibitors. RESULTS We mapped 18 TB drug resistance gene products to 15 metabolic pathways critical for mycobacterial growth and latent TB by screening publicly available microarray data. Nine putative targets, Rv1712, Rv2984, Rv2194, Rv1311, Rv1305, Rv2195, Rv1622c, Rv1456c and Rv2421c, were found to be essential, to lack a close human homolog, and to share >67 % sequence identity and >87 % query coverage with mycobacterial orthologs. A structural model was generated for Rv1712, subjected to molecular dynamic simulation, and identified 10 compounds with affinities better than that for the ligand cytidine-5'-monophosphate (C5P). Each compound formed more interactions with the protein than C5P. CONCLUSIONS We focused on metabolic pathways associated with bacterial drug resistance and proteins unique to pathogenic bacteria to identify novel putative drug targets. The ten compounds identified in this study should be considered for experimental studies to validate their potential as inhibitors of Rv1712.
Collapse
Affiliation(s)
- Ruben Cloete
- South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Bellville, South Africa.
| | - Ekow Oppon
- South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Bellville, South Africa.
| | - Edwin Murungi
- South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Bellville, South Africa.
- Current address: Department of Biochemistry, Egerton University, Njoro, Kenya.
| | - Wolf-Dieter Schubert
- Department of Biotechnology, University of the Western Cape, Bellville, South Africa.
- Current address: Department of Biochemistry, University of Pretoria, Pretoria, South Africa.
| | - Alan Christoffels
- South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Bellville, South Africa.
| |
Collapse
|
37
|
Evangelopoulos D, da Fonseca JD, Waddell SJ. Understanding anti-tuberculosis drug efficacy: rethinking bacterial populations and how we model them. Int J Infect Dis 2016; 32:76-80. [PMID: 25809760 DOI: 10.1016/j.ijid.2014.11.028] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 11/23/2014] [Indexed: 01/04/2023] Open
Abstract
Tuberculosis still remains a global health emergency, claiming 1.5 million lives in 2013. The bacterium responsible for this disease, Mycobacterium tuberculosis (M.tb), has successfully survived within hostile host environments, adapting to immune defence mechanisms, for centuries. This has resulted in a disease that is challenging to treat, requiring lengthy chemotherapy with multi-drug regimens. One explanation for this difficulty in eliminating M.tb bacilli in vivo is the disparate action of antimicrobials on heterogeneous populations of M.tb, where mycobacterial physiological state may influence drug efficacy. In order to develop improved drug combinations that effectively target diverse mycobacterial phenotypes, it is important to understand how such subpopulations of M.tb are formed during human infection. We review here the in vitro and in vivo systems used to model M.tb subpopulations that may persist during drug therapy, and offer aspirations for future research in this field.
Collapse
Affiliation(s)
| | | | - Simon J Waddell
- Brighton and Sussex Medical School, University of Sussex, Brighton, BN1 9PX, UK
| |
Collapse
|
38
|
Activity of Medicinal Plant Extracts on Multiplication of Mycobacterium tuberculosis under Reduced Oxygen Conditions Using Intracellular and Axenic Assays. Int J Microbiol 2016; 2016:8073079. [PMID: 26941797 PMCID: PMC4752996 DOI: 10.1155/2016/8073079] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 12/29/2015] [Accepted: 12/30/2015] [Indexed: 12/30/2022] Open
Abstract
Aim. Test the activity of selected medicinal plant extracts on multiplication of Mycobacterium tuberculosis under reduced oxygen concentration which represents nonreplicating conditions. Material and Methods. Acetone, ethanol and aqueous extracts of the plants Acorus calamus L. (rhizome), Ocimum sanctum L. (leaf), Piper nigrum L. (seed), and Pueraria tuberosa DC. (tuber) were tested on Mycobacterium tuberculosis H37Rv intracellularly using an epithelial cell (A549) infection model. The extracts found to be active intracellularly were further studied axenically under reducing oxygen concentrations. Results and Conclusions. Intracellular multiplication was inhibited ≥60% by five of the twelve extracts. Amongst these 5 extracts, in axenic culture, P. nigrum (acetone) was active under aerobic, microaerophilic, and anaerobic conditions indicating presence of multiple components acting at different levels and P. tuberosa (aqueous) showed bactericidal activity under microaerophilic and anaerobic conditions implying the influence of anaerobiosis on its efficacy. P. nigrum (aqueous) and A. calamus (aqueous and ethanol) extracts were not active under axenic conditions but only inhibited intracellular growth of Mycobacterium tuberculosis, suggesting activation of host defense mechanisms to mediate bacterial killing rather than direct bactericidal activity.
Collapse
|
39
|
Defelipe LA, Do Porto DF, Pereira Ramos PI, Nicolás MF, Sosa E, Radusky L, Lanzarotti E, Turjanski AG, Marti MA. A whole genome bioinformatic approach to determine potential latent phase specific targets in Mycobacterium tuberculosis. Tuberculosis (Edinb) 2015; 97:181-92. [PMID: 26791267 DOI: 10.1016/j.tube.2015.11.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 11/25/2015] [Accepted: 11/29/2015] [Indexed: 12/01/2022]
Abstract
Current Tuberculosis treatment is long and expensive, faces the increasing burden of MDR/XDR strains and lack of effective treatment against latent form, resulting in an urgent need of new anti-TB drugs. Key to TB biology is its capacity to fight the host's RNOS mediated attack. RNOS are known to display a concentration dependent mycobactericidal activity, which leads to the following hypothesis "if we know which proteins are targeted by RNOS and kill TB, we we might be able to inhibit them with drugs resulting in a synergistic bactericidal effect". Based on this idea, we performed an Mtb metabolic network whole proteome analysis of potential RNOS sensitive and relevant targets which includes target druggability and essentiality criteria. Our results, available at http://tuberq.proteinq.com.ar yield new potential TB targets, like I3PS, while also providing and updated view of previous proposals becoming an important tool for researchers looking for new ways of killing TB.
Collapse
Affiliation(s)
- Lucas A Defelipe
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, Buenos Aires, C1428EHA, Argentina
| | - Dario Fernández Do Porto
- Plataforma de Bioinformática Argentina, Instituto de Cálculo, Pabellón 2, Ciudad Universitaria, Facultad de Ciencias Exactas y Naturales, UBA, Buenos Aires, Argentina
| | - Pablo Ivan Pereira Ramos
- Centro de Pesquisas Gonçalo Moniz, FIOCRUZ, Bahia, Brazil; Laboratório Nacional de Computação Científica, Petrópolis, Rio de Janeiro, Brazil
| | | | - Ezequiel Sosa
- Plataforma de Bioinformática Argentina, Instituto de Cálculo, Pabellón 2, Ciudad Universitaria, Facultad de Ciencias Exactas y Naturales, UBA, Buenos Aires, Argentina
| | - Leandro Radusky
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, Buenos Aires, C1428EHA, Argentina
| | - Esteban Lanzarotti
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, Buenos Aires, C1428EHA, Argentina
| | - Adrián G Turjanski
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, Buenos Aires, C1428EHA, Argentina.
| | - Marcelo A Marti
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, Buenos Aires, C1428EHA, Argentina.
| |
Collapse
|
40
|
Sood S, Kaur S, Shrivastava R. A lacZ Reporter-Based Strategy for Rapid Expression Analysis and Target Validation of Mycobacterium tuberculosis Latent Infection Genes. Curr Microbiol 2015; 72:213-219. [PMID: 26597215 DOI: 10.1007/s00284-015-0942-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 10/01/2015] [Indexed: 11/25/2022]
Abstract
We report a novel lacZ fusion vector and demonstrate its utility for expression analysis of genes associated with Mycobacterium tuberculosis latent infection. The vector contains E. coli (oriE) and mycobacterial (oriM) origins of replication, a kanamycin resistance gene (Km(r)) as selection marker, and a lacZ reporter gene in fusion with MCS for cloning of upstream regulatory sequence of the desired genes. β-galactosidase activity of the vector was standardized for expression analysis under latent mycobacterial conditions using Phsp60, a constitutive mycobacterial promoter, utilizing Mycobacterium smegmatis as model organism. Validation of the vector was done by cloning and expression analysis of PhspX (alpha crystalline) and Picl (isocitrate lyase), promoters from two of the genes shown to be involved in M. tuberculosis persistence. Both genes showed appreciable levels of β-galactosidase expression under hypoxia-induced persistent conditions in comparison to their actively replicating state. Expression analysis of a set of hypothetical genes was also done, of which Rv0628c showed increased expression under persistent conditions. The reported fusion vector and the strategy can be effectively used for short listing and validation of drug targets deduced from various non-conclusive approaches such as bioinformatics and microarray analysis against latent/persistent form of mycobacterial infection.
Collapse
Affiliation(s)
- Shivani Sood
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh, 173234, India
| | - Satinder Kaur
- Division of Microbiology, Central Drug Research Institute, Lucknow, Uttar Pradesh, 226001, India
| | - Rahul Shrivastava
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh, 173234, India.
| |
Collapse
|
41
|
Tripathi SM, Agarwal A, Ramachandran R. Mutational analysis of Mycobacterium tuberculosis lysine ɛ-aminotransferase and inhibitor co-crystal structures, reveals distinct binding modes. Biochem Biophys Res Commun 2015; 463:154-60. [DOI: 10.1016/j.bbrc.2015.05.055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 05/12/2015] [Indexed: 11/24/2022]
|
42
|
Gopinath V, Raghunandanan S, Gomez RL, Jose L, Surendran A, Ramachandran R, Pushparajan AR, Mundayoor S, Jaleel A, Kumar RA. Profiling the Proteome of Mycobacterium tuberculosis during Dormancy and Reactivation. Mol Cell Proteomics 2015; 14:2160-76. [PMID: 26025969 DOI: 10.1074/mcp.m115.051151] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Indexed: 11/06/2022] Open
Abstract
Tuberculosis, caused by Mycobacterium tuberculosis, still remains a major global health problem. The main obstacle in eradicating this disease is the ability of this pathogen to remain dormant in macrophages, and then reactivate later under immuno-compromised conditions. The physiology of hypoxic nonreplicating M. tuberculosis is well-studied using many in vitro dormancy models. However, the physiological changes that take place during the shift from dormancy to aerobic growth (reactivation) have rarely been subjected to a detailed investigation. In this study, we developed an in vitro reactivation system by re-aerating the virulent laboratory strain of M. tuberculosis that was made dormant employing Wayne's dormancy model, and compared the proteome profiles of dormant and reactivated bacteria using label-free one-dimensional LC/MS/MS analysis. The proteome of dormant bacteria was analyzed at nonreplicating persistent stage 1 (NRP1) and stage 2 (NRP2), whereas that of reactivated bacteria was analyzed at 6 and 24 h post re-aeration. Proteome of normoxially grown bacteria served as the reference. In total, 1871 proteins comprising 47% of the M. tuberculosis proteome were identified, and many of them were observed to be expressed differentially or uniquely during dormancy and reactivation. The number of proteins detected at different stages of dormancy (764 at NRP1, 691 at NRP2) and reactivation (768 at R6 and 983 at R24) was very low compared with that of the control (1663). The number of unique proteins identified during normoxia, NRP1, NRP2, R6, and R24 were 597, 66, 56, 73, and 94, respectively. We analyzed various biological functions during these conditions. Fluctuation in the relative quantities of proteins involved in energy metabolism during dormancy and reactivation was the most significant observation we made in this study. Proteins that are up-regulated or uniquely expressed during reactivation from dormancy offer to be attractive targets for therapeutic intervention to prevent reactivation of latent tuberculosis.
Collapse
Affiliation(s)
- Vipin Gopinath
- From the ‡Mycobacterium Research Group, Rajiv Gandhi Centre for Biotechnology, Thycaud P.O., Thiruvananthapuram 695014, India
| | - Sajith Raghunandanan
- From the ‡Mycobacterium Research Group, Rajiv Gandhi Centre for Biotechnology, Thycaud P.O., Thiruvananthapuram 695014, India
| | - Roshna Lawrence Gomez
- From the ‡Mycobacterium Research Group, Rajiv Gandhi Centre for Biotechnology, Thycaud P.O., Thiruvananthapuram 695014, India
| | - Leny Jose
- From the ‡Mycobacterium Research Group, Rajiv Gandhi Centre for Biotechnology, Thycaud P.O., Thiruvananthapuram 695014, India
| | - Arun Surendran
- §Mass Spectrometry and Proteomic Core Facility, Rajiv Gandhi Centre for Biotechnology, Thycaud P.O., Thiruvananthapuram 695014, India
| | - Ranjit Ramachandran
- From the ‡Mycobacterium Research Group, Rajiv Gandhi Centre for Biotechnology, Thycaud P.O., Thiruvananthapuram 695014, India
| | - Akhil Raj Pushparajan
- From the ‡Mycobacterium Research Group, Rajiv Gandhi Centre for Biotechnology, Thycaud P.O., Thiruvananthapuram 695014, India
| | - Sathish Mundayoor
- From the ‡Mycobacterium Research Group, Rajiv Gandhi Centre for Biotechnology, Thycaud P.O., Thiruvananthapuram 695014, India
| | - Abdul Jaleel
- §Mass Spectrometry and Proteomic Core Facility, Rajiv Gandhi Centre for Biotechnology, Thycaud P.O., Thiruvananthapuram 695014, India
| | - Ramakrishnan Ajay Kumar
- From the ‡Mycobacterium Research Group, Rajiv Gandhi Centre for Biotechnology, Thycaud P.O., Thiruvananthapuram 695014, India;
| |
Collapse
|
43
|
Rudra P, Prajapati RK, Banerjee R, Sengupta S, Mukhopadhyay J. Novel mechanism of gene regulation: the protein Rv1222 of Mycobacterium tuberculosis inhibits transcription by anchoring the RNA polymerase onto DNA. Nucleic Acids Res 2015; 43:5855-67. [PMID: 25999340 PMCID: PMC4499140 DOI: 10.1093/nar/gkv516] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 05/06/2015] [Indexed: 12/21/2022] Open
Abstract
We propose a novel mechanism of gene regulation in Mycobacterium tuberculosis where the protein Rv1222 inhibits transcription by anchoring RNA polymerase (RNAP) onto DNA. In contrast to our existing knowledge that transcriptional repressors function either by binding to DNA at specific sequences or by binding to RNAP, we show that Rv1222-mediated transcription inhibition requires simultaneous binding of the protein to both RNAP and DNA. We demonstrate that the positively charged C-terminus tail of Rv1222 is responsible for anchoring RNAP on DNA, hence the protein slows down the movement of RNAP along the DNA during transcription elongation. The interaction between Rv1222 and DNA is electrostatic, thus the protein could inhibit transcription from any gene. As Rv1222 slows down the RNA synthesis, upon expression of the protein in Mycobacterium smegmatis or Escherichia coli, the growth rate of the bacteria is severely impaired. The protein does not possess any significant affinity for DNA polymerase, thus, is unable to inhibit DNA synthesis. The proposed mechanism by which Rv1222 inhibits transcription reveals a new repertoire of prokaryotic gene regulation.
Collapse
Affiliation(s)
- Paulami Rudra
- Department of Chemistry, Bose Institute, 93/1 APC Road, Kolkata-700009, India
| | | | - Rajdeep Banerjee
- Department of Chemistry, Bose Institute, 93/1 APC Road, Kolkata-700009, India
| | - Shreya Sengupta
- Department of Chemistry, Bose Institute, 93/1 APC Road, Kolkata-700009, India
| | | |
Collapse
|
44
|
Abstract
UNLABELLED Cryptococcosis is an opportunistic infection due to the ubiquitous yeast Cryptococcus neoformans. This yeast interacts closely with innate immune cells, leading to various fates, including fungal persistence within cells, making possible the dissemination of the yeast cells with monocytes via a Trojan horse strategy. In humans, the natural history of the infection begins with primoinfection during childhood, which is followed by dormancy and, in some individuals, reactivation upon immunosuppression. To address the question of dormancy, we studied C. neoformans infection at the macrophage level (in vitro H99-macrophage interaction) and at the organ level in a murine model of cryptococcosis. We analyzed the diversity of yeast adaptation to the host by characterizing several C. neoformans populations with new assays based on flow cytometry (quantitative flow cytometry, multispectral imaging flow cytometry, sorting), microscopy (dynamic imaging), and gene expression analysis. On the basis of parameters of multiplication and stress response, various populations of yeast cells were observed over time in vivo and in vitro. Cell sorting allowed the identification of a subpopulation that was less prone to grow under standard conditions than the other populations, with growth enhanced by the addition of serum. Gene expression analysis revealed that this population had specific metabolic characteristics that could reflect dormancy. Our data suggest that dormant yeast cells could exist in vitro and in vivo. C. neoformans exhibits a huge plasticity and adaptation to hosts that deserves further study. In vitro generation of dormant cells is now the main challenge to overcome the limited number of yeast cells recovered in our models. IMPORTANCE Cryptococcus neoformans is a sugar-coated unicellular fungus that interacts closely with various cells and organisms, including amoebas, nematodes, and immune cells of mammals. This yeast is able to proliferate and survive in the intracellular environment. C. neoformans causes cryptococcosis, and yeast dormancy in humans has been suggested on the basis of epidemiological evidence obtained years ago. By studying an in vitro model of yeast-macrophage interaction and murine models of cryptococcosis, we observed that yeast cells evolve in heterogeneous populations during infection on the basis of global metabolic activity. We compared the growth ability and gene expression of yeast cells belonging to various populations in those two models. We eventually found a population of yeast cells with low metabolism that fit some of the criteria for dormant cells. This paves the way for further characterization of dormancy in C. neoformans.
Collapse
|
45
|
Li W, Fan X, Long Q, Xie L, Xie J. Mycobacterium tuberculosis effectors involved in host-pathogen interaction revealed by a multiple scales integrative pipeline. INFECTION GENETICS AND EVOLUTION 2015; 32:1-11. [PMID: 25709069 DOI: 10.1016/j.meegid.2015.02.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 02/02/2015] [Accepted: 02/14/2015] [Indexed: 01/04/2023]
Abstract
BACKGROUND Mycobacterium tuberculosis (Mtb) has evolved multiple strategies to counter host immunity. Proteins are one important player in the host-pathogen interaction. A comprehensive list of such proteins will benefit our understanding of pathogenesis of Mtb. METHODS A genome-scale dataset was created from different sources of published data: global gene expression studies in disease models; genome-wide insertional mutagenesis defining gene essentiality under different conditions; genes lost in clinical isolates; subcellular localization analysis and non-homology analysis. Using data mining and meta-analysis, expressed proteins critical for intracellular survival of Mtb are first identified, followed by subcellular localization analysis, finally filtering a series of subtractive channel of analysis to find out promising drug target candidates. RESULTS The analysis found 54 potential candidates essential for the intracellular survival of the pathogen and non-homologous to host or gut flora, and might be promising drug targets. CONCLUSION Based on our meta-analysis and bioinformatics analysis, 54 hits were found from Mtb around 4000 open reading frames. These hits can be good candidates for further experimental investigation.
Collapse
Affiliation(s)
- Wu Li
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ministry of Education Eco-Environment of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Xiangyu Fan
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ministry of Education Eco-Environment of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing 400715, China; School of Biological Science and Technology, University of Jinan, Shandong 250022, China
| | - Quanxin Long
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ministry of Education Eco-Environment of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing 400715, China; The Second Affiliated Hospital and the Key Laboratory of Molecular Biology of Infectious Diseases of the Ministry of Education, Chongqing Medical University, 1 Medical Road, Yuzhong District, Chongqing 400016, China
| | - Longxiang Xie
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ministry of Education Eco-Environment of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Jianping Xie
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ministry of Education Eco-Environment of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
46
|
Characterization of host and microbial determinants in individuals with latent tuberculosis infection using a human granuloma model. mBio 2015; 6:e02537-14. [PMID: 25691598 PMCID: PMC4337582 DOI: 10.1128/mbio.02537-14] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Granulomas sit at the center of tuberculosis (TB) immunopathogenesis. Progress in biomarkers and treatment specific to the human granuloma environment is hindered by the lack of a relevant and tractable infection model that better accounts for the complexity of the host immune response as well as pathogen counterresponses that subvert host immunity in granulomas. Here we developed and characterized an in vitro granuloma model derived from human peripheral blood mononuclear cells (PBMCs) and autologous serum. Importantly, we interrogated this model for its ability to discriminate between host and bacterial determinants in individuals with and without latent TB infection (LTBI). By the use of this model, we provide the first evidence that granuloma formation, bacterial survival, lymphocyte proliferation, pro- and anti-inflammatory cytokines, and lipid body accumulation are significantly altered in LTBI individuals. Moreover, we show a specific transcriptional signature of Mycobacterium tuberculosis associated with survival within human granuloma structures depending on the host immune status. Our report provides fundamentally new information on how the human host immune status and bacterial transcriptional signature may dictate early granuloma formation and outcome and provides evidence for the validity of the granuloma model and its potential applications. IMPORTANCE In 2012, approximately 1.3 million people died from tuberculosis (TB), the highest rate for any single bacterial pathogen. The long-term control of TB requires a better understanding of Mycobacterium tuberculosis pathogenesis in appropriate research models. Granulomas represent the characteristic host tissue response to TB, controlling the bacilli while concentrating the immune response to a limited area. However, complete eradication of bacteria does not occur, since M. tuberculosis has its own strategies to adapt and persist. Thus, the M. tuberculosis-containing granuloma represents a unique environment for dictating both the host immune response and the bacterial response. Here we developed and characterized an in vitro granuloma model derived from blood cells of individuals with latent TB infection that more accurately defines the human immune response and metabolic profiles of M. tuberculosis within this uniquely regulated immune environment. This model may also prove beneficial for understanding other granulomatous diseases.
Collapse
|
47
|
Ramakrishnan G, Chandra NR, Srinivasan N. From workstations to workbenches: Towards predicting physicochemically viable protein-protein interactions across a host and a pathogen. IUBMB Life 2014; 66:759-74. [DOI: 10.1002/iub.1331] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 11/06/2014] [Accepted: 11/16/2014] [Indexed: 01/03/2023]
Affiliation(s)
- Gayatri Ramakrishnan
- Indian Institute of Science Mathematics Initiative; Indian Institute of Science; Bangalore Karnataka India
- Molecular Biophysics Unit; Indian Institute of Science; Bangalore Karnataka India
| | - Nagasuma R. Chandra
- Department of Biochemistry; Indian Institute of Science; Bangalore Karnataka India
| | | |
Collapse
|
48
|
Latent tuberculosis infection: What we know about its genetic control? Tuberculosis (Edinb) 2014; 94:462-8. [DOI: 10.1016/j.tube.2014.06.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 06/10/2014] [Accepted: 06/20/2014] [Indexed: 11/23/2022]
|
49
|
Devi PB, Samala G, Sridevi JP, Saxena S, Alvala M, Salina EG, Sriram D, Yogeeswari P. Structure-guided design of thiazolidine derivatives as Mycobacterium tuberculosis pantothenate synthetase inhibitors. ChemMedChem 2014; 9:2538-47. [PMID: 25155986 DOI: 10.1002/cmdc.201402171] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Indexed: 11/07/2022]
Abstract
The pantothenate biosynthetic pathway is essential for the persistent growth and virulence of Mycobacterium tuberculosis (Mtb) and one of the enzymes in the pathway, pantothenate synthetase (PS, EC: 6.3.2.1), encoded by the panC gene, has become an appropriate target for new therapeutics to treat tuberculosis. Herein, we report nanomolar thiazolidine inhibitors of Mtb PS developed by a rational inhibitor design approach. The thiazolidine compounds were discovered by using energy-based pharmacophore modelling and subsequent in vitro screening, which resulted in compounds with a half maximal inhibitory concentration (IC50) value of (1.12 ± 0.12) μM. These compounds were subsequently optimised by a combination of modelling and synthetic chemistry. Hit expansion of the lead by chemical synthesis led to an improved inhibitor with an IC50 value of 350 nM and an Mtb minimum inhibitory concentration (MIC) of 1.55 μM. Some of these compounds also showed good activity against dormant Mtb cells.
Collapse
Affiliation(s)
- Parthiban Brindha Devi
- Drug Discovery Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad-500078 (India)
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Novoa-Aponte L, Soto Ospina CY. Mycobacterium tuberculosis P-type ATPases: possible targets for drug or vaccine development. BIOMED RESEARCH INTERNATIONAL 2014; 2014:296986. [PMID: 25110669 PMCID: PMC4119724 DOI: 10.1155/2014/296986] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 06/23/2014] [Indexed: 12/31/2022]
Abstract
Tuberculosis (TB) has been the biggest killer in the human history; currently, Mycobacterium tuberculosis (Mtb) kills nearly 2 million people each year worldwide. The high prevalence of TB obligates the identification of new therapeutic targets and the development of anti-TB vaccines that can control multidrug resistance and latent TB infections. Membrane proteins have recently been suggested as key targets for bacterial viability. Current studies have shown that mycobacteria P-type ATPases may play critical roles in ion homeostasis and in the response of mycobacteria to toxic substances in the intraphagosomal environment. In this review, we bring together the genomic, transcriptomic, and structural aspects of the P-type ATPases that are relevant during active and latent Mtb infections, which can be useful in determining the potential of these ATPases as drug targets and in uncovering their possible roles in the development of new anti-TB attenuated vaccines.
Collapse
Affiliation(s)
- Lorena Novoa-Aponte
- Chemistry Department, Faculty of Sciences, Universidad Nacional de Colombia, Carrera 30 No. 45-03, Bogotá, Cundinamarca 111321, Colombia
| | - Carlos Yesid Soto Ospina
- Chemistry Department, Faculty of Sciences, Universidad Nacional de Colombia, Carrera 30 No. 45-03, Bogotá, Cundinamarca 111321, Colombia
| |
Collapse
|