1
|
Rahimi Kahmini A, Valera IC, Crawford RQ, Samarah L, Reis G, Elsheikh S, Kanashiro-Takeuchi RM, Mohammadipoor N, Olateju BS, Matthews AR, Parvatiyar MS. Aging reveals a sex-dependent susceptibility of sarcospan-deficient mice to cardiometabolic disease. Am J Physiol Heart Circ Physiol 2024; 327:H1067-H1085. [PMID: 39120469 PMCID: PMC11482229 DOI: 10.1152/ajpheart.00702.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Numerous genes including sarcospan (SSPN) have been designated as obesity-susceptibility genes by human genome-wide association studies. Variants in the SSPN locus have been linked with sex-dependent obesity-associated traits; however, this association has not been investigated in vivo. To delineate the role SSPN plays in regulating metabolism with potential to impact cardiac function, we subjected young and aged global SSPN-deficient (SSPN-/-) male and female mice to obesogenic conditions (60% fat diet). We hypothesized that loss of SSPN combined with metabolic stress would increase susceptibility of mice to cardiometabolic disease. Baseline and end-point assessments of several anthropometric parameters were performed including weight, glucose tolerance, and fat distribution of mice fed control (CD) and high-fat (HFD) diet. Doppler echocardiography was used to monitor cardiac function. White adipose and cardiac tissues were assessed for inflammation by histological, gene expression, and cytokine analysis. Overall, SSPN deficiency protected both sexes and ages from diet-induced obesity, with a greater effect in females. SSPN-/- HFD mice gained less weight than wild-type (WT) cohorts, while SSPN-/- CD groups increased weight. Furthermore, aged SSPN-/- mice developed glucose intolerance regardless of diet. Echocardiography showed preserved systolic function for all groups; however, aged SSPN-/- males exhibited significant increases in left ventricular mass (CD) and signs of diastolic dysfunction (HFD). Cytokine analysis revealed significantly increased IL-1α and IL-17Α in white adipose tissue from young SSPN-/- male mice, which may be protective from diet-induced obesity. Overall, these studies suggest that several sex-dependent mechanisms influence the role SSPN plays in metabolic responses that become evident with age.NEW & NOTEWORTHY Young and aged sarcospan (SSPN)-deficient mice were examined to assess the role of SSPN in obesity and cardiometabolic disease. Both sexes displayed a "leaner" phenotype in response to high-fat diet (HFD). Notably, several sex differences were identified in aged SSPN-deficient mice: 1) females developed glucose intolerance (control and HFD) and 2) males exhibited increased left ventricular mass (control) and diastolic dysfunction (HFD). Therefore, we conclude that SSPN exerts a sex-dependent influence on obesity-associated diseases.
Collapse
Affiliation(s)
- Aida Rahimi Kahmini
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, Florida, United States
| | - Isela C Valera
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, Florida, United States
| | - Rhiannon Q Crawford
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, Florida, United States
| | - Luaye Samarah
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, Florida, United States
| | - Gisienne Reis
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, Florida, United States
| | - Salma Elsheikh
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, Florida, United States
| | - Rosemeire M Kanashiro-Takeuchi
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida, United States
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Nazanin Mohammadipoor
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, Florida, United States
| | - Bolade S Olateju
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, Florida, United States
| | - Aaron R Matthews
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, Florida, United States
| | - Michelle S Parvatiyar
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, Florida, United States
| |
Collapse
|
2
|
Wuni R, Ventura EF, Curi-Quinto K, Murray C, Nunes R, Lovegrove JA, Penny M, Favara M, Sanchez A, Vimaleswaran KS. Interactions between genetic and lifestyle factors on cardiometabolic disease-related outcomes in Latin American and Caribbean populations: A systematic review. Front Nutr 2023; 10:1067033. [PMID: 36776603 PMCID: PMC9909204 DOI: 10.3389/fnut.2023.1067033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/09/2023] [Indexed: 01/27/2023] Open
Abstract
Introduction The prevalence of cardiometabolic diseases has increased in Latin American and the Caribbean populations (LACP). To identify gene-lifestyle interactions that modify the risk of cardiometabolic diseases in LACP, a systematic search using 11 search engines was conducted up to May 2022. Methods Eligible studies were observational and interventional studies in either English, Spanish, or Portuguese. A total of 26,171 publications were screened for title and abstract; of these, 101 potential studies were evaluated for eligibility, and 74 articles were included in this study following full-text screening and risk of bias assessment. The Appraisal tool for Cross-Sectional Studies (AXIS) and the Risk Of Bias In Non-Randomized Studies-of Interventions (ROBINS-I) assessment tool were used to assess the methodological quality and risk of bias of the included studies. Results We identified 122 significant interactions between genetic and lifestyle factors on cardiometabolic traits and the vast majority of studies come from Brazil (29), Mexico (15) and Costa Rica (12) with FTO, APOE, and TCF7L2 being the most studied genes. The results of the gene-lifestyle interactions suggest effects which are population-, gender-, and ethnic-specific. Most of the gene-lifestyle interactions were conducted once, necessitating replication to reinforce these results. Discussion The findings of this review indicate that 27 out of 33 LACP have not conducted gene-lifestyle interaction studies and only five studies have been undertaken in low-socioeconomic settings. Most of the studies were cross-sectional, indicating a need for longitudinal/prospective studies. Future gene-lifestyle interaction studies will need to replicate primary research of already studied genetic variants to enable comparison, and to explore the interactions between genetic and other lifestyle factors such as those conditioned by socioeconomic factors and the built environment. The protocol has been registered on PROSPERO, number CRD42022308488. Systematic review registration https://clinicaltrials.gov, identifier CRD420223 08488.
Collapse
Affiliation(s)
- Ramatu Wuni
- Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences and Institute for Cardiovascular and Metabolic Research (ICMR), University of Reading, Reading, United Kingdom
| | - Eduard F. Ventura
- Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences and Institute for Cardiovascular and Metabolic Research (ICMR), University of Reading, Reading, United Kingdom
| | | | - Claudia Murray
- Department of Real Estate and Planning, University of Reading, Reading, United Kingdom
| | - Richard Nunes
- Department of Real Estate and Planning, University of Reading, Reading, United Kingdom
| | - Julie A. Lovegrove
- Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences and Institute for Cardiovascular and Metabolic Research (ICMR), University of Reading, Reading, United Kingdom
| | - Mary Penny
- Instituto de Investigación Nutricional, Lima, Peru
| | - Marta Favara
- Oxford Department of International Development, University of Oxford, Oxford, United Kingdom
| | - Alan Sanchez
- Grupo de Análisis para el Desarrollo (GRADE), Lima, Peru
| | - Karani Santhanakrishnan Vimaleswaran
- Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences and Institute for Cardiovascular and Metabolic Research (ICMR), University of Reading, Reading, United Kingdom
- Institute for Food, Nutrition and Health (IFNH), University of Reading, Reading, United Kingdom
| |
Collapse
|
3
|
Jones AC, Patki A, Claas SA, Tiwari HK, Chaudhary NS, Absher DM, Lange LA, Lange EM, Zhao W, Ratliff SM, Kardia SLR, Smith JA, Irvin MR, Arnett DK. Differentially Methylated DNA Regions and Left Ventricular Hypertrophy in African Americans: A HyperGEN Study. Genes (Basel) 2022; 13:genes13101700. [PMID: 36292585 PMCID: PMC9601679 DOI: 10.3390/genes13101700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Left ventricular (LV) hypertrophy (LVH) is an independent risk factor for cardiovascular disease, and African Americans experience a disparate high risk of LVH. Genetic studies have identified potential candidate genes and variants related to the condition. Epigenetic modifications may continue to help unravel disease mechanisms. We used methylation and echocardiography data from 636 African Americans selected from the Hypertension Genetic Epidemiology Network (HyperGEN) to identify differentially methylated regions (DMRs) associated with LVH. DNA extracted from whole blood was assayed on Illumina Methyl450 arrays. We fit linear mixed models to examine associations between co-methylated regions and LV traits, and we then conducted single CpG analyses within significant DMRs. We identified associations between DMRs and ejection fraction (XKR6), LV internal diastolic dimension (TRAK1), LV mass index (GSE1, RPS15 A, PSMD7), and relative wall thickness (DNHD1). In single CpG analysis, CpG sites annotated to TRAK1 and DNHD1 were significant. These CpGs were not associated with LV traits in replication cohorts but the direction of effect for DNHD1 was consistent across cohorts. Of note, DNHD1, GSE1, and PSMD7 may contribute to cardiac structural function. Future studies should evaluate relationships between regional DNA methylation patterns and the development of LVH.
Collapse
Affiliation(s)
- Alana C. Jones
- Department of Epidemiology, School of Public Health, University of Alabama-Birmingham, Birmingham, AL 35233, USA
| | - Amit Patki
- Department of Biostatistics, School of Public Health, University of Alabama-Birmingham, Birmingham, AL 35233, USA
| | - Steven A. Claas
- Department of Epidemiology, College of Public Health, University of Kentucky, Lexington, KY 40506, USA
| | - Hemant K. Tiwari
- Department of Biostatistics, School of Public Health, University of Alabama-Birmingham, Birmingham, AL 35233, USA
| | - Ninad S. Chaudhary
- Department of Epidemiology, School of Public Health, University of Alabama-Birmingham, Birmingham, AL 35233, USA
- Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Devin M. Absher
- Hudson Alpha Institute of Biotechnology, Huntsville, AL 35806, USA
| | - Leslie A. Lange
- Department of Epidemiology, School of Public Health, University of Colorado, Aurora, CO 80045, USA
- Department of Biomedical Informatics, School of Medicine, University of Colorado, Aurora, CO 80045, USA
| | - Ethan M. Lange
- Department of Biomedical Informatics, School of Medicine, University of Colorado, Aurora, CO 80045, USA
- Department of Biostatistics and Informatics, School of Public Health, University of Colorado, Aurora, CO 80045, USA
| | - Wei Zhao
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Scott M. Ratliff
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sharon L. R. Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jennifer A. Smith
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Marguerite R. Irvin
- Department of Epidemiology, School of Public Health, University of Alabama-Birmingham, Birmingham, AL 35233, USA
- Correspondence:
| | - Donna K. Arnett
- Department of Epidemiology, College of Public Health, University of Kentucky, Lexington, KY 40506, USA
| |
Collapse
|
4
|
Armstrong ND, Srinivasasainagendra V, Patki A, Tanner RM, Hidalgo BA, Tiwari HK, Limdi NA, Lange EM, Lange LA, Arnett DK, Irvin MR. Genetic Contributors of Incident Stroke in 10,700 African Americans With Hypertension: A Meta-Analysis From the Genetics of Hypertension Associated Treatments and Reasons for Geographic and Racial Differences in Stroke Studies. Front Genet 2022; 12:781451. [PMID: 34992631 PMCID: PMC8724550 DOI: 10.3389/fgene.2021.781451] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/23/2021] [Indexed: 11/25/2022] Open
Abstract
Background: African Americans (AAs) suffer a higher stroke burden due to hypertension. Identifying genetic contributors to stroke among AAs with hypertension is critical to understanding the genetic basis of the disease, as well as detecting at-risk individuals. Methods: In a population comprising over 10,700 AAs treated for hypertension from the Genetics of Hypertension Associated Treatments (GenHAT) and Reasons for Geographic and Racial Differences in Stroke (REGARDS) studies, we performed an inverse variance-weighted meta-analysis of incident stroke. Additionally, we tested the predictive accuracy of a polygenic risk score (PRS) derived from a European ancestral population in both GenHAT and REGARDS AAs aiming to evaluate cross-ethnic performance. Results: We identified 10 statistically significant (p < 5.00E-08) and 90 additional suggestive (p < 1.00E-06) variants associated with incident stroke in the meta-analysis. Six of the top 10 variants were located in an intergenic region on chromosome 18 (LINC01443-LOC644669). Additional variants of interest were located in or near the COL12A1, SNTG1, PCDH7, TMTC1, and NTM genes. Replication was conducted in the Warfarin Pharmacogenomics Cohort (WPC), and while none of the variants were directly validated, seven intronic variants of NTM proximal to our target variants, had a p-value <5.00E-04 in the WPC. The inclusion of the PRS did not improve the prediction accuracy compared to a reference model adjusting for age, sex, and genetic ancestry in either study and had lower predictive accuracy compared to models accounting for established stroke risk factors. These results demonstrate the necessity for PRS derivation in AAs, particularly for diseases that affect AAs disproportionately. Conclusion: This study highlights biologically plausible genetic determinants for incident stroke in hypertensive AAs. Ultimately, a better understanding of genetic risk factors for stroke in AAs may give new insight into stroke burden and potential clinical tools for those among the highest at risk.
Collapse
Affiliation(s)
- Nicole D Armstrong
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | | | - Amit Patki
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Rikki M Tanner
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Bertha A Hidalgo
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Hemant K Tiwari
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Nita A Limdi
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Ethan M Lange
- Division of Biomedical Informatics and Personalized Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Leslie A Lange
- Division of Biomedical Informatics and Personalized Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Donna K Arnett
- College of Public Health, University of Kentucky, Lexington, KY, United States
| | - Marguerite R Irvin
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
5
|
Eisenhaber B, Sinha S, Jadalanki CK, Shitov VA, Tan QW, Sirota FL, Eisenhaber F. Conserved sequence motifs in human TMTC1, TMTC2, TMTC3, and TMTC4, new O-mannosyltransferases from the GT-C/PMT clan, are rationalized as ligand binding sites. Biol Direct 2021; 16:4. [PMID: 33436046 PMCID: PMC7801869 DOI: 10.1186/s13062-021-00291-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/04/2021] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND The human proteins TMTC1, TMTC2, TMTC3 and TMTC4 have been experimentally shown to be components of a new O-mannosylation pathway. Their own mannosyl-transferase activity has been suspected but their actual enzymatic potential has not been demonstrated yet. So far, sequence analysis of TMTCs has been compromised by evolutionary sequence divergence within their membrane-embedded N-terminal region, sequence inaccuracies in the protein databases and the difficulty to interpret the large functional variety of known homologous proteins (mostly sugar transferases and some with known 3D structure). RESULTS Evolutionary conserved molecular function among TMTCs is only possible with conserved membrane topology within their membrane-embedded N-terminal regions leading to the placement of homologous long intermittent loops at the same membrane side. Using this criterion, we demonstrate that all TMTCs have 11 transmembrane regions. The sequence segment homologous to Pfam model DUF1736 is actually just a loop between TM7 and TM8 that is located in the ER lumen and that contains a small hydrophobic, but not membrane-embedded helix. Not only do the membrane-embedded N-terminal regions of TMTCs share a common fold and 3D structural similarity with subgroups of GT-C sugar transferases. The conservation of residues critical for catalysis, for binding of a divalent metal ion and of the phosphate group of a lipid-linked sugar moiety throughout enzymatically and structurally well-studied GT-Cs and sequences of TMTCs indicates that TMTCs are actually sugar-transferring enzymes. We present credible 3D structural models of all four TMTCs (derived from their closest known homologues 5ezm/5f15) and find observed conserved sequence motifs rationalized as binding sites for a metal ion and for a dolichyl-phosphate-mannose moiety. CONCLUSIONS With the results from both careful sequence analysis and structural modelling, we can conclusively say that the TMTCs are enzymatically active sugar transferases belonging to the GT-C/PMT superfamily. The DUF1736 segment, the loop between TM7 and TM8, is critical for catalysis and lipid-linked sugar moiety binding. Together with the available indirect experimental data, we conclude that the TMTCs are not only part of an O-mannosylation pathway in the endoplasmic reticulum of upper eukaryotes but, actually, they are the sought mannosyl-transferases.
Collapse
Affiliation(s)
- Birgit Eisenhaber
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore, 138671, Republic of Singapore.
- Genome Institute of Singapore (BII), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Singapore, 138672, Republic of Singapore.
| | - Swati Sinha
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore, 138671, Republic of Singapore
| | - Chaitanya K Jadalanki
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore, 138671, Republic of Singapore
| | - Vladimir A Shitov
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore, 138671, Republic of Singapore
- Siberian State Medical University, Moskovskiy Trakt, 2, Tomsk, Tomsk Oblast, 634050, Russia
| | - Qiao Wen Tan
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore, 138671, Republic of Singapore
- School of Biological Science (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore, 637551, Republic of Singapore
| | - Fernanda L Sirota
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore, 138671, Republic of Singapore
| | - Frank Eisenhaber
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore, 138671, Republic of Singapore.
- Genome Institute of Singapore (BII), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Singapore, 138672, Republic of Singapore.
- School of Biological Science (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore, 637551, Republic of Singapore.
| |
Collapse
|
6
|
Liu Y, Jiang B, Cao Y, Chen W, Yin L, Xu Y, Qiu Z. High expression levels and localization of Sox5 in dilated cardiomyopathy. Mol Med Rep 2020; 22:948-956. [PMID: 32468049 PMCID: PMC7339405 DOI: 10.3892/mmr.2020.11180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 04/15/2020] [Indexed: 01/06/2023] Open
Abstract
Dilated cardiomyopathy (DCM) is a disease that can lead to heart expansion and severe heart failure, but the specific pathogenesis remains unclear. Sox5 is a member of the Sox family with a key role in cardiac function. However, the role of Sox5 in DCM remains unclear. In the present study, wild-type mice were intraperitoneally injected with doxorubicin (Dox) to induce DCM, and heart specimens from human patients with DCM were used to investigate the preliminary role of Sox5 in DCM. The present study demonstrated that, compared with control human hearts, the hearts of patients with DCM exhibited high expression levels of Sox5 and activation of the wnt/β-catenin pathway. This result was consistent with Dox-induced DCM in mice. Furthermore, in Dox-treated mice, apoptosis was activated during the development of DCM. Inflammation and collagen deposition also increased in DCM mice. The results of the present study indicate that Sox5 may be associated with the development of DCM. Sox5 may be a novel potential factor that regulates DCM.
Collapse
Affiliation(s)
- Yafeng Liu
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Ben Jiang
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Yide Cao
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Wen Chen
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Li Yin
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Yueyue Xu
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Zhibing Qiu
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| |
Collapse
|
7
|
Graham JB, Sunryd JC, Mathavan K, Weir E, Larsen ISB, Halim A, Clausen H, Cousin H, Alfandari D, Hebert DN. Endoplasmic reticulum transmembrane protein TMTC3 contributes to O-mannosylation of E-cadherin, cellular adherence, and embryonic gastrulation. Mol Biol Cell 2020; 31:167-183. [PMID: 31851597 PMCID: PMC7001481 DOI: 10.1091/mbc.e19-07-0408] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/29/2019] [Accepted: 12/12/2019] [Indexed: 01/17/2023] Open
Abstract
Protein glycosylation plays essential roles in protein structure, stability, and activity such as cell adhesion. The cadherin superfamily of adhesion molecules carry O-linked mannose glycans at conserved sites and it was recently demonstrated that the transmembrane and tetratricopeptide repeat-containing proteins 1-4 (TMTC1-4) gene products contribute to the addition of these O-linked mannoses. Here, biochemical, cell biological, and organismal analysis was used to determine that TMTC3 supports the O-mannosylation of E-cadherin, cellular adhesion, and embryonic gastrulation. Using genetically engineered cells lacking all four TMTC genes, overexpression of TMTC3 rescued O-linked glycosylation of E-cadherin and cell adherence. The knockdown of the Tmtcs in Xenopus laevis embryos caused a delay in gastrulation that was rescued by the addition of human TMTC3. Mutations in TMTC3 have been linked to neuronal cell migration diseases including Cobblestone lissencephaly. Analysis of TMTC3 mutations associated with Cobblestone lissencephaly found that three of the variants exhibit reduced stability and missence mutations were unable to complement TMTC3 rescue of gastrulation in Xenopus embryo development. Our study demonstrates that TMTC3 regulates O-linked glycosylation and cadherin-mediated adherence, providing insight into its effect on cellular adherence and migration, as well the basis of TMTC3-associated Cobblestone lissencephaly.
Collapse
Affiliation(s)
- Jill B. Graham
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Amherst, MA 01003
- Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, Amherst, MA 01003
| | - Johan C. Sunryd
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Amherst, MA 01003
- Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, Amherst, MA 01003
| | - Ketan Mathavan
- Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, Amherst, MA 01003
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, Amherst, MA 01003
| | - Emma Weir
- Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, Amherst, MA 01003
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, Amherst, MA 01003
| | - Ida Signe Bohse Larsen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen 2200, Denmark
- Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen 2200, Denmark
| | - Adnan Halim
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen 2200, Denmark
- Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen 2200, Denmark
| | - Henrik Clausen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen 2200, Denmark
- Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen 2200, Denmark
| | - Hélène Cousin
- Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, Amherst, MA 01003
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, Amherst, MA 01003
| | - Dominque Alfandari
- Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, Amherst, MA 01003
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, Amherst, MA 01003
| | - Daniel N. Hebert
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Amherst, MA 01003
- Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, Amherst, MA 01003
| |
Collapse
|
8
|
Chiang KM, Chang HC, Yang HC, Chen CH, Chen HH, Lee WJ, Pan WH. Genome-wide association study of morbid obesity in Han Chinese. BMC Genet 2019; 20:97. [PMID: 31852448 PMCID: PMC6921553 DOI: 10.1186/s12863-019-0797-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 11/28/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND As obesity is becoming pandemic, morbid obesity (MO), an extreme type of obesity, is an emerging issue worldwide. It is imperative to understand the factors responsible for huge weight gain in certain populations in the modern society. Very few genome-wide association studies (GWAS) have been conducted on MO patients. This study is the first MO-GWAS study in the Han-Chinese population in Asia. METHODS We conducted a two-stage GWAS with 1110 MO bariatric patients (body mass index [BMI] ≥ 35 kg/m2) from Min-Sheng General Hospital, Taiwan. The first stage involved 575 patients, and 1729 sex- and age-matched controls from the Taiwan Han Chinese Cell and Genome Bank. In the second stage, another 535 patients from the same hospital were genotyped for 52 single nucleotide polymorphisms (SNPs) discovered in the first stage, and 9145 matched controls from Taiwan Biobank were matched for confirmation analysis. RESULTS The results of the joint analysis for the second stage revealed six top ranking SNPs, including rs8050136 (p-value = 7.80 × 10- 10), rs9939609 (p-value = 1.32 × 10- 9), rs1421085 (p-value = 1.54 × 10- 8), rs9941349 (p-value = 9.05 × 10- 8), rs1121980 (p-value = 7.27 × 10- 7), and rs9937354 (p-value = 6.65 × 10- 7), which were all located in FTO gene. Significant associations were also observed between MO and RBFOX1, RP11-638 L3.1, TMTC1, CBLN4, CSMD3, and ERBB4, respectively, using the Bonferroni correction criteria for 52 SNPs (p < 9.6 × 10- 4). CONCLUSION The most significantly associated locus of MO in the Han-Chinese population was the well-known FTO gene. These SNPs located in intron 1, may include the leptin receptor modulator. Other significant loci, showing weak associations with MO, also suggested the potential mechanism underlying the disorders with eating behaviors or brain/neural development.
Collapse
Affiliation(s)
- Kuang-Mao Chiang
- Institute of Biomedical Sciences, Academia Sinica, Taipei City, Taiwan
| | - Heng-Cheng Chang
- Department of Gynecology and Obstetrics, School of Medicine, Taipei Medical University, Taipei City, Taiwan
| | - Hsin-Chou Yang
- Institute of Statistical Science, Academia Sinica, Taipei City, Taiwan
| | - Chien-Hsiun Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei City, Taiwan
| | - Hsin-Hung Chen
- Department of Nutrition and Health Science, Chang Jung Christian University, Tainan City, Taiwan
| | - Wei-Jei Lee
- Department of Surgery, Min-Sheng General Hospital, Taoyuan City, Taiwan
| | - Wen-Harn Pan
- Institute of Biomedical Sciences, Academia Sinica, Taipei City, Taiwan
- Institute of Population Health Sciences, National Health Research Institutes, Miaoli County, Taiwan
| |
Collapse
|
9
|
Do AN, Zhao W, Baldridge AS, Raffield LM, Wiggins KL, Shah SJ, Aslibekyan S, Tiwari HK, Limdi N, Zhi D, Sitlani CM, Taylor KD, Psaty BM, Sotoodehnia N, Brody JA, Rasmussen‐Torvik LJ, Lloyd‐Jones D, Lange LA, Wilson JG, Smith JA, Kardia SLR, Mosley TH, Vasan RS, Arnett DK, Irvin MR. Genome-wide meta-analysis of SNP and antihypertensive medication interactions on left ventricular traits in African Americans. Mol Genet Genomic Med 2019; 7:e00788. [PMID: 31407531 PMCID: PMC6785453 DOI: 10.1002/mgg3.788] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 02/14/2019] [Accepted: 04/22/2019] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Left ventricular (LV) hypertrophy affects up to 43% of African Americans (AAs). Antihypertensive treatment reduces LV mass (LVM). However, interindividual variation in LV traits in response to antihypertensive treatments exists. We hypothesized that genetic variants may modify the association of antihypertensive treatment class with LV traits measured by echocardiography. METHODS We evaluated the main effects of the three most common antihypertensive treatments for AAs as well as the single nucleotide polymorphism (SNP)-by-drug interaction on LVM and relative wall thickness (RWT) in 2,068 participants across five community-based cohorts. Treatments included thiazide diuretics (TDs), angiotensin converting enzyme inhibitors (ACE-Is), and dihydropyridine calcium channel blockers (dCCBs) and were compared in a pairwise manner. We performed fixed effects inverse variance weighted meta-analyses of main effects of drugs and 2.5 million SNP-by-drug interaction estimates. RESULTS We observed that dCCBs versus TDs were associated with higher LVM after adjusting for covariates (p = 0.001). We report three SNPs at a single locus on chromosome 20 that modified the association between RWT and treatment when comparing dCCBs to ACE-Is with consistent effects across cohorts (smallest p = 4.7 × 10-8 , minor allele frequency range 0.09-0.12). This locus has been linked to LV hypertrophy in a previous study. A marginally significant locus in BICD1 (rs326641) was validated in an external population. CONCLUSIONS Our study identified one locus having genome-wide significant SNP-by-drug interaction effect on RWT among dCCB users in comparison to ACE-I users. Upon additional validation in future studies, our findings can enhance the precision of medical approaches in hypertension treatment.
Collapse
Affiliation(s)
- Anh N. Do
- Department of EpidemiologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Wei Zhao
- Department of EpidemiologyUniversity of MichiganAnn ArborMichiganUSA
| | | | - Laura M. Raffield
- Department of GeneticsUniversity of North CarolinaChapel HillNorth CarolinaUSA
| | - Kerri L. Wiggins
- Cardiovascular Health Research Unit, Department of MedicineUniversity of WashingtonSeattleWashingtonUSA
| | - Sanjiv J. Shah
- Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - Stella Aslibekyan
- Department of EpidemiologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Hemant K. Tiwari
- Department of BiostatisticsUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Nita Limdi
- Department of NeurologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Degui Zhi
- School of Biomedical InformaticsUniversity of Texas Health Sciences Center at HoustonHoustonTexasUSA
| | - Colleen M. Sitlani
- Cardiovascular Health Research Unit, Department of MedicineUniversity of WashingtonSeattleWashingtonUSA
| | - Kent D. Taylor
- Department of Pediatrics, The Institute for Translational Genomics and Population SciencesLABioMed at Harbor‐UCLA Medical CenterSeattleWashingtonUSA
| | - Bruce M. Psaty
- Cardiovascular Health Research Unit, Departments of Medicine, Epidemiology and Health ServicesUniversity of WashingtonSeattleWashingtonUSA
- Kaiser Permanente Washington Health Research InstituteSeattleWashingtonUSA
| | - Nona Sotoodehnia
- Cardiovascular Health Research Unit, Division of Cardiology, Departments of Medicine and EpidemiologyUniversity of WashingtonSeattleWashingtonUSA
| | - Jennifer A. Brody
- Cardiovascular Health Research Unit, Department of MedicineUniversity of WashingtonSeattleWashingtonUSA
| | - Laura J. Rasmussen‐Torvik
- Department of Preventive Medicine Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | | | - Leslie A. Lange
- Department of MedicineUniversity of Colorado DenverAuroraColoradoUSA
| | - James G. Wilson
- Department of Physiology and BiophysicsUniversity of Mississippi Medical CenterJacksonMississippiUSA
| | - Jennifer A. Smith
- Department of EpidemiologyUniversity of MichiganAnn ArborMichiganUSA
| | | | - Thomas H. Mosley
- Department of MedicineUniversity of Mississippi Medical CenterJacksonMississippiUSA
| | - Ramachandran S. Vasan
- Departments of Medicine and Preventive MedicineBoston University School of MedicineBostonMassachusettsUSA
| | - Donna K. Arnett
- College of Public HealthUniversity of KentuckyLexingtonKentuckyUSA
| | - Marguerite R. Irvin
- Department of EpidemiologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| |
Collapse
|
10
|
Velie BD, Fegraeus KJ, Solé M, Rosengren MK, Røed KH, Ihler CF, Strand E, Lindgren G. A genome-wide association study for harness racing success in the Norwegian-Swedish coldblooded trotter reveals genes for learning and energy metabolism. BMC Genet 2018; 19:80. [PMID: 30157760 PMCID: PMC6114527 DOI: 10.1186/s12863-018-0670-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 08/20/2018] [Indexed: 12/19/2022] Open
Abstract
Background Although harness racing is of high economic importance to the global equine industry, significant genomic resources have yet to be applied to mapping harness racing success. To identify genomic regions associated with harness racing success, the current study performs genome-wide association analyses with three racing performance traits in the Norwegian-Swedish Coldblooded Trotter using the 670 K Axiom Equine Genotyping Array. Results Following quality control, 613 horses and 359,635 SNPs were retained for further analysis. After strict Bonferroni correction, nine genome-wide significant SNPs were identified for career earnings. No genome-wide significant SNPs were identified for number of gallops or best km time. However, four suggestive genome-wide significant SNPs were identified for number of gallops, while 19 were identified for best km time. Multiple genes related to intelligence, energy metabolism, and immune function were identified as potential candidate genes for harness racing success. Conclusions Apart from the physiological requirements needed for a harness racing horse to be successful, the results of the current study also advocate learning ability and memory as important elements for harness racing success. Further exploration into the mental capacity required for a horse to achieve racing success is likely warranted. Electronic supplementary material The online version of this article (10.1186/s12863-018-0670-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Brandon D Velie
- Department of Animal Breeding & Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | - Kim Jäderkvist Fegraeus
- Department of Animal Breeding & Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Marina Solé
- Department of Animal Breeding & Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Maria K Rosengren
- Department of Animal Breeding & Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Knut H Røed
- Department of Basic Sciences and Aquatic Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Carl-Fredrik Ihler
- Department of Companion Animal Clinical Sciences, Norwegian School of Veterinary Science, Oslo, Norway
| | - Eric Strand
- Department of Companion Animal Clinical Sciences, Norwegian School of Veterinary Science, Oslo, Norway
| | - Gabriella Lindgren
- Department of Animal Breeding & Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden.,Department of Biosystems, KU Leuven, 3001, Leuven, Belgium
| |
Collapse
|
11
|
Kovács A, Molnár AÁ, Kolossváry M, Szilveszter B, Panajotu A, Lakatos BK, Littvay L, Tárnoki ÁD, Tárnoki DL, Voros S, Jermendy G, Sengupta PP, Merkely B, Maurovich-Horvat P. Genetically determined pattern of left ventricular function in normal and hypertensive hearts. J Clin Hypertens (Greenwich) 2018; 20:949-958. [PMID: 29741807 DOI: 10.1111/jch.13271] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 02/20/2018] [Accepted: 02/28/2018] [Indexed: 01/08/2023]
Abstract
We sought to assess the inheritance of left ventricular (LV) function using speckle-tracking echocardiography and the impact of hypertension on modifying the genetically determined pattern of contraction in a population of twins. We recruited 92 Caucasian twin pairs, including 74 hypertensive (HTN) siblings. Beyond standard echocardiographic protocol, a speckle-tracking analysis was performed, including global longitudinal strain (GLS). Systolic function, as assessed by ejection fraction, showed moderate heritability (61%); however, GLS showed higher and dominant heritability (75%). Heterogeneity models revealed that there were no differences between the HTN and non-HTN subjects regarding the heritability of GLS. However, the heritability estimates of diastolic function parameters, including early diastolic strain rate, were low. LV systolic biomechanics is highly heritable. GLS shows dominant heritability, despite the presence of early-stage hypertensive heart disease. Early diastolic parameters are rather determined by environmental factors. These findings suggest the presence of a genetic framework that conserves systolic function despite the expression of diastolic dysfunction and may underlie the phenotypic progression towards heart failure with preserved ejection fraction.
Collapse
Affiliation(s)
- Attila Kovács
- MTA-SE Cardiovascular Imaging Research Group, Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Andrea Ágnes Molnár
- MTA-SE Cardiovascular Imaging Research Group, Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Márton Kolossváry
- MTA-SE Cardiovascular Imaging Research Group, Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Bálint Szilveszter
- MTA-SE Cardiovascular Imaging Research Group, Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Alexisz Panajotu
- MTA-SE Cardiovascular Imaging Research Group, Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Bálint Károly Lakatos
- MTA-SE Cardiovascular Imaging Research Group, Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | | | - Ádám Domonkos Tárnoki
- Hungarian Twin Registry, Budapest, Hungary.,Department of Radiology and Oncotherapy, Semmelweis University, Budapest, Hungary
| | - Dávid László Tárnoki
- Hungarian Twin Registry, Budapest, Hungary.,Department of Radiology and Oncotherapy, Semmelweis University, Budapest, Hungary
| | | | - György Jermendy
- III. Department of Internal Medicine, Bajcsy-Zsilinszky Hospital, Budapest, Hungary
| | | | - Béla Merkely
- MTA-SE Cardiovascular Imaging Research Group, Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Pál Maurovich-Horvat
- MTA-SE Cardiovascular Imaging Research Group, Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| |
Collapse
|
12
|
Dueker ND, Guo S, Beecham A, Wang L, Blanton SH, Di Tullio MR, Rundek T, Sacco RL. Sequencing of Linkage Region on Chromosome 12p11 Identifies PKP2 as a Candidate Gene for Left Ventricular Mass in Dominican Families. G3 (BETHESDA, MD.) 2018; 8:659-668. [PMID: 29288195 PMCID: PMC5919734 DOI: 10.1534/g3.117.300358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 12/10/2017] [Indexed: 12/16/2022]
Abstract
Increased left ventricular mass (LVM) is an intermediate phenotype for cardiovascular disease (CVD) and a predictor of stroke. Using families from the Dominican Republic, we have previously shown LVM to be heritable and found evidence for linkage to chromosome 12p11. Our current study aimed to further characterize the QTL by sequencing the 1 LOD unit down region in 10 families from the Dominican Republic with evidence for linkage to LVM. Within this region, we tested 5477 common variants [CVs; minor allele frequency (MAF) ≥5%] using the Quantitative Transmission-Disequilibrium Test (QTDT). Gene-based analyses were performed to test rare variants (RVs; MAF < 5%) in 181 genes using the family-based sequence kernel association test. A sample of 618 unrelated Dominicans from the Northern Manhattan Study (NOMAS) and 12 Dominican families with Exome Array data were used for replication analyses. The most strongly associated CV with evidence for replication was rs1046116 (Discovery families P = 9.0 × 10-4; NOMAS P = 0.03; replication families P = 0.46), a missense variant in PKP2 In nonsynonymous RV analyses, PKP2 was one of the most strongly associated genes (P = 0.05) with suggestive evidence for replication in NOMAS (P = 0.05). PKP2 encodes the plakophilin 2 protein and is a desmosomal gene implicated in arrythmogenic right ventricular cardiomyopathy and recently in arrhythmogenic left ventricular cardiomyopathy, which makes PKP2 an excellent candidate gene for LVM. In conclusion, sequencing of our previously reported QTL identified common and rare variants within PKP2 to be associated with LVM. Future studies are necessary to elucidate the role these variants play in influencing LVM.
Collapse
Affiliation(s)
- Nicole D Dueker
- John P. Hussman Institute for Human Genomics, University of Miami, Florida 33136
| | - Shengru Guo
- John P. Hussman Institute for Human Genomics, University of Miami, Florida 33136
| | - Ashley Beecham
- John P. Hussman Institute for Human Genomics, University of Miami, Florida 33136
| | - Liyong Wang
- John P. Hussman Institute for Human Genomics, University of Miami, Florida 33136
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami, Florida 33136
| | - Susan H Blanton
- John P. Hussman Institute for Human Genomics, University of Miami, Florida 33136
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami, Florida 33136
| | - Marco R Di Tullio
- Department of Medicine, Columbia University, New York, New York 10032
| | - Tatjana Rundek
- Department of Neurology, Miller School of Medicine, University of Miami, Florida 33136
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, Florida 33136
| | - Ralph L Sacco
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami, Florida 33136
- Department of Neurology, Miller School of Medicine, University of Miami, Florida 33136
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, Florida 33136
| |
Collapse
|
13
|
Li A, Hooli B, Mullin K, Tate RE, Bubnys A, Kirchner R, Chapman B, Hofmann O, Hide W, Tanzi RE. Silencing of the Drosophila ortholog of SOX5 leads to abnormal neuronal development and behavioral impairment. Hum Mol Genet 2017; 26:1472-1482. [PMID: 28186563 DOI: 10.1093/hmg/ddx051] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 02/07/2017] [Indexed: 01/27/2023] Open
Abstract
SOX5 encodes a transcription factor that is expressed in multiple tissues including heart, lung and brain. Mutations in SOX5 have been previously found in patients with amyotrophic lateral sclerosis (ALS) and developmental delay, intellectual disability and dysmorphic features. To characterize the neuronal role of SOX5, we silenced the Drosophila ortholog of SOX5, Sox102F, by RNAi in various neuronal subtypes in Drosophila. Silencing of Sox102F led to misorientated and disorganized michrochaetes, neurons with shorter dendritic arborization (DA) and reduced complexity, diminished larval peristaltic contractions, loss of neuromuscular junction bouton structures, impaired olfactory perception, and severe neurodegeneration in brain. Silencing of SOX5 in human SH-SY5Y neuroblastoma cells resulted in a significant repression of WNT signaling activity and altered expression of WNT-related genes. Genetic association and meta-analyses of the results in several large family-based and case-control late-onset familial Alzheimer's disease (LOAD) samples of SOX5 variants revealed several variants that show significant association with AD disease status. In addition, analysis for rare and highly penetrate functional variants revealed four novel variants/mutations in SOX5, which taken together with functional prediction analysis, suggests a strong role of SOX5 causing AD in the carrier families. Collectively, these findings indicate that SOX5 is a novel candidate gene for LOAD with an important role in neuronal function. The genetic findings warrant further studies to identify and characterize SOX5 variants that confer risk for AD, ALS and intellectual disability.
Collapse
Affiliation(s)
- Airong Li
- Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, MassGeneral Institute for Neurodegenerative Diseases, Charlestown, MA 02129, USA
| | - Basavaraj Hooli
- Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, MassGeneral Institute for Neurodegenerative Diseases, Charlestown, MA 02129, USA
| | - Kristina Mullin
- Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, MassGeneral Institute for Neurodegenerative Diseases, Charlestown, MA 02129, USA
| | - Rebecca E Tate
- Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, MassGeneral Institute for Neurodegenerative Diseases, Charlestown, MA 02129, USA
| | - Adele Bubnys
- Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, MassGeneral Institute for Neurodegenerative Diseases, Charlestown, MA 02129, USA
| | - Rory Kirchner
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Brad Chapman
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Oliver Hofmann
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA.,Center for Cancer Research, University of Melbourne, Melbourne 3000, Australia and
| | - Winston Hide
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA.,Department of Neuroscience, Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK
| | - Rudolph E Tanzi
- Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, MassGeneral Institute for Neurodegenerative Diseases, Charlestown, MA 02129, USA
| |
Collapse
|
14
|
Estrada-Veras JI, Cabrera-Peña GA, Pérez-Estrella de Ferrán C. Medical genetics and genomic medicine in the Dominican Republic: challenges and opportunities. Mol Genet Genomic Med 2016; 4:243-56. [PMID: 27247952 PMCID: PMC4867558 DOI: 10.1002/mgg3.224] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Medical genetics and genomic medicine in the Dominican Republic: challenges and opportunities.
![]()
Collapse
Affiliation(s)
- Juvianee I Estrada-Veras
- Medical Genetics Branch National Human Genome Research Institute Section of Human Biochemical Genetics National Institutes of Health Bethesda Maryland
| | | | | |
Collapse
|
15
|
Zhang H, Du ZQ, Dong JQ, Wang HX, Shi HY, Wang N, Wang SZ, Li H. Detection of genome-wide copy number variations in two chicken lines divergently selected for abdominal fat content. BMC Genomics 2014; 15:517. [PMID: 24962627 PMCID: PMC4092215 DOI: 10.1186/1471-2164-15-517] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 06/19/2014] [Indexed: 12/13/2022] Open
Abstract
Background The chicken (Gallus gallus) is an important model organism that bridges the evolutionary gap between mammals and other vertebrates. Copy number variations (CNVs) are a form of genomic structural variation widely distributed in the genome. CNV analysis has recently gained greater attention and momentum, as the identification of CNVs can contribute to a better understanding of traits important to both humans and other animals. To detect chicken CNVs, we genotyped 475 animals derived from two broiler chicken lines divergently selected for abdominal fat content using chicken 60 K SNP array, which is a high-throughput method widely used in chicken genomics studies. Results Using PennCNV algorithm, we detected 438 and 291 CNVs in the lean and fat lines, respectively, corresponding to 271 and 188 CNV regions (CNVRs), which were obtained by merging overlapping CNVs. Out of these CNVRs, 99% were confirmed also by the CNVPartition program. These CNVRs covered 40.26 and 30.60 Mb of the chicken genome in the lean and fat lines, respectively. Moreover, CNVRs included 176 loss, 68 gain and 27 both (i.e. loss and gain within the same region) events in the lean line, and 143 loss, 25 gain and 20 both events in the fat line. Ten CNVRs were chosen for the validation experiment using qPCR method, and all of them were confirmed in at least one qPCR assay. We found a total of 886 genes located within these CNVRs, and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses showed they could play various roles in a number of biological processes. Integrating the results of CNVRs, known quantitative trait loci (QTL) and selective sweeps for abdominal fat content suggested that some genes (including SLC9A3, GNAL, SPOCK3, ANXA10, HELIOS, MYLK, CCDC14, SPAG9, SOX5, VSNL1, SMC6, GEN1, MSGN1 and ZPAX) may be important for abdominal fat deposition in the chicken. Conclusions Our study provided a genome-wide CNVR map of the chicken genome, thereby contributing to our understanding of genomic structural variations and their potential roles in abdominal fat content in the chicken. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-517) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Hui Li
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture, Harbin 150030, P,R China.
| |
Collapse
|
16
|
Li A, Ahsen OO, Liu JJ, Du C, McKee ML, Yang Y, Wasco W, Newton-Cheh CH, O'Donnell CJ, Fujimoto JG, Zhou C, Tanzi RE. Silencing of the Drosophila ortholog of SOX5 in heart leads to cardiac dysfunction as detected by optical coherence tomography. Hum Mol Genet 2013; 22:3798-806. [PMID: 23696452 DOI: 10.1093/hmg/ddt230] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The SRY-related HMG-box 5 (SOX5) gene encodes a member of the SOX family of transcription factors. Recently, genome-wide association studies have implicated SOX5 as a candidate gene for susceptibility to four cardiac-related endophenotypes: higher resting heart rate (HR), the electrocardiographic PR interval, atrial fibrillation and left ventricular mass. We have determined that human SOX5 has a highly conserved Drosophila ortholog, Sox102F, and have employed transgenic Drosophila models to quantitatively measure cardiac function in adult flies. For this purpose, we have developed a high-speed and ultrahigh-resolution optical coherence tomography imaging system, which enables rapid cross-sectional imaging of the heart tube over various cardiac cycles for the measurement of cardiac structural and dynamical parameters such as HR, dimensions and areas of heart chambers, cardiac wall thickness and wall velocities. We have found that the silencing of Sox102F resulted in a significant decrease in HR, heart chamber size and cardiac wall velocities, and a significant increase in cardiac wall thickness that was accompanied by disrupted myofibril structure in adult flies. In addition, the silencing of Sox102F in the wing led to increased L2, L3 and wing marginal veins and increased and disorganized expression of wingless, the central component of the Wnt signaling pathway. Collectively, the silencing of Sox102F resulted in severe cardiac dysfunction and structural defects with disrupted Wnt signaling transduction in flies. This implicates an important functional role for SOX5 in heart and suggests that the alterations in SOX5 levels may contribute to the pathogenesis of multiple cardiac diseases or traits.
Collapse
Affiliation(s)
- Airong Li
- Genetics and Aging Research Unit, Department of Neurology, MassGeneral Institute for Neurodegenerative Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
A multi-platform draft de novo genome assembly and comparative analysis for the Scarlet Macaw (Ara macao). PLoS One 2013; 8:e62415. [PMID: 23667475 PMCID: PMC3648530 DOI: 10.1371/journal.pone.0062415] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 03/21/2013] [Indexed: 12/31/2022] Open
Abstract
Data deposition to NCBI Genomes: This Whole Genome Shotgun project has been deposited at DDBJ/EMBL/GenBank under the accession AMXX00000000 (SMACv1.0, unscaffolded genome assembly). The version described in this paper is the first version (AMXX01000000). The scaffolded assembly (SMACv1.1) has been deposited at DDBJ/EMBL/GenBank under the accession AOUJ00000000, and is also the first version (AOUJ01000000). Strong biological interest in traits such as the acquisition and utilization of speech, cognitive abilities, and longevity catalyzed the utilization of two next-generation sequencing platforms to provide the first-draft de novo genome assembly for the large, new world parrot Ara macao (Scarlet Macaw). Despite the challenges associated with genome assembly for an outbred avian species, including 951,507 high-quality putative single nucleotide polymorphisms, the final genome assembly (>1.035 Gb) includes more than 997 Mb of unambiguous sequence data (excluding N's). Cytogenetic analyses including ZooFISH revealed complex rearrangements associated with two scarlet macaw macrochromosomes (AMA6, AMA7), which supports the hypothesis that translocations, fusions, and intragenomic rearrangements are key factors associated with karyotype evolution among parrots. In silico annotation of the scarlet macaw genome provided robust evidence for 14,405 nuclear gene annotation models, their predicted transcripts and proteins, and a complete mitochondrial genome. Comparative analyses involving the scarlet macaw, chicken, and zebra finch genomes revealed high levels of nucleotide-based conservation as well as evidence for overall genome stability among the three highly divergent species. Application of a new whole-genome analysis of divergence involving all three species yielded prioritized candidate genes and noncoding regions for parrot traits of interest (i.e., speech, intelligence, longevity) which were independently supported by the results of previous human GWAS studies. We also observed evidence for genes and noncoding loci that displayed extreme conservation across the three avian lineages, thereby reflecting their likely biological and developmental importance among birds.
Collapse
|