1
|
Vervoort L, Vermeesch JR. The 22q11.2 Low Copy Repeats. Genes (Basel) 2022; 13:2101. [PMID: 36421776 PMCID: PMC9690962 DOI: 10.3390/genes13112101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/19/2022] [Accepted: 10/25/2022] [Indexed: 07/22/2023] Open
Abstract
LCR22s are among the most complex loci in the human genome and are susceptible to nonallelic homologous recombination. This can lead to a variety of genomic disorders, including deletions, duplications, and translocations, of which the 22q11.2 deletion syndrome is the most common in humans. Interrogating these phenomena is difficult due to the high complexity of the LCR22s and the inaccurate representation of the LCRs across different reference genomes. Optical mapping techniques, which provide long-range chromosomal maps, could be used to unravel the complex duplicon structure. These techniques have already uncovered the hypervariability of the LCR22-A haplotype in the human population. Although optical LCR22 mapping is a major step forward, long-read sequencing approaches will be essential to reach nucleotide resolution of the LCR22s and map the crossover sites. Accurate maps and sequences are needed to pinpoint potential predisposing alleles and, most importantly, allow for genotype-phenotype studies exploring the role of the LCR22s in health and disease. In addition, this research might provide a paradigm for the study of other rare genomic disorders.
Collapse
|
2
|
Vervoort L, Demaerel W, Rengifo LY, Odrzywolski A, Vergaelen E, Hestand MS, Breckpot J, Devriendt K, Swillen A, McDonald-McGinn DM, Fiksinski AM, Zinkstok JR, Morrow BE, Heung T, Vorstman JAS, Bassett AS, Chow EWC, Shashi V, Vermeesch JR. Atypical chromosome 22q11.2 deletions are complex rearrangements and have different mechanistic origins. Hum Mol Genet 2019; 28:3724-3733. [PMID: 31884517 PMCID: PMC6935389 DOI: 10.1093/hmg/ddz166] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/03/2019] [Accepted: 07/08/2019] [Indexed: 11/13/2022] Open
Abstract
The majority (99%) of individuals with 22q11.2 deletion syndrome (22q11.2DS) have a deletion that is caused by non-allelic homologous recombination between two of four low copy repeat clusters on chromosome 22q11.2 (LCR22s). However, in a small subset of patients, atypical deletions are observed with at least one deletion breakpoint within unique sequence between the LCR22s. The position of the chromosome breakpoints and the mechanisms driving those atypical deletions remain poorly studied. Our large-scale, whole genome sequencing study of >1500 subjects with 22q11.2DS identified six unrelated individuals with atypical deletions of different types. Using a combination of whole genome sequencing data and fiber-fluorescence in situ hybridization, we mapped the rearranged alleles in these subjects. In four of them, the distal breakpoints mapped within one of the LCR22s and we found that the deletions likely occurred by replication-based mechanisms. Interestingly, in two of them, an inversion probably preceded inter-chromosomal 'allelic' homologous recombination between differently oriented LCR22-D alleles. Inversion associated allelic homologous recombination (AHR) may well be a common mechanism driving (atypical) deletions on 22q11.2.
Collapse
Affiliation(s)
| | | | | | - Adrian Odrzywolski
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland
| | - Elfi Vergaelen
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Matthew S Hestand
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA
| | | | - Koen Devriendt
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Ann Swillen
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Donna M McDonald-McGinn
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ania M Fiksinski
- Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
- The Dalglish Family 22q Clinic and Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Janneke R Zinkstok
- Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Bernice E Morrow
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Tracy Heung
- The Dalglish Family 22q Clinic and Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Jacob A S Vorstman
- Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
- The Dalglish Family 22q Clinic and Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Anne S Bassett
- The Dalglish Family 22q Clinic and Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Eva W C Chow
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Clinical Genetics Service, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Vandana Shashi
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | | | | | | |
Collapse
|
3
|
Cardoso AR, Oliveira M, Amorim A, Azevedo L. Major influence of repetitive elements on disease-associated copy number variants (CNVs). Hum Genomics 2016; 10:30. [PMID: 27663310 PMCID: PMC5035501 DOI: 10.1186/s40246-016-0088-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 09/16/2016] [Indexed: 01/13/2023] Open
Abstract
Copy number variants (CNVs) are important contributors to the human pathogenic genetic diversity as demonstrated by a number of cases reported in the literature. The high homology between repetitive elements may guide genomic stability which will give rise to CNVs either by non-allelic homologous recombination (NAHR) or non-homologous end joining (NHEJ). Here, we present a short guide based on previously documented cases of disease-associated CNVs in order to provide a general view on the impact of repeated elements on the stability of the genomic sequence and consequently in the origin of the human pathogenic variome.
Collapse
Affiliation(s)
- Ana R Cardoso
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal.,IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Rua Júlio Amaral de Carvalho 45, 4200-135, Porto, Portugal.,Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre S/N, 4169-007, Porto, Portugal
| | - Manuela Oliveira
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal.,IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Rua Júlio Amaral de Carvalho 45, 4200-135, Porto, Portugal.,Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre S/N, 4169-007, Porto, Portugal
| | - Antonio Amorim
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal.,IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Rua Júlio Amaral de Carvalho 45, 4200-135, Porto, Portugal.,Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre S/N, 4169-007, Porto, Portugal
| | - Luisa Azevedo
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal. .,IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Rua Júlio Amaral de Carvalho 45, 4200-135, Porto, Portugal. .,Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre S/N, 4169-007, Porto, Portugal.
| |
Collapse
|
4
|
Olanzapine-induced DNA methylation in the hippocampus and cerebellum in genes mapped to human 22q11 and implicated in schizophrenia. Psychiatr Genet 2015; 25:88-94. [PMID: 25415458 DOI: 10.1097/ypg.0000000000000069] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Although there is indirect evidence that the effects of antipsychotic drugs may involve modulation of dopamine transmission, their mechanism of action is poorly understood. We hypothesized that antipsychotic drugs mediate their effects by epigenetic modulation. Here, we tested the effect of an antipsychotic, olanzapine, on the DNA methylation status of genes following chronic treatment using rat-specific methylation arrays. METHODS Forty-eight hours after the last dose of olanzapine/vehicle, rats were habituated to an open-field activity-monitoring chamber for 30 min to verify whether stress-induced locomotor activity was reduced in olanzapine-treated rats. To test this hypothesis, we examined the effect of olanzapine, a commonly used atypical antipsychotic drug, on the DNA methylation status of 49 genes mapped to human 22q11 and implicated in schizophrenia. Genomic DNA isolated from the cerebellum, hippocampus, and liver of olanzapine-treated (n=2) and control (n=2) rats were analyzed using rat-specific methylation arrays. RESULTS Significantly reduced locomotor activity of olanzapine-treated rats confirmed the therapeutic efficacy of the drug administered. The effects of olanzapine have been shown through significantly increased (P<0.01) DNA methylation of genes affecting several networks mainly (i) neurological disease, inflammatory disease, and inflammatory response and (ii) cancer, cell death and survival, tumor morphology. Also, proline degradation and L-DOPA degradation were affected by olanzapine-induced DNA methylation. Further, from a set of genes in the 22q11.2 microdeletions that has been implicated previously in psychosis, 29 genes showed increased methylation following olanzapine treatment. CONCLUSION The results showed that considerable number of genes (34/49) mapped to human 22q11 and implicated in schizophrenia were affected by olanzapine-induced DNA methylation. The results suggest that DNA methylation may play a role in the therapeutic efficacy of olanzapine.
Collapse
|
5
|
Guffanti G, Gaudi S, Fallon JH, Sobell J, Potkin SG, Pato C, Macciardi F. Transposable elements and psychiatric disorders. Am J Med Genet B Neuropsychiatr Genet 2014; 165B:201-16. [PMID: 24585726 DOI: 10.1002/ajmg.b.32225] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 01/21/2014] [Indexed: 12/15/2022]
Abstract
Transposable Elements (TEs) or transposons are low-complexity elements (e.g., LINEs, SINEs, SVAs, and HERVs) that make up to two-thirds of the human genome. There is mounting evidence that TEs play an essential role in genomic architecture and regulation related to both normal function and disease states. Recently, the identification of active TEs in several different human brain regions suggests that TEs play a role in normal brain development and adult physiology and quite possibly in psychiatric disorders. TEs have been implicated in hemophilia, neurofibromatosis, and cancer. With the advent of next-generation whole-genome sequencing approaches, our understanding of the relationship between TEs and psychiatric disorders will greatly improve. We will review the biology of TEs and early evidence for TE involvement in psychiatric disorders.
Collapse
Affiliation(s)
- Guia Guffanti
- Department of Psychiatry, Columbia University, New York, New York
| | | | | | | | | | | | | |
Collapse
|
6
|
Jiang H, Li L, Li-Ling J, Qiu G, Niu Z, Jiang H, Li Y, Huang Y, Sun K. Increased Tbx1 expression may play a role via TGFβ-Smad2/3 signaling pathway in acute kidney injury induced by gentamicin. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2014; 7:1595-1605. [PMID: 24817956 PMCID: PMC4014240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 03/15/2014] [Indexed: 06/03/2023]
Abstract
T-box 1 (Tbx1) gene is closely involved in embryonic kidney development. To explore the role of Tbx1 in acute kidney injury (AKI) and the underlying mechanism, we detected the expression of Tbx1 and components of transforming growth factor-beta (TGF-β) signaling pathways including TGF-β, phosphorylated Smad2/3 (p-Smad2/3) and phosphorylated Smad1/5/8 (p-Smad1/5/8) in kidney tissues derived from a rat model for AKI induced by gentamicin (GM). Apoptosis of renal cells was assessed by terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL), along with the expression of two essential genes involved in apoptosis, caspase-3 and Bcl-2. Correlation between Tbx1 expression and the number of TUNEL-positive cells was analyzed by a Spearman test. Expression of TGF-β, p-Smad2/3 and p-Smad1/5/8 in Tbx1-knockdown NRK cells was also analyzed by real-time RT-PCR and Western blotting. Markedly increased Tbx1 expression was found in the injured kidney tissues, which has activated the TGFβ-Smad2/3 pathway whilst suppressed Smad1/5/8 expression. Conversely, decreased TGF-β and p-Smad2/3 levels, and elevated p-Smad1/5/8 levels were detected in Tbx1-knockdown NRK cells. More apoptotic cells were detected in the injured kidneys, which has well correlated with the expression of Tbx1. Expression of caspase-3 was markedly increased, while Bcl-2 was decreased in the injured kidney tissues. Above findings suggested that activation of Tbx1 is involved in AKI through the TGFβ-Smad2/3 pathway. Tbx1 expression may therefore serve as a marker for AKI, and Tbx1-blocking therapies may provide an option for treating GM-induced nephropathy.
Collapse
Affiliation(s)
- Hongkun Jiang
- Department of Pediatrics, The First Affiliated Hospital of China Medical UniversityShenyang 110001, China
| | - Lei Li
- Department of Orthopedics, Shengjing Hospital of China Medical UniversityShenyang 110004, China
| | - Jesse Li-Ling
- Sino-Dutch Biomedical and Information Engineering School, Northeastern UniversityShenyang 110003, China
- Institute of Medical Genetics, School of Life Science, Joint Key Laboratory for Bio-resource Research and Utilization of Sichuan and Chongqing, Sichuan UniversityChengdu 610064, China
| | - Guangrong Qiu
- Department of Medical Genetics, China Medical UniversityShenyang 110001, China
| | - Zhibin Niu
- Department of Pediatrics, Shengjing Hospital of China Medical UniversityShenyang 110004, China
| | - Hong Jiang
- Department of Pediatrics, The First Affiliated Hospital of China Medical UniversityShenyang 110001, China
| | - Yunpeng Li
- Department of Orthopedics, Shengjing Hospital of China Medical UniversityShenyang 110004, China
| | - Yaoguo Huang
- Department of Pediatrics, The First Affiliated Hospital of China Medical UniversityShenyang 110001, China
| | - Kailai Sun
- Department of Medical Genetics, China Medical UniversityShenyang 110001, China
| |
Collapse
|
7
|
Prabodha LBL, Dias DK, Nanayakkara BG, de Silva DC, Chandrasekharan NV, Ileyperuma I. Evaluation of 22q11.2 deletion in Cleft Palate patients. Ann Maxillofac Surg 2012; 2:121-6. [PMID: 23483617 PMCID: PMC3591068 DOI: 10.4103/2231-0746.101334] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Cleft palate is the commonest multifactorial epigenetic disorder with a prevalence of 0.43-2.45 per 1000. The objectives of this study were to evaluate the clinical features and identify the 22q11.2 deletion in patients with cleft palate in Sri Lanka. MATERIALS AND METHODS Cleft patients attending a Teaching Hospital in Sri Lanka were recruited for this study. The relevant data were obtained from review of case notes, interviews, and examination of patients according to a standard evaluation sheet. Quantitative multiplex polymerase chain reaction (PCR) was performed to identify the 22q11.2 deletion. A gel documentation system (Bio-Doc) was used to quantify the PCR product following electrophoresis on 0.8% agarose gel. RESULTS AND CONCLUSION There were 162 cleft palate patients of whom 59% were females. A total of 92 cleft palate subjects (56.2%) had other associated clinical features. Dysmorphic features (25.27%) and developmental delays (25.27%) were the commonest medical problems encountered. The cleft was limited to the soft palate in 125 patients, while in 25 patients it involved both the hard and the soft palate. There were seven subjects with bifid uvula and five subjects with submucous cleft palate. None of the patients had 22q11.2 deletion in this study population. A multicentered large population-based study is needed to confirm the results of this study and to develop guidelines on the appropriate use of 22q11.2 deletion testing, which are valid for cleft palate patients in Sri Lanka.
Collapse
Affiliation(s)
- L. B. Lahiru Prabodha
- Molecular Genetics Laboratory, Department of Anatomy, Faculty of Medicine, University of Ruhuna, Galle, Sri Lanka
| | - Dayanath Kumara Dias
- Regional Cleft Centre & Maxillo-Facial Department, Teaching Hospital, Karapitiya, Galle, Sri Lanka
| | - B. Ganananda Nanayakkara
- Molecular Genetics Laboratory, Department of Anatomy, Faculty of Medicine, University of Ruhuna, Galle, Sri Lanka
| | | | | | - Isurani Ileyperuma
- Molecular Genetics Laboratory, Department of Anatomy, Faculty of Medicine, University of Ruhuna, Galle, Sri Lanka
| |
Collapse
|
8
|
Anilkumar A, Kappanayil M, Thampi MV, Nampoothiri S, Sundaram KR, Vasudevan DM. Variation in prevalence of chromosome 22q11 deletion in subtypes of conotruncal defect in 254 children. Acta Paediatr 2011; 100:e97-100. [PMID: 21418101 DOI: 10.1111/j.1651-2227.2011.02271.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AIM To determine the frequency of chromosomal aberrations particularly 22q11 deletion in Indian children ≤2 years with different types of conotruncal malformations and their association with abnormal aortic arch. Additionally, extracardiac features were also studied. METHODS Conventional cytogenetic and fluorescence in situ hybridization analyses were performed in 254 patients with conotruncal defects. Multivariable logistic regression analysis was performed to ascertain extracardiac features helpful in identifying high-risk patients with deletion. RESULTS Chromosomal abnormalities were identified in 52 (21%) children, of whom 49 (94%) showed 22q11 deletion and 3 (6%) had abnormalities of chromosome 6, 2 and X. None of the 11/254 children with tetralogy of Fallot with absent pulmonary valve showed deletion. The association of 22q11 deletion with right sidedness of the aortic arch varied with the type of conotruncal defect. The eight extracardiac features in combination showed 93.5% agreement with the presence of deletion. CONCLUSION The extracardiac features along with specific type of conotruncal defect and associated cardiovascular anomaly should alert the clinician for 22q11 deletion testing. However, if deletion analysis is not possible, specific extracardiac features (six dysmorphic facial features, thin long fingers and hypocalcemia) can help to identify an increased risk of 22q11 deletion in patients with conotruncal defect.
Collapse
Affiliation(s)
- A Anilkumar
- Department of Human Cytogenetics, Amrita Institute of Medical Sciences and Research Centre, Kochi, India.
| | | | | | | | | | | |
Collapse
|
9
|
Lachapelle MY, Drouin G. Inactivation dates of the human and guinea pig vitamin C genes. Genetica 2010; 139:199-207. [PMID: 21140195 DOI: 10.1007/s10709-010-9537-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Accepted: 11/26/2010] [Indexed: 11/30/2022]
Abstract
The capacity to biosynthesize ascorbic acid has been lost in a number of species including primates, guinea pigs, teleost fishes, bats, and birds. This inability results from mutations in the GLO gene coding for L-gulono-γ-lactone oxidase, the enzyme responsible for catalyzing the last step in the vitamin C biosynthetic pathway. We analyzed available primate and rodent GLO gene sequences to determine their evolutionary history. We used a method based on sequence comparisons of lineages with and without functional GLO genes to calculate inactivation dates of 61 and 14 MYA for the primate and guinea pig genes, respectively. These estimates are consistent with previous phylogeny-based estimates. An analysis of transposable element distribution in the primate and rodent GLO sequences did not reveal conclusive evidence that illegitimate recombination between repeats has contributed to the loss of exons in the primate and guinea pig genes.
Collapse
Affiliation(s)
- Marc Y Lachapelle
- Département de biologie et Centre de recherche avancée en génomique environnementale, Université d'Ottawa, 30 Marie Curie, Ottawa, Ontario, Canada
| | | |
Collapse
|
10
|
Tan TY, Gordon CT, Amor DJ, Farlie PG. Developmental perspectives on copy number abnormalities of the 22q11.2 region. Clin Genet 2010; 78:201-18. [DOI: 10.1111/j.1399-0004.2010.01456.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
11
|
Sørensen KM, Agergaard P, Olesen C, Andersen PS, Larsen LA, Ostergaard JR, Schouten JP, Christiansen M. Detecting 22q11.2 deletions by use of multiplex ligation-dependent probe amplification on DNA from neonatal dried blood spot samples. J Mol Diagn 2010; 12:147-51. [PMID: 20075206 DOI: 10.2353/jmoldx.2010.090099] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The 22q11 deletion syndrome, which is caused by a 1.5- to 3.0-megabase hemizygous deletion in chromosome 22q11.2, has a prevalence of 1/2000 to 1/4000. However, the syndrome presents with highly variable phenotypes and thus may be underestimated among Danish newborns. To establish a true incidence of 22q11.2 deletions among certain manifestations, eg, congenital heart disease, on selected Danes, a multiplex ligation-dependant probe amplification (MLPA) analysis was designed. The analysis was planned to be performed on DNA extracted from dried blood spot samples (DBSS) obtained from Guthrie cards collected during neonatal screening programs. However, the DNA concentration necessary for a standard MLPA analysis (20 ng) could not be attained from DBSS, and a novel MLPA design was developed to permit for analysis on limited amounts of DNA (2 ng). A pilot study is reported here that validates the new MLPA design using nine patients diagnosed with the 22q11.2 deletion and 101 controls. All deletions were identified using DNA extracted from DBSS, and no copy number variations were detected in the controls, resulting in a specificity and sensitivity of 100%. It is thereby concluded that the novel MLPA probe design is successful and reliable using minimal amounts of DNA. This allows for use of DBSS samples in a retrospective study of 22q11.2 deletion among certain manifestations associated with DiGeorge Syndrome.
Collapse
Affiliation(s)
- Karina M Sørensen
- Department of Clinical Biochemistry and Immunology 85/232, Statens Serum Institut, Artillerivej 5, 2300 Kbh. S, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
A deletion and a duplication in distal 22q11.2 deletion syndrome region. Clinical implications and review. BMC MEDICAL GENETICS 2009; 10:48. [PMID: 19490635 PMCID: PMC2700091 DOI: 10.1186/1471-2350-10-48] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Accepted: 06/02/2009] [Indexed: 12/31/2022]
Abstract
Background Individuals affected with DiGeorge and Velocardiofacial syndromes present with both phenotypic diversity and variable expressivity. The most frequent clinical features include conotruncal congenital heart defects, velopharyngeal insufficiency, hypocalcemia and a characteristic craniofacial dysmorphism. The etiology in most patients is a 3 Mb recurrent deletion in region 22q11.2. However, cases of infrequent deletions and duplications with different sizes and locations have also been reported, generally with a milder, slightly different phenotype for duplications but with no clear genotype-phenotype correlation to date. Methods We present a 7 month-old male patient with surgically corrected ASD and multiple VSDs, and dysmorphic facial features not clearly suggestive of 22q11.2 deletion syndrome, and a newborn male infant with cleft lip and palate and upslanting palpebral fissures. Karyotype, FISH, MLPA, microsatellite markers segregation studies and SNP genotyping by array-CGH were performed in both patients and parents. Results Karyotype and FISH with probe N25 were normal for both patients. MLPA analysis detected a partial de novo 1.1 Mb deletion in one patient and a novel partial familial 0.4 Mb duplication in the other. Both of these alterations were located at a distal position within the commonly deleted region in 22q11.2. These rearrangements were confirmed and accurately characterized by microsatellite marker segregation studies and SNP array genotyping. Conclusion The phenotypic diversity found for deletions and duplications supports a lack of genotype-phenotype correlation in the vicinity of the LCRC-LCRD interval of the 22q11.2 chromosomal region, whereas the high presence of duplications in normal individuals supports their role as polymorphisms. We suggest that any hypothetical correlation between the clinical phenotype and the size and location of these alterations may be masked by other genetic and/or epigenetic modifying factors.
Collapse
|
13
|
Beaujard MP, Chantot S, Dubois M, Keren B, Carpentier W, Mabboux P, Whalen S, Vodovar M, Siffroi JP, Portnoï MF. Atypical deletion of 22q11.2: detection using the FISH TBX1 probe and molecular characterization with high-density SNP arrays. Eur J Med Genet 2009; 52:321-7. [PMID: 19467348 DOI: 10.1016/j.ejmg.2009.05.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Accepted: 05/09/2009] [Indexed: 12/24/2022]
Abstract
Despite the heterogeneous clinical presentations, the majority of patients with 22q11.2 deletion syndrome (22q11.2 DS) have either a common recurrent 3 Mb deletion or a less common, 1.5 Mb nested deletion, with breakpoint sites in flanking low-copy repeats (LCR) sequences. Only a small number of atypical deletions have been reported and precisely defined. Haploinsufficiency of the TBX1 gene was determined to be the likely cause of 22q11.2 DS. The diagnostic procedure usually used is FISH using commercially probes (N25 or TUPLE1). However, this test does not contain TBX1, and fails to detect deletions that are either proximal or distal to the FISH probes. Here, we report on two patients with clinical features suggestive of 22q11.2 DS, a male infant with facial dysmorphia, pulmonary atresia, ventricular septal defect, neonatal hypocalcemia, and his affected mother, with facial dysmorphia, learning disabilities, and hypernasal speech. They were tested negative for 22q11.2 DS using N25 or TUPLE1 probes, but were shown deleted for a probe containing TBX1. Delineation of the deletion was performed using high-density SNP arrays (Illumina, 370K). This atypical deletion was spanning 1.89 Mb. The distal breakpoint resided in LCR-D, sharing the same distal breakpoint with the 3 Mb common deletion. The proximal breakpoint was located 105 kb telomeric to TUPLE1, representing a new breakpoint variant that does not correspond to known LCRs of 22q11.2. We conclude that FISH with the TBX1 probe is an accurate diagnostic tool for 22q11.2 DS, with a higher sensitivity than FISH using standard probes, detecting all but the rarest deletions, greatly reducing the false negative rate.
Collapse
|
14
|
Yang C, Huang CH, Cheong ML, Hung KL, Lin LH, Yu YS, Chien CC, Huang HC, Chen CW, Huang CJ. Unambiguous molecular detections with multiple genetic approach for the complicated chromosome 22q11 deletion syndrome. BMC MEDICAL GENETICS 2009; 10:16. [PMID: 19243607 PMCID: PMC2656481 DOI: 10.1186/1471-2350-10-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2008] [Accepted: 02/25/2009] [Indexed: 12/24/2022]
Abstract
Background Chromosome 22q11 deletion syndrome (22q11DS) causes a developmental disorder during the embryonic stage, usually because of hemizygous deletions. The clinical pictures of patients with 22q11DS vary because of polymorphisms: on average, approximately 93% of affected individuals have a de novo deletion of 22q11, and the rest have inherited the same deletion from a parent. Methods using multiple genetic markers are thus important for the accurate detection of these microdeletions. Methods We studied 12 babies suspected to carry 22q11DS and 18 age-matched healthy controls from unrelated Taiwanese families. We determined genomic variance using microarray-based comparative genomic hybridization (array-CGH), quantitative real-time polymerase chain reaction (qPCR) and multiplex ligation-dependent probe amplification (MLPA). Results Changes in genomic copy number were significantly associated with clinical manifestations for the classical criteria of 22q11DS using MPLA and qPCR (p < 0.01). An identical deletion was shown in three affected infants by MLPA. These reduced DNA dosages were also obtained partially using array-CGH and confirmed by qPCR but with some differences in deletion size. Conclusion Both MLPA and qPCR could produce a clearly defined range of deleted genomic DNA, whereas there must be a deleted genome that is not distinguishable using MLPA. These data demonstrate that such multiple genetic approaches are necessary for the unambiguous molecular detection of these types of complicated genomic syndromes.
Collapse
Affiliation(s)
- Chen Yang
- Division of Genetics, Department of Pediatrics, Taipei Medical University Hospital, Taipei 11031, Taiwan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Mochizuki J, Saitsu H, Mizuguchi T, Nishimura A, Visser R, Kurotaki N, Miyake N, Unno N, Matsumoto N. Alu-related 5q35 microdeletions in Sotos syndrome. Clin Genet 2008; 74:384-91. [DOI: 10.1111/j.1399-0004.2008.01032.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
16
|
Atypical 22q11.2 deletion in a patient with DGS/VCFS spectrum. Eur J Med Genet 2008; 51:226-30. [PMID: 18342595 DOI: 10.1016/j.ejmg.2008.02.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2007] [Accepted: 02/04/2008] [Indexed: 11/21/2022]
Abstract
Deletions in region 22q11.2 usually occur between two low copy repeat regions (LCRs), which are preferred chromosome sites for rearrangements. Most of the deletions encompass the same approximately 3 or approximately 1.5 Mb region, with breakpoints at LCR A and D or at LCR A and B, respectively. We report on a patient with clinical features of the 22q deletion syndrome who presents a novel, atypical deletion, smaller than 1.5 Mb, with distal breakpoint in LCR B and proximal breakpoint within no known LCR site.
Collapse
|
17
|
Steinmann K, Cooper DN, Kluwe L, Chuzhanova NA, Senger C, Serra E, Lazaro C, Gilaberte M, Wimmer K, Mautner VF, Kehrer-Sawatzki H. Type 2 NF1 deletions are highly unusual by virtue of the absence of nonallelic homologous recombination hotspots and an apparent preference for female mitotic recombination. Am J Hum Genet 2007; 81:1201-20. [PMID: 17999360 PMCID: PMC2276354 DOI: 10.1086/522089] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2007] [Accepted: 08/03/2007] [Indexed: 11/03/2022] Open
Abstract
Approximately 5% of patients with neurofibromatosis type 1 (NF1) exhibit gross deletions that encompass the NF1 gene and its flanking regions. The breakpoints of the common 1.4-Mb (type 1) deletions are located within low-copy repeats (NF1-REPs) and cluster within a 3.4-kb hotspot of nonallelic homologous recombination (NAHR). Here, we present the first comprehensive breakpoint analysis of type 2 deletions, which are a second type of recurring NF1 gene deletion. Type 2 deletions span 1.2 Mb and are characterized by breakpoints located within the SUZ12 gene and its pseudogene, which closely flank the NF1-REPs. Breakpoint analysis of 13 independent type 2 deletions did not reveal any obvious hotspots of NAHR. However, an overrepresentation of polypyrimidine/polypurine tracts and triplex-forming sequences was noted in the breakpoint regions that could have facilitated NAHR. Intriguingly, all 13 type 2 deletions identified so far are characterized by somatic mosaicism, which indicates a positional preference for mitotic NAHR within the NF1 gene region. Indeed, whereas interchromosomal meiotic NAHR occurs between the NF1-REPs giving rise to type 1 deletions, NAHR during mitosis appears to occur intrachromosomally between the SUZ12 gene and its pseudogene, thereby generating type 2 deletions. Such a clear distinction between the preferred sites of mitotic versus meiotic NAHR is unprecedented in any other genomic disorder induced by the local genomic architecture. Additionally, 12 of the 13 mosaic type 2 deletions were found in females. The marked female preponderance among mosaic type 2 deletions contrasts with the equal sex distribution noted for type 1 and/or atypical NF1 deletions. Although an influence of chromatin structure was strongly suspected, no sex-specific differences in the methylation pattern exhibited by the SUZ12 gene were apparent that could explain the higher rate of mitotic recombination in females.
Collapse
|
18
|
Boehm D, Bacher J, Neumann HPH. Gross genomic rearrangement involving the TSC2-PKD1 contiguous deletion syndrome: characterization of the deletion event by quantitative polymerase chain reaction deletion assay. Am J Kidney Dis 2007; 49:e11-21. [PMID: 17185137 DOI: 10.1053/j.ajkd.2006.10.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2006] [Accepted: 10/12/2006] [Indexed: 02/01/2023]
Abstract
Tuberous sclerosis complex (TSC) was instrumented for identification of the gene causing autosomal dominant polycystic kidney disease type 1 (PKD1) because a patient showing both diseases gave rise to the suggestion that the TSC2 gene is located in close vicinity on chromosome 16p13. However, distinct molecular genetic characterization of such patients is sparse in the literature. A 41-year-old woman was admitted because of chylous ascites and pleural effusions. She was on hemodialysis therapy for 6 years because of end-stage renal failure from PKD. Both kidneys had been removed at ages 35 and 36 years. Histologically, both specimens also showed multiple angioleiomyolipoma. Mild, but classic, lesions of the TSC complex were present on her face and hands and in the central nervous system. The genetic defect was identified by using quantitative real-time polymerase chain reaction (qPCR), long-range PCR (LR-PCR), and sequencing. qPCR confirmed the existence of a TSC2-PKD1 contiguous gene deletion spanning the entire TSC2 and PKD1 genes. Additional analysis showed expansion of the deletion affecting the adjacent downstream-located genes RAB26 and TRAF7, as well as the great majority of CASKIN1. LR-PCR and sequencing identified flanking simple tandem repeats. A nonhomologous misalignment mechanism has driven the recombination, most likely by replication slippage between a 3-bp homology (ATG) at the breakpoint regions. Our results confirm that patients with both TSC and PKD have a genetically contiguous gene syndrome with hemizygous deletion of the TSC2 and PKD1 genes. Despite this maximal genetic defect, the typical signs of TSC, mental retardation and seizures, can be absent.
Collapse
Affiliation(s)
- Detlef Boehm
- Department of Nephrology and Hypertension Medicine, Medical Clinic, Albert-Ludwig-University, Freiburg, Germany
| | | | | |
Collapse
|
19
|
Stachon AC, Baskin B, Smith AC, Shugar A, Cytrynbaum C, Fishman L, Mendoza-Londono R, Klatt R, Teebi A, Ray PN, Weksberg R. Molecular diagnosis of 22q11.2 deletion and duplication by multiplex ligation dependent probe amplification. Am J Med Genet A 2007; 143A:2924-30. [DOI: 10.1002/ajmg.a.32101] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
20
|
Lee JA, Lupski JR. Genomic rearrangements and gene copy-number alterations as a cause of nervous system disorders. Neuron 2006; 52:103-21. [PMID: 17015230 DOI: 10.1016/j.neuron.2006.09.027] [Citation(s) in RCA: 199] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Genomic disorders are a group of human genetic diseases caused by genomic rearrangements resulting in copy-number variation (CNV) affecting a dosage-sensitive gene or genes critical for normal development or maintenance. These disorders represent a wide range of clinically distinct entities but include many diseases affecting nervous system function. Herein, we review selected neurodevelopmental, neurodegenerative, and psychiatric disorders either known or suggested to be caused by genomic rearrangement and CNV. Further, we emphasize the cause-and-effect relationship between gene CNV and complex disease traits. We also discuss the prevalence and heritability of CNV, the correlation between CNV and higher-order genome architecture, and the heritability of personality, behavioral, and psychiatric traits. We speculate that CNV could underlie a significant proportion of normal human variation including differences in cognitive, behavioral, and psychological features.
Collapse
Affiliation(s)
- Jennifer A Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
| | | |
Collapse
|
21
|
Eller CD, Regelson M, Merriman B, Nelson S, Horvath S, Marahrens Y. Repetitive sequence environment distinguishes housekeeping genes. Gene 2006; 390:153-65. [PMID: 17141428 PMCID: PMC1857324 DOI: 10.1016/j.gene.2006.09.018] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2006] [Revised: 09/18/2006] [Accepted: 09/24/2006] [Indexed: 12/14/2022]
Abstract
Housekeeping genes are expressed across a wide variety of tissues. Since repetitive sequences have been reported to influence the expression of individual genes, we employed a novel approach to determine whether housekeeping genes can be distinguished from tissue-specific genes by their repetitive sequence context. We show that Alu elements are more highly concentrated around housekeeping genes while various longer (>400-bp) repetitive sequences ("repeats"), including Long Interspersed Nuclear Element-1 (LINE-1) elements, are excluded from these regions. We further show that isochore membership does not distinguish housekeeping genes from tissue-specific genes and that repetitive sequence environment distinguishes housekeeping genes from tissue-specific genes in every isochore. The distinct repetitive sequence environment, in combination with other previously published sequence properties of housekeeping genes, was used to develop a method of predicting housekeeping genes on the basis of DNA sequence alone. Using expression across tissue types as a measure of success, we demonstrate that repetitive sequence environment is by far the most important sequence feature identified to date for distinguishing housekeeping genes.
Collapse
Affiliation(s)
- C. Daniel Eller
- UCLA Department of Human Genetics David Geffen School of Medicine, Gonda Center, 695 E. Young Drive South, Los Angeles, California 90095-7088, USA
| | - Moira Regelson
- UCLA Department of Human Genetics David Geffen School of Medicine, Gonda Center, 695 E. Young Drive South, Los Angeles, California 90095-7088, USA
| | - Barry Merriman
- UCLA Department of Human Genetics David Geffen School of Medicine, Gonda Center, 695 E. Young Drive South, Los Angeles, California 90095-7088, USA
| | - Stan Nelson
- UCLA Department of Human Genetics David Geffen School of Medicine, Gonda Center, 695 E. Young Drive South, Los Angeles, California 90095-7088, USA
| | - Steve Horvath
- UCLA Department of Human Genetics David Geffen School of Medicine, Gonda Center, 695 E. Young Drive South, Los Angeles, California 90095-7088, USA
- UCLA Department of Biostatistics, School of Public Health, Box 951772, Los Angeles, California 90095-1772, USA
| | - York Marahrens
- UCLA Department of Human Genetics David Geffen School of Medicine, Gonda Center, 695 E. Young Drive South, Los Angeles, California 90095-7088, USA
- * to whom correspondence should be addressed: York Marahrens, UCLA Department of Human Genetics, Gonda Center, Room 4554b, 695 Charles E. Young Drive, Los Angeles, CA 90095, USA, Phone: (310) 267-2466, Fax: (310) 794-5446, E-mail:
| |
Collapse
|