1
|
Devraj K, Kulkarni O, Liebner S. Regulation of the blood-brain barrier function by peripheral cues in health and disease. Metab Brain Dis 2024; 40:61. [PMID: 39671124 PMCID: PMC11645320 DOI: 10.1007/s11011-024-01468-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 09/12/2024] [Indexed: 12/14/2024]
Abstract
The blood-brain barrier (BBB) is formed by microvascular endothelial cells which are ensembled with pericytes, astrocytes, microglia and neurons in the neurovascular unit (NVU) that is crucial for neuronal function. Given that the NVU and the BBB are highly dynamic and regulated structures, their integrity is continuously challenged by intrinsic and extrinsic factors. Herein, factors from peripheral organs such as gonadal and adrenal hormones may influence vascular function also in CNS endothelial cells in a sex- and age-dependent manner. The communication between the periphery and the CNS likely takes place in specific areas of the brain among which the circumventricular organs have a central position due to their neurosensory or neurosecretory function, owing to physiologically leaky blood vessels. In acute and chronic pathological conditions like liver, kidney, pulmonary disease, toxins and metabolites are generated that reach the brain via the circulation and may directly or indirectly affect BBB functionality via the activation of the immunes system. For example, chronic kidney disease (CKD) currently affects more than 840 million people worldwide and is likely to increase along with western world comorbidities of the cardio-vascular system in continuously ageing societies. Toxins leading to the uremic syndrome, may further lead to neurological complications such as cognitive impairment and uremic encephalopathy. Here we summarize the effects of hormones, toxins and inflammatory reactions on the brain vasculature, highlighting the urgent demand for mechanistically exploring the communication between the periphery and the CNS, focusing on the BBB as a last line of defense for brain protection.
Collapse
Affiliation(s)
- Kavi Devraj
- Department of Biological Sciences, Birla Institute of Technology & Science, Pilani, Hyderabad, 500078, Telangana, India.
| | - Onkar Kulkarni
- Metabolic Disorders and Neuroscience Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science, Pilani, Hyderabad, 500078, Telangana, India
| | - Stefan Liebner
- Institute of Neurology (Edinger Institute), University Hospital, Goethe University Frankfurt, Frankfurt am Main, Germany.
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Partner Site Frankfurt, Frankfurt am Main, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site Frankfurt/Mainz, Frankfurt, Germany.
| |
Collapse
|
2
|
Pan ZY, Liu HQ, Zhuang YP, Tan HB, Yang XY, Zhong HJ, He XX. Reduced type 3 innate lymphoid cells related to worsening kidney function in renal dysfunction. Exp Biol Med (Maywood) 2023; 248:242-252. [PMID: 36670544 PMCID: PMC10107398 DOI: 10.1177/15353702221147561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 11/22/2022] [Indexed: 01/22/2023] Open
Abstract
Intestinal mucosa barrier injury and immunity imbalance contribute to chronic kidney disease (CKD) progression. Type 3 innate lymphoid cells (ILC3s) are essential for normal intestinal homeostasis. Nevertheless, the relationship between ILC3s and CKD remains largely unknown. The aim of this study was to investigate the relationship linking ILC3s to clinical indicators among patients with renal dysfunction. The levels of circulating ILC3s and dendritic cells, as well as their subsets, in patients with renal dysfunction and healthy controls were determined through flow cytometry. The levels of human plasma granulocyte-macrophage colony-stimulating factor (GM-CSF) were measured using enzyme-linked immunosorbent assay. Renal function was evaluated by measuring the estimated glomerular filtration rate (eGFR), as well as the levels of serum creatinine, blood urea nitrogen (BUN), and uric acid. The results revealed that the proportion of peripheral ILC3s was significantly decreased in patients with renal dysfunction. This reduction was positively associated with the levels of eGFR, and inversely associated with the levels of BUN and uric acid. Similarly, the percentage of circulating C-C motif chemokine receptor 6-positive (CCR6 +) ILC3s was also obviously reduced, and demonstrated positive and negative associations with the levels of eGFR and BUN, respectively. Furthermore, the levels of CCR6 + ILC3s correlated positively with those of GM-CSF, as well as type 1 conventional dendritic cells (cDC1s), which also decreased in parallel with kidney function. Thus, the reduction of ILC3s, particularly CCR6 + ILC3s, was related to worsening kidney function in patients with renal dysfunction. This effect may delay renal function impairment by regulating cDC1s via the secretion of GM-CSF, indicating that CCR6 + ILC3s may serve as efficient biomarkers for evaluating kidney function.
Collapse
Affiliation(s)
- Zhao-Yu Pan
- Department of Gastroenterology, The
First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080,
China
| | - Hong-Qian Liu
- Department of Gastroenterology, The
First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080,
China
| | - Yu-Pei Zhuang
- Department of Gastroenterology, The
First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080,
China
- The First Clinical Medical College,
Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Hai-Bo Tan
- Shenzhen Traditional Chinese Medicine
Hospital Affiliated to Nanjing University of Chinese Medicine, Shenzhen 518033,
China
| | - Xiao-Ya Yang
- Department of Physiology, Guangzhou
Health Science College, Guangzhou 510450, China
| | - Hao-Jie Zhong
- Department of Gastroenterology, The
First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080,
China
- School of Biology and Biological
Engineering, South China University of Technology, Guangzhou 510080, China
| | - Xing-Xiang He
- Department of Gastroenterology, The
First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080,
China
- Xing-Xiang He.
| |
Collapse
|
3
|
In Silico Prediction of Hub Genes Involved in Diabetic Kidney and COVID-19 Related Disease by Differential Gene Expression and Interactome Analysis. Genes (Basel) 2022; 13:genes13122412. [PMID: 36553678 PMCID: PMC9778100 DOI: 10.3390/genes13122412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
Diabetic kidney disease (DKD) is a frequently chronic kidney pathology derived from diabetes comorbidity. This condition has irreversible damage and its risk factor increases with SARS-CoV-2 infection. The prognostic outcome for diabetic patients with COVID-19 is dismal, even with intensive medical treatment. However, there is still scarce information on critical genes involved in the pathophysiological impact of COVID-19 on DKD. Herein, we characterize differential expression gene (DEG) profiles and determine hub genes undergoing transcriptional reprogramming in both disease conditions. Out of 995 DEGs, we identified 42 shared with COVID-19 pathways. Enrichment analysis elucidated that they are significantly induced with implications for immune and inflammatory responses. By performing a protein-protein interaction (PPI) network and applying topological methods, we determine the following five hub genes: STAT1, IRF7, ISG15, MX1 and OAS1. Then, by network deconvolution, we determine their co-expressed gene modules. Moreover, we validate the conservancy of their upregulation using the Coronascape database (DB). Finally, tissue-specific regulation of the five predictive hub genes indicates that OAS1 and MX1 expression levels are lower in healthy kidney tissue. Altogether, our results suggest that these genes could play an essential role in developing severe outcomes of COVID-19 in DKD patients.
Collapse
|
4
|
Fragkou PC, Moschopoulos CD, Reiter R, Berger T, Skevaki C. Host immune responses and possible therapeutic targets for viral respiratory tract infections in susceptible populations: a narrative review. Clin Microbiol Infect 2022; 28:1328-1334. [DOI: 10.1016/j.cmi.2022.03.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/23/2021] [Accepted: 12/26/2021] [Indexed: 12/11/2022]
|
5
|
Myeloid leukocytes' diverse effects on cardiovascular and systemic inflammation in chronic kidney disease. Basic Res Cardiol 2022; 117:38. [PMID: 35896846 PMCID: PMC9329413 DOI: 10.1007/s00395-022-00945-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/24/2022] [Accepted: 07/11/2022] [Indexed: 01/31/2023]
Abstract
Chronic kidney disease's prevalence rises globally. Whereas dialysis treatment replaces the kidney's filtering function and prolongs life, dreaded consequences in remote organs develop inevitably over time. Even milder reductions in kidney function not requiring replacement therapy associate with bacterial infections, cardiovascular and heart valve disease, which markedly limit prognosis in these patients. The array of complications is diverse and engages a wide gamut of cellular and molecular mechanisms. The innate immune system is profoundly and systemically altered in chronic kidney disease and, as a unifying element, partakes in many of the disease's complications. As such, a derailed immune system fuels cardiovascular disease progression but also elevates the propensity for serious bacterial infections. Recent data further point towards a role in developing calcific aortic valve stenosis. Here, we delineate the current state of knowledge on how chronic kidney disease affects innate immunity in cardiovascular organs and on a systemic level. We review the role of circulating myeloid cells, monocytes and neutrophils, resident macrophages, dendritic cells, ligands, and cellular pathways that are activated or suppressed when renal function is chronically impaired. Finally, we discuss myeloid cells' varying responses to uremia from a systems immunology perspective.
Collapse
|
6
|
Chen Q, Sun T, Jiang C. Recent Advancements in Nanomedicine for 'Cold' Tumor Immunotherapy. NANO-MICRO LETTERS 2021; 13:92. [PMID: 34138315 PMCID: PMC8006526 DOI: 10.1007/s40820-021-00622-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 01/31/2021] [Indexed: 05/02/2023]
Abstract
Although current anticancer immunotherapies using immune checkpoint inhibitors (ICIs) have been reported with a high clinical success rate, numerous patients still bear 'cold' tumors with insufficient T cell infiltration and low immunogenicity, responding poorly to ICI therapy. Considering the advancements in precision medicine, in-depth mechanism studies on the tumor immune microenvironment (TIME) among cold tumors are required to improve the treatment for these patients. Nanomedicine has emerged as a promising drug delivery system in anticancer immunotherapy, activates immune function, modulates the TIME, and has been applied in combination with other anticancer therapeutic strategies. This review initially summarizes the mechanisms underlying immunosuppressive TIME in cold tumors and addresses the recent advancements in nanotechnology for cold TIME reversal-based therapies, as well as a brief talk about the feasibility of clinical translation.
Collapse
Affiliation(s)
- Qinjun Chen
- Key Laboratory of Smart Drug Delivery (Ministry of Education), State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Pharmaceutics, and School of Pharmacy, Research Center on Aging and Medicine, Fudan University, Shanghai, 201203, People's Republic of China
| | - Tao Sun
- Key Laboratory of Smart Drug Delivery (Ministry of Education), State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Pharmaceutics, and School of Pharmacy, Research Center on Aging and Medicine, Fudan University, Shanghai, 201203, People's Republic of China
| | - Chen Jiang
- Key Laboratory of Smart Drug Delivery (Ministry of Education), State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Pharmaceutics, and School of Pharmacy, Research Center on Aging and Medicine, Fudan University, Shanghai, 201203, People's Republic of China.
| |
Collapse
|
7
|
Espi M, Koppe L, Fouque D, Thaunat O. Chronic Kidney Disease-Associated Immune Dysfunctions: Impact of Protein-Bound Uremic Retention Solutes on Immune Cells. Toxins (Basel) 2020; 12:toxins12050300. [PMID: 32384617 PMCID: PMC7291164 DOI: 10.3390/toxins12050300] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/28/2020] [Accepted: 04/30/2020] [Indexed: 12/19/2022] Open
Abstract
Regardless of the primary disease responsible for kidney failure, patients suffering from chronic kidney disease (CKD) have in common multiple impairments of both the innate and adaptive immune systems, the pathophysiology of which has long remained enigmatic. CKD-associated immune dysfunction includes chronic low-grade activation of monocytes and neutrophils, which induces endothelial damage and increases cardiovascular risk. Although innate immune effectors are activated during CKD, their anti-bacterial capacity is impaired, leading to increased susceptibility to extracellular bacterial infections. Finally, CKD patients are also characterized by profound alterations of cellular and humoral adaptive immune responses, which account for an increased risk for malignancies and viral infections. This review summarizes the recent emerging data that link the pathophysiology of CKD-associated immune dysfunctions with the accumulation of microbiota-derived metabolites, including indoxyl sulfate and p-cresyl sulfate, the two best characterized protein-bound uremic retention solutes.
Collapse
Affiliation(s)
- Maxime Espi
- Service de Transplantation, Néphrologie et Immunologie Clinique, Hôpital Edouard Herriot, Hospices Civils de Lyon, 69000 Lyon, France;
- CIRI, INSERM U1111, Université Claude Bernard Lyon I, CNRS UMR5308, Ecole Normale Supérieure de Lyon, 69000 Lyon, France
| | - Laetitia Koppe
- Département de Néphrologie-Dialyse-Nutrition, Centre Hôpital Lyon Sud, Hospices Civils de Lyon, 69310 Pierre Bénite, France; (L.K.); (D.F.)
- CarMeN, INSERM U1060, INRA 1397, 69310 Pierre-Bénite, France
- Lyon-Sud Medical Faculty, Université de Lyon, 69000 Lyon, France
| | - Denis Fouque
- Département de Néphrologie-Dialyse-Nutrition, Centre Hôpital Lyon Sud, Hospices Civils de Lyon, 69310 Pierre Bénite, France; (L.K.); (D.F.)
- CarMeN, INSERM U1060, INRA 1397, 69310 Pierre-Bénite, France
- Lyon-Sud Medical Faculty, Université de Lyon, 69000 Lyon, France
| | - Olivier Thaunat
- Service de Transplantation, Néphrologie et Immunologie Clinique, Hôpital Edouard Herriot, Hospices Civils de Lyon, 69000 Lyon, France;
- CIRI, INSERM U1111, Université Claude Bernard Lyon I, CNRS UMR5308, Ecole Normale Supérieure de Lyon, 69000 Lyon, France
- Lyon-Est Medical Faculty, Université de Lyon, 69000 Lyon, France
- Correspondence:
| |
Collapse
|
8
|
Kim JU, Kim M, Kim S, Nguyen TT, Kim E, Lee S, Kim S, Kim H. Dendritic Cell Dysfunction in Patients with End-stage Renal Disease. Immune Netw 2017; 17:152-162. [PMID: 28680376 PMCID: PMC5484645 DOI: 10.4110/in.2017.17.3.152] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 04/06/2017] [Accepted: 04/10/2017] [Indexed: 02/07/2023] Open
Abstract
End-stage renal disease (ESRD) with immune disorder involves complex interactions between the innate and adaptive immune responses. ESRD is associated with various alterations in immune function such as a reduction in polymorphonuclear leukocyte bactericidal activity, a suppression of lymphocyte proliferative response to stimuli, and a malfunction of cell-mediated immunity at the molecular level. ESRD also increases patients' propensity for infections and malignancies as well as causing a diminished response to vaccination. Several factors influence the immunodeficiency in patients with ESRD, including uremic toxins, malnutrition, chronic inflammation, and the therapeutic dialysis modality. The alteration of T-cell function in ESRD has been considered to be a major factor underlying the impaired adaptive cellular immunity in these patients. However, cumulative evidence has suggested that the immune defect in ESRD can be caused by an Ag-presenting dendritic cell (DC) dysfunction in addition to a T-cell defect. It has been reported that ESRD has a deleterious effect on DCs both in terms of their number and function, although the precise mechanism by which DC function becomes altered in these patients is unclear. In this review, we discuss the effects of ESRD on the number and function of DCs and propose a possible molecular mechanism for DC dysfunction. We also address therapeutic approaches to improve immune function by optimally activating DCs in patients with ESRD.
Collapse
Affiliation(s)
- Ji Ung Kim
- Division of Nephrology, Department of Internal Medicine, Jeju National University Hospital, Jeju National University School of Medicine, Jeju 63241, Korea
| | - Miyeon Kim
- Division of Nephrology, Department of Internal Medicine, Jeju National University Hospital, Jeju National University School of Medicine, Jeju 63241, Korea
| | - Sinae Kim
- Laboratory of Cytokine Immunology, Department of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea.,College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea
| | - Tam Thanh Nguyen
- Laboratory of Cytokine Immunology, Department of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea.,College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea
| | - Eunhye Kim
- Laboratory of Cytokine Immunology, Department of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea.,College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea
| | - Siyoung Lee
- Laboratory of Cytokine Immunology, Department of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea.,YbdYbiotech research center, Seoul 08589, Korea
| | - Soohyun Kim
- Laboratory of Cytokine Immunology, Department of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea.,College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea.,College of Veterinary Medicine, Veterinary Science Research Institute, Konkuk University, Seoul 05029, Korea
| | - Hyunwoo Kim
- Division of Nephrology, Department of Internal Medicine, Jeju National University Hospital, Jeju National University School of Medicine, Jeju 63241, Korea
| |
Collapse
|
9
|
Dixon KB, Davies SS, Kirabo A. Dendritic cells and isolevuglandins in immunity, inflammation, and hypertension. Am J Physiol Heart Circ Physiol 2016; 312:H368-H374. [PMID: 27986660 DOI: 10.1152/ajpheart.00603.2016] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 12/02/2016] [Accepted: 12/15/2016] [Indexed: 02/07/2023]
Abstract
Hypertension is the major risk factor for morbidity and mortality from myocardial infarction, stroke, heart failure, and chronic kidney disease. Despite its importance, the pathogenesis of essential hypertension is poorly understood. During the past several years, it has become evident that T cells contribute to hypertension. Activated T cells accumulate in the perivascular space and the kidney and release cytokines that promote vascular dysfunction and end-organ damage. Although dendritic cells play a pivotal role in initiating adaptive immune responses, T cells have taken center stage in studies implicating the immune system in the genesis of hypertension. The mechanisms by which T cells are activated and the antigens involved are poorly understood. We recently showed that hypertension is associated with increased dendritic cell production of the TH17 polarizing cytokines, IL-6, IL-1β, and IL-23. This occurs in part by increased superoxide production via NADPH oxidase and protein modification by highly reactive isolevuglandins (IsoLGs). IsoLGs are produced via the isoprostane pathway of free radical-mediated lipid peroxidation and, when adducted to proteins, have the potential to act as neoantigens. In this review, we discuss recent advances in our understanding of the role of antigen-presenting dendritic cells in the pathophysiology of hypertension and highlight potential neoantigens that may contribute to this disease.
Collapse
Affiliation(s)
- Kala B Dixon
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Sean S Davies
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee.,Department of Pharmacology, Vanderbilt University, Nashville, Tennessee; and
| | - Annet Kirabo
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; .,Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville Tennessee
| |
Collapse
|
10
|
Paul K, Franke S, Nadal J, Schmid M, Yilmaz A, Kretzschmar D, Bärthlein B, Titze S, Koettgen A, Wolf G, Busch M. Inflammation, vitamin D and dendritic cell precursors in chronic kidney disease. Clin Exp Immunol 2016; 186:86-95. [PMID: 27414487 DOI: 10.1111/cei.12844] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2016] [Indexed: 01/14/2023] Open
Abstract
Decreased blood dendritic cell precursors (DCP) count is linked with atherosclerotic disease, while reduction of circulating DCP is also seen in patients with chronic kidney disease (CKD). As poor vitamin D status could be linked to a compromised innate immune response, we hypothesized that vitamin D status might be involved in the decrease in circulating DCP in CKD. Moreover, the potential role of inflammation was considered. Circulating myeloid (mDCP), plasmacytoid (pDCP) and total DCP (tDCP) were analysed using flow cytometry in 287 patients with CKD stage 3. Serum 25(OH)D and 1,25(OH)2D levels were measured using enzyme-linked immunosorbent assays (ELISA), interleukin (IL)-6, IL-10 and tumour necrosis factor (TNF)-α using cytometric bead array, C-reactive protein (CRP) using a high-sensitivity (hs) ELISA. Contrary to our hypothesis, there was no association between vitamin D levels and DCP, although their number was decreased significantly in CKD (P < 0·001). Instead, mDCP (r = -0·211) and tDCP (r = -0·188,) were associated slightly negatively with hsCRP but positively with the estimated glomerular filtration rate (eGFR, r = 0·314 for tDCP). According to multivariate linear regression, only higher hsCRP concentration and the presence of diabetes mellitus had a significant negative influence on DCP count (P < 0·03, respectively) but not vitamin D, age and eGFR. A significant impact of vitamin D on the reduction of circulating DCP in CKD 3 patients can be neglected. Instead, inflammation as a common phenomenon in CKD and diabetes mellitus had the main influence on the decrease in DCP. Thus, a potential role for DCP as a sensitive marker of inflammation and cardiovascular risk should be elucidated in future studies.
Collapse
Affiliation(s)
- K Paul
- Department of Internal Medicine III, Jena University Hospital, Friedrich-Schiller University, Jena, Germany
| | - S Franke
- Department of Internal Medicine III, Jena University Hospital, Friedrich-Schiller University, Jena, Germany
| | - J Nadal
- Institute of Medical Biometry, Informatics and Epidemiology at Rhenish Friedrich-Wilhelm University, Bonn, Germany
| | - M Schmid
- Institute of Medical Biometry, Informatics and Epidemiology at Rhenish Friedrich-Wilhelm University, Bonn, Germany
| | - A Yilmaz
- Department of Internal Medicine II, Division of Cardiology, Elisabeth Klinikum Schmalkalden GmbH, Schmalkalden, Germany
| | - D Kretzschmar
- Department of Internal Medicine I, Division of Cardiology and Intensive Care Medicine, Jena University Hospital, Friedrich-Schiller University, Jena, Germany
| | - B Bärthlein
- Chair of Medical Informatics, University of Erlangen-Nürnberg, Erlangen, Germany
| | - S Titze
- Department of Nephrology and Hypertension, University of Erlangen-Nürnberg, Erlangen, Germany
| | - A Koettgen
- Department of Medicine IV, University Hospital Freiburg, Freiburg, Germany
| | - G Wolf
- Department of Internal Medicine III, Jena University Hospital, Friedrich-Schiller University, Jena, Germany
| | - M Busch
- Department of Internal Medicine III, Jena University Hospital, Friedrich-Schiller University, Jena, Germany
| | | |
Collapse
|
11
|
Zhang JX, Li BL, Lin ZQ, Zhang N, Peng X, Gong ZH, Long LC, Zhou X, Xiang DC. Decrease in circulating myeloid dendritic cell precursors in patients with intracranial large artery atherosclerosis. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:11495-11502. [PMID: 26617881 PMCID: PMC4637697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Accepted: 07/23/2015] [Indexed: 06/05/2023]
Abstract
Intracranial large artery atherosclerosis (ILAA) is a major cause of ischemic cerebrovascular disease. The aim of this study was to investigate whether the levels of circulating dendritic cell precursors (DCP) could reflect the severity of intracranial large artery atherosclerosis (ILAA). For this purpose, a series of angiography were taken to determine the severity and extent of coronary artery and intracranial large artery stenosis, and flow cytometry were taken to determine the levels of circulating mDC precursors and pDC precursors in patients with severe intracranial large artery atherosclerosis (ILAA) (n = 101) and mild intracranial large artery atherosclerosis (ILAA) (n = 123) according to the angiography. Circulating mDC precursors were lower in patients with severe intracranial large artery atherosclerosis (ILAA) than in mild intracranial large artery atherosclerosis (ILAA) (P < 0.05), but circulating pDC precursors were not significant differences (P > 0.05). According to these data, circulating mDC precursors could predict the severity of ILAA, which also could be able to reflect the severity of ILAA.
Collapse
Affiliation(s)
- Jin-Xia Zhang
- Department of Cardiovascular, Guangzhou General Hospital of Guangzhou Military CommandGuangzhou 510010, China
| | - Bing-Ling Li
- Department of Pharmacy, Guangzhou General Hospital of Guangzhou Military CommandGuangzhou 510010, China
| | - Zhong-Qiu Lin
- Department of Elderly Cardiovascular, Guangzhou General Hospital of Guangzhou Military CommandGuangzhou 510010, China
| | - Ni Zhang
- Department of Cardiovascular, Guangzhou General Hospital of Guangzhou Military CommandGuangzhou 510010, China
| | - Xiong Peng
- Department of Cardiovascular, Guangzhou General Hospital of Guangzhou Military CommandGuangzhou 510010, China
| | - Zhi-Hua Gong
- Department of Cardiovascular, Guangzhou General Hospital of Guangzhou Military CommandGuangzhou 510010, China
| | - Liu-Cheng Long
- Department of Cardiovascular, Guangzhou General Hospital of Guangzhou Military CommandGuangzhou 510010, China
| | - Xuan Zhou
- Department of Cardiovascular, Guangzhou General Hospital of Guangzhou Military CommandGuangzhou 510010, China
| | - Ding-Cheng Xiang
- Department of Cardiovascular, Guangzhou General Hospital of Guangzhou Military CommandGuangzhou 510010, China
| |
Collapse
|
12
|
Decrease in circulating dendritic cell precursors in patients with peripheral artery disease. Mediators Inflamm 2015; 2015:450957. [PMID: 25960616 PMCID: PMC4413958 DOI: 10.1155/2015/450957] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 03/10/2015] [Indexed: 12/23/2022] Open
Abstract
Peripheral artery disease (PAD) is a common manifestation of atherosclerosis. Inflammation is important for initiation and progression of the disease. Dendritic cells (DCs) as antigen-presenting cells play an important role in the immune system. Therefore, we hypothesize that, in patients with PAD, DCPs might be reduced in blood due to their recruitment into the vascular wall and induce a proinflammatory response. The numbers of myeloid DCPs, plasmacytoid DCPs, and total DCPs were analyzed by flow cytometry in blood of patients with PAD (n = 52) compared to controls (n = 60). Femoralis plaques (n = 12) of patients who underwent surgery were immunostained for CD209 and CD83 (mDCs) as well as CD304, CD123 (pDCs), and HLA-DR. In patients with PAD, a significant decrease in mDCPs, pDCPs, and tDCPs was observed. In immunostaining, markers indicative for mDCs (CD209: 16 versus 8 cells/0.1 mm(2), P = 0.02; CD83: 19 versus 5 cells/0.1 mm(2), P = 0.03) were significantly elevated in femoralis plaques compared to control vessels. We show for the first time that mDCPs, pDCPs, and tDCPs are significantly reduced in patients with PAD. Immunohistochemical analysis unraveled that the decrease in DCPs might be due to their recruitment into atherosclerotic plaques.
Collapse
|
13
|
Miguel CD, Rudemiller NP, Abais JM, Mattson DL. Inflammation and hypertension: new understandings and potential therapeutic targets. Curr Hypertens Rep 2015; 17:507. [PMID: 25432899 PMCID: PMC4418473 DOI: 10.1007/s11906-014-0507-z] [Citation(s) in RCA: 168] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Research studying the role of inflammation in hypertension and cardiovascular disease has flourished in recent years; however, the exact mechanisms by which the activated immune cells lead to the development and maintenance of hypertension remain to be elucidated. The objectives of this brief review are to summarize and discuss the most recent findings in the field, with special emphasis on potential therapeutics to treat or prevent hypertension. This review will cover novel immune cell subtypes recently associated to the disease including the novel role of cytokines, toll-like receptors, and inflammasomes in hypertension.
Collapse
Affiliation(s)
- Carmen De Miguel
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | | | - Justine M. Abais
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI
| | - David L. Mattson
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI
| |
Collapse
|