1
|
Hypertension and renal disease programming: focus on the early postnatal period. Clin Sci (Lond) 2022; 136:1303-1339. [PMID: 36073779 DOI: 10.1042/cs20220293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/18/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022]
Abstract
The developmental origin of hypertension and renal disease is a concept highly supported by strong evidence coming from both human and animal studies. During development there are periods in which the organs are more vulnerable to stressors. Such periods of susceptibility are also called 'sensitive windows of exposure'. It was shown that as earlier an adverse event occurs; the greater are the consequences for health impairment. However, evidence show that the postnatal period is also quite important for hypertension and renal disease programming, especially in rodents because they complete nephrogenesis postnatally, and it is also important during preterm human birth. Considering that the developing kidney is vulnerable to early-life stressors, renal programming is a key element in the developmental programming of hypertension and renal disease. The purpose of this review is to highlight the great number of studies, most of them performed in animal models, showing the broad range of stressors involved in hypertension and renal disease programming, with a particular focus on the stressors that occur during the early postnatal period. These stressors mainly include undernutrition or specific nutritional deficits, chronic behavioral stress, exposure to environmental chemicals, and pharmacological treatments that affect some important factors involved in renal physiology. We also discuss the common molecular mechanisms that are activated by the mentioned stressors and that promote the appearance of these adult diseases, with a brief description on some reprogramming strategies, which is a relatively new and promising field to treat or to prevent these diseases.
Collapse
|
2
|
Cullen-McEwen LA, van der Wolde J, Haruhara K, Tribolet L, Dowling JP, Bertram MG, de Matteo R, Haas F, Czogalla J, Okabayashi Y, Armitage JA, Black MJ, Hoy WE, Puelles VG, Bertram JF. Podocyte endowment and the impact of adult body size on kidney health. Am J Physiol Renal Physiol 2021; 321:F322-F334. [PMID: 34308670 DOI: 10.1152/ajprenal.00029.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 07/22/2021] [Indexed: 12/14/2022] Open
Abstract
Low birth weight is a risk factor for chronic kidney disease, whereas adult podocyte depletion is a key event in the pathogenesis of glomerulosclerosis. However, whether low birth weight due to poor maternal nutrition is associated with low podocyte endowment and glomerulosclerosis in later life is not known. Female Sprague-Dawley rats were fed a normal-protein diet (NPD; 20%) or low-protein diet (LPD; 8%), to induce low birth weight, from 3 wk before mating until postnatal day 21 (PN21), when kidneys from some male offspring were taken for quantitation of podocyte number and density in whole glomeruli using immunolabeling, tissue clearing, and confocal microscopy. The remaining offspring were fed a normal- or high-fat diet until 6 mo to induce catch-up growth and excessive weight gain, respectively. At PN21, podocyte number per glomerulus was 15% lower in low birth weight (LPD) than normal birth weight (NPD) offspring, with this deficit greater in outer glomeruli. Surprisingly, podocyte number in LPD offspring increased in outer glomeruli between PN21 and 6 mo, although an overall 9% podocyte deficit persisted. Postnatal fat feeding to LPD offspring did not alter podometric indexes or result in glomerular pathology at 6 mo, whereas fat feeding in NPD offspring was associated with far greater body and fat mass as well as podocyte loss, reduced podocyte density, albuminuria, and glomerulosclerosis. This is the first report that maternal diet can influence podocyte endowment. Our findings provide new insights into the impact of low birth weight, podocyte endowment, and postnatal weight on podometrics and kidney health in adulthood.NEW & NOTEWORTHY The present study shows, for the first time, that low birth weight as a result of maternal nutrition is associated with low podocyte endowment. However, a mild podocyte deficit at birth did not result in glomerular pathology in adulthood. In contrast, postnatal podocyte loss in combination with excessive body weight led to albuminuria and glomerulosclerosis. Taken together, these findings provide new insights into the associations between birth weight, podocyte indexes, postnatal weight, and glomerular pathology.
Collapse
Affiliation(s)
- Luise A Cullen-McEwen
- Stem Cells and Development Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia
| | - James van der Wolde
- Stem Cells and Development Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia
| | - Kotaro Haruhara
- Stem Cells and Development Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Leon Tribolet
- Stem Cells and Development Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia
- Health and Biosecurity, CSIRO, Geelong, Victoria, Australia
| | - John P Dowling
- Department of Anatomical Pathology, Monash Medical Centre, Clayton, Victoria, Australia
| | - Michael G Bertram
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umea, Sweden
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Robert de Matteo
- Stem Cells and Development Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia
| | - Fabian Haas
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan Czogalla
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Yusuke Okabayashi
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - James A Armitage
- School of Medicine (Optometry) and Institute for Mental and Physical Health and Clinical Translation, Deakin University, Waurn Ponds, Victoria, Australia
| | - M Jane Black
- Stem Cells and Development Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia
| | - Wendy E Hoy
- Centre for Chronic Disease, University of Queensland, Royal Brisbane and Women's Hospital, Herston, Queensland, Australia
| | - Victor G Puelles
- Stem Cells and Development Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - John F Bertram
- Stem Cells and Development Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
3
|
Effect of early postnatal nutrition on chronic kidney disease and arterial hypertension in adulthood: a narrative review. J Dev Orig Health Dis 2018; 9:598-614. [PMID: 30078383 DOI: 10.1017/s2040174418000454] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Intrauterine growth restriction (IUGR) has been identified as a risk factor for adult chronic kidney disease (CKD), including hypertension (HTN). Accelerated postnatal catch-up growth superimposed to IUGR has been shown to further increase the risk of CKD and HTN. Although the impact of excessive postnatal growth without previous IUGR is less clear, excessive postnatal overfeeding in experimental animals shows a strong impact on the risk of CKD and HTN in adulthood. On the other hand, food restriction in the postnatal period seems to have a protective effect on CKD programming. All these effects are mediated at least partially by the activation of the renin-angiotensin system, leptin and neuropeptide Y (NPY) signaling and profibrotic pathways. Early nutrition, especially in the postnatal period has a significant impact on the risk of CKD and HTN at adulthood and should receive specific attention in the prevention of CKD and HTN.
Collapse
|
4
|
Abstract
Nephrogenesis in the rat starts mid-gestation and continues into lactation. Maternal low protein (LP) intake leads to renal injury in rats and associates with mild renal injury in humans. We hypothesized that LP during early nephrogenesis or throughout gestation would induce more renal injury in rat offspring than when LP was only present before nephrogenesis. Pregnant rats were fed LP diet (9% casein) at early gestation (LPE, day 0-7), mid (LPM, day 8-14), late (LPL, day 15-22) or throughout gestation (LPA, day 0-22) and compared to controls on 18% casein diet. Offspring were studied at 18 months. Renal injury was assessed by 24 h proteinuria, plasma urea, antioxidant enzyme activities, and apoptosis (Bax/Bcl2). Proteinuria was higher in LPM males and LPE and LPM females. In LPM males glutathione peroxidase activity was lower, while in LPE males catalase activity was higher. Antioxidants were not much affected in females. Bax expression was higher in LPM males and females, while Bcl2 expression was higher in LPA females. Thus even before nephrogenesis (day 0-7), LP impacted on renal integrity in adult life, while LP during a later phase (day 15-22) or throughout gestation had less effect. In summary, for aging rat kidney LP poses the greatest threat when restricted to early nephrogenesis.
Collapse
|
5
|
Developmental origins of chronic renal disease: an integrative hypothesis. Int J Nephrol 2013; 2013:346067. [PMID: 24073334 PMCID: PMC3773449 DOI: 10.1155/2013/346067] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 06/17/2013] [Accepted: 07/03/2013] [Indexed: 01/06/2023] Open
Abstract
Cardiovascular diseases are one of the leading causes of mortality. Hypertension (HT) is one of the principal risk factors associated with death. Chronic kidney disease (CKD), which is probably underestimated, increases the risk and the severity of adverse cardiovascular events. It is now recognized that low birth weight is a risk factor for these diseases, and this relationship is amplified by a rapid catch-up growth or overfeeding during infancy or childhood. The pathophysiological and molecular mechanisms involved in the “early programming” of CKD are multiple and partially understood. It has been proposed that the developmental programming of arterial hypertension and chronic kidney disease is related to a reduced nephron endowment. However, this mechanism is still discussed. This review discusses the complex relationship between birth weight and nephron endowment and how early growth and nutrition influence long term HT and CKD. We hypothesize that fetal environment reduces moderately the nephron number which appears insufficient by itself to induce long term diseases. Reduced nephron number constitutes a “factor of vulnerability” when additional factors, in particular a rapid postnatal growth or overfeeding, promote the early onset of diseases through a complex combination of various pathophysiological pathways.
Collapse
|
6
|
Carter LG, Lewis KN, Wilkerson DC, Tobia CM, Ngo Tenlep SY, Shridas P, Garcia-Cazarin ML, Wolff G, Andrade FH, Charnigo RJ, Esser KA, Egan JM, de Cabo R, Pearson KJ. Perinatal exercise improves glucose homeostasis in adult offspring. Am J Physiol Endocrinol Metab 2012; 303:E1061-8. [PMID: 22932781 PMCID: PMC3469606 DOI: 10.1152/ajpendo.00213.2012] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Emerging research has shown that subtle factors during pregnancy and gestation can influence long-term health in offspring. In an attempt to be proactive, we set out to explore whether a nonpharmacological intervention, perinatal exercise, might improve offspring health. Female mice were separated into sedentary or exercise cohorts, with the exercise cohort having voluntary access to a running wheel prior to mating and during pregnancy and nursing. Offspring were weaned, and analyses were performed on the mature offspring that did not have access to running wheels during any portion of their lives. Perinatal exercise caused improved glucose disposal following an oral glucose challenge in both female and male adult offspring (P < 0.05 for both). Blood glucose concentrations were reduced to lower values in response to an intraperitoneal insulin tolerance test for both female and male adult offspring of parents with access to running wheels (P < 0.05 and P < 0.01, respectively). Male offspring from exercised dams showed increased percent lean mass and decreased fat mass percent compared with male offspring from sedentary dams (P < 0.01 for both), but these parameters were unchanged in female offspring. These data suggest that short-term maternal voluntary exercise prior to and during healthy pregnancy and nursing can enhance long-term glucose homeostasis in offspring.
Collapse
Affiliation(s)
- Lindsay G Carter
- Graduate Center for Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, Kentucky 40536-0200, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Simeoni U, Ligi I, Buffat C, Boubred F. Adverse consequences of accelerated neonatal growth: cardiovascular and renal issues. Pediatr Nephrol 2011; 26:493-508. [PMID: 20938692 DOI: 10.1007/s00467-010-1648-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Revised: 07/12/2010] [Accepted: 07/26/2010] [Indexed: 12/13/2022]
Abstract
Epidemiological and experimental studies show that the risk of cardiovascular and metabolic diseases at adulthood is inversely related to the weight at birth. Although with less evidence, low birth weight has been suggested to increase the risk of chronic kidney disease (CKD). It is well established that the developmental programming of arterial hypertension and of renal disease involves in particular renal factors, especially nephron endowment, which is reduced in low birth weight and maternal diabetes situations. Experimental studies, especially in rodents, have demonstrated the long-term influence of postnatal nutrition and/or postnatal growth on cardiovascular, metabolic and renal functions, while human data are scarce on this issue. Vascular and renal diseases appear to have a "multihits" origin, with reduced nephron number the initial hit and rapid postnatal growth the second hit. This review addresses the current understanding of the role of the kidney, both as a mechanism and as a target, in the developmental origins of adult disease theory, with a particular focus on the long-term effects of postnatal growth and nutrition.
Collapse
Affiliation(s)
- Umberto Simeoni
- Division of Neonatology, Hôpital la Conception, Assistance Publique-Hôpitaux de Marseille, 147 Boulevard Baille, 13385, Marseille, France.
| | | | | | | |
Collapse
|
9
|
Barnes SK, Ozanne SE. Pathways linking the early environment to long-term health and lifespan. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2010; 106:323-36. [PMID: 21147148 DOI: 10.1016/j.pbiomolbio.2010.12.005] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 11/30/2010] [Accepted: 12/01/2010] [Indexed: 12/21/2022]
Abstract
The intrauterine environment is a major contributor to normal physiological growth and development of an individual. Disturbances at this critical time can affect the long-term health of the offspring. Low birth weight individuals have strong correlations with increased susceptibility to type 2 diabetes and cardiovascular disease in later-life. These observations led to the Thrifty Phenotype Hypothesis which suggested that these associations arose because of the response of a growing fetus to a suboptimal environment such as poor nutrition. Animal models have shown that environmentally induced intrauterine growth restriction increases the risk of a variety of diseases later in life. These detrimental features are also observed in high birth weight offspring from mothers who were obese or consumed a high fat diet during gestation. Recent advances in our understanding of the mechanisms underlying this phenomenon have elucidated several potential candidates for the long-term effects of the early environment on the function and metabolism of a cell. These include: (1) Epigenetic alterations (e.g. DNA methylation and histone modifications), which regulate specific gene expression and can be influenced by the environment, both during gestation and early postnatal life and (2) Oxidative stress that changes the balance between reactive oxygen species generation (e.g. through mitochondrial dysfunction) and antioxidant defense capacity. This has permanent effects on cellular ageing such as regulation of telomere length. Further understanding of these processes will help in the development of therapeutic strategies to increase healthspan and reduced the burden of age-associated diseases.
Collapse
Affiliation(s)
- S K Barnes
- Metabolic Research Laboratories, University of Cambridge, Level 4, Institute of Metabolic Science, Box 289, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK.
| | | |
Collapse
|
11
|
Mtango NR, Potireddy S, Latham KE. Oocyte quality and maternal control of development. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 268:223-90. [PMID: 18703408 DOI: 10.1016/s1937-6448(08)00807-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The oocyte is a unique and highly specialized cell responsible for creating, activating, and controlling the embryonic genome, as well as supporting basic processes such as cellular homeostasis, metabolism, and cell cycle progression in the early embryo. During oogenesis, the oocyte accumulates a myriad of factors to execute these processes. Oogenesis is critically dependent upon correct oocyte-follicle cell interactions. Disruptions in oogenesis through environmental factors and changes in maternal health and physiology can compromise oocyte quality, leading to arrested development, reduced fertility, and epigenetic defects that affect long-term health of the offspring. Our expanding understanding of the molecular determinants of oocyte quality and how these determinants can be disrupted has revealed exciting new insights into the role of oocyte functions in development and evolution.
Collapse
Affiliation(s)
- Namdori R Mtango
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | | | |
Collapse
|