1
|
Skuljec J, Sardari M, Su C, Müller-Dahlke J, Singh V, Janjic MM, Kleinschnitz C, Pul R. Glatiramer Acetate Modifies the Immune Profiles of Monocyte-Derived Dendritic Cells In Vitro Without Affecting Their Generation. Int J Mol Sci 2025; 26:3013. [PMID: 40243628 PMCID: PMC11989142 DOI: 10.3390/ijms26073013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/28/2025] [Accepted: 03/21/2025] [Indexed: 04/18/2025] Open
Abstract
Glatiramer acetate (GA) is the first-line therapy for relapsing-remitting multiple sclerosis (MS) and is increasingly demonstrating promising therapeutic benefits in a range of other conditions. Despite its extensive use, the precise pharmacological mechanism of GA remains unclear. In addition to T and B cells, dendritic cells (DCs) and monocytes play significant roles in the neuroinflammation associated with MS, positioning them as potential initial targets for GA. Here, we investigated GA's influence on the differentiation of human monocytes from healthy donors into monocyte-derived dendritic cells (moDCs) and assessed their activation status. Our results indicate that GA treatment does not hinder the differentiation of monocytes into moDCs or macrophages. Notably, we observed a significant increase in the expression of molecules required for antigen recognition, presentation, and co-stimulation in GA-treated moDCs. Conversely, there was a significant downregulation of CD1a, which is crucial for activating auto-aggressive T cells that respond to the lipid components of myelin. Furthermore, GA treatment resulted in an increased expression of CD68 on both CD14+CD16+ and CD14+CD16- monocyte subsets. These in vitro findings suggest that GA treatment does not impede the generation of moDCs under inflammatory conditions; however, it may modify their functional characteristics in potentially beneficial ways. This provides a basis for future clinical studies in MS patients to elucidate its precise mode of action.
Collapse
Affiliation(s)
- Jelena Skuljec
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Medicine Essen, University Duisburg-Essen, 45147 Essen, Germany (R.P.)
| | - Maryam Sardari
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Medicine Essen, University Duisburg-Essen, 45147 Essen, Germany (R.P.)
| | - Chuanxin Su
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Medicine Essen, University Duisburg-Essen, 45147 Essen, Germany (R.P.)
| | | | - Vikramjeet Singh
- Institute for Experimental Immunology and Imaging, University Medicine Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Marija M. Janjic
- Department of Neurobiology, Institute for Biological Research “Sinisa Stankovic”-National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | - Christoph Kleinschnitz
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Medicine Essen, University Duisburg-Essen, 45147 Essen, Germany (R.P.)
| | - Refik Pul
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Medicine Essen, University Duisburg-Essen, 45147 Essen, Germany (R.P.)
| |
Collapse
|
2
|
Cordiano R, Caserta S, Minciullo PL, Allegra A, Gangemi S. Anthraquinones and Aloe Vera Extracts as Potential Modulators of Inflammaging Mechanisms: A Translational Approach from Autoimmune to Onco-Hematological Diseases. Molecules 2025; 30:1251. [PMID: 40142026 PMCID: PMC11944353 DOI: 10.3390/molecules30061251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 02/25/2025] [Accepted: 03/10/2025] [Indexed: 03/28/2025] Open
Abstract
Inflammaging is a chronic, low-grade inflammatory state that contributes to age-related diseases, including cardiovascular disorders, osteoporosis, neurodegeneration, and cancer. This process involves immunosenescence, oxidative stress, and immune aging, all of which contribute to the breakdown of immune tolerance and the onset of autoimmune disorders. Aloe vera (AV) has recently gained attention for its immunomodulatory, anti-inflammatory, and antioxidant properties. This review explores the effects of AV extracts and anthraquinones (e.g., aloe-emodin, emodin, aloin) on key inflammaging-driven mechanisms in autoimmunity. Our analysis highlights AV's ability to regulate hormone balance, autoantibody production, and cytokine/chemokine signaling (such as interleukin-1β, tumor necrosis factor-α, and interferon-γ). It modulates inflammatory pathways, including mitogen-activated protein kinases (MAPKs) and phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT), thereby inhibiting nuclear factor kappa-light-chain-enhancer of activated B-cell (NF-κB) activation. Additionally, AV enhances antioxidant defenses and restores immune balance by reducing Th1/Th17 subsets while promoting Th2-mediated regulation. Notably, AV also modulates inflammasome-mediated mechanisms and counteracts immunosenescence, which is driven by autophagy-related processes. These effects position AV as a potential integrative approach to mitigating inflammaging-driven autoimmunity. Furthermore, as inflammaging is increasingly recognized in onco-hematological diseases, AV-based strategies may offer novel therapeutic avenues. Future studies should focus on clinical validation, optimizing formulations, and expanding applications to broader age-related and immune-mediated disorders.
Collapse
Affiliation(s)
- Raffaele Cordiano
- Unit and School of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, 98125 Messina, Italy; (R.C.); (S.G.)
| | - Santino Caserta
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, Via Consolare Valeria, 98125 Messina, Italy; (S.C.); (A.A.)
| | - Paola Lucia Minciullo
- Unit and School of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, 98125 Messina, Italy; (R.C.); (S.G.)
| | - Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, Via Consolare Valeria, 98125 Messina, Italy; (S.C.); (A.A.)
| | - Sebastiano Gangemi
- Unit and School of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, 98125 Messina, Italy; (R.C.); (S.G.)
| |
Collapse
|
3
|
Ureña-Paniego C, Montero-Vílchez T, Arias-Santiago S. Tralokinumab for the Treatment of Atopic Dermatitis® in a Patient with Multiple Sclerosis. Dermatitis 2024; 35:681-682. [PMID: 38574267 DOI: 10.1089/derm.2024.0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Affiliation(s)
- Clara Ureña-Paniego
- Dermatology Department, Hospital Universitario Virgen de las Nieves, Granada, Spain
| | - Trinidad Montero-Vílchez
- Dermatology Department, Hospital Universitario Virgen de las Nieves, Granada, Spain
- Instituto de Investigación Biosanitaria ibs, Granada, Spain
| | - Salvador Arias-Santiago
- Dermatology Department, Hospital Universitario Virgen de las Nieves, Granada, Spain
- Instituto de Investigación Biosanitaria ibs, Granada, Spain
| |
Collapse
|
4
|
Aharoni R, Milo R, Arnon R. Glatiramer Acetate for the Treatment of Multiple Sclerosis: From First-Generation Therapy to Elucidation of Immunomodulation and Repair. Pharmacol Rev 2024; 76:1133-1158. [PMID: 39406508 DOI: 10.1124/pharmrev.124.000927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 08/14/2024] [Accepted: 08/20/2024] [Indexed: 10/18/2024] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory demyelinating and neurodegenerative disease of the central nervous system (CNS), with a putative autoimmune origin and complex pathogenesis. Modification of the natural history of MS by reducing relapses and slowing disability accumulation was first attained in the 1990 s with the development of the first-generation disease-modifying therapies. Glatiramer acetate (GA), a copolymer of L-alanine, L-lysine, L-glutamic acid, and L-tyrosine, was discovered due to its ability to suppress the animal model of MS, experimental autoimmune encephalomyelitis. Extensive clinical trials and long-term assessments established the efficacy and the safety of GA. Furthermore, studies of the therapeutic processes induced by GA in animal models and in MS patients indicate that GA affects various levels of the innate and the adaptive immune response, generating deviation from proinflammatory to anti-inflammatory pathways. This includes competition for binding to antigen presenting cells; driving dendritic cells, monocytes, and B-cells toward anti-inflammatory responses; and stimulating T-helper 2 and T-regulatory cells. The immune cells stimulated by GA reach the CNS and secrete in situ anti-inflammatory cytokines alleviating the pathological processes. Furthermore, cumulative findings reveal that in addition to its immunomodulatory effect, GA promotes neuroprotective repair processes such as neurotrophic factors secretion, remyelination, and neurogenesis. This review aims to provide an overview of MS pathology diagnosis and treatment as well as the diverse mechanism of action of GA. SIGNIFICANCE STATEMENT: Understanding the complex MS immune pathogenesis provided multiple targets for therapeutic intervention, resulting in a plethora of agents, with various mechanisms of action, efficacy, and safety profiles. However, promoting repair beyond the body's limited spontaneous extent is still a major challenge. GA, one of the first approved disease-modifying therapies, induces diverse immunomodulatory effects. Furthermore, GA treatment results in elevated neurotrophic factors secretion, remyelination and neurogenesis, supporting the notion that immunomodulatory treatment can support in situ a growth-promoting and repair environment.
Collapse
Affiliation(s)
- Rina Aharoni
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel (Ri.A., Ru.A.); and Department of Neurology, Barzilai Medical Center, Ashkelon, Israel, and Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er-Sheva, Israel (R.M.)
| | - Ron Milo
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel (Ri.A., Ru.A.); and Department of Neurology, Barzilai Medical Center, Ashkelon, Israel, and Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er-Sheva, Israel (R.M.)
| | - Ruth Arnon
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel (Ri.A., Ru.A.); and Department of Neurology, Barzilai Medical Center, Ashkelon, Israel, and Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er-Sheva, Israel (R.M.)
| |
Collapse
|
5
|
Dadfar S, Yazdanpanah E, Pazoki A, Nemati MH, Eslami M, Haghmorad D, Oksenych V. The Role of Mesenchymal Stem Cells in Modulating Adaptive Immune Responses in Multiple Sclerosis. Cells 2024; 13:1556. [PMID: 39329740 PMCID: PMC11430382 DOI: 10.3390/cells13181556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/12/2024] [Accepted: 09/14/2024] [Indexed: 09/28/2024] Open
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system, leading to significant disability through neurodegeneration. Despite advances in the understanding of MS pathophysiology, effective treatments remain limited. Mesenchymal stem cells (MSCs) have gained attention as a potential therapeutic option due to their immunomodulatory and regenerative properties. This review examines MS pathogenesis, emphasizing the role of immune cells, particularly T cells, in disease progression, and explores MSCs' therapeutic potential. Although preclinical studies in animal models show MSC efficacy, challenges such as donor variability, culture conditions, migratory capacity, and immunological compatibility hinder widespread clinical adoption. Strategies like genetic modification, optimized delivery methods, and advanced manufacturing are critical to overcoming these obstacles. Further research is needed to validate MSCs' clinical application in MS therapy.
Collapse
Affiliation(s)
- Sepehr Dadfar
- Student Research Committee, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
| | - Esmaeil Yazdanpanah
- Student Research Committee, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
| | - Alireza Pazoki
- Student Research Committee, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
| | - Mohammad Hossein Nemati
- Student Research Committee, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
| | - Majid Eslami
- Cancer Research Center, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
- Department of Bacteriology and Virology, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
| | - Dariush Haghmorad
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
- Cancer Research Center, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
| | - Valentyn Oksenych
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway
| |
Collapse
|
6
|
Lewis JE, McDaniel HR, Woolger JM, Anzola E, Kraft G. The Characterization of the Th1/Th2 Ratio in Multiple Sclerosis Patients and its Response to a Dietary Supplement Regimen. J Diet Suppl 2024; 21:771-790. [PMID: 39140744 DOI: 10.1080/19390211.2024.2386259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
INTRODUCTION Multiple sclerosis (MS) is a debilitating neurodegenerative disease affecting the central nervous system, causing disability and life-threatening complications. The interplay between immune cells and signaling pathways is a topic for investigating novel therapies. Past research has shown how the Th1/Th2 ratio plays a key role in the pathogenesis of MS lesions. Modulating the Th1/Th2 ratios with an efficacious dietary supplement may improve some of the consequences of MS. METHODS Participants (n = 15) diagnosed with MS for an average of 12.4 years (standard deviation = 7.4; range = 2, 25) were enrolled in a clinical trial in which they consumed a dietary supplement regimen daily for 12 months. Venous blood was drawn at baseline and 12-month follow-up and peripheral blood mononuclear cells, cytokines, and growth factors were quantified. Infections, physical functioning, and quality of life were also assessed at baseline and 12 months. RESULTS The IL-2/IL-10 and IFN-γ/IL-10 ratios were significantly higher than those of the healthy adults, and while only IFN-γ/IL-10 increased significantly at 12 months, all ratios other than IFN-γ/TNF-α increased over the course of the intervention. The decrease in yeast infections was inversely correlated with IL-2/TNF-α and IFN-γ/TNF-α. Significant improvements in physical functioning and quality of life correlated with changes in the Th1/Th2 ratios in response to the dietary supplement regimen. CONCLUSIONS The results show that dietary supplementation somewhat impacted the Th1/Th2 ratios over the course of the intervention (toward more Th1 dominance), and those changes were related to various clinical improvements of the participants' symptoms in cognitive, motor, and psychosocial dimensions.
Collapse
Affiliation(s)
| | | | | | - Enrique Anzola
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Garrett Kraft
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
7
|
Jiang T, Zheng MT, Li RM, Ouyang NJ. The effects of matrix stiffness on immune cells in bone biology. MECHANOBIOLOGY IN MEDICINE 2024; 2:100046. [PMID: 40395853 PMCID: PMC12082311 DOI: 10.1016/j.mbm.2024.100046] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/16/2024] [Accepted: 02/17/2024] [Indexed: 05/22/2025]
Abstract
Bone and immune cells typically inhabit the same microenvironment and engage in mutual interactions to collectively execute the functions of the "osteoimmune system." Establishing a harmonized and enduring osteoimmune system significantly enhances bone regeneration, necessitating the maintenance of bone and immune homeostasis. Recently, mechanobiology has garnered increasing interest in bone tissue engineering, with matrix stiffness emerging as a crucial parameter that has been extensively investigated. The effect of matrix stiffness on bone homeostasis remains relatively clear. Soft substrates tend to significantly affect the chondrogenic differentiation of bone marrow mesenchymal stem cells, whereas increasing matrix stiffness is advantageous for osteogenic differentiation. Increased stiffness increases osteoclast differentiation and activity. Additionally, there is increasing emphasis on immune homeostasis, which necessitates dynamic communication between immune cells. Immune cells are crucial in initiating bone regeneration and driving early inflammatory responses. Functional changes induced by matrix stiffness are pivotal for determining the outcomes of engineered tissue mimics. However, inconsistent and incomparable findings regarding the responses of different immune cells to matrix stiffness can be perplexing owing to variations in the stiffness range, measurement methods, and other factors. Therefore, this study aimed to provide a comprehensive review of the specific effects of matrix stiffness on diverse immune cells, with a particular focus on its implications for bone regeneration, which would offer theoretical insights into the treatment of large segmental bony defects and assist in the clinical development of new engineering strategies.
Collapse
Affiliation(s)
- Ting Jiang
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, People's Republic of China
- Oral Bioengineering Lab, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, People's Republic of China
| | - Meng-Ting Zheng
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, People's Republic of China
- Oral Bioengineering Lab, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, People's Republic of China
| | - Ruo-Mei Li
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, People's Republic of China
- Oral Bioengineering Lab, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, People's Republic of China
| | - Ning-Juan Ouyang
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, People's Republic of China
| |
Collapse
|
8
|
Huynh NT, Ho TNT, Pham YND, Dang LH, Pham SH, Dang TT. Immunosuppressive Cyclotides: A Promising Approach for Treating Autoimmune Diseases. Protein J 2024; 43:159-170. [PMID: 38485875 DOI: 10.1007/s10930-024-10188-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2024] [Indexed: 05/01/2024]
Abstract
The immune system maintains constant surveillance to prevent the infiltration of both endogenous and exogenous threats into host organisms. The process is regulated by effector immune cells that combat external pathogens and regulatory immune cells that inhibit excessive internal body inflammation, ultimately establishing a state of homeostasis within the body. Disruption to this process could lead to autoimmunity, which is often associated with the malfunction of both T cells and B cells with T cells playing a more major role. A number of therapeutic mediators for autoimmune diseases are available, from conventional disease-modifying drugs to biologic agents and small molecule inhibitors. Recently, ribosomally synthesized peptides, specifically cyclotides from plants are currently attracting more attention as potential autoimmune disease therapeutics due to their decreased toxicity compared to small molecules inhibitors as well as their remarkable stability against a number of factors. This review provides a concise overview of various cyclotides exhibiting immunomodulatory properties and their potential as therapeutic interventions for autoimmune diseases.
Collapse
Affiliation(s)
- Nguyen Thai Huynh
- Faculty of Food Science and Technology, Ho Chi Minh City University of Industry and Trade, 140 Le Trong Tan Street, Tay Thanh Ward, Tan Phu District, Ho Chi Minh City, Vietnam
| | - Thao N T Ho
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, 1B TL29, District 12, Ho Chi Minh City, Vietnam
| | - Yen N D Pham
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, 1B TL29, District 12, Ho Chi Minh City, Vietnam
| | - Le Hang Dang
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, 1B TL29, District 12, Ho Chi Minh City, Vietnam
| | - Son H Pham
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, 1B TL29, District 12, Ho Chi Minh City, Vietnam
| | - Tien T Dang
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, 1B TL29, District 12, Ho Chi Minh City, Vietnam.
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, 100000, Vietnam.
| |
Collapse
|
9
|
Yazdanpanah E, Dadfar S, Shadab A, Orooji N, Nemati M, Pazoki A, Esmaeili S, Baharlou R, Haghmorad D. Berberine: A natural modulator of immune cells in multiple sclerosis. Immun Inflamm Dis 2024; 12:e1213. [PMID: 38477663 PMCID: PMC10936236 DOI: 10.1002/iid3.1213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 02/26/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
Berberine is a benzylisoquinoline alkaloid found in such plants as Berberis vulgaris, Berberis aristata, and others, revealing a variety of pharmacological properties as a result of interacting with different cellular and molecular targets. Recent studies have shown the immunomodulatory effects of Berberine which result from its impacts on immune cells and immune response mediators such as diverse T lymphocyte subsets, dendritic cells (DCs), and different inflammatory cytokines. Multiple sclerosis (MS) is a chronic disabling and neurodegenerative disease of the central nervous system (CNS) characterized by the recruitment of autoreactive T cells into the CNS causing demyelination, axonal damage, and oligodendrocyte loss. There have been considerable changes discovered in MS regards to the function and frequency of T cell subsets such as Th1 cells, Th17 cells, Th2 cells, Treg cells, and DCs. In the current research, we reviewed the outcomes of in vitro, experimental, and clinical investigations concerning the modulatory effects that Berberine provides on the function and numbers of T cell subsets and DCs, as well as important cytokines that are involved in MS.
Collapse
Affiliation(s)
| | - Sepehr Dadfar
- Department of Immunology, School of MedicineSemnan University of Medical SciencesSemnanIran
| | - Alireza Shadab
- Department of Immunology, School of MedicineSemnan University of Medical SciencesSemnanIran
| | - Niloufar Orooji
- Department of Immunology, School of MedicineSemnan University of Medical SciencesSemnanIran
| | - MohammadHossein Nemati
- Department of Immunology, School of MedicineSemnan University of Medical SciencesSemnanIran
| | - Alireza Pazoki
- Department of Immunology, School of MedicineSemnan University of Medical SciencesSemnanIran
| | | | - Rasoul Baharlou
- Department of Immunology, School of MedicineSemnan University of Medical SciencesSemnanIran
- Cancer Research CenterSemnan University of Medical SciencesSemnanIran
| | - Dariush Haghmorad
- Department of Immunology, School of MedicineSemnan University of Medical SciencesSemnanIran
- Cancer Research CenterSemnan University of Medical SciencesSemnanIran
| |
Collapse
|
10
|
Dias-Carvalho A, Sá SI, Carvalho F, Fernandes E, Costa VM. Inflammation as common link to progressive neurological diseases. Arch Toxicol 2024; 98:95-119. [PMID: 37964100 PMCID: PMC10761431 DOI: 10.1007/s00204-023-03628-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 10/12/2023] [Indexed: 11/16/2023]
Abstract
Life expectancy has increased immensely over the past decades, bringing new challenges to the health systems as advanced age increases the predisposition for many diseases. One of those is the burden of neurologic disorders. While many hypotheses have been placed to explain aging mechanisms, it has been widely accepted that the increasing pro-inflammatory status with advanced age or "inflammaging" is a main determinant of biological aging. Furthermore, inflammaging is at the cornerstone of many age-related diseases and its involvement in neurologic disorders is an exciting hypothesis. Indeed, aging and neurologic disorders development in the elderly seem to share some basic pathways that fundamentally converge on inflammation. Peripheral inflammation significantly influences brain function and contributes to the development of neurological disorders, including Alzheimer's disease, Parkinson's disease, and multiple sclerosis. Understanding the role of inflammation in the pathogenesis of progressive neurological diseases is of crucial importance for developing effective treatments and interventions that can slow down or prevent disease progression, therefore, decreasing its social and economic burden.
Collapse
Affiliation(s)
- Ana Dias-Carvalho
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal.
- UCIBIO- Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal.
| | - Susana Isabel Sá
- Unit of Anatomy, Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Félix Carvalho
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
- UCIBIO- Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
| | - Eduarda Fernandes
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
| | - Vera Marisa Costa
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal.
- UCIBIO- Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal.
| |
Collapse
|
11
|
Alam MZ. A review on plant-based remedies for the treatment of multiple sclerosis. ANNALES PHARMACEUTIQUES FRANÇAISES 2023; 81:775-789. [PMID: 36963654 DOI: 10.1016/j.pharma.2023.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 03/15/2023] [Accepted: 03/20/2023] [Indexed: 03/26/2023]
Abstract
Multiple sclerosis (MS) is a complex autoimmune disease of central nervous system, which is degenerative in nature usually appears between 20-40years of age. The exact cause of MS is still not clearly known. Loss of myelin sheath and axonal damage are the main features of MS that causes induction of inflammatory process and blocks free conduction of impulses. Till date FDA has approved 18 drugs to treat or modify MS symptoms. These medicines are disease-modifying in nature directed to prevent relapses or slow down the progression of disease. The use of the synthetic drug over an extended period causes undesirable effects that prompt us to look at Mother Nature. Complementary and alternative medicine involves the use of medicinal plants as an alternative to the existing modern medical treatment. However, modern drugs cannot be replaced completely with medicinal plants, but the two types of drugs can be used harmoniously with later one can be added as an adjuvant to the existing treatment. These medicinal plants have the potential to prevent progression and improve the symptoms of MS. Various plants such like Nigella sativa, ginger, saffron, pomegranate, curcumin, resveratrol, ginsenoside have been tested as therapeutics for many neurodegenerative diseases. The purpose of this write-up is to make information available about medicinal plants in their potential to treat or modify the symptoms of MS. Chronically ill patients tend to seek medicinal plants as they are easily available and there is a general perception about these medicines of having fewer undesirable effects.
Collapse
Affiliation(s)
- Mohammad Zubair Alam
- Pre-Clinical Research Unit, King Fahad Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
12
|
Dedoni S, Scherma M, Camoglio C, Siddi C, Dazzi L, Puliga R, Frau J, Cocco E, Fadda P. An overall view of the most common experimental models for multiple sclerosis. Neurobiol Dis 2023:106230. [PMID: 37453561 DOI: 10.1016/j.nbd.2023.106230] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 07/01/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023] Open
Abstract
Multiple sclerosis (MS) is a complex chronic disease with an unknown etiology. It is considered an inflammatory demyelinating and neurodegenerative disorder of the central nervous system (CNS) characterized, in most cases, by an unpredictable onset of relapse and remission phases. The disease generally starts in subjects under 40; it has a higher incidence in women and is described as a multifactorial disorder due to the interaction between genetic and environmental risk factors. Unfortunately, there is currently no definitive cure for MS. Still, therapies can modify the disease's natural history, reducing the relapse rate and slowing the progression of the disease or managing symptoms. The limited access to human CNS tissue slows down. It limits the progression of research on MS. This limit has been partially overcome over the years by developing various experimental models to study this disease. Animal models of autoimmune demyelination, such as experimental autoimmune encephalomyelitis (EAE) and viral and toxin or transgenic MS models, represent the most significant part of MS research approaches. These models have now been complemented by ex vivo studies, using organotypic brain slice cultures and in vitro, through induced Pluripotent Stem cells (iPSCs). We will discuss which clinical features of the disorders might be reproduced and investigated in vivo, ex vivo, and in vitro in models commonly used in MS research to understand the processes behind the neuropathological events occurring in the CNS of MS patients. The primary purpose of this review is to give the reader a global view of the main paradigms used in MS research, spacing from the classical animal models to transgenic mice and 2D and 3D cultures.
Collapse
Affiliation(s)
- S Dedoni
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Italy.
| | - M Scherma
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Italy.
| | - C Camoglio
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Italy.
| | - C Siddi
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Italy
| | - L Dazzi
- Department of Life and Environmental Sciences, Section of Neuroscience and Anthropology, University of Cagliari, Monserrato (Cagliari), Italy.
| | - R Puliga
- Department of Life and Environmental Sciences, Section of Neuroscience and Anthropology, University of Cagliari, Monserrato (Cagliari), Italy.
| | - J Frau
- Regional Multiple Sclerosis Center, ASSL Cagliari, ATS Sardegna, Italy
| | - E Cocco
- Regional Multiple Sclerosis Center, ASSL Cagliari, ATS Sardegna, Italy; Department Medical Science and Public Health, University of Cagliari, Italy.
| | - P Fadda
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Italy; Neuroscience Institute, Section of Cagliari, National Research Council of Italy (CNR), Cagliari, Italy.
| |
Collapse
|
13
|
Shah AM, Aral AM, Zamora R, Gharpure N, El-Dehaibi F, Zor F, Kulahci Y, Karagoz H, Barclay DA, Yin J, Breidenbach W, Tuder D, Gorantla VS, Vodovotz Y. Peripheral nerve repair is associated with augmented cross-tissue inflammation following vascularized composite allotransplantation. Front Immunol 2023; 14:1151824. [PMID: 37251389 PMCID: PMC10213935 DOI: 10.3389/fimmu.2023.1151824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/20/2023] [Indexed: 05/31/2023] Open
Abstract
Introduction Vascularized composite allotransplantation (VCA), with nerve repair/coaptation (NR) and tacrolimus (TAC) immunosuppressive therapy, is used to repair devastating traumatic injuries but is often complicated by inflammation spanning multiple tissues. We identified the parallel upregulation of transcriptional pathways involving chemokine signaling, T-cell receptor signaling, Th17, Th1, and Th2 pathways in skin and nerve tissue in complete VCA rejection compared to baseline in 7 human hand transplants and defined increasing complexity of protein-level dynamic networks involving chemokine, Th1, and Th17 pathways as a function of rejection severity in 5 of these patients. We next hypothesized that neural mechanisms may regulate the complex spatiotemporal evolution of rejection-associated inflammation post-VCA. Methods For mechanistic and ethical reasons, protein-level inflammatory mediators in tissues from Lewis rats (8 per group) receiving either syngeneic (Lewis) or allogeneic (Brown-Norway) orthotopic hind limb transplants in combination with TAC, with and without sciatic NR, were compared to human hand transplant samples using computational methods. Results In cross-correlation analyses of these mediators, VCA tissues from human hand transplants (which included NR) were most similar to those from rats undergoing VCA + NR. Based on dynamic hypergraph analyses, NR following either syngeneic or allogeneic transplantation in rats was associated with greater trans-compartmental localization of early inflammatory mediators vs. no-NR, and impaired downregulation of mediators including IL-17A at later times. Discussion Thus, NR, while considered necessary for restoring graft function, may also result in dysregulated and mis-compartmentalized inflammation post-VCA and therefore necessitate mitigation strategies. Our novel computational pipeline may also yield translational, spatiotemporal insights in other contexts.
Collapse
Affiliation(s)
- Ashti M. Shah
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ali Mubin Aral
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ruben Zamora
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Nitin Gharpure
- Department of Surgery, Wake Forest Institute for Regenerative Medicine, Wake Forest Baptist Medical Center, Winston Salem, NC, United States
| | - Fayten El-Dehaibi
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Fatih Zor
- Department of Surgery, Wake Forest Institute for Regenerative Medicine, Wake Forest Baptist Medical Center, Winston Salem, NC, United States
| | - Yalcin Kulahci
- Department of Surgery, Wake Forest Institute for Regenerative Medicine, Wake Forest Baptist Medical Center, Winston Salem, NC, United States
| | - Huseyin Karagoz
- Department of Surgery, Wake Forest Institute for Regenerative Medicine, Wake Forest Baptist Medical Center, Winston Salem, NC, United States
| | - Derek A. Barclay
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jinling Yin
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | | | - Dmitry Tuder
- Plastic Surgery, San Antonio Military Medical Center, Fort Sam Houston, San Antonio, TX, United States
| | - Vijay S. Gorantla
- Department of Surgery, Wake Forest Institute for Regenerative Medicine, Wake Forest Baptist Medical Center, Winston Salem, NC, United States
| | - Yoram Vodovotz
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
- Center for Inflammation and Regeneration Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
14
|
Ma X, Ma R, Zhang M, Qian B, Wang B, Yang W. Recent Progress in Multiple Sclerosis Treatment Using Immune Cells as Targets. Pharmaceutics 2023; 15:pharmaceutics15030728. [PMID: 36986586 PMCID: PMC10057470 DOI: 10.3390/pharmaceutics15030728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/02/2023] [Accepted: 02/16/2023] [Indexed: 02/24/2023] Open
Abstract
Multiple sclerosis (MS) is an autoimmune-mediated demyelinating disease of the central nervous system. The main pathological features are inflammatory reaction, demyelination, axonal disintegration, reactive gliosis, etc. The etiology and pathogenesis of the disease have not been clarified. The initial studies believed that T cell-mediated cellular immunity is the key to the pathogenesis of MS. In recent years, more and more evidence has shown that B cells and their mediated humoral immune and innate immune cells (such as microglia, dendritic cells, macrophages, etc.) also play an important role in the pathogenesis of MS. This article mainly reviews the research progress of MS by targeting different immune cells and analyzes the action pathways of drugs. The types and mechanisms of immune cells related to the pathogenesis are introduced in detail, and the mechanisms of drugs targeting different immune cells are discussed in depth. This article aims to clarify the pathogenesis and immunotherapy pathway of MS, hoping to find new targets and strategies for the development of therapeutic drugs for MS.
Collapse
Affiliation(s)
- Xiaohong Ma
- Department of Neuroscience, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, China
- The First Clinical Medical School, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Rong Ma
- School of Pharmaceutical Sciences, Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou 450001, China
| | - Mengzhe Zhang
- School of Pharmaceutical Sciences, Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou 450001, China
| | - Baicheng Qian
- Department of Neuroscience, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, China
| | - Baoliang Wang
- Department of Neuroscience, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, China
- Correspondence: (B.W.); (W.Y.)
| | - Weijing Yang
- School of Pharmaceutical Sciences, Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou 450001, China
- Correspondence: (B.W.); (W.Y.)
| |
Collapse
|
15
|
Smith AD, Moog TM, Burgess KW, McCreary M, Okuda DT. Factors associated with the misdiagnosis of neuromyelitis optica spectrum disorder. Mult Scler Relat Disord 2023; 70:104498. [PMID: 36610360 DOI: 10.1016/j.msard.2023.104498] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/05/2022] [Accepted: 01/01/2023] [Indexed: 01/04/2023]
Abstract
BACKGROUND Neuromyelitis optica spectrum disorder (NMOSD) is a rare autoimmune condition that is associated with severe disability. Approximately 40% of individuals are misdiagnosed with multiple sclerosis (MS) or other diseases. We aimed to define factors that influence the misdiagnosis of people with NMOSD and provide strategies for reducing error rates. METHODS A retrospective study was performed involving all people with a confirmed diagnosis of NMOSD within a single academic institution. Comprehensive clinical timelines were constructed for each individual that included presenting symptoms, provider type and timing of evaluations, aquaporin 4-IgG (AQP4) results, and MRI scans. Two-sample comparisons of continuous and categorial variables were performed for people accurately diagnosed with NMOSD and those originally misdiagnosed with another medical condition. A subanalysis of only AQP4-IgG positive people was also performed. RESULTS The study cohort included 199 people fulfilling International Panel criteria for NMOSD with 71 people (62 female; mean age at first symptom presentation (standard deviation (SD)) = 32.8 years (y) (SD 16.1)) being initially misdiagnosed and 128 people (106 female; 41.14y (SD 15.41)) who were accurately diagnosed. Of the 199 people with NMOSD, 166 had a positive serostatus. Identified factors associated with misdiagnosis, regardless of AQP4-IgG serostatus, were the presence of protracted nausea/vomiting/hiccups without any accompanying neurological symptoms, 23 (32.4%) versus 16 (12.5%) (p = 0.001), a longer median (range) time to see a neuroimmunology specialist 4.2y (0.14-31.8) versus 0.5y (0.0-21.2) (p<0.0001), and a delay in acquiring an MRI study, 4.7y (0.0-27.3) versus 0.3y (0.0-20.2) (p<0.0001). A greater proportion of people misdiagnosed were identified with a negative live-cell based AQP4-IgG serum test result, 13/13 (100%) versus 22/114 (19.3%) (p<0.0001). Additionally, the mean (SD) time between a first negative and successive live-cell based AQP4-IgG positive test result was greater for people misdiagnosed with another condition, 3.9y (SD 5.0) versus 1.5y (SD 2.1) (p = 0.01). Although not significant between groups, a rash was also reported in 63/199 people with NMOSD, with 31/63 having an anti-nuclear antibody titer ≥ 1:160. CONCLUSION Defined factors can help guide both generalists and specialists in the pursuit of strategies aimed at efficiently diagnosing those with NMOSD such that effective care can be delivered.
Collapse
Affiliation(s)
- Alexander D Smith
- Department of Neurology, Neuroinnovation Program, Multiple Sclerosis & Neuroimmunology Imaging Program, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Tatum M Moog
- Department of Neurology, Neuroinnovation Program, Multiple Sclerosis & Neuroimmunology Imaging Program, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Katy W Burgess
- Department of Neurology, Neuroinnovation Program, Multiple Sclerosis & Neuroimmunology Imaging Program, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Morgan McCreary
- Department of Neurology, Neuroinnovation Program, Multiple Sclerosis & Neuroimmunology Imaging Program, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Darin T Okuda
- Department of Neurology, Neuroinnovation Program, Multiple Sclerosis & Neuroimmunology Imaging Program, The University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
16
|
Lewis JE, Reginald McDaniel H, Woolger JM, Khan SA. The Characterization of the Th1/Th2 Ratio in Moderate-Severe Alzheimer's Disease Patients and Its Response to an Aloe Polymannose-Based Dietary Supplement. J Alzheimers Dis 2023; 96:1723-1737. [PMID: 38007658 DOI: 10.3233/jad-230659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is a leading killer of Americans, imparting a tremendous societal toll. Relationships between immune function and inflammation with cognition are well-established in AD, but the Th1/Th2 ratio of immune function is unknown. Describing the Th1/Th2 ratio and its relationship with cognition may shed light on the disease's clinical context. How the Th1/Th2 ratio responds to dietary supplementation is another unknown question in this population. OBJECTIVE The objectives of the study were to: 1) characterize the Th1/Th2 ratio according to IL-2/IL-10, IFN-γ/IL-10, IL-2/IL-4, IFN-γ/IL-4, IL-2/TNF-α, and IFN-γ/TNF-α in subjects with moderate-to-severe AD and in comparison to healthy adults; 2) investigate the effect of an aloe polymannose multinutrient complex (APMC) dietary supplement on the Th1/Th2 ratios over 12 months; and 3) compare the changes in the Th1/Th2 ratios with the changes in cognition from baseline to 12 months. METHODS Subjects consumed 2.5 g of the APMC four times per day for 12 months, and they were assessed on cognition and cytokines at baseline and 12 months. RESULTS The Th1/Th2 ratios in AD patients were significantly higher than the healthy controls, and five of the six ratios decreased from baseline to 12 months follow-up (other than IL-2/TNF-α). Several significant relationships were noted between the changes in Th1/Th2 ratios with cognitive assessments. CONCLUSIONS Our results showed an overall rebalancing of the Th1/Th2 ratio in response to APMC, these changes were related to improved cognition in subjects with moderate-to-severe AD, and the APMC supplement was safely tolerated.
Collapse
Affiliation(s)
- John E Lewis
- Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | - Judi M Woolger
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Sher Ali Khan
- Department of Family and Community Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA
| |
Collapse
|
17
|
Kalinichenko EN, Babitskaya SV. The Development of the Combination Drug Leukovir ® Tablets for the Treatment of Multiple Sclerosis: A Comprehensive Review. Curr Drug Targets 2023; 24:1271-1281. [PMID: 38037996 DOI: 10.2174/0113894501272301231124074141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/31/2023] [Accepted: 11/08/2023] [Indexed: 12/02/2023]
Abstract
The review is devoted to the development and study of the drug Leukovir® (cladribine+ ribavirin) and its use in the treatment of relapsing-remitting and secondary progressive forms of multiple sclerosis, a chronic neurodegenerative disease aiming the risk reduction of relapse and progression of a disability. In clinical trials Leukovir® has proved to be efficient by up to 56 weeks for the treatment of relapsing-remitting and secondary progressive forms of multiple sclerosis. The drug is registered in the Republic of Belarus. The efficacy, safety and tolerability profile of the drug Leukovir® suggests that it is well suited for disease-modifying therapy of multiple sclerosis. Patients require four 35-day courses of treatment, each consisting of seven days of treatment followed by a break of 28 days. The use of Leukovir® has contributed to the suppression of inflammatory process activity according to MRI data and stabilization of the clinical condition. It has reduced the number of relapses in patients with relapsing-remitting and secondary-progressive forms of multiple sclerosis.
Collapse
Affiliation(s)
- Elena N Kalinichenko
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, BY-220141, 5/2 Academician V.F. Kuprevich Street, Minsk, Belarus
| | - Svetlana V Babitskaya
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, BY-220141, 5/2 Academician V.F. Kuprevich Street, Minsk, Belarus
| |
Collapse
|
18
|
Bauer A, Rudzki D, Berek K, Dinoto A, Lechner C, Wendel EM, Hegen H, Deisenhammer F, Berger T, Höftberger R, Rostasy K, Mariotto S, Reindl M. Increased peripheral inflammatory responses in myelin oligodendrocyte glycoprotein associated disease and aquaporin-4 antibody positive neuromyelitis optica spectrum disorder. Front Immunol 2022; 13:1037812. [PMID: 36451827 PMCID: PMC9703059 DOI: 10.3389/fimmu.2022.1037812] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/27/2022] [Indexed: 09/30/2023] Open
Abstract
Autoantibody-associated demyelinating diseases of the central nervous system such as myelin oligodendrocyte glycoprotein-antibody associated disease (MOGAD) and aquaporin 4-antibody positive neuromyelitis optica spectrum disorders (AQP4+ NMOSD) are rare diseases but can cause severe disability. In both diseases, associated neuroinflammation is accompanied by blood and cerebrospinal fluid cytokine and chemokine signatures, which were shown to be distinct from those observed in patients with multiple sclerosis (MS). In this study, we aimed to confirm and extend these findings by analyzing a larger number of serum cytokines, chemokines and related molecules in patients with MOGAD or AQP4+ NMOSD in comparison to MS, to better understand the pathophysiology and to identify biomarkers potentially useful in clinical practice for diagnostic and treatment purposes. A total of 65 serum cytokines, chemokines and related molecules like growth factors and soluble receptors were measured by Procartaplex multiplex immunoassays in 40 MOGAD, 40 AQP4+ NMOSD and 54 MS patients at baseline. Furthermore, follow-up samples of 25 AQP4+ NMOSD and 40 MOGAD patients were measured after 6-12 months. Selected analytes were validated in a subgroup of samples using other bead-based assays and ELISA. At baseline, 36 analytes in MOGAD and 30 in AQP4+ NMOSD were significantly increased compared to MS. K-means cluster analysis of all significantly altered molecules revealed three distinct groups: Cluster I, including 12 MOGAD, 2 AQP4+ NMOSD and 3 MS patients, had a specific association with 11 IL-6/IL-17A associated cytokines. In this cluster, 9/17 (53%) patients were children. Cluster II with 13 MOGAD, 24 AQP4+ NMOSD and 1 MS patient was associated with 31 upregulated analytes. Cluster III contained 15 MOGAD, 14 AQP4+ NMOSD and 50 MS patients. In cluster II and III the majority were adults (82% and 92%). Most measured analytes remained stable over time. Validation of selected cytokines and chemokines using other analytical methods revealed moderate to high correlation coefficients, but absolute values differed between assays. In conclusion, these results obtained by bead-based multiplex assays highlight a significant association of biomarkers of peripheral inflammation in patients with antibody-associated demyelinating diseases in comparison with MS.
Collapse
Affiliation(s)
- Angelika Bauer
- Clinical Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
- VASCage Research Centre on Vascular Ageing and Stroke, Innsbruck, Austria
| | - Dagmar Rudzki
- Clinical Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
- VASCage Research Centre on Vascular Ageing and Stroke, Innsbruck, Austria
| | - Klaus Berek
- Clinical Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Alessandro Dinoto
- Neurology Unit, Department of Neuroscience, Biomedicine, and Movement Sciences, University of Verona, Verona, Italy
| | - Christian Lechner
- Department of Pediatrics I, Medical University of Innsbruck, Innsbruck, Austria
| | - Eva-Maria Wendel
- Department of Neuropediatrics, Olgahospital/Klinikum Stuttgart, Stuttgart, Germany
| | - Harald Hegen
- Clinical Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Florian Deisenhammer
- Clinical Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Thomas Berger
- Department of Neurology, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Romana Höftberger
- Department of Neurology, Medical University of Vienna, Vienna, Austria
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Kevin Rostasy
- Paediatric Neurology, Witten/Herdecke University, Children’s Hospital Datteln, Datteln, Germany
| | - Sara Mariotto
- Neurology Unit, Department of Neuroscience, Biomedicine, and Movement Sciences, University of Verona, Verona, Italy
| | - Markus Reindl
- Clinical Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
19
|
Zheng F, Zhang W, Yang B, Chen M. Multi-omics profiling identifies C1QA/B + macrophages with multiple immune checkpoints associated with esophageal squamous cell carcinoma (ESCC) liver metastasis. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1249. [PMID: 36544679 PMCID: PMC9761157 DOI: 10.21037/atm-22-5351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/23/2022] [Indexed: 11/30/2022]
Abstract
Background Esophageal squamous cell carcinoma (ESCC) is a highly lethal malignant tumor lacking effective treatments; 20% of ESCC patients develop liver metastasis with an extremely short survival time of ≈5 months. The tumor microenvironment (TME) plays a crucial role in tumor homeostasis, but the relationship between the ESCC TME and liver metastasis is still unknown. Methods To identify potential cell populations contributing to ESCC liver metastasis, single-cell RNA (scRNA) sequencing data were analyzed to identify the major cell populations within the TME. Each of the major cell populations was re-clustered to define detailed cell subsets. Thereafter, the gene set variation analysis (GSVA) score was calculated for the bulk RNA-seq data based on the gene signatures of each cell subset. The relationship between the GSVA score of each cellular subset and clinical outcome was further analyzed to identify the cellular subset associated with ESCC liver metastasis, which was validated by multiplex immunohistochemistry. Results C1QA/B+ tumor-associated macrophages (TAMs) acted as the central regulator of the ESCC TME, closely associated with several key cell subsets. Several immune checkpoints, including CD40, CD47 and LGALS9, were all positively expressed in C1QA/B+ macrophages, which may exert central regulatory control of immune evasion by ESCC via these immune checkpoints expressions. Conclusions Our results comprehensively revealed the landscape of tumor-infiltrating immune cells associated with ESCC prognosis and metastasis, and suggest a novel strategy for developing immunotherapies for ESCC liver metastasis by targeting C1QA/B+ TAMs.
Collapse
Affiliation(s)
- Fei Zheng
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Wei Zhang
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Baihua Yang
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Mingqiu Chen
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| |
Collapse
|
20
|
Abstract
Inflammation is a biological process that dynamically alters the surrounding microenvironment, including participating immune cells. As a well-protected organ surrounded by specialized barriers and with immune privilege properties, the central nervous system (CNS) tightly regulates immune responses. Yet in neuroinflammatory conditions, pathogenic immunity can disrupt CNS structure and function. T cells in particular play a key role in promoting and restricting neuroinflammatory responses, while the inflamed CNS microenvironment can influence and reshape T cell function and identity. Still, the contraction of aberrant T cell responses within the CNS is not well understood. Using autoimmunity as a model, here we address the contribution of CD4 T helper (Th) cell subsets in promoting neuropathology and disease. To address the mechanisms antagonizing neuroinflammation, we focus on the control of the immune response by regulatory T cells (Tregs) and describe the counteracting processes that preserve their identity under inflammatory challenges. Finally, given the influence of the local microenvironment on immune regulation, we address how CNS-intrinsic signals reshape T cell function to mitigate abnormal immune T cell responses.
Collapse
Affiliation(s)
- Nail Benallegue
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, F-44000, Nantes, France
| | - Hania Kebir
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Jorge I. Alvarez
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
21
|
Shobeiri P, Seyedmirzaei H, Karimi N, Rashidi F, Teixeira AL, Brand S, Sadeghi-Bahmani D, Rezaei N. IL-6 and TNF-α responses to acute and regular exercise in adult individuals with multiple sclerosis (MS): a systematic review and meta-analysis. Eur J Med Res 2022; 27:185. [PMID: 36156182 PMCID: PMC9511785 DOI: 10.1186/s40001-022-00814-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 09/13/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND In both the general population and people with multiple sclerosis (PwMS), physical exercise is associated with improved mental well-being. Moreover, there is evidence of the possible protection of physical activity against disease progression in multiple sclerosis (MS). However, the question arises if acute or regular exercise has any impact on the immune system in PwMS. To answer this question, we performed a systematic review and meta-analysis on both plasma and serum cytokine levels (IL-6 and TNF-α) before and after acute and regular exercise among PwMS and compared to healthy controls. METHOD We performed an online search via PubMed, EMBASE, SCOPUS, Web of Science, and Cochrane Library till September 2021 to identify original studies on IL-6 and TNF-α changes after acute and regular exercise in PwMS and controls. Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA), 11 original studies were included in the meta-analysis. Sensitivity analyses were used to identify the origins of heterogeneity. R 4.0.4 was used to perform the meta-analysis of IL-6 and TNF-α levels before and after acute and regular exercise in PwMS, compared to controls. This study does not qualify for a clinical trial number. RESULTS IL-6 levels did neither increase nor decrease after acute and regular exercise in PwMS, and compared to controls (pre- vs. post-intervention: Standardized Mean Difference (SMD) -0.09, 95% CI [-0.29; 0.11], p-value = 0.37, PwMS vs. Control: SMD -0.08, 95% CI [-0.33; 0.16], p-value = 0.47). In PwMS, TNF-α levels decreased after regular exercise and when TNF-α levels of both acute and regular exercise were pooled (pre- vs. post-intervention: SMD -0.51, 95% CI [-0.91; 0.11], p-value = 0.01, PwMS vs. Control: SMD -0.23, 95% CI [-0.66; 0.18], p-value = 0.26). TNF-α levels did neither increase nor decrease after acute and regular exercise in PwMS, when compared to controls. CONCLUSION This systematic review and meta-analysis show that exercise does not lead to significant changes in peripheral levels of IL-6 in PwMS in contrast to the observed response in healthy subjects and other medical contexts. However, regular exercise had a specific anti-inflammatory effect on blood TNF-α levels in PwMS. It remains to be investigated why PwMS display this different exercise-induced pattern of cytokines.
Collapse
Affiliation(s)
- Parnian Shobeiri
- School of Medicine, Children's Medical Center Hospital, Tehran University of Medical Sciences (TUMS), Dr. Qarib St., Keshavarz Blvd, Tehran, 14194, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Homa Seyedmirzaei
- School of Medicine, Children's Medical Center Hospital, Tehran University of Medical Sciences (TUMS), Dr. Qarib St., Keshavarz Blvd, Tehran, 14194, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Interdisciplinary Neuroscience Research Program (INRP), Tehran University of Medical Sciences, Tehran, Iran
| | - Nastaran Karimi
- School of Medicine, Sari Branch, Islamic Azad University, Sari, Iran
| | - Fatemeh Rashidi
- School of Medicine, Children's Medical Center Hospital, Tehran University of Medical Sciences (TUMS), Dr. Qarib St., Keshavarz Blvd, Tehran, 14194, Iran
| | - Antônio L Teixeira
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, Neuropsychiatry Program, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Serge Brand
- School of Medicine, Children's Medical Center Hospital, Tehran University of Medical Sciences (TUMS), Dr. Qarib St., Keshavarz Blvd, Tehran, 14194, Iran
- Psychiatric Clinics, Center for Affective, Stress and Sleep Disorders, University of Basel, Basel, Switzerland
- Division of Sport Science and Psychosocial Health, Department of Sport, Exercise and Health, Faculty of Medicine, University of Basel, Basel, Switzerland
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Substance Abuse Prevention Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Dena Sadeghi-Bahmani
- Psychiatric Clinics, Center for Affective, Stress and Sleep Disorders, University of Basel, Basel, Switzerland
- Department of Psychology, Stanford University, Stanford, CA, USA
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
22
|
TNF-α is produced by but not limited to T helper 1, 2, and 17 in breast tumor-draining lymph nodes. Clin Immunol 2022; 245:109140. [DOI: 10.1016/j.clim.2022.109140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/24/2022] [Accepted: 09/07/2022] [Indexed: 11/27/2022]
|
23
|
Zhou H, Dai C, Cui X, Zhang T, Che Y, Duan K, Yi L, Nguyen AD, Li N, De Souza C, Wan X, Wu Y, Li K, Liu Y, Wu Y. Immunomodulatory and antioxidant effects of Glycyrrhiza uralensis polysaccharide in Lohmann Brown chickens. Front Vet Sci 2022; 9:959449. [PMID: 36090181 PMCID: PMC9458957 DOI: 10.3389/fvets.2022.959449] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Glycyrrhiza polysaccharide extract 1 (GPS-1) is a bioactive component isolated from Glycyrrhiza uralensis, also known as Chinese licorice. It appears to be pharmacologically active as an antibacterial, antiviral, and anti-tumor agent. GPS-1 has also been shown to buffer liver health and regulate the immune system. Moreover, GPS-1 is low cost and easy to extract. More study was needed to elucidate the biochemical pathways underlying the immunomodulatory and antioxidant benefits observed in Glycyrrhiza polysaccharide extract 1 (GPS-1). in vitro experiments on chicken lymphocytes and dendritic cells (DCs) show that GPS-1 significantly promotes the proliferation of immune cells and is linked to lymphocytes' secretion of IL-12, IFN-γ, and TNF-α by. DC secretion of NO, IL-2, IL-1β, IFN-γ, TNF-α, and IL-12p70 was also increased significantly. Additionally, GPS-1 also displayed a significant antioxidant effect in vitro, able to scavenge DPPH, hydrogen peroxide, ABTS, and other free radicals like superoxide anions. Separately, GPS-1 was tested in vivo in combination with the Newcastle disease virus (NDV) - attenuated vaccine. 120 Lohmann Brown chickens were vaccinated, while another 30 became the unvaccinated blank control (BC) group. For three consecutive days 1 mL of GPS-1 was administered at doses of 19.53 μg/mL, 9.77 μg/mL, or 4.88 μg/mL to the ND-vaccinated birds, except for the vaccine control (VC), where n = 30 per group. In vivo results show that GPS-1 combined with Newcastle disease (ND) vaccine had the best efficacy at significantly increasing chickens' body weight and ND serum antibody titer, enhancing their secretion of IL-2 and IFN- γ, and promoting the development of immune organs. The results also indicate that GPS-1 was able increase the proliferation of in vitro immune cells and elevate their cytokine secretion, which enhances the body's immune response. GPS-1 also clearly has the potential to be used as an immune adjuvant alongside ND vaccination.
Collapse
Affiliation(s)
- Hui Zhou
- College of Veterinary Medicine, Institute of Traditional Chinese Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Chen Dai
- Experimental Teaching Center of Life Science, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Xuejie Cui
- College of Veterinary Medicine, Institute of Traditional Chinese Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tao Zhang
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Beijing, China
| | - Yanyun Che
- Engineering Laboratory for National Healthcare Theories and Products of Yunnan Province, College of Pharmaceutical Science, Yunnan University of Chinese Medicine, Kunming, China
| | - Kun Duan
- China Tobacco Henan Industrial Co., Ltd, Zhengzhou, China
| | - Lei Yi
- College of Veterinary Medicine, Institute of Traditional Chinese Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Department of Animal Science, Huaihua Polytechnic College, Huaihua, China
| | - Audrey D. Nguyen
- Department of Biochemistry and Molecular Medicine, Davis Medical Center, University of California, Sacramento, Sacramento, CA, United States
| | - Nannan Li
- College of Veterinary Medicine, Institute of Traditional Chinese Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | | | - Xin Wan
- College of Veterinary Medicine, Institute of Traditional Chinese Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yu Wu
- College of Veterinary Medicine, Institute of Traditional Chinese Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Kun Li
- College of Veterinary Medicine, Institute of Traditional Chinese Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yuhong Liu
- College of Veterinary Medicine, Institute of Traditional Chinese Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yi Wu
- College of Veterinary Medicine, Institute of Traditional Chinese Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
24
|
Exploring the management approaches of cytokines including viral infection and neuroinflammation for neurological disorders. Cytokine 2022; 157:155962. [PMID: 35853395 DOI: 10.1016/j.cyto.2022.155962] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/11/2022] [Accepted: 07/07/2022] [Indexed: 12/11/2022]
Abstract
Considerable evidence supports that cytokines are important mediators of pathophysiologic processes within the central nervous system (CNS). Numerous studies have documented the increased production of various cytokines in the human CNS in various neurological and neuropsychiatric disorders. Deciphering cytokine actions in the intact CNS has important implications for our understanding of the pathogenesis and treatment of these disorders. The purpose of this study is to discuss the recent research on treating cytokine storm and amyloids, including stroke, Parkinson's disease (PD), Alzheimer's disease (AD), Huntington's condition, Multi-sclerosis (MS), Amyotrophic Lateral Sclerosis (ALS). Neuroinflammation observed in neurological disorders has a pivotal role in exacerbating Aβ burden and tau hyperphosphorylation, suggesting that stimulating cytokines in response to an undesirable external response could be a checkpoint for treating neurological disorders. Furthermore, the pro-inflammatory cytokines help our immune system through a neuroprotective mechanism in clearing viral infection by recruiting mononuclear cells. This study reveals that cytokine applications may play a vital role in providing novel regulation and methods for the therapeutic approach to neurological disorders and the causes of the deregulation, which is responsible for neuroinflammation and viral infection. However, it needs to be further investigated to clarify better the mechanisms of cytokine release in response to various stimuli, which could be the central point for treating neurological disorders.
Collapse
|
25
|
Esmaeilzadeh E, Soleimani M, Kohrshid HRK. Protective effects of Herbal Compound (IM253) on the inflammatory responses and oxidative stress in a mouse model of multiple sclerosis. Mult Scler Relat Disord 2022; 67:104076. [DOI: 10.1016/j.msard.2022.104076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 07/17/2022] [Accepted: 07/24/2022] [Indexed: 11/28/2022]
|
26
|
Dayani L, Dinani MS, Aliomrani M, Hashempour H, Varshosaz J, Taheri A. Immunomodulatory effects of cyclotides isolated from Viola odorata in an experimental autoimmune encephalomyelitis animal model of multiple sclerosis. Mult Scler Relat Disord 2022; 64:103958. [PMID: 35716476 DOI: 10.1016/j.msard.2022.103958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/19/2022] [Accepted: 06/09/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Multiple sclerosis (MS) is a demyelinating disease of the central nervous system that causes chronic inflammation. Cyclotides are small plant proteins with a wide range of biological activity, making them a target for researchers to investigate. This study was conducted to investigate the possible effects of cyclotide-rich fractions from Viola odorata as an immunomodulatory agent in an experimental autoimmune encephalomyelitis (EAE) model of MS. METHODS At room temperature, the plant materials were subjected to maceration in methanol: dichloromethane (1:1; v/v) for 3 days. The extraction was repeated 3 times, and the final concentrated extract was partitioned 3 times by 1/2 volume of double-distilled water. The aqueous phases were separated and freeze-dried. Finally, the crude extract was fractionated by C18 silicagel using vacuum liquid chromatography, with mobile phases of 30%, 50% and 80% of ethanol: water, respectively. The 50%, and 80% fractions were analyzed by HPLC and MALDI-TOF analysis and administrated intraperitoneally to forty-five female C57BL/6 EAE-induced mice, at 5, 25, and 50 mg/kg doses. After 28 days, the animals were evaluated using EAE clinical scoring which was done every 3 days, cytokine levels, and myelination level. RESULTS The results confirmed the presence of cyclotides in V. odorata based on their retention time and the composition of mobile phase in HPLC and the molecular weight of the peaks in MALDI-TOF analysis. It was observed that cyclotides, especially in the 80% fraction group at the dose of 50 mg/kg significantly reduced the clinical scores, inflammation, and demyelination in EAE mice compared with the normal saline group (P<0.05), and the results of this group were comparable with fingolimod (P>0.05). CONCLUSION It could be concluded that V. odorata is a rich source of cyclotides which they could be extracted by an easily available process and also, they could be used as immunomodulatory agents in MS, with similar effects to fingolimod.
Collapse
Affiliation(s)
- Ladan Dayani
- Novel Drug Delivery Systems Research Centre, Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran; Department of Pharmaceutics, Faculty of Pharmacy and Novel Drug Delivery Systems Research Centre, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Masoud Sadeghi Dinani
- Department of Pharmacognosy, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehdi Aliomrani
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Hashempour
- Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Jaleh Varshosaz
- Novel Drug Delivery Systems Research Centre, Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran; Department of Pharmaceutics, Faculty of Pharmacy and Novel Drug Delivery Systems Research Centre, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Azade Taheri
- Novel Drug Delivery Systems Research Centre, Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran; Department of Pharmaceutics, Faculty of Pharmacy and Novel Drug Delivery Systems Research Centre, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
27
|
Lu M, Shi H, Taylor BV, Körner H. Alterations of subset and cytokine profile of peripheral T helper cells in PBMCs from Multiple Sclerosis patients or from individuals with MS risk SNPs near genes CYP27B1 and CYP24A1. Cytokine 2022; 153:155866. [PMID: 35339045 DOI: 10.1016/j.cyto.2022.155866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 02/21/2022] [Accepted: 03/14/2022] [Indexed: 11/03/2022]
Abstract
T helper cells play an important role in the aetiology of Multiple Sclerosis (MS). Vitamin D has an anti-inflammatory effect on T helper cells and can affect onset and pathogenesis of MS. Two genes of the metabolic Vitamin D pathway expressed by activated T helper (Th) cells have been identified as MS risk genes by genome-wide association studies, CYP27B1 (25(OH)D3 1-alpha-hydroxylase) and CYP24A1 (1,25(OH)2D3 24-alpha-hydroxylase). Therefore, we hypothesize that the MS risk alleles around gene CYP27B1 and CYP24A1 are associated with the altered inflammatory profile of peripheral Th cells in PBMCs both ex vivo and in vitro potentially influencing the pathogenesis of MS. PBMCs from MS patients (41 RRMS patients in their remitting stage and 4 SPMS patients) and 12 healthy controls were collected, subpopulation of Th cells in PBMCs and cytokine profile were tested by Flow cytometry and Cytometric Bead Array (CBA), respectively. MS risk SNPs were genotyped by allele-specific PCR analysis. Data were analysed using nonparametric tests and linear regression for adjusting multiple factors. The proportion of Th17.1, Th17 and Th1 cells were all associated with MS while the proportions of Th2 (significant) and Th17 (near significant) cells were correlated with the expanded disability scale score of MS patients. Additionally, we found a MS-specific dysregulation in the IL-6 and TNF production of Th cells in Concanavalin A-stimulated PBMCs. Furthermore, the risk allele rs2248359-C (near gene CYP24A1) showed a consistent inhibitory effect on the proportions of Th1 and Th17.1 cells, and the presence of the homozygous risk allele rs703842-AA (near gene CYP27B1) reduced the production of IL-2. In conclusion, both MS disease and its risk alleles near Vitamin D metabolism genes influence the inflammatory profile of T helper cells in PBMCs.
Collapse
Affiliation(s)
- Ming Lu
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China; Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia.
| | - Hui Shi
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Bruce V Taylor
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Heinrich Körner
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, Anhui Province, China.
| |
Collapse
|
28
|
Biernacki T, Kokas Z, Sandi D, Füvesi J, Fricska-Nagy Z, Faragó P, Kincses TZ, Klivényi P, Bencsik K, Vécsei L. Emerging Biomarkers of Multiple Sclerosis in the Blood and the CSF: A Focus on Neurofilaments and Therapeutic Considerations. Int J Mol Sci 2022; 23:ijms23063383. [PMID: 35328802 PMCID: PMC8951485 DOI: 10.3390/ijms23063383] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/12/2022] [Accepted: 03/17/2022] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Multiple Sclerosis (MS) is the most common immune-mediated chronic neurodegenerative disease of the central nervous system (CNS) affecting young people. This is due to the permanent disability, cognitive impairment, and the enormous detrimental impact MS can exert on a patient's health-related quality of life. It is of great importance to recognise it in time and commence adequate treatment at an early stage. The currently used disease-modifying therapies (DMT) aim to reduce disease activity and thus halt disability development, which in current clinical practice are monitored by clinical and imaging parameters but not by biomarkers found in blood and/or the cerebrospinal fluid (CSF). Both clinical and radiological measures routinely used to monitor disease activity lack information on the fundamental pathophysiological features and mechanisms of MS. Furthermore, they lag behind the disease process itself. By the time a clinical relapse becomes evident or a new lesion appears on the MRI scan, potentially irreversible damage has already occurred in the CNS. In recent years, several biomarkers that previously have been linked to other neurological and immunological diseases have received increased attention in MS. Additionally, other novel, potential biomarkers with prognostic and diagnostic properties have been detected in the CSF and blood of MS patients. AREAS COVERED In this review, we summarise the most up-to-date knowledge and research conducted on the already known and most promising new biomarker candidates found in the CSF and blood of MS patients. DISCUSSION the current diagnostic criteria of MS relies on three pillars: MRI imaging, clinical events, and the presence of oligoclonal bands in the CSF (which was reinstated into the diagnostic criteria by the most recent revision). Even though the most recent McDonald criteria made the diagnosis of MS faster than the prior iteration, it is still not an infallible diagnostic toolset, especially at the very early stage of the clinically isolated syndrome. Together with the gold standard MRI and clinical measures, ancillary blood and CSF biomarkers may not just improve diagnostic accuracy and speed but very well may become agents to monitor therapeutic efficacy and make even more personalised treatment in MS a reality in the near future. The major disadvantage of these biomarkers in the past has been the need to obtain CSF to measure them. However, the recent advances in extremely sensitive immunoassays made their measurement possible from peripheral blood even when present only in minuscule concentrations. This should mark the beginning of a new biomarker research and utilisation era in MS.
Collapse
Affiliation(s)
- Tamás Biernacki
- Albert Szent-Györgyi Clinical Centre, Department of Neurology, Faculty of General Medicine, University of Szeged, 6725 Szeged, Hungary; (T.B.); (Z.K.); (D.S.); (J.F.); (Z.F.-N.); (P.F.); (T.Z.K.); (P.K.); (K.B.)
| | - Zsófia Kokas
- Albert Szent-Györgyi Clinical Centre, Department of Neurology, Faculty of General Medicine, University of Szeged, 6725 Szeged, Hungary; (T.B.); (Z.K.); (D.S.); (J.F.); (Z.F.-N.); (P.F.); (T.Z.K.); (P.K.); (K.B.)
| | - Dániel Sandi
- Albert Szent-Györgyi Clinical Centre, Department of Neurology, Faculty of General Medicine, University of Szeged, 6725 Szeged, Hungary; (T.B.); (Z.K.); (D.S.); (J.F.); (Z.F.-N.); (P.F.); (T.Z.K.); (P.K.); (K.B.)
| | - Judit Füvesi
- Albert Szent-Györgyi Clinical Centre, Department of Neurology, Faculty of General Medicine, University of Szeged, 6725 Szeged, Hungary; (T.B.); (Z.K.); (D.S.); (J.F.); (Z.F.-N.); (P.F.); (T.Z.K.); (P.K.); (K.B.)
| | - Zsanett Fricska-Nagy
- Albert Szent-Györgyi Clinical Centre, Department of Neurology, Faculty of General Medicine, University of Szeged, 6725 Szeged, Hungary; (T.B.); (Z.K.); (D.S.); (J.F.); (Z.F.-N.); (P.F.); (T.Z.K.); (P.K.); (K.B.)
| | - Péter Faragó
- Albert Szent-Györgyi Clinical Centre, Department of Neurology, Faculty of General Medicine, University of Szeged, 6725 Szeged, Hungary; (T.B.); (Z.K.); (D.S.); (J.F.); (Z.F.-N.); (P.F.); (T.Z.K.); (P.K.); (K.B.)
| | - Tamás Zsigmond Kincses
- Albert Szent-Györgyi Clinical Centre, Department of Neurology, Faculty of General Medicine, University of Szeged, 6725 Szeged, Hungary; (T.B.); (Z.K.); (D.S.); (J.F.); (Z.F.-N.); (P.F.); (T.Z.K.); (P.K.); (K.B.)
- Albert Szent-Györgyi Clinical Centre, Department of Radiology, Albert Szent-Györgyi Faculty of Medicine, University of Szeged, 6725 Szeged, Hungary
| | - Péter Klivényi
- Albert Szent-Györgyi Clinical Centre, Department of Neurology, Faculty of General Medicine, University of Szeged, 6725 Szeged, Hungary; (T.B.); (Z.K.); (D.S.); (J.F.); (Z.F.-N.); (P.F.); (T.Z.K.); (P.K.); (K.B.)
| | - Krisztina Bencsik
- Albert Szent-Györgyi Clinical Centre, Department of Neurology, Faculty of General Medicine, University of Szeged, 6725 Szeged, Hungary; (T.B.); (Z.K.); (D.S.); (J.F.); (Z.F.-N.); (P.F.); (T.Z.K.); (P.K.); (K.B.)
| | - László Vécsei
- Albert Szent-Györgyi Clinical Centre, Department of Neurology, Faculty of General Medicine, University of Szeged, 6725 Szeged, Hungary; (T.B.); (Z.K.); (D.S.); (J.F.); (Z.F.-N.); (P.F.); (T.Z.K.); (P.K.); (K.B.)
- MTA-SZTE Neuroscience Research Group, University of Szeged, 6725 Szeged, Hungary
- Correspondence: ; Tel.: +36-62-545-356; Fax: +36-62-545-597
| |
Collapse
|
29
|
Genetic analysis of IL4 (rs2070874), IL17A (rs2275913), and IL33 (rs7044343) polymorphisms in Iraqi multiple sclerosis patients by using T-plex real-time PCR method. Meta Gene 2022. [DOI: 10.1016/j.mgene.2021.100986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
30
|
A Squalene-Based Nanoemulsion for Therapeutic Delivery of Resiquimod. Pharmaceutics 2021; 13:pharmaceutics13122060. [PMID: 34959344 PMCID: PMC8706843 DOI: 10.3390/pharmaceutics13122060] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/30/2021] [Accepted: 11/30/2021] [Indexed: 12/03/2022] Open
Abstract
Agonists for toll-like receptors (TLRs) have shown promising activities against cancer. In the present study, a squalene-based nanoemulsion (NE) was loaded with resiquimod, a TLR7/8 agonist for therapeutic delivery. R848 NE was developed and characterized for long-term stability. In vitro and in vivo antitumor immunity of R848 NE were also evaluated in combination with SD-101, a CpG-containing TLR9 agonist. In vitro studies demonstrated strong long-term stability and immune responses to R848 NE. When combined with SD-101, strong antitumor activity was observed in MC38 murine colon carcinoma model with over 80% tumor growth inhibition. The combination treatment showed a 4-fold increase in systemic TNFa production and a 2.6-fold increase in Cd8a expression in tumor tissues, suggesting strong cell-mediated immune responses against the tumor. The treatment not only demonstrated a strong antitumor immunity by TLR7/8 and TLR9 activations but also induced PD-L1 upregulation in tumors, suggesting a potential therapeutic synergy with immune checkpoint inhibitors.
Collapse
|
31
|
Expression and clinical significance of IL7R, NFATc2, and RNF213 in familial and sporadic multiple sclerosis. Sci Rep 2021; 11:19260. [PMID: 34584155 PMCID: PMC8478940 DOI: 10.1038/s41598-021-98691-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 09/01/2021] [Indexed: 02/08/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory and autoimmune disorder of the central nervous system characterized by myelin loss and axonal dysfunction. Increased production of inflammatory factors such as cytokines has been implicated in axon destruction. In the present study, we compared the expression level of IL7R, NFATc2, and RNF213 genes in the peripheral blood of 72 MS patients (37 familial MS, 35 sporadic MS) and 74 healthy controls (34 individuals with a family history of the disease, 40 healthy controls without a family history) via Real-time PCR. Our results showed that the expression level of IL7R was decreased in the sporadic patients in comparison with other groups. Additionally, there was an increased NFATc2 expression level in MS patients versus healthy controls. Increased expression of NFATc2 in sporadic and familial groups compared to the controls, and familial group versus FDR was also seen. Our results also represented an increased expression level of RNF213 in familial patients as compared to the control group. The similar RNF213 expression between sporadic and control group, as well as FDR and familial group was also seen. Diagnostic evaluation was performed by receiver operating characteristic (ROC) curve analysis and area under the curve (AUC) calculation. The correlation of clinical parameters including onset age and Expanded Disability Status Scale (EDSS) with our gene expression levels were also assessed. Overall, decreased expression level of IL7R in the sporadic cases and increased expression level of NFATc2 may be associated with the pathogenesis of MS disease. Confirmation of the effects of differential expression of RNF213 gene requires further studies in the wider statistical populations.
Collapse
|
32
|
Puthenparampil M, Tomas-Ojer P, Hornemann T, Lutterotti A, Jelcic I, Ziegler M, Hülsmeier AJ, Cruciani C, Faigle W, Martin R, Sospedra M. Altered CSF Albumin Quotient Links Peripheral Inflammation and Brain Damage in MS. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2021; 8:8/2/e951. [PMID: 33649179 PMCID: PMC7963437 DOI: 10.1212/nxi.0000000000000951] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 10/06/2020] [Indexed: 01/03/2023]
Abstract
OBJECTIVE CNS damage can increase the susceptibility of the blood-brain barrier (BBB) to changes induced by systemic inflammation. The aim of this study is to better understand BBB permeability in patients with MS and to examine whether compromised BBB integrity in some of these patients is associated with CNS damage and systemic inflammation. METHODS Routine CSF measurements of 121 patients with MS were analyzed including number and type of infiltrating cells, total protein, lactate, and oligoclonal bands, as well as intrathecal production of immunoglobulins and CSF/serum quotients for albumin, immunoglobulins, and glucose. In addition, in a subcohort of these patients, we performed ex vivo immunophenotyping of CSF-infiltrating and paired circulating lymphocytes using a panel of 13 monoclonal antibodies, we quantified intrathecal neurofilament light chain (NF-L) and chitinase 3-like 1 (CHI3L1), and we performed intrathecal lipidomic analysis. RESULTS Patients with MS with abnormal high levels of albumin in the CSF showed a distinct CSF cell infiltrate and markers of CNS damage such as increased intrathecal levels of NF-L and CHI3L1 as well as a distinct CSF lipidomic profile. In addition, these patients showed higher numbers of circulating proinflammatory Th1 and Th1* cells compatible with systemic inflammation. Of interest, the abnormally high levels of albumin in the CSF of those patients were preserved over time. CONCLUSIONS Our results support the hypothesis that CNS damage may increase BBB vulnerability to systemic inflammation in a subset of patients and thus contribute to disease heterogeneity.
Collapse
Affiliation(s)
- Marco Puthenparampil
- From Neuroimmunology and MS Research (nims) (M.P., P.T.-O., A.L., I.J., M.Z., C.C., W.F., R.M., M.S.), Department of Neurology, University Hospital and University Zurich, Switzerland; Department of Neuroscience DNS (M.P.), University Hospital of Padova, Italy; and Institute for Clinical Chemistry (T.H., A.H.), University Hospital and University Zurich, Switzerland
| | - Paula Tomas-Ojer
- From Neuroimmunology and MS Research (nims) (M.P., P.T.-O., A.L., I.J., M.Z., C.C., W.F., R.M., M.S.), Department of Neurology, University Hospital and University Zurich, Switzerland; Department of Neuroscience DNS (M.P.), University Hospital of Padova, Italy; and Institute for Clinical Chemistry (T.H., A.H.), University Hospital and University Zurich, Switzerland
| | - Thorsten Hornemann
- From Neuroimmunology and MS Research (nims) (M.P., P.T.-O., A.L., I.J., M.Z., C.C., W.F., R.M., M.S.), Department of Neurology, University Hospital and University Zurich, Switzerland; Department of Neuroscience DNS (M.P.), University Hospital of Padova, Italy; and Institute for Clinical Chemistry (T.H., A.H.), University Hospital and University Zurich, Switzerland
| | - Andreas Lutterotti
- From Neuroimmunology and MS Research (nims) (M.P., P.T.-O., A.L., I.J., M.Z., C.C., W.F., R.M., M.S.), Department of Neurology, University Hospital and University Zurich, Switzerland; Department of Neuroscience DNS (M.P.), University Hospital of Padova, Italy; and Institute for Clinical Chemistry (T.H., A.H.), University Hospital and University Zurich, Switzerland
| | - Ilijas Jelcic
- From Neuroimmunology and MS Research (nims) (M.P., P.T.-O., A.L., I.J., M.Z., C.C., W.F., R.M., M.S.), Department of Neurology, University Hospital and University Zurich, Switzerland; Department of Neuroscience DNS (M.P.), University Hospital of Padova, Italy; and Institute for Clinical Chemistry (T.H., A.H.), University Hospital and University Zurich, Switzerland
| | - Mario Ziegler
- From Neuroimmunology and MS Research (nims) (M.P., P.T.-O., A.L., I.J., M.Z., C.C., W.F., R.M., M.S.), Department of Neurology, University Hospital and University Zurich, Switzerland; Department of Neuroscience DNS (M.P.), University Hospital of Padova, Italy; and Institute for Clinical Chemistry (T.H., A.H.), University Hospital and University Zurich, Switzerland
| | - Andreas J Hülsmeier
- From Neuroimmunology and MS Research (nims) (M.P., P.T.-O., A.L., I.J., M.Z., C.C., W.F., R.M., M.S.), Department of Neurology, University Hospital and University Zurich, Switzerland; Department of Neuroscience DNS (M.P.), University Hospital of Padova, Italy; and Institute for Clinical Chemistry (T.H., A.H.), University Hospital and University Zurich, Switzerland
| | - Carolina Cruciani
- From Neuroimmunology and MS Research (nims) (M.P., P.T.-O., A.L., I.J., M.Z., C.C., W.F., R.M., M.S.), Department of Neurology, University Hospital and University Zurich, Switzerland; Department of Neuroscience DNS (M.P.), University Hospital of Padova, Italy; and Institute for Clinical Chemistry (T.H., A.H.), University Hospital and University Zurich, Switzerland
| | - Wolfgang Faigle
- From Neuroimmunology and MS Research (nims) (M.P., P.T.-O., A.L., I.J., M.Z., C.C., W.F., R.M., M.S.), Department of Neurology, University Hospital and University Zurich, Switzerland; Department of Neuroscience DNS (M.P.), University Hospital of Padova, Italy; and Institute for Clinical Chemistry (T.H., A.H.), University Hospital and University Zurich, Switzerland
| | - Roland Martin
- From Neuroimmunology and MS Research (nims) (M.P., P.T.-O., A.L., I.J., M.Z., C.C., W.F., R.M., M.S.), Department of Neurology, University Hospital and University Zurich, Switzerland; Department of Neuroscience DNS (M.P.), University Hospital of Padova, Italy; and Institute for Clinical Chemistry (T.H., A.H.), University Hospital and University Zurich, Switzerland
| | - Mireia Sospedra
- From Neuroimmunology and MS Research (nims) (M.P., P.T.-O., A.L., I.J., M.Z., C.C., W.F., R.M., M.S.), Department of Neurology, University Hospital and University Zurich, Switzerland; Department of Neuroscience DNS (M.P.), University Hospital of Padova, Italy; and Institute for Clinical Chemistry (T.H., A.H.), University Hospital and University Zurich, Switzerland.
| |
Collapse
|
33
|
Gutiérrez-Miranda B, Gallardo I, Melliou E, Cabero I, Álvarez Y, Magiatis P, Hernández M, Nieto ML. Oleacein Attenuates the Pathogenesis of Experimental Autoimmune Encephalomyelitis through Both Antioxidant and Anti-Inflammatory Effects. Antioxidants (Basel) 2020; 9:antiox9111161. [PMID: 33233421 PMCID: PMC7700216 DOI: 10.3390/antiox9111161] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/12/2020] [Accepted: 11/18/2020] [Indexed: 02/07/2023] Open
Abstract
Oxidative stress and proinflammatory cytokines are factors affecting multiple sclerosis (MS) disease progression. Oleacein (OLE), an olive secoiridoid, possesses powerful antioxidant and anti-inflammatory activities, which suggests its potential application to treat neuroinflammatory disorders. Herein, we investigated the impact of OLE on the main clinic-pathological features of experimental autoimmune encephalomyelitis (EAE), an animal model for MS, including paralysis, demyelination, central nervous system (CNS) inflammation/oxidative stress and blood-brain barrier (BBB) breakdown. METHODS Mice were immunized with the myelin oligodendrocyte glycoprotein peptide, MOG35-55, to induce EAE, and OLE was administrated from immunization day. Serum, optic nerve, spinal cord and cerebellum were collected to evaluate immunomodulatory activities at a systemic level, as well as within the CNS. Additionally, BV2 microglia and the retinal ganglion cell line RGC-5 were used to confirm the direct effect of OLE on CNS-resident cells. RESULTS We show that OLE treatment effectively reduced clinical score and histological signs typical of EAE. Histological evaluation confirmed a decrease in leukocyte infiltration, demyelination, BBB disruption and superoxide anion accumulation in CNS tissues of OLE-treated EAE mice compared to untreated ones. OLE significantly decreased expression of proinflammatory cytokines (IL-13, TNFα, GM-CSF, MCP-1 and IL-1β), while it increased the anti-inflammatory cytokine IL-10. Serum levels of anti-MOG35-55 antibodies were also lower in OLE-treated EAE mice. Further, OLE significantly diminished the presence of oxidative system parameters, while upregulated the ROS disruptor, Sestrin-3. Mechanistically, OLE prevented NLRP3 expression, phosphorylation of p65-NF-κB and reduced the synthesis of proinflammatory mediators induced by relevant inflammatory stimuli in BV2 cells. OLE did not affect viability or the phagocytic capabilities of BV2 microglia. In addition, apoptosis of RGC-5 induced by oxidative stressors was also prevented by OLE. CONCLUSION Altogether, our results show that the antioxidant and anti-inflammatory OLE has neuroprotective effects in the CNS of EAE mice, pointing out this natural product as a candidate to consider for research on MS treatments.
Collapse
Affiliation(s)
- Beatriz Gutiérrez-Miranda
- Instituto de Biología y Genética Molecular (IBGM-CSIC/UVa), 47001 Valladolid, Spain; (B.G.-M.); (I.G.); (I.C.); (Y.Á.); (M.H.)
| | - Isabel Gallardo
- Instituto de Biología y Genética Molecular (IBGM-CSIC/UVa), 47001 Valladolid, Spain; (B.G.-M.); (I.G.); (I.C.); (Y.Á.); (M.H.)
| | - Eleni Melliou
- Laboratory of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (E.M.); (P.M.)
| | - Isabel Cabero
- Instituto de Biología y Genética Molecular (IBGM-CSIC/UVa), 47001 Valladolid, Spain; (B.G.-M.); (I.G.); (I.C.); (Y.Á.); (M.H.)
| | - Yolanda Álvarez
- Instituto de Biología y Genética Molecular (IBGM-CSIC/UVa), 47001 Valladolid, Spain; (B.G.-M.); (I.G.); (I.C.); (Y.Á.); (M.H.)
| | - Prokopios Magiatis
- Laboratory of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (E.M.); (P.M.)
| | - Marita Hernández
- Instituto de Biología y Genética Molecular (IBGM-CSIC/UVa), 47001 Valladolid, Spain; (B.G.-M.); (I.G.); (I.C.); (Y.Á.); (M.H.)
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valladolid, 47001 Valladolid, Spain
| | - María Luisa Nieto
- Instituto de Biología y Genética Molecular (IBGM-CSIC/UVa), 47001 Valladolid, Spain; (B.G.-M.); (I.G.); (I.C.); (Y.Á.); (M.H.)
- Correspondence: ; Tel.: +34-983-1848-36; Fax: +34-983-1848-00
| |
Collapse
|
34
|
Khoy K, Mariotte D, Defer G, Petit G, Toutirais O, Le Mauff B. Natalizumab in Multiple Sclerosis Treatment: From Biological Effects to Immune Monitoring. Front Immunol 2020; 11:549842. [PMID: 33072089 PMCID: PMC7541830 DOI: 10.3389/fimmu.2020.549842] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 09/04/2020] [Indexed: 12/13/2022] Open
Abstract
Multiple sclerosis is a chronic demyelinating disease of the central nervous system (CNS) with an autoimmune component. Among the recent disease-modifying treatments available, Natalizumab, a monoclonal antibody directed against the alpha chain of the VLA-4 integrin (CD49d), is a potent inhibitor of cell migration toward the tissues including CNS. It potently reduces relapses and active brain lesions in the relapsing remitting form of the disease. However, it has also been associated with a severe infectious complication, the progressive multifocal leukoencephalitis (PML). Using the standard protocol with an injection every 4 weeks it has been shown by a close monitoring of the drug that trough levels soon reach a plateau with an almost saturation of the target cell receptor as well as a down modulation of this receptor. In this review, mechanisms of action involved in therapeutic efficacy as well as in PML risk will be discussed. Furthermore the interest of a biological monitoring that may be helpful to rapidly adapt treatment is presented. Indeed, development of anti-NAT antibodies, although sometimes unapparent, can be detected indirectly by normalization of CD49d expression on circulating mononuclear cells and might require to switch to another drug. On the other hand a stable modulation of CD49d expression might be useful to follow the circulating NAT levels and apply an extended interval dose scheme that could contribute to limiting the risk of PML.
Collapse
Affiliation(s)
- Kathy Khoy
- Laboratory of Immunology, Department of Biology, CHU Caen Normandie, Caen, France
| | - Delphine Mariotte
- Laboratory of Immunology, Department of Biology, CHU Caen Normandie, Caen, France
| | - Gilles Defer
- Department of Neurology, MS Expert Centre, CHU Caen Normandie, Caen, France.,UMR-S1237, Physiopathology and Imaging of Neurological Disorders, INSERM, Caen, France.,Normandie Université, UNICAEN, Caen, France
| | - Gautier Petit
- Laboratory of Immunology, Department of Biology, CHU Caen Normandie, Caen, France
| | - Olivier Toutirais
- Laboratory of Immunology, Department of Biology, CHU Caen Normandie, Caen, France.,UMR-S1237, Physiopathology and Imaging of Neurological Disorders, INSERM, Caen, France.,Normandie Université, UNICAEN, Caen, France
| | - Brigitte Le Mauff
- Laboratory of Immunology, Department of Biology, CHU Caen Normandie, Caen, France.,UMR-S1237, Physiopathology and Imaging of Neurological Disorders, INSERM, Caen, France.,Normandie Université, UNICAEN, Caen, France
| |
Collapse
|
35
|
Aharoni R, Eilam R, Schottlender N, Radomir L, Leistner-Segal S, Feferman T, Hirsch D, Sela M, Arnon R. Glatiramer acetate increases T- and B -regulatory cells and decreases granulocyte-macrophage colony-stimulating factor (GM-CSF) in an animal model of multiple sclerosis. J Neuroimmunol 2020; 345:577281. [DOI: 10.1016/j.jneuroim.2020.577281] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/21/2020] [Accepted: 05/26/2020] [Indexed: 01/21/2023]
|
36
|
Brune Z, Rice MR, Barnes BJ. Potential T Cell-Intrinsic Regulatory Roles for IRF5 via Cytokine Modulation in T Helper Subset Differentiation and Function. Front Immunol 2020; 11:1143. [PMID: 32582209 PMCID: PMC7283537 DOI: 10.3389/fimmu.2020.01143] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/11/2020] [Indexed: 12/24/2022] Open
Abstract
Interferon Regulatory Factor 5 (IRF5) is one of nine members of the IRF family of transcription factors. Although initially discovered as a key regulator of the type I interferon and pro-inflammatory cytokine arm of the innate immune response, IRF5 has now been found to also mediate pathways involved in cell growth and differentiation, apoptosis, metabolic homeostasis and tumor suppression. Hyperactivation of IRF5 has been implicated in numerous autoimmune diseases, chief among them systemic lupus erythematosus (SLE). SLE is a heterogeneous autoimmune disease in which patients often share similar characteristics in terms of autoantibody production and strong genetic risk factors, yet also possess unique disease signatures. IRF5 pathogenic alleles contribute one of the strongest risk factors for SLE disease development. Multiple models of murine lupus have shown that loss of Irf5 is protective against disease development. In an attempt to elucidate the regulatory role(s) of IRF5 in driving SLE pathogenesis, labs have begun to examine the function of IRF5 in several immune cell types, including B cells, macrophages, and dendritic cells. A somewhat untouched area of research on IRF5 is in T cells, even though Irf5 knockout mice were reported to have skewing of T cell subsets from T helper 1 (Th1) and T helper 17 (Th17) toward T helper 2 (Th2), indicating a potential role for IRF5 in T cell regulation. However, most studies attributed this T cell phenotype in Irf5 knockout mice to dysregulation of antigen presenting cell function rather than an intrinsic role for IRF5 in T cells. In this review, we offer a different interpretation of the literature. The role of IRF5 in T cells, specifically its control of T cell effector polarization and the resultant T cell-mediated cytokine production, has yet to be elucidated. A strong understanding of the regulatory role(s) of this key transcription factor in T cells is necessary for us to grasp the full picture of the complex pathogenesis of autoimmune diseases like SLE.
Collapse
Affiliation(s)
- Zarina Brune
- Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Matthew R. Rice
- Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Betsy J. Barnes
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Departments of Molecular Medicine and Pediatrics, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| |
Collapse
|
37
|
Inflammation and Oxidative Stress in Multiple Sclerosis: Consequences for Therapy Development. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7191080. [PMID: 32454942 PMCID: PMC7240663 DOI: 10.1155/2020/7191080] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 02/14/2020] [Accepted: 03/04/2020] [Indexed: 12/29/2022]
Abstract
CNS inflammation is a major driver of MS pathology. Differential immune responses, including the adaptive and the innate immune system, are observed at various stages of MS and drive disease development and progression. Next to these immune-mediated mechanisms, other mediators contribute to MS pathology. These include immune-independent cell death of oligodendrocytes and neurons as well as oxidative stress-induced tissue damage. In particular, the complex influence of oxidative stress on inflammation and vice versa makes therapeutic interference complex. All approved MS therapeutics work by modulating the autoimmune response. However, despite substantial developments in the treatment of the relapsing-remitting form of MS, approved therapies for the progressive forms of MS as well as for MS-associated concomitants are limited and much needed. Here, we summarize the contribution of inflammation and oxidative stress to MS pathology and discuss consequences for MS therapy development.
Collapse
|
38
|
Koda T, Namba A, Kinoshita M, Nakatsuji Y, Sugimoto T, Sakakibara K, Tada S, Shimizu M, Yamashita K, Takata K, Ishikura T, Murata S, Beppu S, Kumanogoh A, Mochizuki H, Okuno T. Sema4A is implicated in the acceleration of Th17 cell-mediated neuroinflammation in the effector phase. J Neuroinflammation 2020; 17:82. [PMID: 32169103 PMCID: PMC7068964 DOI: 10.1186/s12974-020-01757-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 02/24/2020] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Sema4A is a regulator of helper T cell (Th) activation and differentiation in the priming phase, which plays an important role in the pathogenesis of experimental autoimmune encephalomyelitis (EAE) and multiple sclerosis (MS). However, the role of Sema4A in the effector phase remains elusive. We aimed to investigate the role of Sema4A at the effector phase in adoptively transferred EAE model. Clinical features and cytokine profiles of MS patients with high Sema4A levels were also examined in detail to clarify the correlation between Sema4A levels and disease activity of patients with MS. METHODS We adoptively transferred encephalitogenic Th1 or Th17 cells to wild type (WT) or Sema4A-deficient (Sema4A KO) mice and assessed severity of symptoms and cellular infiltration within the central nervous system (CNS). In addition, we analyzed clinical and radiological features (n = 201), levels of serum IFN-γ and IL-17A (n = 86), complete remission ratio by IFN-β (n = 38) in all of relapsing-remitting multiple sclerosis (RRMS) patients enrolled in this study. RESULTS Sema4A KO recipient mice receiving Th17-skewed WT myelin oligodendrocyte glycoprotein (MOG)-specific encephalitogenic T cells showed a significant reduction in the clinical score compared to the WT recipient mice. However, Sema4A KO recipient mice showed similar disease activity to the WT recipient mice when transferred with Th1-skewed encephalitogenic T cells. Bone marrow chimeric study indicated that Sema4A expressed on hematopoietic cells, but not the CNS resident cells, are responsible for augmenting Th17-mediated neuroinflammation. Additionally, in contrast to comparable IFN-γ levels, IL-17A is significantly higher in RRMS patients with high Sema4A level than those with low Sema4A patients with high Sema4A levels showed earlier disease onset, more severe disease activity and IFN-β unresponsiveness than those with low Sema4A levels. CONCLUSIONS Sema4A is involved not only in the Th cell priming but also in the acceleration of Th17 cell-mediated neuroinflammation in the effector phase, which could contribute to the higher disease activity observed in RRMS patients with high serum Sema4A levels.
Collapse
Affiliation(s)
- Toru Koda
- Department of Neurology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Akiko Namba
- Department of Neurology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Makoto Kinoshita
- Department of Neurology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yuji Nakatsuji
- Department of Neurology, Toyama University Hospital, Toyama, Japan
| | | | - Kaori Sakakibara
- Department of Neurology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Satoru Tada
- Department of Neurology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Mikito Shimizu
- Department of Neurology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kazuya Yamashita
- Department of Neurology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kazushiro Takata
- Department of Neurology, Hoshigaoka Medical Center, Hirakata, Osaka, Japan
| | - Teruyuki Ishikura
- Department of Neurology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Syo Murata
- Department of Neurology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Shohei Beppu
- Department of Neurology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine, Allergy and Rheumatic Diseases, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.
| | - Hideki Mochizuki
- Department of Neurology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Tatsusada Okuno
- Department of Neurology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
39
|
Cathérine D, Annelien DP, Anne S, Luc A, Liesbeth VH, Gerlo S, Guy L. End of dose interval symptoms in patients treated with natalizumab: A role for serum cytokines? Mult Scler Relat Disord 2020; 41:102020. [PMID: 32146430 DOI: 10.1016/j.msard.2020.102020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/22/2020] [Accepted: 02/21/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND Many natalizumab treated patients experience end of dose interval (EDI) symptoms towards the end of the administration cycle. Natalizumab has previously shown to influence cytokine profiles in relapsing remitting MS patients. We hypothesize that EDI symptoms might be explained by variability in serum cytokine levels during natalizumab treatment. METHODS 42 relapsing remitting MS patients were included. Participants were evaluated before natalizumab administration (day 0) and 7 days afterwards (day 7). At both time points fatigue, depressed mood and cognition were evaluated using the fatigue severity scale (FSS), the visual analogue scale for fatigue (VAS-F), the symbol digit modality test (SDMT) and the inventory for depressive symptomatology (IDS-SR). Serum samples were tested for concentrations of IL-6, IFN-γ and TNF-α at both timepoints. On day 7 an additional EDI questionnaire was completed. Data were analyzed with SPSS by means of non-parametric tests. RESULTS EDI symptoms were reported by 59.5%. Although fatigue was most frequently reported, fatigue scales did not significantly change from day 0 to 7 in (fatigued) EDI patients. Mood and cognition significantly ameliorated in both EDI and non-EDI patients. Cytokines remained stable at day 0 vs 7 except for a significant increase in IFN-γ. On day 0, IFN-γ concentration was positively correlated with a depressed mood in the whole cohort, and with mood and fatigue in the EDI group. Depressed mood positively whilst cognition negatively correlated with IFN-γ concentration on day 0 in the EDI subgroup reporting fatigue. No significant correlations between IL-6 nor TNF-α and symptom scores could be found. CONCLUSION In our study EDI symptoms could not be objectified since EDI and non-EDI groups did not differ in terms of change in mood, cognition and fatigue between day 0 and 7 suggesting that symptom recrudescence could be a subjective experience. Although our results need to be interpreted cautiously, we found no clear correlation between studied serum cytokines concentrations and the occurrence of EDI symptoms.
Collapse
Affiliation(s)
- Dekeyser Cathérine
- Department of Neurology, UZ Gent, Corneel Heymanslaan 10, Gent, Belgium.
| | - De Pue Annelien
- Department of Neurology, AZ St. Lucas, Groenebriel 1, Gent, Belgium
| | - Sieben Anne
- Department of Neurology, UZ Gent, Corneel Heymanslaan 10, Gent, Belgium; Department of Neurology, AZ Jan Palfijn, Henri Dunantlaan 5, Gent, Belgium
| | - Algoed Luc
- Department of Neurology, AZ Maria Middelares, Buitenring-Sint-Denijs 30, Gent, Belgium
| | | | - Sarah Gerlo
- VIB Center for Medical Biotechnology, Albert Baertsoenkaai 3, Gent, Belgium; Department of Biomolecular Medicine, UGent, Albert Baertsoenkaai 3, Gent, Belgium
| | - Laureys Guy
- Department of Neurology, UZ Gent, Corneel Heymanslaan 10, Gent, Belgium.
| |
Collapse
|
40
|
Zhou L, Lin X, Ma X, Liu Y, Ma L, Chen Z, Chen H, Si L, Chen X. Acetylcholine regulates the development of experimental autoimmune encephalomyelitis via the CD4+ cells proliferation and differentiation. Int J Neurosci 2020; 130:788-803. [PMID: 31906749 DOI: 10.1080/00207454.2019.1706504] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Linli Zhou
- Department of Neurology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong China
- Epidemiology and Infection Control Section, Medical Affairs Department, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Xiuli Lin
- Department of Neurology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong China
| | - Xiaomeng Ma
- Department of Neurology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong China
| | - Yingying Liu
- Department of Neurology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong China
| | - Lili Ma
- Department of Neurology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong China
| | - Zhaoyu Chen
- Department of Neurology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong China
| | - Hao Chen
- Department of Neurology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong China
| | - Lei Si
- Department of Neurology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong China
| | - Xiaohong Chen
- Department of Neurology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong China
| |
Collapse
|
41
|
Soleimani M, Soleymani A, Seyyedirad N. Elevated CSF concentration of CCL3 and CCL4 in relapsing remitting multiple sclerosis patients. J Immunoassay Immunochem 2019; 40:378-385. [DOI: 10.1080/15321819.2019.1613242] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Mohammad Soleimani
- Department of Neurology, Isfahan University of Medical Sciences, Isfahan, The Islamic Republic of Iran
| | - Atiyeh Soleymani
- Department of Neurology, Islamic Azad University of Medical Sciences Qeshm International Branch, Tehran, The Islamic Republic of Iran
| | - Negarin Seyyedirad
- Department of Neurology, Islamic Azad University of Medical Sciences Qeshm International Branch, Tehran, The Islamic Republic of Iran
| |
Collapse
|
42
|
Ren J, Ascencio M, Raimondi T, Rainville EC, Valenzuela RM, Asche CV. Association Between Exposure of Ipratropium and Salmeterol and Diagnosis of Multiple Sclerosis: A Matched Case-control Study. Clin Ther 2019; 41:1477-1485. [PMID: 31128979 DOI: 10.1016/j.clinthera.2019.04.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/26/2019] [Accepted: 04/30/2019] [Indexed: 12/16/2022]
Abstract
PURPOSE Ipratropium and salmeterol were found to stimulate oligodendrocyte differentiation in a high-throughput drug screening assay; thus, they may play a role in the risk reduction of multiple sclerosis (MS). So far, they have not been examined in any clinical data. This study aims at investigating the association between ipratropium and salmeterol and reduced diagnosis of MS with the use of real-world clinical data. METHODS We conducted a 1:10 matched case-control study that compared the exposure of ipratropium and salmeterol between patients with MS and control patients over the past 2 years, using the MS Flowsheet Registry of OSF HealthCare Saint Francis Medical Center. Cases were matched to control patients, based on service year/quarter, age, sex, race, and payer type. The relationship was examined with a Poisson regression model and a generalized structural equation model. FINDINGS The sample in our analysis included 217 patients with MS and 2164 matched control patients. The mean (SD) age for both patients with MS and control patients was 41 (11.8) years with a range of 18 to 75 years. The MS group had consistently less prescriptions of ipratropium and salmeterol than the control group in the past 1, 2, and 3 years before the index date. Our multivariable analysis found that the control group had 3.2 more prescriptions (95% CI, 1.4-7.1; P = 0.006) of either ipratropium or salmeterol in the past 2 years than the MS group, even if controlling for other confounders. In the generalized structural equation model, we found that use of ipratropium and salmeterol was significantly associated with reduced diagnosis of MS (P = 0.036), whereas smokers and people with family history of MS were more likely to have a diagnosis of MS (P < 0.001). IMPLICATIONS The observed association between ipratropium and salmeterol use and reduced diagnosis of MS indicates that they might potentially serve as agents in the treatment of MS.
Collapse
Affiliation(s)
- Jinma Ren
- Center for Outcomes Research, Department of Medicine, University of Illinois College of Medicine at Peoria, Peoria, IL, USA.
| | - Marisa Ascencio
- University of Illinois College of Medicine at Peoria, Peoria, IL, USA
| | - Tommaso Raimondi
- University of Illinois College of Medicine at Peoria, Peoria, IL, USA
| | | | - Reuben M Valenzuela
- Illinois Neurologist Institute/OSF Saint Francis Medical Center, Peoria, IL, USA
| | - Carl V Asche
- Center for Outcomes Research, Department of Medicine, University of Illinois College of Medicine at Peoria, Peoria, IL, USA; Center for Pharmacoepidemiology and Pharmacoeconomic Research, University of Illinois at Chicago College of Pharmacy, Chicago, IL, USA
| |
Collapse
|
43
|
Hofer LS, Mariotto S, Wurth S, Ferrari S, Mancinelli CR, Delogu R, Monaco S, Gajofatto A, Schwaiger C, Rostasy K, Deisenhammer F, Höftberger R, Berger T, Reindl M. Distinct serum and cerebrospinal fluid cytokine and chemokine profiles in autoantibody-associated demyelinating diseases. Mult Scler J Exp Transl Clin 2019; 5:2055217319848463. [PMID: 31205739 PMCID: PMC6537078 DOI: 10.1177/2055217319848463] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/02/2019] [Accepted: 04/12/2019] [Indexed: 01/22/2023] Open
Abstract
Background Demyelinating diseases of the central nervous system associated with
autoantibodies against aquaporin-4 and myelin-oligodendrocyte-glycoprotein
are mediated by different immunopathological mechanisms compared to multiple
sclerosis. Objective The purpose of this study was to evaluate serum and cerebrospinal fluid
cytokine/chemokine profiles in patients with autoantibodies against
aquaporin-4 or autoantibodies against
myelin-oligodendrocyte-glycoprotein-associated demyelination compared to
multiple sclerosis and autoimmune encephalitis. Methods Serum and cerebrospinal fluid cytokine/chemokine levels were analysed using
Procartaplex Multiplex Immunoassays. First, we analysed a panel of 32
cytokines/chemokines in a discovery group (nine aquaporin-4-antibody
seropositive, nine myelin oligodendrocyte glycoprotein-antibody
seropositive, eight encephalitis, 10 multiple sclerosis). Significantly
dysregulated cytokines/chemokines were validated in a second cohort (11
aquaporin-4-antibody seropositive, 18 myelin oligodendrocyte
glycoprotein-antibody seropositive, 18 encephalitis, 33 multiple
sclerosis). Results We found 11 significantly altered cytokines/chemokines in cerebrospinal fluid
and serum samples in the discovery group (a proliferation-inducing ligand,
fractalkine=CX3CL1, growth-regulated oncogene-α, interleukin-1 receptor
antagonist, interleukin-6, interleukin-8=CXCL8, interleukin-10,
interleukin-21, interferon-ɣ-induced protein-10=CXCL10, monokine induced by
interferon-ɣ=CXCL9, macrophage inflammatory protein-1ß=CCL4). Most of these
cytokines/chemokines were up-regulated in autoantibodies against aquaporin-4
or autoantibodies against myelin-oligodendrocyte-glycoprotein positive
patients compared to multiple sclerosis. We confirmed these results for
cerebrospinal fluid interleukin-6 and serum interleukin-8, growth-regulated
oncogene-α, a proliferation-inducing ligand and macrophage inflammatory
protein-1β in the validation set. Receiver-operating characteristic analysis
revealed increased levels of cerebrospinal fluid interleukin-6, serum
interleukin-8 and growth-regulated oncogene-α in most patients with
autoantibody-associated neurological diseases. Conclusion This study suggests that distinctive cerebrospinal fluid and serum
cytokine/chemokine profiles are associated with autoantibody-mediated
demyelination, but not with multiple sclerosis.
Collapse
Affiliation(s)
- Livia S Hofer
- Clinical Department of Neurology, Medical University of Innsbruck, Austria
| | - Sara Mariotto
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Italy
| | - Sebastian Wurth
- Clinical Department of Neurology, Medical University of Innsbruck, Austria
| | - Sergio Ferrari
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Italy
| | | | - Rachele Delogu
- Department of Clinical and Experimental Medicine, University of Sassari, Italy
| | - Salvatore Monaco
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Italy
| | - Alberto Gajofatto
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Italy
| | | | - Kevin Rostasy
- Paediatric Neurology, Witten/Herdecke University, Germany
| | | | | | - Thomas Berger
- Department of Neurology, Medical University of Vienna, Austria
| | - Markus Reindl
- Clinical Department of Neurology, Medical University of Innsbruck, Austria
| |
Collapse
|
44
|
Esmaeilzadeh E, Soleimani M, Zare-Abdollahi D, Jameie B, Khorram Khorshid HR. Curcumin ameliorates experimental autoimmune encephalomyelitis in a C57BL/6 mouse model. Drug Dev Res 2019; 80:629-636. [PMID: 31033006 DOI: 10.1002/ddr.21540] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/09/2019] [Accepted: 04/12/2019] [Indexed: 02/06/2023]
Abstract
Multiple sclerosis (MS) is a common inflammatory disease of the central nervous system. Although the exact etiology of the disease is largely unknown, it is identified that cytokines may play an important role in the pathogenesis of MS. In this study, the effects of curcumin has been investigated on the expression levels of selected cytokine coding genes as well as the extent of demyelination in the corpus callosum of C57BL/6 experimental autoimmune encephalomyelitis (EAE) model of MS. Gene expression analyses revealed that treatment with curcumin could lead to a significant reduction in the expression levels of pro-inflammatory cytokine coding genes including IL-6 (p = 0.001), IL-17 (p = 0.001), tumor necrosis factor (TNF)-α (p = 0.008), and interferon (IFN)-γ (p = 0.033) as well as a significant increase in the expression level of transforming growth factor (TGF)-β (p = 0.006) as an anti-inflammatory cytokine. Moreover, the expression of glutathione peroxidase (GPX)-1 gene and the activity of anti-oxidant enzymes were significantly higher (p < 0.001) in curcumin-treated mice. Luxol fast blue staining also confirmed a significant reduction in the extent of demyelination in the curcumin-treated group (p < 0.001). Our results have confirmed that curcumin is an effective therapeutic agent that could ameliorate the severity of EAE.
Collapse
Affiliation(s)
- Emran Esmaeilzadeh
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Maryam Soleimani
- Department of basic science, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Davood Zare-Abdollahi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Behnamedin Jameie
- Neuroscience Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
45
|
Rocha NP, Colpo GD, Bravo-Alegria J, Lincoln JA, Wolinsky JS, Lindsey JW, Teixeira AL, Freeman L. Exploring the relationship between Endothelin-1 and peripheral inflammation in multiple sclerosis. J Neuroimmunol 2019; 326:45-48. [DOI: 10.1016/j.jneuroim.2018.11.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/24/2018] [Accepted: 11/13/2018] [Indexed: 12/13/2022]
|
46
|
Yan BY, Garcet S, Gulati N, Kiecker F, Fuentes-Duculan J, Gilleaudeau P, Sullivan-Whalen M, Shemer A, Mitsui H, Krueger JG. Novel immune signatures associated with dysplastic naevi and primary cutaneous melanoma in human skin. Exp Dermatol 2019; 28:35-44. [PMID: 30326165 PMCID: PMC6333525 DOI: 10.1111/exd.13805] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 09/25/2018] [Accepted: 10/11/2018] [Indexed: 12/19/2022]
Abstract
Dysplastic naevi (DN) are benign lesions with atypical features intermediate between that of common melanocytic naevi (CMN) and malignant melanoma (MM). Debate remains over whether DN represent progressive lesions from CMN. Through gene expression profiling and analysis of molecular gene signatures, our study revealed progressive increases in immune activation and regulation, along with pathways implicated in melanomagenesis, from CMN to DN to MM. Using criteria of 1.5-fold change and false discovery rate ≤0.05, we found differential expression of 7186 probes (6370 unique genes) with the largest difference detected between DN and MM from the standpoint of genomic melanoma progression. Despite progressive increases in the T-helper type 1 (Th1)-inducing gene (IL-12), RT-PCR indicated impaired Th1 or cytotoxic T-cell response (decreased IFN-γ) in MM. Concordantly, our results indicated progressive increases in molecular markers associated with regulatory T cells, exhausted T cells and tolerogenic dendritic cells, including detection of increased expression of suppressor of cytokine signalling 3 (SOCS3) in dendritic cells associated with MM. All together, our findings suggest that the increased immunosuppressive microenvironment of melanoma may contribute to unhampered proliferation of neoplastic cells. In addition, the detection of increased markers associated with tolerogenic dendritic cells in MM suggests that targeting these suppressive immune cell types may represent an alternative avenue for future immunotherapy.
Collapse
Affiliation(s)
- Bernice Y. Yan
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, N0059
| | - Sandra Garcet
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, N0059
| | - Nicholas Gulati
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, N0059
| | - Felix Kiecker
- Department of Dermatology, Allergy, Skin Cancer Center, Charité Universitätsmedizin Berlin, Berlin, Germany0020
| | | | - Patricia Gilleaudeau
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, N0059
| | - Mary Sullivan-Whalen
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, N0059
| | - Avner Shemer
- Department of Dermatology, Tel-Hashomer Medical Center, Ramat Gan, Israel
| | - Hiroshi Mitsui
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, N0059
- Authors share senior authorship
| | - James G. Krueger
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, N0059
- Authors share senior authorship
| |
Collapse
|
47
|
Swartwout B, Luo XM. Implications of Probiotics on the Maternal-Neonatal Interface: Gut Microbiota, Immunomodulation, and Autoimmunity. Front Immunol 2018; 9:2840. [PMID: 30559747 PMCID: PMC6286978 DOI: 10.3389/fimmu.2018.02840] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 11/19/2018] [Indexed: 12/18/2022] Open
Abstract
Probiotics are being investigated for the treatment of autoimmune disease by re-balancing dysbiosis induced changes in the immune system. Pregnancy is a health concern surrounding autoimmune disease, both for the mother and her child. Probiotics for maternity are emerging on the market and have gained significant momentum in the literature. Thus far, evidence supports that probiotics alter the structure of the normal microbiota and the microbiota changes significantly during pregnancy. The interaction between probiotics-induced changes and normal changes during pregnancy is poorly understood. Furthermore, there is emerging evidence that the maternal gut microbiota influences the microbiota of offspring, leading to questions on how maternal probiotics may influence the health of neonates. Underpinning the development and balance of the immune system, the microbiota, especially that of the gut, is significantly important, and dysbiosis is an agent of immune dysregulation and autoimmunity. However, few studies exist on the implications of maternal probiotics for the outcome of pregnancy in autoimmune disease. Is it helpful or harmful for mother with autoimmune disease to take probiotics, and would this be protective or pathogenic for her child? Controversy surrounds whether probiotics administered maternally or during infancy are healthful for allergic disease, and their use for autoimmunity is relatively unexplored. This review aims to discuss the use of maternal probiotics in health and autoimmune disease and to investigate their immunomodulatory properties.
Collapse
Affiliation(s)
- Brianna Swartwout
- Translational Biology, Medicine, and Health Graduate Program, Virginia Tech Carilion Research Institute, Virginia Tech, Roanoke, VA, United States
| | - Xin M. Luo
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
48
|
Etesam Z, Nemati M, Ebrahimizadeh MA, Ebrahimi HA, Hajghani H, Khalili T, Jafarzadeh A. Different Expressions of Specific Transcription Factors of Th1 ( T-bet) and Th2 cells ( GATA-3) by Peripheral Blood Mononuclear Cells From Patients With Multiple Sclerosis. Basic Clin Neurosci 2018; 9:458-469. [PMID: 30719260 PMCID: PMC6359686 DOI: 10.32598/bcn.9.6.458] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 04/20/2017] [Accepted: 07/20/2018] [Indexed: 12/17/2022] Open
Abstract
Introduction: Multiple Sclerosis (MS) is an inflammatory disorder caused by self-reactive Th1 lymphocytes, while Th2 cells may confer protection. The Th1 and Th2 cell differentiation are regulated by specific transcription factors, especially T-bet and GATA-3, respectively. This investigation aimed to measure the T-bet and GATA-3 expression by Peripheral Blood Mononuclear Cells (PBMCs) obtained from MS patients after specific and non-specific in vitro stimulation. Methods: The PBMCs were separated from 22 patients with MS and 20 healthy individuals. They were cultured at 37°C for 24 h in the absence of a stimulator or in the presence of Myelin oligodendrocyte Glycoprotein (MOG) or Phytohemagglutinin (PHA) at a concentration of 10 μg/mL. Then the T-bet and GATA-3 expression was measured by real time-PCR. Results: The T-bet expression was enhanced, while the GATA-3 expression diminished. Therefore the expression of T-bet/GATA-3 ratio diminished in not-stimulated, MOG-stimulated and PHA-stimulated PBMCs from MS patients compared with equal cultures from the healthy individuals (P<0.01, P<0.01 and P<0.01, for T-bet; P<0.03, P<0.01 and P<0.02, for GATA-3; P<0.01, P<0.001 and P<0.01 for T-bet/GATA-3 ratio, respectively). The not-stimulated, MOG-stimulated, and PHA-stimulated PBMCs from men with MS expressed higher amounts of GATA-3 than equal cells from MS women (P<0.05, P<0.05 and P<0.01, respectively). Conclusion: These results probably indicate an imbalance in Th1/Th2 cells in the level of transcription factors with a tendency toward Th1 cells in MS. The clinical utilization of the transcription factors as novel biomarkers of MS should be evaluated in further studies.
Collapse
Affiliation(s)
- Zahra Etesam
- Neurology Research Center, Kerman University of Medical Sciences, Kerman, Iran.,Department of Immunology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Maryam Nemati
- Department of Immunology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran.,Department of Hematology and Laboratory Sciences, School of Para-Medical, Kerman University of Medical Sciences, Kerman, Iran
| | | | | | - Hossain Hajghani
- Department of Immunology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Tahereh Khalili
- Department of Biochemistry, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Abdollah Jafarzadeh
- Molecular Medicine Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.,Department of Immunology, School of Medical, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| |
Collapse
|
49
|
Weiss R, Gerdes W, Leonhardt F, Berthold R, Sack U, Grahnert A. A comparative study of two separation methods to isolate monocytes. Cytometry A 2018; 95:234-241. [DOI: 10.1002/cyto.a.23633] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 08/22/2018] [Accepted: 09/18/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Ronald Weiss
- Institute of Clinical ImmunologyMedical Faculty, University of Leipzig Germany
| | | | | | | | - Ulrich Sack
- Institute of Clinical ImmunologyMedical Faculty, University of Leipzig Germany
| | - Anja Grahnert
- Institute of Clinical ImmunologyMedical Faculty, University of Leipzig Germany
| |
Collapse
|
50
|
Reginald McDaniel H, LaGanke C, Bloom L, Goldberg S, Lages LC, Lantigua LA, Atlas SE, Woolger JM, Lewis JE. The Effect of a Polysaccharide-Based Multinutrient Dietary Supplementation Regimen on Infections and Immune Functioning in Multiple Sclerosis. J Diet Suppl 2018; 17:184-199. [PMID: 30285512 DOI: 10.1080/19390211.2018.1495675] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Multiple sclerosis (MS) is a progressive neurodegenerative disease associated with increased infection rates, chronic inflammation, and premature death. Optimization of nutritional status via dietary supplementation may improve immune function in people suffering from MS and lead to decreased rates of infection. Fifteen individuals with a diagnosis of relapsing-remitting MS for an average of 12.4 years (SD =7.4; R = 2, 25) were enrolled in a one-year open-label clinical trial. Participants consumed a broad-spectrum dietary supplement regimen containing polysaccharides, phytochemicals, antioxidants, vitamins, and minerals three times per day. The occurrence of infections and a panel of cytokines, growth factors, and T- and B-cell subsets were assessed at baseline and 12 months. Seven female and 8 male participants with an average age of 51.3 years (SD =7.2; R = 38, 65) completed the study. At the end of the intervention, participants had fewer total infections (M = 7.9, SD =8.1 at baseline and M = 2.5, SD =4.3 at 12-month follow-up). At 12 months, IL-2, TNF-α, EGF, and CD95 + CD34+ significantly increased, while IL-1β significantly decreased. No major adverse effects were reported; only mild gastrointestinal intolerance was reported in four cases. A decreased occurrence of infection was observed in MS patients treated with 12 months of a polysaccharide-based multinutrient dietary supplement. Significant changes were also noted in several key biomarkers that would be physiologically favorable to the MS population. Thus, the results of this study suggest an immunomodulatory effect of the dietary supplement regimen studied.
Collapse
Affiliation(s)
| | | | - Laura Bloom
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | - Lucas C Lages
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Laura A Lantigua
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Steven E Atlas
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Judi M Woolger
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - John E Lewis
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|