1
|
Guarnera L, Gurnari C, Bravo-Perez C, Durmaz A, Williams ND, Awada H, Kawashima N, Ahmed A, Unlu S, Ogbue OD, Haddad C, Mandala A, Kubota Y, Bodo J, Crane GM, Rogers HJ, Maciejewski JP, Visconte V. Non canonical c-CBL mutations define a specific phenotype of myeloid neoplasia. Leukemia 2025; 39:748-751. [PMID: 39755843 PMCID: PMC11879845 DOI: 10.1038/s41375-024-02429-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 01/06/2025]
Affiliation(s)
- Luca Guarnera
- Department of Translational Hematology & Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, 44114, USA
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, Rome, Italy
| | - Carmelo Gurnari
- Department of Translational Hematology & Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, 44114, USA
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, Rome, Italy
| | - Carlos Bravo-Perez
- Department of Translational Hematology & Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, 44114, USA
- Department of Hematology and Medical Oncology, Hospital Universitario Morales Meseguer, University of Murcia, IMIB-Pascual Parrilla, CIBERER - Instituto de Salud Carlos III, Murcia, 30005, Spain
| | - Arda Durmaz
- Department of Translational Hematology & Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, 44114, USA
| | - Nakisha D Williams
- Department of Translational Hematology & Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, 44114, USA
| | - Hussein Awada
- Department of Translational Hematology & Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, 44114, USA
| | - Naomi Kawashima
- Department of Translational Hematology & Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, 44114, USA
| | - Arooj Ahmed
- Department of Translational Hematology & Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, 44114, USA
| | - Serhan Unlu
- Department of Translational Hematology & Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, 44114, USA
| | - Olisaemeka D Ogbue
- Department of Translational Hematology & Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, 44114, USA
| | - Christopher Haddad
- Department of Translational Hematology & Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, 44114, USA
| | - Aashray Mandala
- Department of Translational Hematology & Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, 44114, USA
| | - Yasuo Kubota
- Department of Translational Hematology & Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, 44114, USA
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Juraj Bodo
- Department of Pathology and Laboratory Medicine, Diagnostics Institute, Cleveland, OH, USA
| | - Genevieve M Crane
- Department of Pathology and Laboratory Medicine, Diagnostics Institute, Cleveland, OH, USA
| | - Heesun J Rogers
- Department of Pathology and Laboratory Medicine, Diagnostics Institute, Cleveland, OH, USA
| | - Jaroslaw P Maciejewski
- Department of Translational Hematology & Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, 44114, USA
| | - Valeria Visconte
- Department of Translational Hematology & Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, 44114, USA.
| |
Collapse
|
2
|
Sheikhi M, Rostami M, Ferns G, Ayatollahi H, Siyadat P, Ayatollahi Y, Khoshnegah Z. Prognostic significance of ASXL1 mutations in acute myeloid leukemia: A systematic review and meta-analysis. CASPIAN JOURNAL OF INTERNAL MEDICINE 2024; 15:202-214. [PMID: 38807730 PMCID: PMC11129077 DOI: 10.22088/cjim.15.2.202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 01/18/2023] [Accepted: 02/26/2023] [Indexed: 05/30/2024]
Abstract
Background Although genetic mutations in additional sex-combs-like 1 (ASXL1) are prevalent in acute myeloid leukemia (AML), their exact impact on the AML prognosis remains uncertain. Hence, the present article was carried out to explore the prognostic importance of ASXL1 mutations in AML. Methods We thoroughly searched electronic scientific databases to find eligible papers. Twenty-seven studies with an overall number of 8,953 participants were selected for the current systematic review. The hazard ratio (HR) and 95% confidence interval (CI) for overall survival (OS), event-free survival (EFS), and relapse-free survival (RFS) were extracted from all studies with multivariate or univariate analysis. Pooled HRs and p-values were also calculated as a part of our work. Results The pooled HR for OS in multivariable analysis indicated that ASXL1 significantly diminished survival in AML patients (pooled HR: 1.67; 95% CI: 1.342-2.091). Conclusions ASXL1 mutations may confer a poor prognosis in AML. Hence, they may be regarded as potential prognostic factors. However, more detailed studies with different ASXL1 mutations are suggested to shed light on this issue.
Collapse
Affiliation(s)
- Maryam Sheikhi
- Cancer Molecular Pathology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehrdad Rostami
- Departments of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Gordon Ferns
- Division of Medical Education, Brighton and Sussex Medical School, Brighton, United Kingdom
| | - Hossein Ayatollahi
- Cancer Molecular Pathology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Payam Siyadat
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Yasamin Ayatollahi
- Cancer Molecular Pathology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Khoshnegah
- Department of Laboratory Hematology and Blood Banking, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
3
|
Yang FC, Agosto-Peña J. Epigenetic regulation by ASXL1 in myeloid malignancies. Int J Hematol 2023; 117:791-806. [PMID: 37062051 DOI: 10.1007/s12185-023-03586-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/02/2023] [Accepted: 03/22/2023] [Indexed: 04/17/2023]
Abstract
Myeloid malignancies are clonal hematopoietic disorders that are comprised of a spectrum of genetically heterogeneous disorders, including myelodysplastic syndromes (MDS), myeloproliferative neoplasms (MPN), chronic myelomonocytic leukemia (CMML), and acute myeloid leukemia (AML). Myeloid malignancies are characterized by excessive proliferation, abnormal self-renewal, and/or differentiation defects of hematopoietic stem cells (HSCs) and myeloid progenitor cells hematopoietic stem/progenitor cells (HSPCs). Myeloid malignancies can be caused by genetic and epigenetic alterations that provoke key cellular functions, such as self-renewal, proliferation, biased lineage commitment, and differentiation. Advances in next-generation sequencing led to the identification of multiple mutations in myeloid neoplasms, and many new gene mutations were identified as key factors in driving the pathogenesis of myeloid malignancies. The polycomb protein ASXL1 was identified to be frequently mutated in all forms of myeloid malignancies, with mutational frequencies of 20%, 43%, 10%, and 20% in MDS, CMML, MPN, and AML, respectively. Significantly, ASXL1 mutations are associated with a poor prognosis in all forms of myeloid malignancies. The fact that ASXL1 mutations are associated with poor prognosis in patients with CMML, MDS, and AML, points to the possibility that ASXL1 mutation is a key factor in the development of myeloid malignancies. This review summarizes the recent advances in understanding myeloid malignancies with a specific focus on ASXL1 mutations.
Collapse
Affiliation(s)
- Feng-Chun Yang
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA.
- Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA.
| | - Joel Agosto-Peña
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| |
Collapse
|
4
|
Rong D, Chen X, Xiao J, Liu D, Ni X, Tong X, Wang H. Histone methylation modification patterns and relevant M-RiskScore in acute myeloid leukemia. Heliyon 2022; 8:e10610. [PMID: 36164519 PMCID: PMC9508520 DOI: 10.1016/j.heliyon.2022.e10610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 07/13/2022] [Accepted: 09/07/2022] [Indexed: 12/05/2022] Open
Abstract
Objective We tried to identify novel molecular subtypes of acute myeloid leukemia (AML) associated with histone methylation and established a relevant scoring system to predict treatment response and prognosis of AML. Methods Gene expression data and clinical characteristics of patients with AML were obtained from The Cancer Genome Atlas (TCGA) database and Gene Expression Omnibus (GEO) database. Molecular subtyping was carried out by consensus clustering analysis, based on the expression of 24 histone methylation modification regulators (HMMRs). The clinical and biological features of each clustered pattern were taken into account. The scoring system was constructed by using differential expression analysis, Cox regression method and lasso regression analysis. Subsequently, the scoring system in the roles of prognostic and chemotherapeutic prediction of AML were explored. Finally, an independent GSE dataset was used for validating the established clustering system. Results Two distinct subtypes of AML were identified based on the expression of the 24 HMMRs, which exhibited remarkable differences in several clinical and biological characteristics, including HMMRs expression, AML-M0 distribution, NPM1 mutation, tumor mutation burden, somatic mutations, pathway activation, immune cell infiltration and patient survival. The scoring system, M-RiskScore, was established. Integrated analysis demonstrated that patients with the low M-RiskScore displayed a prominent survival advantage and a good response to decitabine treatment, while patients with high M-RiskScore have resistance to decitabine, but they could benefit from IA regimen therapy. Conclusion Detection of HMMRs expression would be a potential strategy for AML subtyping. Meanwhile, targeting histone methylation would be a preferred strategy for either AML-M0 or NPM1 mutant patients. M-RiskScore was a useful prognostic biomarker and a guide for the choice of appropriate chemotherapy strategy.
Collapse
Affiliation(s)
- Dade Rong
- The First Affiliated Hospital, Sun Yat-sen University, 58 Second Zhongshan Road, Guangzhou, 510080, China.,Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, 74 Second Zhongshan Road, Guangzhou, 510080, China.,Faculty of Health Sciences, University of Macau, Macau, China
| | - Xiaomin Chen
- The First Affiliated Hospital, Sun Yat-sen University, 58 Second Zhongshan Road, Guangzhou, 510080, China.,GenePlus, Beijing, China
| | - Jing Xiao
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Department of Clinical Laboratory, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, 519000, China
| | - Daiyuan Liu
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, 74 Second Zhongshan Road, Guangzhou, 510080, China
| | - Xiangna Ni
- The First Affiliated Hospital, Sun Yat-sen University, 58 Second Zhongshan Road, Guangzhou, 510080, China
| | - Xiuzhen Tong
- The First Affiliated Hospital, Sun Yat-sen University, 58 Second Zhongshan Road, Guangzhou, 510080, China
| | - Haihe Wang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, 74 Second Zhongshan Road, Guangzhou, 510080, China
| |
Collapse
|
5
|
Gong Y, Wei S, Wei Y, Chen Y, Cui J, Yu Y, Lin X, Yan H, Qin H, Yi L. IDH2: A novel biomarker for environmental exposure in blood circulatory system disorders (Review). Oncol Lett 2022; 24:278. [PMID: 35814829 PMCID: PMC9260733 DOI: 10.3892/ol.2022.13398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/24/2022] [Indexed: 11/11/2022] Open
Abstract
As the risk of harmful environmental exposure is increasing, it is important to find suitable targets for the diagnosis and treatment of the diseases caused. Isocitrate dehydrogenase 2 (IDH2) is an enzyme located in the mitochondria; it plays an important role in numerous cell processes, including maintaining redox homeostasis, participating in the tricarboxylic acid cycle and indirectly taking part in the transmission of the oxidative respiratory chain. IDH2 mutations promote progression in acute myeloid leukemia, glioma and other diseases. The present review mainly summarizes the role and mechanism of IDH2 with regard to the biological effects, such as the mitophagy and apoptosis of animal or human cells, caused by environmental pollution such as radiation, heavy metals and other environmental exposure factors. The possible mechanisms of these biological effects are described in terms of IDH2 expression, reduced nicotine adenine dinucleotide phosphate content and reactive oxygen species level, among other variables. The impact of environmental pollution on human health is increasingly attracting attention. IDH2 may therefore become useful as a potential diagnostic and therapeutic target for environmental exposure-induced diseases.
Collapse
Affiliation(s)
- Ya Gong
- Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Shuang Wei
- Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Yuan Wei
- Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Yong Chen
- Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Jian Cui
- Institute of Cardiovascular Disease, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Yue Yu
- Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Xiang Lin
- Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Hong Yan
- Pediatric Intensive Care Unit, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Hui Qin
- Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Lan Yi
- Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|
6
|
Gerecke C, Egea Rodrigues C, Homann T, Kleuser B. The Role of Ten-Eleven Translocation Proteins in Inflammation. Front Immunol 2022; 13:861351. [PMID: 35386689 PMCID: PMC8977485 DOI: 10.3389/fimmu.2022.861351] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 02/28/2022] [Indexed: 12/11/2022] Open
Abstract
Ten-eleven translocation proteins (TET1-3) are dioxygenases that oxidize 5-methyldeoxycytosine, thus taking part in passive and active demethylation. TETs have shown to be involved in immune cell development, affecting from self-renewal of stem cells and lineage commitment to terminal differentiation. In fact, dysfunction of TET proteins have been vastly associated with both myeloid and lymphoid leukemias. Recently, there has been accumulating evidence suggesting that TETs regulate immune cell function during innate and adaptive immune responses, thereby modulating inflammation. In this work, we pursue to review the current and recent evidence on the mechanistic aspects by which TETs regulate immune cell maturation and function. We will also discuss the complex interplay of TET expression and activity by several factors to modulate a multitude of inflammatory processes. Thus, modulating TET enzymes could be a novel pharmacological approach to target inflammation-related diseases and myeloid and lymphoid leukemias, when their activity is dysregulated.
Collapse
Affiliation(s)
- Christian Gerecke
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Freie Universität Berlin, Germany
| | - Caue Egea Rodrigues
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Freie Universität Berlin, Germany
| | - Thomas Homann
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Freie Universität Berlin, Germany
| | - Burkhard Kleuser
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Freie Universität Berlin, Germany
| |
Collapse
|
7
|
Czegle I, Gray AL, Wang M, Liu Y, Wang J, Wappler-Guzzetta EA. Mitochondria and Their Relationship with Common Genetic Abnormalities in Hematologic Malignancies. Life (Basel) 2021; 11:1351. [PMID: 34947882 PMCID: PMC8707674 DOI: 10.3390/life11121351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/29/2021] [Accepted: 11/29/2021] [Indexed: 11/16/2022] Open
Abstract
Hematologic malignancies are known to be associated with numerous cytogenetic and molecular genetic changes. In addition to morphology, immunophenotype, cytochemistry and clinical characteristics, these genetic alterations are typically required to diagnose myeloid, lymphoid, and plasma cell neoplasms. According to the current World Health Organization (WHO) Classification of Tumors of Hematopoietic and Lymphoid Tissues, numerous genetic changes are highlighted, often defining a distinct subtype of a disease, or providing prognostic information. This review highlights how these molecular changes can alter mitochondrial bioenergetics, cell death pathways, mitochondrial dynamics and potentially be related to mitochondrial genetic changes. A better understanding of these processes emphasizes potential novel therapies.
Collapse
Affiliation(s)
- Ibolya Czegle
- Department of Internal Medicine and Haematology, Semmelweis University, H-1085 Budapest, Hungary;
| | - Austin L. Gray
- Department of Pathology and Laboratory Medicine, Loma Linda University Health, Loma Linda, CA 92354, USA; (A.L.G.); (Y.L.); (J.W.)
| | - Minjing Wang
- Independent Researcher, Diamond Bar, CA 91765, USA;
| | - Yan Liu
- Department of Pathology and Laboratory Medicine, Loma Linda University Health, Loma Linda, CA 92354, USA; (A.L.G.); (Y.L.); (J.W.)
| | - Jun Wang
- Department of Pathology and Laboratory Medicine, Loma Linda University Health, Loma Linda, CA 92354, USA; (A.L.G.); (Y.L.); (J.W.)
| | - Edina A. Wappler-Guzzetta
- Department of Pathology and Laboratory Medicine, Loma Linda University Health, Loma Linda, CA 92354, USA; (A.L.G.); (Y.L.); (J.W.)
| |
Collapse
|
8
|
Fan Y, Liao L, Liu Y, Wu Z, Wang C, Jiang Z, Wang S, Liu Y. Risk factors affect accurate prognosis in ASXL1-mutated acute myeloid leukemia. Cancer Cell Int 2021; 21:526. [PMID: 34627254 PMCID: PMC8502294 DOI: 10.1186/s12935-021-02233-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 09/28/2021] [Indexed: 12/18/2022] Open
Abstract
Background The epigenetic regulator additional sex combs-like 1 (ASXL1) is an adverse prognostic factor in acute myeloid leukemia (AML). However, the mutational spectrum and prognostic factors of ASXL1-mutated (ASXL1+) AML are largely unknown. We aim to evaluate the risk factors influencing the prognosis of ASXL1+ AML. Methods We performed next-generation sequencing (NGS) in 1047 cases of de novo AML and discovered 91 ASXL1+ AML (8.7%). The Log-Rank test and Kaplan-Meier were used to evaluate survival rate, and the Cox regression model was used to analyze multivariate analysis. Results In a total of 91 ASXL1+ AML, 86% had one or more co-mutations. The factors that had adverse impact on overall survival (OS) and event-free survival (EFS) are defined as high risk factors, including age ≥ 60 years, WBC count ≥ 50 × 109/L, FLT3-ITD mutations, RUNX1 mutations, and absence of AML1-ETO fusion gene. ASXL1 mutations without any risk factor were classified as single-hit ASXL1+ AML; ASXL1 mutations accompanied with one of the risk factors was referred to as double-hit ASXL1+ AML; ASXL1 mutations with two or more of the risk factors were designated as triple-hit ASXL1+ AML. The combination of these risk factors had a negative influence on the prognosis of ASXL1+ AML. The median OS was not attained in single-hit ASXL1+ AML, 29.53 months in double-hit ASXL1+ AML, and 6.67 months in triple-hit ASXL1+ AML (P = 0.003). The median EFS was not attained in single-hit ASXL1+ AML, 29.53 months in double-hit ASXL1+ AML, and 5.47 months in triple-hit ASXL1+ AML (P = 0.002). Allogenic hematopoietic stem cell transplantation (allo-HSCT) improved the prognosis of double/triple-hit ASXL1+ AML patients. Conclusions Our study provided new insights into the mutational spectrum and prognostic factors of ASXL1+ AML patients. Our primary data suggest that the risk factors in ASXL1+ AML contribute to the poor outcome of these patients. The management of ASXL1+ AML patients should be based on the risk factors and allo-HSCT is highly recommended for consolidation. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02233-y.
Collapse
Affiliation(s)
- Yi Fan
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Linxiao Liao
- Department of Intensive Care Unit, Zhongshan People's Hospital, Zhongshan, China
| | - Yajun Liu
- Department of Orthopaedics, Brown University, Warren Alpert Medical School/Rhode Island Hospital, Providence, RI, USA
| | - Zhenzhen Wu
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chong Wang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhongxing Jiang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shujuan Wang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Yanfang Liu
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
9
|
Lee P, Yim R, Yung Y, Chu HT, Yip PK, Gill H. Molecular Targeted Therapy and Immunotherapy for Myelodysplastic Syndrome. Int J Mol Sci 2021; 22:10232. [PMID: 34638574 PMCID: PMC8508686 DOI: 10.3390/ijms221910232] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/17/2021] [Accepted: 09/21/2021] [Indexed: 12/22/2022] Open
Abstract
Myelodysplastic syndrome (MDS) is a heterogeneous, clonal hematological disorder characterized by ineffective hematopoiesis, cytopenia, morphologic dysplasia, and predisposition to acute myeloid leukemia (AML). Stem cell genomic instability, microenvironmental aberrations, and somatic mutations contribute to leukemic transformation. The hypomethylating agents (HMAs), azacitidine and decitabine are the standard of care for patients with higher-risk MDS. Although these agents induce responses in up to 40-60% of patients, primary or secondary drug resistance is relatively common. To improve the treatment outcome, combinational therapies comprising HMA with targeted therapy or immunotherapy are being evaluated and are under continuous development. This review provides a comprehensive update of the molecular pathogenesis and immune-dysregulations involved in MDS, mechanisms of resistance to HMA, and strategies to overcome HMA resistance.
Collapse
Affiliation(s)
| | | | | | | | | | - Harinder Gill
- Division of Haematology, Medical Oncology and Haemopoietic Stem Cell Transplantation, Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (P.L.); (R.Y.); (Y.Y.); (H.-T.C.); (P.-K.Y.)
| |
Collapse
|
10
|
Zhou L, An J, Hou C, Ding Z, Qiu H, Tang X, Sun A, Chen S, Xu Y, Liu T, Wu D. Allogeneic hematopoietic stem cell transplantation could improve the survival of acute myeloid leukemia patients with ASXL1 mutations. ACTA ACUST UNITED AC 2021; 26:340-347. [PMID: 33840380 DOI: 10.1080/16078454.2021.1905356] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Objective: To discover the function of allogeneic hematopoietic stem cell transplantation (allo-HSCT) in ASXL1-mutated acute myeloid leukemia (AML) patients.Methods: We analyzed the prognostic value of ASXL1 mutations and explored the role of allo-HSCT in 581 AML patients.Results: According to the definition of intermediate- and adverse-risk AML groups in the European Leukemia Net (ELN), ASXL1-mutated patients had shorter OS and DFS than ASXL1-wild-type patients in the intermediate- and adverse-risk AML groups (3-year OS: 47.5% vs. 60.8%, P<0.001; 3-year DFS: 28.5% vs. 48.9%, P<0.001). Among the cytogenetically normal acute myeloid leukemia (CN-AML), differences were found in both OS (47.4% vs.65.2%, P<0.001) and DFS (21.0% vs. 52.1%, P<0.001) between ASXL1-mutated patients and ASXL1 wild-type patients.In the ASXL1-mutated AML cohort, the patients received allo-HSCT had longer 3-year OS (P=0.0005) and 3-year DFS (P<0.0001) than those who did not receive allo-HSCT. Multivariate analysis revealed that ASXL1 mutation was an independent prognostic factor for OS (HR 2.248, 95% CI 1.155-4.375, P=0.017), and allo-HSCT had a positive impact on OS (HR 7.568, 95% CI 3.597-15.92, P<0.001) and DFS (HR 2.611, 95% CI 1.688-4.039, P<0.001) in ASXL1-mutated patients.Conclusion: The results indicate that the presence of ASXL1 mutations is a factor predictive of poor prognosis in AML patients and allo-HSCT could improve the survival of AML patients with ASXL1 mutations.
Collapse
Affiliation(s)
- Lili Zhou
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China.,Collaborative Innovation Center of Hematology, Institute of Blood and Marrow Transplantation, Soochow University, Suzhou, People's Republic of China
| | - Jingnan An
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China.,Collaborative Innovation Center of Hematology, Institute of Blood and Marrow Transplantation, Soochow University, Suzhou, People's Republic of China
| | - Chang Hou
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Zixuan Ding
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Huiying Qiu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Xiaowen Tang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Aining Sun
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Suning Chen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Yang Xu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China.,Collaborative Innovation Center of Hematology, Institute of Blood and Marrow Transplantation, Soochow University, Suzhou, People's Republic of China
| | - Tianhui Liu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China.,Collaborative Innovation Center of Hematology, Institute of Blood and Marrow Transplantation, Soochow University, Suzhou, People's Republic of China
| | - Depei Wu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China.,Collaborative Innovation Center of Hematology, Institute of Blood and Marrow Transplantation, Soochow University, Suzhou, People's Republic of China
| |
Collapse
|
11
|
Akram AM, Chaudhary A, Kausar H, Althobaiti F, Abbas AS, Hussain Z, Fatima N, Zafar E, Asif W, Afzal U, Yousaf Z, Zafar A, Harakeh SM, Qamer S. Analysis of RAS gene mutations in cytogenetically normal de novo acute myeloid leukemia patients reveals some novel alterations. Saudi J Biol Sci 2021; 28:3735-3740. [PMID: 34220225 PMCID: PMC8241590 DOI: 10.1016/j.sjbs.2021.04.089] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/20/2021] [Accepted: 04/28/2021] [Indexed: 11/26/2022] Open
Abstract
Rat sarcoma gene (RAS) holds great importance in pathogenesis of acute myeloid leukemia (AML). The activated mutations in Neuroblastoma rat sarcoma viral oncogene homolog (NRAS) and Kirsten rat sarcoma viral oncogene homolog (KRAS) confers proliferative and survival signals, deliberating numerous effects on overall survival and progression free survival in AML patients. In this study thirty one (31) blood samples of adult newly diagnosed AML patients were collected to identify possible incidence of mutations through amplification of KRAS (exon 1 and 2) and NRAS gene (exon 1 and 2) using polymerase chain reaction (PCR). Amplicons were then subjected to sequencing and were analyzed through Geneious Prime 2019. Five of thirty one (16.12%) patients had altered sites in either NRAS or KRAS. The NRAS mutations were observed in three AML patients (N = 3, 9.67%). A novel missense mutation NRAS-I36R (239 T > G) representing a substitution of single nucleotide basepair found in NRAS exon 1 while exon 2 was detected with heterozygous mutation NRAS-E63X (318G > T) and insertion (A), resulting in frameshift of the amino acid sequence and insertion of two nucleotide basepairs (TA) in two of the patients. KRAS mutations (N = 2, 6.45%) were found in exon 1 whereas no mutations in KRAS exon 2 were detected in our patient cohort. Mutation in KRAS Exon 1, KRAS-D30N (280G > A) was observed in two patients and one of them also had a novel heterozygous mutation KRAS-L16N (240G > C). In addition there was no statistically significant association of mutRAS gene of AML patients with several prognostic markers including age, gender, karyotyping, CD34 positivity, cytogenetic abnormalities, total leukocyte count, white blood cell count and French-American-British (FAB) classification. However, the presence of mutRAS gene were strongly associated (p = 0.001) with increased percentage of bone marrow blasts. The prevalence of mutations in correlation with clinical and hematological parameter is useful for risk stratification in AML patients.
Collapse
Affiliation(s)
- Afia Muhammad Akram
- Department of Zoology, Division of Science and Technology, University of Education, Township, Lahore, Pakistan
| | - Asma Chaudhary
- Department of Zoology, Division of Science and Technology, University of Education, Township, Lahore, Pakistan
| | - Humera Kausar
- Department of Biotechnology, Kinnaird College for Women, Lahore, Pakistan
| | - Fayez Althobaiti
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Afshan Syed Abbas
- Department of Zoology, University of Education, Lower Mall Campus, Lahore, Pakistan
| | - Zawar Hussain
- Department of Zoology, Division of Science and Technology, University of Education, Township, Lahore, Pakistan
| | - Naz Fatima
- Molecular Biology Laboratory, Department of Zoology, University of the Punjab, Lahore, Pakistan
| | - Erum Zafar
- Department of Zoology, Division of Science and Technology, University of Education, Township, Lahore, Pakistan
| | - Wajiha Asif
- Department of Zoology, Division of Science and Technology, University of Education, Township, Lahore, Pakistan
| | - Umair Afzal
- Department of Zoology, Division of Science and Technology, University of Education, Township, Lahore, Pakistan
| | - Zoufishan Yousaf
- Department of Zoology, Division of Science and Technology, University of Education, Township, Lahore, Pakistan
| | - Amjad Zafar
- Department of Oncology, Mayo Hospital, Anarkali Bazar, Lahore, Pakistan
| | - Steve M Harakeh
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Samina Qamer
- Department of Zoology, Government College University, Faisalabad, Pakistan
| |
Collapse
|
12
|
Gonzales F, Barthélémy A, Peyrouze P, Fenwarth L, Preudhomme C, Duployez N, Cheok MH. Targeting RUNX1 in acute myeloid leukemia: preclinical innovations and therapeutic implications. Expert Opin Ther Targets 2021; 25:299-309. [PMID: 33906574 DOI: 10.1080/14728222.2021.1915991] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Introduction: RUNX1 is an essential transcription factor for normal and malignant hematopoiesis. RUNX1 forms a heterodimeric complex with CBFB. Germline mutations and somatic alterations (i.e. translocations, mutations and abnormal expression) are frequently associated with acute myeloid leukemia (AML) with RUNX1 mutations conferring unfavorable prognosis. Therefore, RUNX1 constitutes a potential innovative and interesting therapeutic target. In this review, we discuss recent therapeutic advances of RUNX1 targeting in AML.Areas covered: Firstly, we cover the clinical basis for RUNX1 targeting. We have subdivided recent therapeutic approaches either by common biochemical pathways or by similar pharmacological targets. Genome editing of RUNX1 induces anti-leukemic effects; however, off-target events prohibit clinical use. Several molecules inhibit the interaction between RUNX1/CBFB and control AML development and progression. BET protein antagonists target RUNX1 (i.e. specific BET inhibitors, BRD4 shRNRA, proteolysis targeting chimeras (PROTAC) or expression-mimickers). All these molecules improve survival in mutant RUNX1 AML preclinical models.Expert opinion: Some of these novel molecules have shown encouraging anti-leukemic potency at the preclinical stage. A better understanding of RUNX1 function in AML development and progression and its key downstream pathways, may result in more precise and more efficient RUNX1 targeting therapies.
Collapse
Affiliation(s)
- Fanny Gonzales
- Factors of Leukemic cell Persistence, Univ. Lille, CNRS, Inserm, CHU Lille, IRCL, Canther, Lille, France.,Pediatric Hematology Department, University Hospital of Lille, Lille, France
| | - Adeline Barthélémy
- Factors of Leukemic cell Persistence, Univ. Lille, CNRS, Inserm, CHU Lille, IRCL, Canther, Lille, France
| | - Pauline Peyrouze
- Factors of Leukemic cell Persistence, Univ. Lille, CNRS, Inserm, CHU Lille, IRCL, Canther, Lille, France
| | - Laurène Fenwarth
- Factors of Leukemic cell Persistence, Univ. Lille, CNRS, Inserm, CHU Lille, IRCL, Canther, Lille, France.,Laboratory of Hematology, CHU Lille, Lille, France
| | - Claude Preudhomme
- Factors of Leukemic cell Persistence, Univ. Lille, CNRS, Inserm, CHU Lille, IRCL, Canther, Lille, France.,Laboratory of Hematology, CHU Lille, Lille, France
| | - Nicolas Duployez
- Factors of Leukemic cell Persistence, Univ. Lille, CNRS, Inserm, CHU Lille, IRCL, Canther, Lille, France.,Laboratory of Hematology, CHU Lille, Lille, France
| | - Meyling H Cheok
- Factors of Leukemic cell Persistence, Univ. Lille, CNRS, Inserm, CHU Lille, IRCL, Canther, Lille, France
| |
Collapse
|
13
|
Veiga CB, Lawrence EM, Murphy AJ, Herold MJ, Dragoljevic D. Myelodysplasia Syndrome, Clonal Hematopoiesis and Cardiovascular Disease. Cancers (Basel) 2021; 13:cancers13081968. [PMID: 33921778 PMCID: PMC8073047 DOI: 10.3390/cancers13081968] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary The development of blood cancers is a complex process that involves the acquisition of specific blood disorders that precede cancer. These blood disorders are often driven by the accumulation of genetic abnormalities, which are discussed in this review. Likewise, predicting the rate of progression of these diseases is difficult, but it appears to be linked to which specific gene mutations are present in blood cells. In this review, we discuss a variety of genetic abnormalities that drive blood cancer, conditions that precede clinical symptoms of blood cancer, and how alterations in these genes change blood cell function. Additionally, we discuss the novel links between blood cancer development and heart disease. Abstract The development of myelodysplasia syndromes (MDS) is multiphasic and can be driven by a plethora of genetic mutations and/or abnormalities. MDS is characterized by a hematopoietic differentiation block, evidenced by increased immature hematopoietic cells, termed blast cells and decreased mature circulating leukocytes in at least one lineage (i.e., cytopenia). Clonal hematopoiesis of indeterminate potential (CHIP) is a recently described phenomenon preceding MDS development that is driven by somatic mutations in hemopoietic stem cells (HSCs). These mutant HSCs have a competitive advantage over healthy cells, resulting in an expansion of these clonal mutated leukocytes. In this review, we discuss the multiphasic development of MDS, the common mutations found in both MDS and CHIP, how a loss-of-function in these CHIP-related genes can alter HSC function and leukocyte development and the potential disease outcomes that can occur with dysfunctional HSCs. In particular, we discuss the novel connections between MDS development and cardiovascular disease.
Collapse
Affiliation(s)
- Camilla Bertuzzo Veiga
- Division of Immunometabolism, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; (C.B.V.); (A.J.M.)
- Department of Anatomy and Physiology, University of Melbourne, Parkville, Melbourne, VIC 3010, Australia
| | - Erin M. Lawrence
- Walter and Eliza Hall Institute of Medical Research, 1 G Royal Parade, Parkville, Melbourne, VIC 3052, Australia; (E.M.L.); (M.J.H.)
- Department of Medical Biology, University of Melbourne, Parkville, Melbourne, VIC 3052, Australia
| | - Andrew J. Murphy
- Division of Immunometabolism, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; (C.B.V.); (A.J.M.)
- Department of Diabetes, Department of Immunology, Monash University, Clayton, VIC 3004, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Marco J. Herold
- Walter and Eliza Hall Institute of Medical Research, 1 G Royal Parade, Parkville, Melbourne, VIC 3052, Australia; (E.M.L.); (M.J.H.)
- Department of Medical Biology, University of Melbourne, Parkville, Melbourne, VIC 3052, Australia
| | - Dragana Dragoljevic
- Division of Immunometabolism, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; (C.B.V.); (A.J.M.)
- Department of Diabetes, Department of Immunology, Monash University, Clayton, VIC 3004, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC 3052, Australia
- Correspondence:
| |
Collapse
|
14
|
Asian Population Is More Prone to Develop High-Risk Myelodysplastic Syndrome, Concordantly with Their Propensity to Exhibit High-Risk Cytogenetic Aberrations. Cancers (Basel) 2021; 13:cancers13030481. [PMID: 33513838 PMCID: PMC7865620 DOI: 10.3390/cancers13030481] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/13/2021] [Accepted: 01/19/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary The world population is genetically and environmentally diverse. In particular, genetic differences related to an ethnic factor may underlie differences in cancer phenotypic expression. Therefore, we compared the epidemiology, and the clinical, biological and genetic characteristics of myelodysplastic syndrome (MDS) between Asian and Western countries. Our results show substantial differences in the incidence and age of onset between Asian and Western MDS patients. A higher proportion of Asian MDS patients fall into the high- and very-high risk prognostic MDS groups. This finding is supported by the identification of a higher proportion of high-risk cytogenetic aberrations in Asian MDS patients. However, the survival rate is similar for Western and Asian MDS patients. Our findings may impact the clinical management as well as the strategy of clinical trials targeting those genetic aberrations and mutations depending on the world area where they are run. Abstract This study explores the hypothesis that genetic differences related to an ethnic factor may underlie differences in phenotypic expression of myelodysplastic syndrome (MDS). First, to identify clear ethnic differences, we systematically compared the epidemiology, and the clinical, biological and genetic characteristics of MDS between Asian and Western countries over the last 20 years. Asian MDS cases show a 2- to 4-fold lower incidence and a 10-year younger age of onset compared to the Western cases. A higher proportion of Western MDS patients fall into the very low- and low-risk categories while the intermediate, high and very high-risk groups are more represented in Asian MDS patients according to the Revised International Prognostic Scoring System. Next, we investigated whether differences in prognostic risk scores could find their origin in differential cytogenetic profiles. We found that 5q deletion (del(5q)) aberrations and mutations in TET2, SF3B1, SRSF2 and IDH1/2 are more frequently reported in Western MDS patients while trisomy 8, del(20q), U2AF1 and ETV6 mutations are more frequent in Asian MDS patients. Treatment approaches differ between Western and Asian countries owing to the above discrepancies, but the overall survival rate within each prognostic group is similar for Western and Asian MDS patients. Altogether, our study highlights greater risk MDS in Asians supported by their cytogenetic profile.
Collapse
|
15
|
NPM1-Mutated Myeloid Neoplasms with <20% Blasts: A Really Distinct Clinico-Pathologic Entity? Int J Mol Sci 2020; 21:ijms21238975. [PMID: 33255988 PMCID: PMC7730332 DOI: 10.3390/ijms21238975] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/19/2020] [Accepted: 11/24/2020] [Indexed: 12/16/2022] Open
Abstract
Nucleophosmin (NPM1) gene mutations rarely occur in non-acute myeloid neoplasms (MNs) with <20% blasts. Among nearly 10,000 patients investigated so far, molecular analyses documented NPM1 mutations in around 2% of myelodysplastic syndrome (MDS) cases, mainly belonging to MDS with excess of blasts, and 3% of myelodysplastic/myeloproliferative neoplasm (MDS/MPN) cases, prevalently classified as chronic myelomonocytic leukemia. These uncommon malignancies are associated with an aggressive clinical course, relatively rapid progression to overt acute myeloid leukemia (AML) and poor survival outcomes, raising controversies on their classification as distinct clinico-pathologic entities. Furthermore, fit patients with NPM1-mutated MNs with <20% blasts could benefit most from upfront intensive chemotherapy for AML rather than from moderate intensity MDS-directed therapies, although no firm conclusion can currently be drawn on best therapeutic approaches, due to the limited available data, obtained from small and mainly retrospective series. Caution is also suggested in definitely diagnosing NPM1-mutated MNs with blast count <20%, since NPM1-mutated AML cases frequently present dysplastic features and multilineage bone marrow cells showing abnormal cytoplasmic NPM1 protein delocalization by immunohistochemical staining, therefore belonging to NPM1-mutated clone regardless of blast morphology. Further prospective studies are warranted to definitely assess whether NPM1 mutations may become sufficient to diagnose AML, irrespective of blast percentage.
Collapse
|
16
|
Koenig KL, Sahasrabudhe KD, Sigmund AM, Bhatnagar B. AML with Myelodysplasia-Related Changes: Development, Challenges, and Treatment Advances. Genes (Basel) 2020; 11:E845. [PMID: 32722092 PMCID: PMC7464320 DOI: 10.3390/genes11080845] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/13/2020] [Accepted: 07/22/2020] [Indexed: 11/20/2022] Open
Abstract
Acute myeloid leukemia (AML) with myelodysplasia-related changes (AML-MRC) is a distinct biologic subtype of AML that represents 25-34% of all AML diagnoses and associates with especially inferior outcomes compared to non-MRC AML. Typically, patients with AML-MRC experience low remission rates following intensive chemotherapy and a median overall survival of merely 9-12 months. In light of these discouraging outcomes, it has become evident that more effective therapies are needed for patients with AML-MRC. Liposomal daunorubicin-cytarabine (CPX-351) was approved in 2017 for adults with newly diagnosed AML-MRC and those with therapy-related AML (t-AML), and remains the only therapy specifically approved for this patient population. Other studies have also demonstrated the efficacy of the hypomethylating agent (HMA) azacitidine as upfront therapy for AML-MRC patients, which, to date, is the most common treatment employed for patients unable to tolerate the more intensive CPX-351. HMAs and venetoclax combinations have also been evaluated, but additional studies utilizing these agents in this specific subgroup are needed before conclusions regarding their role in the therapeutic armamentarium of AML-MRC patients can be reached. Currently, many studies are ongoing in attempts to further improve outcomes in this historically ill-fated patient group.
Collapse
Affiliation(s)
- Kristin L. Koenig
- Division of Hematology, Department of Medicine, The Ohio State University and The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA; (K.L.K.); (K.D.S.); (A.M.S.)
| | - Kieran D. Sahasrabudhe
- Division of Hematology, Department of Medicine, The Ohio State University and The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA; (K.L.K.); (K.D.S.); (A.M.S.)
| | - Audrey M. Sigmund
- Division of Hematology, Department of Medicine, The Ohio State University and The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA; (K.L.K.); (K.D.S.); (A.M.S.)
| | - Bhavana Bhatnagar
- Division of Hematology, Department of Medicine, The Ohio State University and The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA; (K.L.K.); (K.D.S.); (A.M.S.)
- OSU Wexner Medical Center, 320 W 10th Avenue, B307 Starling-Loving Hall, Columbus, OH 43210, USA
| |
Collapse
|
17
|
Thomas X, Elhamri M, Heiblig M. Emerging pharmacotherapies for elderly acute myeloid leukemia patients. Expert Rev Hematol 2020; 13:619-643. [PMID: 32311298 DOI: 10.1080/17474086.2020.1758058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
INTRODUCTION Acute myeloid leukemia (AML) is a disease mainly seen in the elderly, for which treatment is undergoing rapid changes. Although recent studies have supported the survival benefit of induction chemotherapy in fit patients and that of hypomethylating agents (HMAs) in non-induction candidates, treatment of this patient age population remains a significant challenge for the treating oncologist. AREAS COVERED In this review, we will examine effectiveness and safety outcomes of upcoming novel treatment strategies in elderly (≥60 years old) patients with AML, highlight the current literature and ongoing trials able to maximize therapeutic options in this heterogeneous patient population. EXPERT OPINION Current developments including new chemotherapeutic strategies and combinations of HMAs with novel drugs targeting epigenetic or immunomodulatory pathways are underway to improve patient survival and quality of life.
Collapse
Affiliation(s)
- Xavier Thomas
- Hospices Civils de Lyon, Hematology Department, Lyon-Sud University Hospital , Pierre Bénite, France
| | - Mohamed Elhamri
- Hospices Civils de Lyon, Hematology Department, Lyon-Sud University Hospital , Pierre Bénite, France
| | - Maël Heiblig
- Hospices Civils de Lyon, Hematology Department, Lyon-Sud University Hospital , Pierre Bénite, France
| |
Collapse
|
18
|
Panuzzo C, Signorino E, Calabrese C, Ali MS, Petiti J, Bracco E, Cilloni D. Landscape of Tumor Suppressor Mutations in Acute Myeloid Leukemia. J Clin Med 2020; 9:jcm9030802. [PMID: 32188030 PMCID: PMC7141302 DOI: 10.3390/jcm9030802] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/10/2020] [Accepted: 03/12/2020] [Indexed: 12/11/2022] Open
Abstract
Acute myeloid leukemia is mainly characterized by a complex and dynamic genomic instability. Next-generation sequencing has significantly improved the ability of diagnostic research to molecularly characterize and stratify patients. This detailed outcome allowed the discovery of new therapeutic targets and predictive biomarkers, which led to develop novel compounds (e.g., IDH 1 and 2 inhibitors), nowadays commonly used for the treatment of adult relapsed or refractory AML. In this review we summarize the most relevant mutations affecting tumor suppressor genes that contribute to the onset and progression of AML pathology. Epigenetic modifications (TET2, IDH1 and IDH2, DNMT3A, ASXL1, WT1, EZH2), DNA repair dysregulation (TP53, NPM1), cell cycle inhibition and deficiency in differentiation (NPM1, CEBPA, TP53 and GATA2) as a consequence of somatic mutations come out as key elements in acute myeloid leukemia and may contribute to relapse and resistance to therapies. Moreover, spliceosomal machinery mutations identified in the last years, even if in a small cohort of acute myeloid leukemia patients, suggested a new opportunity to exploit therapeutically. Targeting these cellular markers will be the main challenge in the near future in an attempt to eradicate leukemia stem cells.
Collapse
Affiliation(s)
- Cristina Panuzzo
- Department of Clinical and Biological Sciences, University of Turin, 10124 Turin, Italy; (C.P.); (E.S.); (C.C.); (M.S.A.); (J.P.)
| | - Elisabetta Signorino
- Department of Clinical and Biological Sciences, University of Turin, 10124 Turin, Italy; (C.P.); (E.S.); (C.C.); (M.S.A.); (J.P.)
| | - Chiara Calabrese
- Department of Clinical and Biological Sciences, University of Turin, 10124 Turin, Italy; (C.P.); (E.S.); (C.C.); (M.S.A.); (J.P.)
| | - Muhammad Shahzad Ali
- Department of Clinical and Biological Sciences, University of Turin, 10124 Turin, Italy; (C.P.); (E.S.); (C.C.); (M.S.A.); (J.P.)
| | - Jessica Petiti
- Department of Clinical and Biological Sciences, University of Turin, 10124 Turin, Italy; (C.P.); (E.S.); (C.C.); (M.S.A.); (J.P.)
| | - Enrico Bracco
- Department of Oncology, University of Turin, 10124 Turin, Italy;
| | - Daniela Cilloni
- Department of Clinical and Biological Sciences, University of Turin, 10124 Turin, Italy; (C.P.); (E.S.); (C.C.); (M.S.A.); (J.P.)
- Correspondence: ; Tel.: +39-011-9026610; Fax: +39-011-9038636
| |
Collapse
|
19
|
Wang F, Zhang J, Qi J. Ten-eleven translocation-2 affects the fate of cells and has therapeutic potential in digestive tumors. Chronic Dis Transl Med 2020; 5:267-272. [PMID: 32055786 PMCID: PMC7004935 DOI: 10.1016/j.cdtm.2019.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Indexed: 02/07/2023] Open
Abstract
Ten-eleven translocation (TET) methylcytosine dioxygenases catalyze the oxidative reactions of 5-methylcytosine (5-mC) to 5-hydroxymethylcytosine (5-hmC), 5-formylcytosine (5-fC), and 5-carboxylcytosine (5-caC), which are intermediate steps during DNA demethylation. It is reported that somatic mutations of TET2 gene are identified in a variety of human tumors, especially in hematological malignancies. The tendency and mechanism of cellular differentiation in different systems are affected by TET2 via regulation of associated gene expression or maintenance of demethylated state. TET2 acts as a critical driver of tumorigenesis through the conversion of 5-mC to 5-hmC and successive oxidation products. Sometimes, it requires special interactions and cofactors. Here, we reviewed recent advances in understanding the function of TET2 proteins in regulating cell differentiation, and its role in various tumors focusing on several digestive cancers.
Collapse
Affiliation(s)
- Feng Wang
- Department of Gastroenterology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430071, China
| | - Jing Zhang
- Department of Gastroenterology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430071, China
| | - Jian Qi
- Department of Gastroenterology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430071, China
| |
Collapse
|
20
|
Asada S, Fujino T, Goyama S, Kitamura T. The role of ASXL1 in hematopoiesis and myeloid malignancies. Cell Mol Life Sci 2019; 76:2511-2523. [PMID: 30927018 PMCID: PMC11105736 DOI: 10.1007/s00018-019-03084-7] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 03/18/2019] [Accepted: 03/25/2019] [Indexed: 12/19/2022]
Abstract
Recent high-throughput genome-wide sequencing studies have identified recurrent somatic mutations in myeloid neoplasms. An epigenetic regulator, Additional sex combs-like 1 (ASXL1), is one of the most frequently mutated genes in all subtypes of myeloid malignancies. ASXL1 mutations are also frequently detected in clonal hematopoiesis, which is associated with an increased risk of mortality. Therefore, it is important to understand how ASXL1 mutations contribute to clonal expansion and myeloid transformation in hematopoietic cells. Studies using ASXL1-depleted human hematopoietic cells and Asxl1 knockout mice have shown that deletion of wild-type ASXL1 protein leads to impaired hematopoiesis and accelerates myeloid malignancies via loss of interaction with polycomb repressive complex 2 proteins. On the other hand, ASXL1 mutations in myeloid neoplasms typically occur near the last exon and result in the expression of C-terminally truncated mutant ASXL1 protein. Biological studies and biochemical analyses of this variant have shed light on its dominant-negative and gain-of-function features in myeloid transformation via a variety of epigenetic changes. Based on these results, it would be possible to establish novel promising therapeutic strategies for myeloid malignancies harboring ASXL1 mutations by blocking interactions between ASXL1 and associating epigenetic regulators. Here, we summarize the clinical implications of ASXL1 mutations, the role of wild-type ASXL1 in normal hematopoiesis, and oncogenic functions of mutant ASXL1 in myeloid neoplasms.
Collapse
Affiliation(s)
- Shuhei Asada
- Division of Cellular Therapy, Advanced Clinical Research Center, and Division of Stem Cell Signaling, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 1088639, Japan
| | - Takeshi Fujino
- Division of Cellular Therapy, Advanced Clinical Research Center, and Division of Stem Cell Signaling, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 1088639, Japan
| | - Susumu Goyama
- Division of Cellular Therapy, Advanced Clinical Research Center, and Division of Stem Cell Signaling, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 1088639, Japan
| | - Toshio Kitamura
- Division of Cellular Therapy, Advanced Clinical Research Center, and Division of Stem Cell Signaling, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 1088639, Japan.
| |
Collapse
|
21
|
Prognostic role of TET2 deficiency in myelodysplastic syndromes: A meta-analysis. Oncotarget 2018; 8:43295-43305. [PMID: 28476038 PMCID: PMC5522146 DOI: 10.18632/oncotarget.17177] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 03/22/2017] [Indexed: 12/28/2022] Open
Abstract
Tet methylcytosine dioxygenase2 gene (TET2) is one of the most frequently mutated gene in myeloid neoplasm, but the prognostic role of TET2 aberrations in myelodysplastic syndromes (MDS) remains unclear. Therefore, we performed a meta-analysis. Fourteen eligible studies with 1983 patients were included in this meta-analysis. Among these, 2 studies evaluated the impact that the TET2 expression level had on the prognosis. The combined hazard ratios (HR) estimated for overall survival (OS) was 1.00 (95%CI: 0.74 to 1.37; p=0.989) when comparing those with TET2 mutations with those without. Among the patients treated with hypomethylating agents (HMAs) or hematopoietic stem cell transplantation (HSCT), the pooled HR for OS was 1.02 (95% CI: 0.77-1.35, p=0.89) and 1.54 (95%CI: 0.69 to 3.44; p=0.29), respectively. We also conducted an analysis of the response rate to HMAs, and the OR was 1.73 (95%CI: 1.11 to 2.70; p=0.016). Additionally, subgroup analyses showed the pooled HR for OS was 0.93(95%CI: 0.44 to 1.98; P=0.849) in WHO-classified CMML patients and 1.02(95%CI: 1.02 to 3.46; p=0.042) in studies evaluated TET2 expression level. The analysis suggested TET2 mutations had no significant prognostic value on MDS. However, the response rates to HMAs were significantly different between those with and without TET2 mutations, and the low expression level of TET2 gene was significantly associated with a poor OS in MDS patients.
Collapse
|
22
|
Liu Y, Cao Y, Lin Y, Dong WM, Lin RR, Gu Q, Xie XB, Gu WY. Successful Treatment of Cytogenetically Normal Acute Myeloid Leukemia With Ten-Eleven Translocation 2-Isocitrate Dehydrogenase 2 and Additional Sex Comb-like 1-Nucleophosmin Co-mutations by HLA Haploidentical Stem Cell Transplantation: A Case Report and Literature Review. Transplant Proc 2018; 50:959-963. [PMID: 29661468 DOI: 10.1016/j.transproceed.2018.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 01/17/2018] [Indexed: 11/17/2022]
Abstract
The presence of recurrent gene mutations is increasingly important in acute myeloid leukemia (AML) and sheds new insights into the understanding of leukemogenesis, prognostic evaluation, and clinical therapeutic efficacy. Until now, ten-eleven translocation 2 (TET2) and isocitrate dehydrogenase 2 (IDH2) mutations were reported to be mutually exclusive in AML patients. Similarly, nucleophosmin (NPM1) and additional sex comb-like 1 (ASXL1) mutations were rarely coexisted in AML. A 47-year-old man diagnosed with high-risk AML presented simultaneous mutations of TET2-IDH2 and NPM1-ASXL1 revealed by next-generation sequencing. After successful treatment with chemotherapy followed by HLA haploidentical transplantation, he achieved a clinical complete remission without evidence of overt graft-versus-host disease. This case highlights that HLA haploidentical transplantation might be a safe and feasible therapy for AML patients who are characterized by TET2-IDH2 and NPM1-ASXL1 co-mutations.
Collapse
Affiliation(s)
- Y Liu
- Department of Hematology, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Y Cao
- Department of Hematology, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Y Lin
- Department of Hematology, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - W-M Dong
- Department of Hematology, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - R-R Lin
- Department of Hematology, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Q Gu
- Department of Hematology, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - X-B Xie
- Department of Hematology, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - W-Y Gu
- Department of Hematology, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China.
| |
Collapse
|
23
|
Abstract
Isocitrate dehydrogenases (IDHs) are enzymes involved in multiple metabolic and epigenetic cellular processes. Mutations in IDH1 or IDH2 are detected in approximately 20% of patients with acute myeloid leukemia (AML) and induce amino acid changes in conserved residues resulting in neomorphic enzymatic function and production of an oncometabolite, 2-hydroxyglutarate (R-2-HG). This leads to DNA hypermethylation, aberrant gene expression, cell proliferation and abnormal differentiation. IDH mutations diversely affect prognosis of patients with AML based on the location of the mutation and other co-occurring genomic abnormalities. Recently, novel therapies specifically targeting mutant IDH have opened new avenues of therapy for these patients. In the present review, we will provide an overview of the biological, clinical and therapeutic implications of IDH mutations in AML.
Collapse
Affiliation(s)
- Guillermo Montalban-Bravo
- Department of Leukemia, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Courtney D DiNardo
- Department of Leukemia, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| |
Collapse
|
24
|
Wu ZJ, Zhao X, Banaszak LG, Gutierrez-Rodrigues F, Keyvanfar K, Gao SG, Quinones Raffo D, Kajigaya S, Young NS. CRISPR/Cas9-mediated ASXL1 mutations in U937 cells disrupt myeloid differentiation. Int J Oncol 2018. [PMID: 29532865 PMCID: PMC5843401 DOI: 10.3892/ijo.2018.4290] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Additional sex combs-like 1 (ASXL1) is a well‑known tumor suppressor gene and epigenetic modifier. ASXL1 mutations are frequent in myeloid malignances; these mutations are risk factors for the development of myelodysplasia and also appear as small clones during normal aging. ASXL1 appears to act as an epigenetic regulator of cell survival and myeloid differentiation; however, the molecular mechanisms underlying the malignant transformation of cells with ASXL1 mutations are not well defined. Using Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated protein-9 nuclease (Cas9) genome editing, heterozygous and homozygous ASXL1 mutations were introduced into human U937 leukemic cells. Comparable cell growth and cell cycle progression were observed between wild-type (WT) and ASXL1-mutated U937 cells. Drug-induced cytotoxicity, as measured by growth inhibition and apoptosis in the presence of the cell-cycle active agent 5-fluorouracil, was variable among the mutated clones but was not significantly different from WT cells. In addition, ASXL1-mutated cells exhibited defects in monocyte/macrophage differentiation. Transcriptome analysis revealed that ASXL1 mutations altered differentiation of U937 cells by disturbing genes involved in myeloid differentiation, including cytochrome B-245 β chain and C-type lectin domain family 5, member A. Dysregulation of numerous gene sets associated with cell death and survival were also observed in ASXL1-mutated cells. These data provide evidence regarding the underlying molecular mechanisms induced by mutated ASXL1 in leukemogenesis.
Collapse
Affiliation(s)
- Zhi-Jie Wu
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1202, USA
| | - Xin Zhao
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1202, USA
| | - Lauren G Banaszak
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1202, USA
| | - Fernanda Gutierrez-Rodrigues
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1202, USA
| | - Keyvan Keyvanfar
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1202, USA
| | - Shou-Guo Gao
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1202, USA
| | - Diego Quinones Raffo
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1202, USA
| | - Sachiko Kajigaya
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1202, USA
| | - Neal S Young
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1202, USA
| |
Collapse
|
25
|
Shin SY, Lee ST, Kim HJ, Cho EH, Kim JW, Park S, Jung CW, Kim SH. Mutation profiling of 19 candidate genes in acute myeloid leukemia suggests significance of DNMT3A mutations. Oncotarget 2018; 7:54825-54837. [PMID: 27359055 PMCID: PMC5342384 DOI: 10.18632/oncotarget.10240] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 05/13/2016] [Indexed: 11/25/2022] Open
Abstract
We selected 19 significantly-mutated genes in AMLs, including FLT3, DNMT3A, NPM1, TET2, RUNX1, CEBPA, WT1, IDH1, IDH2, NRAS, ASXL1, SETD2, PTPN11, TP53, KIT, JAK2, KRAS, BRAF and CBL, and performed massively parallel sequencing for 114 patients with acute myeloid leukemias, mainly including those with normal karyotypes (CN-AML). More than 80% of patients had at least one mutation in the genes tested. DNMT3A mutation was significantly associated with adverse outcome in addition to conventional risk stratification such as the European LeukemiaNet (ELN) classification. We observed clinical usefulness of mutation testing on multiple target genes and the association with disease subgroups, clinical features and prognosis in AMLs.
Collapse
Affiliation(s)
- Sang-Yong Shin
- Department of Laboratory Medicine, Center for Diagnostic Oncology, Hospital and Research Institute, National Cancer Center, Goyang, Korea
| | - Seung-Tae Lee
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Hee-Jin Kim
- Department of Laboratory Medicine & Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | | | - Jong-Won Kim
- Department of Laboratory Medicine & Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Silvia Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Chul Won Jung
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sun-Hee Kim
- Department of Laboratory Medicine & Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
26
|
Jiang Y, Liu L, Wang J, Cao Z, Zhao Z. The Wilms' tumor gene-1 is a prognostic factor in myelodysplastic syndrome: a meta analysis. Oncotarget 2017; 9:16205-16212. [PMID: 29662637 PMCID: PMC5882328 DOI: 10.18632/oncotarget.23671] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 12/11/2017] [Indexed: 11/25/2022] Open
Abstract
Previous studies have suggested that Wilms’ tumor gene-1 (WT1) may be related to a decrease in both relapse-free survival (RFS) and overall survival (OS) for patients with myelodysplastic syndrome (MDS). Therefore, we conducted a meta-analysis on the utility of WT1 as a prognostic indicator of MDS. Published reports were searched in the following databases: Cochrane Library, PubMed, Embase, and Web of Science. The meta-analysis was conducted using the Cochrane Collaboration RevMan 5.2 software. Six publications with 450 total patients met the inclusion criteria and were subjected to further examination. The results showed a reduction in both overall survival (OS) and leukemia-free survival (LFS) with increasing WT1 expression levels: 1-year OS (odds ratio, OR = 0.16; 95% CI = 0.08–0.34, P < 0.001), 3-year OS (OR = 0.21; 95% CI = 0.09–0.47, P < 0.001), 5-year OS (OR = 0.24; 95% CI = 0.06–0.92, P = 0.04), 1-year LFS (OR = 0.06; 95% CI = 0.02–0.18; P < 0.001), 3-year LFS (OR = 0.20; 95% CI = 0.09–0.46; P < 0.001), and 5-year LFS (OR = 0.12; 95% CI = 0.04–0.38; P < 0.001). In terms of patients receiving hematopoietic stem cell transplantation, the cumulative incidence of relapse (CIR) was higher in the WT1 over-expression group than in the low-expression group: 1-year CIR (OR = 13.69; 95% CI = 2.99–62.62; P < 0.001), 3-year CIR (OR = 6.52; 95% CI = 2.31–18.40, P < 0.001). In conclusion, WT1 over-expression is a prognostic factor for MDS.
Collapse
Affiliation(s)
- Yanan Jiang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Lin Liu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Jinhuan Wang
- Department of Oncology, Second Hospital of Tianjin Medical University, Institute of Urology, Tianjin 300060, China
| | - Zeng Cao
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Zhigang Zhao
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| |
Collapse
|
27
|
Mevatee P, Tantiworawit A, Traisathit P, Puaninta C, Mevatee U, Angsuchawan S, Bumroongkit K. FLT3-ITD, NPM1, and DNMT3A Gene Mutations and Risk Factors in Normal Karyotype Acute Myeloid Leukemia and Myelodysplastic Syndrome Patients in Upper Northern Thailand. Asian Pac J Cancer Prev 2017; 18:3031-3039. [PMID: 29172276 PMCID: PMC5773788 DOI: 10.22034/apjcp.2017.18.11.3031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Objective: Approximately 40-45% of AML and MDS patients have a cytogenetically normal karyotype (CN-AML and CN-MDS). The frequency and types of gene mutations in these cases may differ among various populations. The objective of this study was to identify frequencies and types of FLT3-ITD, NPM1, and DNMT3A mutations, and associations of them with clinical data and risk factors in CN-AML and CN-MDS cases in upper Northern Thailand. Methods: Bone marrow samples of 40 CN-AML and 60 CN-MDS patients were analyzed for gene mutations by direct sequencing. In addition, data for potential risk factors were obtained for comparison. Results: Frequencies of FLT3-ITD, NPM1, and DNMT3A mutations were 25.0%, 17.5%, and 10.0%, respectively in CN-AML, but all zero in CN-MDS cases. NPM1 mutations were found at a median age older than the wild type (58 vs 47 years) while DNMT3A mutations were associated with an increase in the white blood cell count. In all patients, factors for the mutations of these three genes included age ≤ 60 years, and a history of hypertension. Conclusion: When considering mutations in only normal karyotype patients, the frequency of FLT3-ITD, NPM1, DNMT3A mutations in CN-AML patients in upper Northern Thailand were found to occur at lower rates than in Western patients and to differ from other Asian populations including parts of Thailand. No mutations were observed in CN-MDS cases. Some types of gene mutations differed from previous studies, possibly attributable to differences in geography, lifestyle and genetic backgrounds. Links with age ≤ 60 years and history of hypertension were found. Investigation of these three genes in an intermediate risk group with a normal karyotype is useful for a better understanding of molecular leukemogenetic steps in CN-AML and CN-MDS patients and may be beneficial for planning treatment and prevention in the population of upper Northern Thailand.
Collapse
Affiliation(s)
- Piyanan Mevatee
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Thailand.
| | | | | | | | | | | | | |
Collapse
|
28
|
Leite C, Delmonico L, Alves G, Gomes RJ, Martino MR, da Silva AR, Moreira ADS, Maioli MC, Scherrer LR, Bastos EF, Irineu R, Ornellas MH. Screening of mutations in the additional sex combs like 1, transcriptional regulator, tumor protein p53, and KRAS proto-oncogene, GTPase/NRAS proto-oncogene, GTPase genes of patients with myelodysplastic syndrome. Biomed Rep 2017; 7:343-348. [PMID: 28928972 DOI: 10.3892/br.2017.965] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 07/28/2017] [Indexed: 11/06/2022] Open
Abstract
Myelodysplastic syndrome (MDS) is a heterogeneous group of clonal bone marrow disorders characterized by ineffective hematopoiesis, different degrees of cellular dysplasia, and increased risk of progression to acute myeloid leukemia. International Prognostic Scoring System is the gold standard for MDS classification; however, patients exhibiting different clinical behaviors often coexist in the same group, indicating that the currently available scoring systems are insufficient. The genes that have recently been identified as mutated in MDS, including additional sex combs like 1, transcriptional regulator (ASXL1), tumor protein p53 (TP53), and KRAS proto-oncogene and GTPase (KRAS)/NRAS proto-oncogene, GTPase (NRAS), may contribute to a more comprehensive classification, as well as to the prognosis and progression of the disease. In the present study, the mutations in the ASXL1, TP53 and NRAS/KRAS genes in 50 patients were evaluated by sequencing genomic bone marrow DNA. Nine patients (18%) presented with at least one type of mutation. Mutations in TP53 were the most frequent in six patients (12%), followed by ASXL1 in two patients (4%) and NRAS in one patient (2%). The nine mutations were detected in patients with low- and high-risk MDS. The screening of mutations in MDS cases contributes to the application of personalized medicine.
Collapse
Affiliation(s)
- Carolina Leite
- Haematology Service, Pedro Ernesto University Hospital, Rio de Janeiro 20550-170, Brazil
| | - Lucas Delmonico
- Circulating Biomarkers Laboratory, Faculty of Medical Sciences, State University of Rio de Janeiro, Rio de Janeiro 20550-170, Brazil
| | - Gilda Alves
- Circulating Biomarkers Laboratory, Faculty of Medical Sciences, State University of Rio de Janeiro, Rio de Janeiro 20550-170, Brazil
| | - Romario José Gomes
- Circulating Biomarkers Laboratory, Faculty of Medical Sciences, State University of Rio de Janeiro, Rio de Janeiro 20550-170, Brazil
| | - Mariana Rodrigues Martino
- Circulating Biomarkers Laboratory, Faculty of Medical Sciences, State University of Rio de Janeiro, Rio de Janeiro 20550-170, Brazil
| | - Aline Rodrigues da Silva
- Circulating Biomarkers Laboratory, Faculty of Medical Sciences, State University of Rio de Janeiro, Rio de Janeiro 20550-170, Brazil
| | - Aline Dos Santos Moreira
- Bioinformatics and Functional Genomic Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil
| | - Maria Christina Maioli
- Haematology Service, Pedro Ernesto University Hospital, Rio de Janeiro 20550-170, Brazil
| | - Luciano Rios Scherrer
- Department of Engineering and Production, Kennedy Faculty, Belo Horizonte 31535-040, Brazil
| | - Elenice Ferreira Bastos
- Department of Medical Genetic, Fernandes Figueira Institute, Oswaldo Cruz Foundation, Rio de Janeiro 22250-020, Brazil
| | - Roberto Irineu
- Pedro II School, Realengo II Campus, Rio de Janeiro 21710-261, Brazil
| | - Maria Helena Ornellas
- Circulating Biomarkers Laboratory, Faculty of Medical Sciences, State University of Rio de Janeiro, Rio de Janeiro 20550-170, Brazil
| |
Collapse
|
29
|
RUNX1 is required for oncogenic Myb and Myc enhancer activity in T-cell acute lymphoblastic leukemia. Blood 2017; 130:1722-1733. [PMID: 28790107 DOI: 10.1182/blood-2017-03-775536] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Accepted: 07/24/2017] [Indexed: 12/14/2022] Open
Abstract
The gene encoding the RUNX1 transcription factor is mutated in a subset of T-cell acute lymphoblastic leukemia (T-ALL) patients, and RUNX1 mutations are associated with a poor prognosis. These mutations cluster in the DNA-binding Runt domain and are thought to represent loss-of-function mutations, indicating that RUNX1 suppresses T-cell transformation. RUNX1 has been proposed to have tumor suppressor roles in T-cell leukemia homeobox 1/3-transformed human T-ALL cell lines and NOTCH1 T-ALL mouse models. Yet, retroviral insertional mutagenesis screens identify RUNX genes as collaborating oncogenes in MYC-driven leukemia mouse models. To elucidate RUNX1 function(s) in leukemogenesis, we generated Tal1/Lmo2/Rosa26-CreERT2Runx1f/f mice and examined leukemia progression in the presence of vehicle or tamoxifen. We found that Runx1 deletion inhibits mouse leukemic growth in vivo and that RUNX silencing in human T-ALL cells triggers apoptosis. We demonstrate that a small molecule inhibitor, designed to interfere with CBFβ binding to RUNX proteins, impairs the growth of human T-ALL cell lines and primary patient samples. We demonstrate that a RUNX1 deficiency alters the expression of a crucial subset of TAL1- and NOTCH1-regulated genes, including the MYB and MYC oncogenes, respectively. These studies provide genetic and pharmacologic evidence that RUNX1 has oncogenic roles and reveal RUNX1 as a novel therapeutic target in T-ALL.
Collapse
|
30
|
Chi K, Li Y, Xu L, Wang X. A novel recurrent copy number loss region on 6q23.3 in MDS-related myeloid malignancy patients with stable survival conditions. Leuk Lymphoma 2017; 58:2470-2479. [PMID: 28394181 DOI: 10.1080/10428194.2017.1292357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Metaphase cytogenetics (MC) karyotyping is a fundamental way to approach cytogenetic pathogenesis of MDS-related myeloid malignancies. However, in some patients, the results are normal while the patients often show discrepancies in survival conditions. To explain this question, we analyzed CytoScan™ HD array results of 20 MC-normal/failure patients who were followed up for three years. Exon sequencing was performed in genes RUNX1, TP53, ASXL1, and TET2. The array enabled the detection of additional aberrations in 16 (80%) patients. Eight patients were detected with cryptic copy number losses and six of them got aggressive disease conditions. RUNX1 mutations were sequenced in P110 and P114. Most importantly, two patients (P114 and P116) with copy number loss aberrations got stable survival conditions during follow-ups, and a novel recurrent copy number loss region harboring the proto-oncogene MYB was detected on chromosome 6q23.3 in both of them, which might benefit the survival of the patients.
Collapse
Affiliation(s)
- Kun Chi
- a Department of Laboratory Medicine , Qingdao Women & Children's Hospital , Qingdao , China.,b State Key Laboratory of Medical Genomics , Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine , Shanghai , China
| | - Yang Li
- b State Key Laboratory of Medical Genomics , Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine , Shanghai , China
| | - Lan Xu
- c Department of Hematology , Ruijin Hospital, Shanghai Jiaotong University School of Medicine , Shanghai , China
| | - Xuefeng Wang
- d Department of Laboratory Medicine , Ruijin Hospital, Shanghai Jiaotong University School of Medicine , Shanghai , China
| |
Collapse
|
31
|
Han Q, He X, Wu L, Gao F, Ye J, Wu L, Chen L, Jiang X, Sun M, Chen S. Downregulated stromal antigen 2 expression in de novo acute myeloid leukemia patients. Exp Ther Med 2017; 13:530-534. [PMID: 28352327 PMCID: PMC5348667 DOI: 10.3892/etm.2017.4030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 03/10/2016] [Indexed: 11/05/2022] Open
Abstract
The stromal antigen 2 (STAG2) gene encodes a component of the cohesin complex that participates in the regulation of sister chromatid separation during mitosis. When activated, STAG2 may act as a 'caretaker' tumor suppressor gene. As it is unknown whether STAG2 gene is responsible for the occurrence and associated with the prognosis of acute myeloid leukemia (AML), the present study analyzed the relative expression levels of STAG2 in 127 de novo AML patients and 17 healthy volunteers using reverse transcription-quantitative polymerase chain reaction. In addition, AML patients were divided into three risk groups using cytogenetic and molecular genetic abnormalities to define their risk status. STAG2 gene expression was found to be significantly downregulated in de novo AML patients, when compared with the healthy controls; however, the expression was not significantly different in the various gender and age subgroups. Furthermore, no significant difference between risk groups was detected in AML patients. Thus, the STAG2 gene may serve an important role in AML development, but is not associated with prognosis in AML.
Collapse
Affiliation(s)
- Qiaoyan Han
- Department of Hematology, Jingjiang People's Hospital, The Seventh Affiliated Hospital of Yangzhou University, Jingjiang, Jiangsu 214500, P.R. China
| | - Xuefeng He
- Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Lili Wu
- Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Feng Gao
- Department of Hematology, Jingjiang People's Hospital, The Seventh Affiliated Hospital of Yangzhou University, Jingjiang, Jiangsu 214500, P.R. China
| | - Jinsong Ye
- Department of Hematology, Jingjiang People's Hospital, The Seventh Affiliated Hospital of Yangzhou University, Jingjiang, Jiangsu 214500, P.R. China
| | - Lingyu Wu
- Department of Hematology, Jingjiang People's Hospital, The Seventh Affiliated Hospital of Yangzhou University, Jingjiang, Jiangsu 214500, P.R. China
| | - Lu Chen
- Department of Hematology, Jingjiang People's Hospital, The Seventh Affiliated Hospital of Yangzhou University, Jingjiang, Jiangsu 214500, P.R. China
| | - Xin Jiang
- Department of Hematology, Jingjiang People's Hospital, The Seventh Affiliated Hospital of Yangzhou University, Jingjiang, Jiangsu 214500, P.R. China
| | - Miao Sun
- Department of Hematology, Jingjiang People's Hospital, The Seventh Affiliated Hospital of Yangzhou University, Jingjiang, Jiangsu 214500, P.R. China
| | - Suning Chen
- Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| |
Collapse
|
32
|
Pastore F, Levine RL. Epigenetic regulators and their impact on therapy in acute myeloid leukemia. Haematologica 2017; 101:269-78. [PMID: 26928248 DOI: 10.3324/haematol.2015.140822] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Genomic studies of hematologic malignancies have identified a spectrum of recurrent somatic alterations that contribute to acute myeloid leukemia initiation and maintenance, and which confer sensitivities to molecularly targeted therapies. The majority of these genetic events are small, site-specific alterations in DNA sequence. In more than two thirds of patients with de novo acute myeloid leukemia mutations epigenetic modifiers are detected. Epigenetic modifiers encompass a large group of proteins that modify DNA at cytosine residues or cause post-translational histone modifications such as methylations or acetylations. Altered functions of these epigenetic modifiers disturb the physiological balance between gene activation and gene repression and contribute to aberrant gene expression regulation found in acute myeloid leukemia. This review provides an overview of the epigenetic modifiers mutated in acute myeloid leukemia, their clinical relevance and how a deeper understanding of their biological function has led to the discovery of new specific targets, some of which are currently tested in mechanism-based clinical trials.
Collapse
Affiliation(s)
- Friederike Pastore
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center
| | - Ross L Levine
- Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| |
Collapse
|
33
|
Identification and validation of the dopamine agonist bromocriptine as a novel therapy for high-risk myelodysplastic syndromes and secondary acute myeloid leukemia. Oncotarget 2016; 7:6609-19. [PMID: 26735888 PMCID: PMC4872736 DOI: 10.18632/oncotarget.6773] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 11/28/2015] [Indexed: 01/23/2023] Open
Abstract
Myelodysplastic syndromes (MDS) represent a broad spectrum of diseases characterized by their clinical manifestation as one or more cytopenias, or a reduction in circulating blood cells. MDS is predominantly a disease of the elderly, with a median age in the UK of around 75. Approximately one third of MDS patients will develop secondary acute myeloid leukemia (sAML) that has a very poor prognosis. Unfortunately, most standard cytotoxic agents are often too toxic for older patients. This means there is a pressing unmet need for novel therapies that have fewer side effects to assist this vulnerable group. This challenge was tackled using bioinformatic analysis of available transcriptomic data to establish a gene-based signature of the development and progression of MDS. This signature was then used to identify novel therapeutic compounds via statistically-significant connectivity mapping. This approach suggested re-purposing an existing and widely-prescribed drug, bromocriptine as a novel potential therapy in these disease settings. This drug has shown selectivity for leukemic cells as well as synergy with current therapies.
Collapse
|
34
|
Dynamics of clonal evolution in myelodysplastic syndromes. Nat Genet 2016; 49:204-212. [PMID: 27992414 DOI: 10.1038/ng.3742] [Citation(s) in RCA: 323] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 11/16/2016] [Indexed: 12/14/2022]
Abstract
To elucidate differential roles of mutations in myelodysplastic syndromes (MDS), we investigated clonal dynamics using whole-exome and/or targeted sequencing of 699 patients, of whom 122 were analyzed longitudinally. Including the results from previous reports, we assessed a total of 2,250 patients for mutational enrichment patterns. During progression, the number of mutations, their diversity and clone sizes increased, with alterations frequently present in dominant clones with or without their sweeping previous clones. Enriched in secondary acute myeloid leukemia (sAML; in comparison to high-risk MDS), FLT3, PTPN11, WT1, IDH1, NPM1, IDH2 and NRAS mutations (type 1) tended to be newly acquired, and were associated with faster sAML progression and a shorter overall survival time. Significantly enriched in high-risk MDS (in comparison to low-risk MDS), TP53, GATA2, KRAS, RUNX1, STAG2, ASXL1, ZRSR2 and TET2 mutations (type 2) had a weaker impact on sAML progression and overall survival than type-1 mutations. The distinct roles of type-1 and type-2 mutations suggest their potential utility in disease monitoring.
Collapse
|
35
|
Zong X, Yao H, Wen L, Ma L, Wang Q, Yang Z, Zhang T, Chen S, Depei W. ASXL1 mutations are frequent in de novo AML with trisomy 8 and confer an unfavorable prognosis. Leuk Lymphoma 2016; 58:204-206. [DOI: 10.1080/10428194.2016.1179296] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
36
|
The oncocytic subtype is genetically distinct from other pancreatic intraductal papillary mucinous neoplasm subtypes. Mod Pathol 2016; 29:1058-69. [PMID: 27282351 PMCID: PMC5524210 DOI: 10.1038/modpathol.2016.98] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 04/25/2016] [Accepted: 04/25/2016] [Indexed: 01/04/2023]
Abstract
In 2010, the World Health Organization reclassified the entity originally described as intraductal oncocytic papillary neoplasm as the 'oncocytic subtype' of intraductal papillary mucinous neoplasm. Although several key molecular alterations of other intraductal papillary mucinous neoplasm subtypes have been discovered, including common mutations in KRAS, GNAS, and RNF3, those of oncocytic subtype have not been well characterized. We analyzed 11 pancreatic 'oncocytic subtype' of intraductal papillary mucinous neoplasms. Nine pancreatic 'oncocytic subtype' of intraductal papillary mucinous neoplasms uniformly exhibited typical entity-defining morphology of arborizing papillae lined by layers of cells with oncocytic cytoplasm, prominent, nucleoli, and intraepithelial lumina. The remaining two were atypical. One lacked the arborizing papilla and had flat oncocytic epithelium only; the other one had focal oncocytic epithelium in a background of predominantly intestinal subtype intraductal papillary mucinous neoplasm. Different components of this case were analyzed separately. Formalin-fixed, paraffin-embedded specimens of all cases were microdissected and subjected to high-depth-targeted next-generation sequencing for a panel of 300 key cancer-associated genes in a platform that enabled the identification of sequence mutations, copy number alterations, and select structural rearrangements involving all targeted genes. Fresh frozen specimens of two cases were also subjected to whole-genome sequencing. For the nine typical pancreatic 'oncocytic subtype' of intraductal papillary mucinous neoplasms, the number of mutations per case, identified by next-generation sequencing, ranged from 1 to 10 (median=4). None of these cases had KRAS or GNAS mutations and only one had both RNF43 and PIK3R1 mutations. ARHGAP26, ASXL1, EPHA8, and ERBB4 genes were somatically altered in more than one of these typical 'oncocytic subtype' of intraductal papillary mucinous neoplasms but not in the other two atypical ones. In the neoplasm with flat oncocytic epithelium, the only mutated gene was KRAS. All components of the intestinal subtype intraductal papillary mucinous neoplasms with focal oncocytic epithelium manifested TP53, GNAS, and RNF43 mutations. In conclusion, this study elucidates that 'oncocytic subtype' of intraductal papillary mucinous neoplasm is not only morphologically distinct but also genetically distinct from other intraductal papillary mucinous neoplasm subtypes. Considering that now its biologic behavior is also being found to be different than other intraductal papillary mucinous neoplasm subtypes, 'oncocytic subtype' of intraductal papillary mucinous neoplasm warrants being recognized separately.
Collapse
|
37
|
Disease characteristics and prognosis of myelodysplastic syndrome presenting with isolated thrombocytopenia. Int J Hematol 2016; 105:44-51. [DOI: 10.1007/s12185-016-2081-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 08/15/2016] [Accepted: 08/17/2016] [Indexed: 12/22/2022]
|
38
|
Lin Y, Zheng Y, Wang ZC, Wang SY. Prognostic significance of ASXL1 mutations in myelodysplastic syndromes and chronic myelomonocytic leukemia: A meta-analysis. ACTA ACUST UNITED AC 2016; 21:454-61. [PMID: 27077763 DOI: 10.1080/10245332.2015.1106815] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVES Although additional sex comb-like 1 (ASXL1) gene mutations have long been reported in myelodysplastic syndromes (MDSs) and chronic myelomonocytic leukemia (CMML), the prognostic significance has been controversial. Therefore, a meta-analysis to study the impact of ASXL1 mutations on patients with MDS and CMML is useful. METHODS The identified articles were retrieved from some common databases. We extracted hazard ratios (HRs) for overall survival (OS) and leukemic-free survival (LFS) and P-value of some clinical parameters, which compared AXSL1 mutations to those without from the available studies. Each individual HR and P-value was used to calculate the pooled HR and P-value. RESULTS Six studies covering 1689 patients were selected for this meta-analysis. The pooled HRs for OS and LFS were 1.45 (95% confidential interval (CI), 1.24-1.70) and 2.20 (95% CI, 1.53-3.17), respectively. When considering CMML patients alone the HR for OS was 1.50 (95% CI, 1.18-1.90). Additionally, ASXL1 mutations were more frequently found in male (P = 0.008), older (P = 0.019), and patients with lower platelets (P = 0.009) or hemoglobin level (P = 0.0015) and associated with other mutations such as EZH2, IDH1/2, RUNX1, and TET2. DISCUSSION Although our analysis has its limitation, it showed that ASXL1 mutations had significant inferior impact on OS and LFS for French-American-British-defined MDS patients. However, the influence of different types of ASXL1 mutations on patients with MDS still needs illustrating. CONCLUSION ASXL1 mutations were associated with poor prognosis in MDS, which may contribute to risk stratification and prognostic assessment in the disease.
Collapse
Affiliation(s)
- Yun Lin
- a Union Clinical Medical College, Fujian Medical University , Fuzhou , P.R. China
| | - Yi Zheng
- a Union Clinical Medical College, Fujian Medical University , Fuzhou , P.R. China
| | - Ze-Chuan Wang
- a Union Clinical Medical College, Fujian Medical University , Fuzhou , P.R. China
| | - Shao-Yuan Wang
- b Department of Hematology, Fujian Provincial Key Laboratory on Hematology , Fujian Medical University Union Hospital , Fuzhou , P.R. China
| |
Collapse
|
39
|
Hou HA, Tien HF. Mutations in epigenetic modifiers in acute myeloid leukemia and their clinical utility. Expert Rev Hematol 2016; 9:447-69. [DOI: 10.1586/17474086.2016.1144469] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Hsin-An Hou
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan
| | - Hwei-Fang Tien
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
40
|
Tan SY, Smeets MF, Chalk AM, Nandurkar H, Walkley CR, Purton LE, Wall M. Insights into myelodysplastic syndromes from current preclinical models. World J Hematol 2016; 5:1-22. [DOI: 10.5315/wjh.v5.i1.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Revised: 11/17/2015] [Accepted: 12/14/2015] [Indexed: 02/05/2023] Open
Abstract
In recent years, there has been significant progress made in our understanding of the molecular genetics of myelodysplastic syndromes (MDS). Using massively parallel sequencing techniques, recurring mutations are identified in up to 80% of MDS cases, including many with a normal karyotype. The differential role of some of these mutations in the initiation and progression of MDS is starting to be elucidated. Engineering candidate genes in mice to model MDS has contributed to recent insights into this complex disease. In this review, we examine currently available mouse models, with detailed discussion of selected models. Finally, we highlight some advances made in our understanding of MDS biology, and conclude with discussions of questions that remain unanswered.
Collapse
|
41
|
Zhang LY, Yuan YQ, Zhou DM, Wang ZY, Ju SG, Sun Y, Li J, Fu JX. Impact of Global and Gene-Specific DNA Methylation in de Novo or Relapsed Acute Myeloid Leukemia Patients Treated with Decitabine. Asian Pac J Cancer Prev 2016; 17:431-7. [DOI: 10.7314/apjcp.2016.17.1.431] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
42
|
Kitamura T, Watanabe-Okochi N, Enomoto Y, Nakahara F, Oki T, Komeno Y, Kato N, Doki N, Uchida T, Kagiyama Y, Togami K, Kawabata KC, Nishimura K, Hayashi Y, Nagase R, Saika M, Fukushima T, Asada S, Fujino T, Izawa Y, Horikawa S, Fukuyama T, Tanaka Y, Ono R, Goyama S, Nosaka T, Kitaura J, Inoue D. Novel working hypothesis for pathogenesis of hematological malignancies: combination of mutations-induced cellular phenotypes determines the disease (cMIP-DD). J Biochem 2015; 159:17-25. [PMID: 26590301 DOI: 10.1093/jb/mvv114] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 10/22/2015] [Indexed: 11/12/2022] Open
Abstract
Recent progress in high-speed sequencing technology has revealed that tumors harbor novel mutations in a variety of genes including those for molecules involved in epigenetics and splicing, some of which were not categorized to previously thought malignancy-related genes. However, despite thorough identification of mutations in solid tumors and hematological malignancies, how these mutations induce cell transformation still remains elusive. In addition, each tumor usually contains multiple mutations or sometimes consists of multiple clones, which makes functional analysis difficult. Fifteen years ago, it was proposed that combination of two types of mutations induce acute leukemia; Class I mutations induce cell growth or inhibit apoptosis while class II mutations block differentiation, co-operating in inducing acute leukemia. This notion has been proven using a variety of mouse models, however most of recently found mutations are not typical class I/II mutations. Although some novel mutations have been found to functionally work as class I or II mutation in leukemogenesis, the classical class I/II theory seems to be too simple to explain the whole story. We here overview the molecular basis of hematological malignancies based on clinical and experimental results, and propose a new working hypothesis for leukemogenesis.
Collapse
Affiliation(s)
- Toshio Kitamura
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Naoko Watanabe-Okochi
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Yutaka Enomoto
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Fumio Nakahara
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Toshihiko Oki
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Yukiko Komeno
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Naoko Kato
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Noriko Doki
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Tomoyuki Uchida
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Yuki Kagiyama
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Katsuhiro Togami
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Kimihito C Kawabata
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Koutarou Nishimura
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Yasutaka Hayashi
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Reina Nagase
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Makoto Saika
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Tsuyoshi Fukushima
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Shuhei Asada
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Takeshi Fujino
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Yuto Izawa
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Sayuri Horikawa
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Tomofusa Fukuyama
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Yosuke Tanaka
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Ryoichi Ono
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Susumu Goyama
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Tetsuya Nosaka
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Jiro Kitaura
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Daichi Inoue
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| |
Collapse
|
43
|
DiNardo CD, Jabbour E, Ravandi F, Takahashi K, Daver N, Routbort M, Patel KP, Brandt M, Pierce S, Kantarjian H, Garcia-Manero G. IDH1 and IDH2 mutations in myelodysplastic syndromes and role in disease progression. Leukemia 2015; 30:980-4. [PMID: 26228814 PMCID: PMC4733599 DOI: 10.1038/leu.2015.211] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- C D DiNardo
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - E Jabbour
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - F Ravandi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - K Takahashi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - N Daver
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - M Routbort
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - K P Patel
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - M Brandt
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - S Pierce
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - H Kantarjian
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - G Garcia-Manero
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
44
|
Coutinho DF, Monte-Mór BCR, Vianna DT, Rouxinol ST, Batalha ABW, Bueno APS, Boulhosa AM, Fernandez TS, Pombo-de-Oliveira MS, Gutiyama LM, Abdelhay E, Zalcberg IR. TET2 expression level and 5-hydroxymethylcytosine are decreased in refractory cytopenia of childhood. Leuk Res 2015; 39:1103-8. [PMID: 26277372 DOI: 10.1016/j.leukres.2015.07.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 06/22/2015] [Accepted: 07/09/2015] [Indexed: 11/30/2022]
Abstract
Myelodysplastic syndromes (MDS) are myeloid malignancies characterized by ineffective hematopoiesis, dysplasia, peripheral cytopenia and increased risk of progression to acute myeloid leukemia. Refractory cytopenia of childhood (RCC) is the most common subtype of pediatric MDS and has overlapping clinical features with viral infections and autoimmune disorders. Mutations in TET2 gene are found in about 20-25% of adult MDS and are associated with a decrease in 5-hydroxymethylcytosine (5-hmC) content. TET2 deregulation and its malignant potential were reported in adult but not in pediatric MDS. We evaluated the gene expression and the presence of mutations in TET2 gene in 19 patients with RCC. TET2 expression level was correlated with 5-hmC amount in DNA and possible regulatory epigenetic mechanisms. One out of 19 pediatric patients with RCC was a carrier of a TET2 mutation. TET2 expression and 5-hmC levels were decreased in patients when compared to a disease-free group. Lower expression was not associated to the presence of mutation or with the status of promoter methylation, but a significant correlation with microRNA-22 expression was found. These findings suggested that TET2 downregulation and low levels of 5-hmC are inversely related to miR-22 expression. The existence of a regulatory loop between microRNA-22 and TET2 may play a role in MDS pathogenesis.
Collapse
Affiliation(s)
- Diego F Coutinho
- Divisão de Laboratórios do Centro de Transplantes de Medula Óssea (CEMO), Instituto Nacional do Câncer (INCA), Rio de Janeiro, RJ, Brazil
| | - Bárbara C R Monte-Mór
- Divisão de Laboratórios do Centro de Transplantes de Medula Óssea (CEMO), Instituto Nacional do Câncer (INCA), Rio de Janeiro, RJ, Brazil
| | - Danielle T Vianna
- Divisão de Laboratórios do Centro de Transplantes de Medula Óssea (CEMO), Instituto Nacional do Câncer (INCA), Rio de Janeiro, RJ, Brazil; Setor de Hematologia Pediátrica, Serviço de Pediatria, Hospital Federal da Lagoa, Rio de Janeiro, RJ, Brazil
| | - Soraia T Rouxinol
- Setor de Hematologia Pediátrica, Serviço de Pediatria, Hospital Federal da Lagoa, Rio de Janeiro, RJ, Brazil
| | - Anna Beatriz W Batalha
- Instituto de Puericultura e Pediatria Martagão Gesteira (IPPMG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Ana Paula S Bueno
- Instituto de Puericultura e Pediatria Martagão Gesteira (IPPMG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Alice M Boulhosa
- Instituto de Puericultura e Pediatria Martagão Gesteira (IPPMG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Teresa S Fernandez
- Divisão de Laboratórios do Centro de Transplantes de Medula Óssea (CEMO), Instituto Nacional do Câncer (INCA), Rio de Janeiro, RJ, Brazil
| | - Maria S Pombo-de-Oliveira
- Programa de Hematologia e Oncologia Pediátricos, Centro de Pesquisas (CPQ), Instituto Nacional do Câncer (INCA), Rio de Janeiro, RJ, Brazil
| | - Luciana M Gutiyama
- Divisão de Laboratórios do Centro de Transplantes de Medula Óssea (CEMO), Instituto Nacional do Câncer (INCA), Rio de Janeiro, RJ, Brazil
| | - Eliana Abdelhay
- Divisão de Laboratórios do Centro de Transplantes de Medula Óssea (CEMO), Instituto Nacional do Câncer (INCA), Rio de Janeiro, RJ, Brazil
| | - Ilana R Zalcberg
- Divisão de Laboratórios do Centro de Transplantes de Medula Óssea (CEMO), Instituto Nacional do Câncer (INCA), Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
45
|
Revisiting the case for genetically engineered mouse models in human myelodysplastic syndrome research. Blood 2015; 126:1057-68. [PMID: 26077396 DOI: 10.1182/blood-2015-01-624239] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 06/01/2015] [Indexed: 01/11/2023] Open
Abstract
Much-needed attention has been given of late to diseases specifically associated with an expanding elderly population. Myelodysplastic syndrome (MDS), a hematopoietic stem cell-based blood disease, is one of these. The lack of clear understanding of the molecular mechanisms underlying the pathogenesis of this disease has hampered the development of efficacious therapies, especially in the presence of comorbidities. Mouse models could potentially provide new insights into this disease, although primary human MDS cells grow poorly in xenografted mice. This makes genetically engineered murine models a more attractive proposition, although this approach is not without complications. In particular, it is unclear if or how myelodysplasia (abnormal blood cell morphology), a key MDS feature in humans, presents in murine cells. Here, we evaluate the histopathologic features of wild-type mice and 23 mouse models with verified myelodysplasia. We find that certain features indicative of myelodysplasia in humans, such as Howell-Jolly bodies and low neutrophilic granularity, are commonplace in healthy mice, whereas other features are similarly abnormal in humans and mice. Quantitative hematopoietic parameters, such as blood cell counts, are required to distinguish between MDS and related diseases. We provide data that mouse models of MDS can be genetically engineered and faithfully recapitulate human disease.
Collapse
|
46
|
Ohgami RS, Ma L, Merker JD, Gotlib JR, Schrijver I, Zehnder JL, Arber DA. Next-generation sequencing of acute myeloid leukemia identifies the significance of TP53, U2AF1, ASXL1, and TET2 mutations. Mod Pathol 2015; 28:706-14. [PMID: 25412851 PMCID: PMC5436901 DOI: 10.1038/modpathol.2014.160] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 10/19/2014] [Accepted: 10/20/2014] [Indexed: 02/06/2023]
Abstract
We assessed the frequency and clinicopathologic significance of 19 genes currently identified as significantly mutated in myeloid neoplasms, RUNX1, ASXL1, TET2, CEBPA, IDH1, IDH2, DNMT3A, FLT3, NPM1, TP53, NRAS, EZH2, CBL, U2AF1, SF3B1, SRSF2, JAK2, CSF3R, and SETBP1, across 93 cases of acute myeloid leukemia (AML) using capture target enrichment and next-generation sequencing. Of these cases, 79% showed at least one nonsynonymous mutation, and cases of AML with recurrent genetic abnormalities showed a lower frequency of mutations versus AML with myelodysplasia-related changes (P<0.001). Mutational analysis further demonstrated that TP53 mutations are associated with complex karyotype AML, whereas ASXL1 and U2AF1 mutations are associated with AML with myelodysplasia-related changes. Furthermore, U2AF1 mutations were specifically associated with trilineage morphologic dysplasia. Univariate analysis demonstrated that U2AF1 and TP53 mutations are associated with absence of clinical remission, poor overall survival (OS), and poor disease-free survival (DFS; P<0.0001), whereas TET2 and ASXL1 mutations are associated with poor OS (P<0.03). In multivariate analysis, U2AF1 and TP53 mutations retained independent prognostic significance in OS and DFS, respectively. Our results demonstrate unique relationships between mutations in AML, clinicopathologic prognosis, subtype categorization, and morphologic dysplasia.
Collapse
Affiliation(s)
- Robert S Ohgami
- Department of Pathology, Stanford University Medical Center, Stanford, CA, USA
| | - Lisa Ma
- Department of Pathology, Stanford University Medical Center, Stanford, CA, USA
| | - Jason D Merker
- Department of Pathology, Stanford University Medical Center, Stanford, CA, USA
| | - Jason R Gotlib
- Division of Hematology, Department of Medicine, Stanford University Medical Center, Stanford, CA, USA
| | - Iris Schrijver
- Department of Pathology, Stanford University Medical Center, Stanford, CA, USA
| | - James L Zehnder
- 1] Department of Pathology, Stanford University Medical Center, Stanford, CA, USA [2] Division of Hematology, Department of Medicine, Stanford University Medical Center, Stanford, CA, USA
| | - Daniel A Arber
- Department of Pathology, Stanford University Medical Center, Stanford, CA, USA
| |
Collapse
|
47
|
Molecular characterization and testing in acute myeloid leukemia. J Hematop 2015. [DOI: 10.1007/s12308-015-0242-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
48
|
Anděl M, Kléma J, Krejčík Z. Network-constrained forest for regularized classification of omics data. Methods 2015; 83:88-97. [PMID: 25872185 DOI: 10.1016/j.ymeth.2015.04.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 04/01/2015] [Accepted: 04/02/2015] [Indexed: 12/28/2022] Open
Abstract
Contemporary molecular biology deals with wide and heterogeneous sets of measurements to model and understand underlying biological processes including complex diseases. Machine learning provides a frequent approach to build such models. However, the models built solely from measured data often suffer from overfitting, as the sample size is typically much smaller than the number of measured features. In this paper, we propose a random forest-based classifier that reduces this overfitting with the aid of prior knowledge in the form of a feature interaction network. We illustrate the proposed method in the task of disease classification based on measured mRNA and miRNA profiles complemented by the interaction network composed of the miRNA-mRNA target relations and mRNA-mRNA interactions corresponding to the interactions between their encoded proteins. We demonstrate that the proposed network-constrained forest employs prior knowledge to increase learning bias and consequently to improve classification accuracy, stability and comprehensibility of the resulting model. The experiments are carried out in the domain of myelodysplastic syndrome that we are concerned about in the long term. We validate our approach in the public domain of ovarian carcinoma, with the same data form. We believe that the idea of a network-constrained forest can straightforwardly be generalized towards arbitrary omics data with an available and non-trivial feature interaction network. The proposed method is publicly available in terms of miXGENE system (http://mixgene.felk.cvut.cz), the workflow that implements the myelodysplastic syndrome experiments is presented as a dedicated case study.
Collapse
Affiliation(s)
- Michael Anděl
- Department of Computer Science, Czech Technical University, Technická 2, Prague, Czech Republic.
| | - Jiří Kléma
- Department of Computer Science, Czech Technical University, Technická 2, Prague, Czech Republic.
| | - Zdeněk Krejčík
- Department of Molecular Genetics, Institute of Hematology and Blood Transfusion, U Nemocnice 1, Prague, Czech Republic.
| |
Collapse
|
49
|
Park SH, Lee HJ, Kim IS, Kang JE, Lee EY, Kim HJ, Kim YK, Won JH, Bang SM, Kim H, Song MK, Chung JS, Shin HJ. Incidences and Prognostic Impact of c-KIT, WT1, CEBPA, and CBL Mutations, and Mutations Associated With Epigenetic Modification in Core Binding Factor Acute Myeloid Leukemia: A Multicenter Study in a Korean Population. Ann Lab Med 2015; 35:288-97. [PMID: 25932436 PMCID: PMC4390696 DOI: 10.3343/alm.2015.35.3.288] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 11/24/2014] [Accepted: 02/13/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND To identify potential molecular prognostic markers in core binding factor (CBF) AML, we analyzed incidences and prognostic impacts of mutations in c-KIT, WT1, CEBPA, CBL, and a number of epigenetic genes in CBF AML. METHODS Seventy one and 21 AML patients with t(8;21) and inv(16) were enrolled in this study, respectively. NPM1, CEBPA, c-KIT, IDH1/2, DNMT3A, EZH2, WT1, and CBL mutations were analyzed by direct sequencing. Patients were categorized with respect to c-KIT and WT1 mutation status, and both clinical features and prognoses were compared. RESULTS The incidences of FLT3 internal tandem duplication (ITD), NPM1, CEBPA, IDH1/2, DNMT3A, EZH2, and CBL mutations were low (≤5%) in CBF AML patients. However, c-KIT and WT1 mutations occurred frequently (10.9% and 13.8%, respectively). t(8;21) patients with c-KIT mutations showed significantly shorter overall survival (OS) and disease free survival (DFS) periods than those without mutations (P<0.001, for both); however, although the limited number of t(8;21) patients were analyzed, WT1 mutation status did not affect prognosis significantly. Relapse or death during follow-up occurred more frequently in t(8;21) patients carrying c-KIT mutations than in those without the mutation, although the difference was significant only in a specific patient subgroup with no WT1 mutations (P=0.014). CONCLUSIONS The incidences of mutations in epigenetic genes are very low in CBF AML; however, c-KIT and WT1 mutations occur more frequently than others. The poor prognostic impact of c-KIT mutation in t(8;21) AML patients only applies in a specific patient subgroup without WT1 mutations. The prognostic impact of WT1 mutation in CBF AML is not evident and further investigation is required.
Collapse
Affiliation(s)
- Sang Hyuk Park
- Department of Laboratory Medicine, Pusan National University School of Medicine, Pusan National University Hospital, Biomedical Research Institute, Pusan National University Hospital, Busan, Korea
| | - Hyun Ji Lee
- Department of Laboratory Medicine, Korean Red cross, Changwon, Korea
| | - In-Suk Kim
- Department of Laboratory Medicine, Pusan National University School of Medicine, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Jeong-Eun Kang
- Department of Laboratory Medicine, Jinhae Yonsei Hospital, Changwon, Korea
| | - Eun Yup Lee
- Department of Laboratory Medicine, Pusan National University School of Medicine, Pusan National University Hospital, Biomedical Research Institute, Pusan National University Hospital, Busan, Korea
| | - Hyeoung-Joon Kim
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Yeo-Kyeoung Kim
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Jong-Ho Won
- Department of Hematology-Oncology, Soonchunhyang University Hospital, Seoul, Korea
| | - Soo Mee Bang
- Department of Hematology-Oncology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Hawk Kim
- Department of Hematology-Oncology, Ulsan University Hospital, Ulsan, Korea
| | - Moo-Kon Song
- Division of Hematology-Oncology, Department of Internal Medicine, Pusan National University School of Medicine, Biomedical Research Institute, Pusan National University Hospital, Busan, Korea
| | - Joo Seop Chung
- Division of Hematology-Oncology, Department of Internal Medicine, Pusan National University School of Medicine, Biomedical Research Institute, Pusan National University Hospital, Busan, Korea
| | - Ho-Jin Shin
- Division of Hematology-Oncology, Department of Internal Medicine, Pusan National University School of Medicine, Biomedical Research Institute, Pusan National University Hospital, Busan, Korea
| |
Collapse
|
50
|
Wang Y, Xiao M, Chen X, Chen L, Xu Y, Lv L, Wang P, Yang H, Ma S, Lin H, Jiao B, Ren R, Ye D, Guan KL, Xiong Y. WT1 recruits TET2 to regulate its target gene expression and suppress leukemia cell proliferation. Mol Cell 2015; 57:662-673. [PMID: 25601757 DOI: 10.1016/j.molcel.2014.12.023] [Citation(s) in RCA: 231] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 10/02/2014] [Accepted: 12/15/2014] [Indexed: 01/08/2023]
Abstract
The TET2 DNA dioxygenase regulates cell identity and suppresses tumorigenesis by modulating DNA methylation and expression of a large number of genes. How TET2, like most other chromatin-modifying enzymes, is recruited to specific genomic sites is unknown. Here we report that WT1, a sequence-specific transcription factor, is mutated in a mutually exclusive manner with TET2, IDH1, and IDH2 in acute myeloid leukemia (AML). WT1 physically interacts with and recruits TET2 to its target genes to activate their expression. The interaction between WT1 and TET2 is disrupted by multiple AML-derived TET2 mutations. TET2 suppresses leukemia cell proliferation and colony formation in a manner dependent on WT1. These results provide a mechanism for targeting TET2 to a specific DNA sequence in the genome. Our results also provide an explanation for the mutual exclusivity of WT1 and TET2 mutations in AML, and suggest an IDH1/2-TET2-WT1 pathway in suppressing AML.
Collapse
Affiliation(s)
- Yiping Wang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Molecular and Cell Biology Laboratory, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Mengtao Xiao
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Molecular and Cell Biology Laboratory, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xiufei Chen
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Molecular and Cell Biology Laboratory, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Leilei Chen
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Molecular and Cell Biology Laboratory, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yanping Xu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Molecular and Cell Biology Laboratory, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; Lineberger Comprehensive Cancer Center, Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA
| | - Lei Lv
- Lineberger Comprehensive Cancer Center, Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA
| | - Pu Wang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Molecular and Cell Biology Laboratory, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Hui Yang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Molecular and Cell Biology Laboratory, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Shenghong Ma
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Molecular and Cell Biology Laboratory, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Huaipeng Lin
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Molecular and Cell Biology Laboratory, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Bo Jiao
- Shanghai Institute of Hematology, RuiJin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ruibao Ren
- Shanghai Institute of Hematology, RuiJin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Dan Ye
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Molecular and Cell Biology Laboratory, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | - Kun-Liang Guan
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Yue Xiong
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Molecular and Cell Biology Laboratory, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; Lineberger Comprehensive Cancer Center, Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|