1
|
Ma X, Liu B, Gong Z, Wang J, Qu Z, Cai J. Comparative proteomic analysis across the developmental stages of the Eimeria tenella. Genomics 2024; 116:110792. [PMID: 38215860 DOI: 10.1016/j.ygeno.2024.110792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/07/2024] [Accepted: 01/09/2024] [Indexed: 01/14/2024]
Abstract
Eimeria tenella is the main pathogen responsible for coccidiosis in chickens. The life cycle of E. tenella is, arguably, the least complex of all Coccidia, with only one host. However, it presents different developmental stages, either in the environment or in the host and either intracellular or extracellular. Its signaling and metabolic pathways change with its different developmental stages. Until now, little is known about the developmental regulation and transformation mechanisms of its life cycle. In this study, protein profiles from the five developmental stages, including unsporulated oocysts (USO), partially sporulated (7 h) oocysts (SO7h), sporulated oocysts (SO), sporozoites (S) and second-generation merozoites (M2), were harvested using the label-free quantitative proteomics approach. Then the differentially expressed proteins (DEPs) for these stages were identified. A total of 314, 432, 689, and 665 DEPs were identified from the comparison of SO7h vs USO, SO vs SO7h, S vs SO, and M2 vs S, respectively. By conducting weighted gene coexpression network analysis (WGCNA), six modules were dissected. Proteins in blue and brown modules were calculated to be significantly positively correlated with the E. tenella developmental stages of sporozoites (S) and second-generation merozoites (M2), respectively. In addition, hub proteins with high intra-module degree were identified. Gene Ontology (GO) and Kyoto Encyclopedia of Gene and Genomes (KEGG) pathway enrichment analyses revealed that hub proteins in blue modules were involved in electron transport chain and oxidative phosphorylation. Hub proteins in the brown module were involved in RNA splicing. These findings provide new clues and ideas to enhance our fundamental understanding of the molecular mechanisms underlying parasite development.
Collapse
Affiliation(s)
- Xueting Ma
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Baohong Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China.
| | - Zhenxing Gong
- College of Animal Science and Technology, Ningxia University, Yinchuan, Ningxia Province 750021, China
| | - Jing Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Zigang Qu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Jianping Cai
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China.
| |
Collapse
|
2
|
Mo Z, Li R, Cao C, Li Y, Zheng S, Wu R, Xue J, Hu J, Meng H, Zhai H, Huang W, Zheng F, Zhou B. Splicing factor SNRPA associated with microvascular invasion promotes hepatocellular carcinoma metastasis through activating NOTCH1/Snail pathway and is mediated by circSEC62/miR-625-5p axis. ENVIRONMENTAL TOXICOLOGY 2023; 38:1022-1037. [PMID: 36715182 DOI: 10.1002/tox.23745] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 12/10/2022] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Microvascular invasion (MVI) is a crucial risk factor related to the metastasis of hepatocellular carcinoma (HCC), but the underlying mechanisms remain to be revealed. Characterizing the inherent mechanisms of MVI may aid in the development of effective treatment strategies to improve the prognosis of HCC patients with metastasis. Through the Gene Expression Omnibus (GEO) database, we identified that small nuclear ribonucleoprotein polypeptide A (SNRPA) was related to MVI in HCC. SNRPA was overexpressed in MVI-HCC and correlated with poor patient survival. Mechanistically, SNRPA promoted the epithelial-mesenchymal transition (EMT)-like process for HCC cells to accelerate metastasis by activating the NOTCH1/Snail pathway in vitro and in vivo. Importantly, circSEC62 upregulated SNRPA expression in HCC cells via miR-625-5p sponging. Taking these results together, our study identified a novel regulatory mechanism among SNRPA, miR-625-5p, circSEC62 and the NOTCH1/Snail pathway in HCC, which promoted metastasis of HCC and may provide effective suggestions for improving the prognosis of HCC patients with metastasis.
Collapse
Affiliation(s)
- Zhaohong Mo
- Fifth Department of General Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Ruixi Li
- Department of Hepatobiliary and Pancreatic Surgery, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Chuanlin Cao
- Fifth Department of General Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Yanjie Li
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Shiyang Zheng
- Department of Head and Neck surgery, Cancer Center of Guangzhou Medical University, Guangzhou, China
| | - Runxin Wu
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Jinhua Xue
- Department of Physiology, School of Basic Medical Sciences, Gannan Medical University, Ganzhou, China
| | - Jingxiong Hu
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Hongyu Meng
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Hang Zhai
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Weiling Huang
- Department of Breast Oncology, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Fang Zheng
- Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Boxuan Zhou
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
3
|
Liao Z, Tang C, Luo R, Gu X, Zhou J, Gao J. Current Concepts of Precancerous Lesions of Hepatocellular Carcinoma: Recent Progress in Diagnosis. Diagnostics (Basel) 2023; 13:diagnostics13071211. [PMID: 37046429 PMCID: PMC10093043 DOI: 10.3390/diagnostics13071211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
The most common cause of hepatocellular carcinoma (HCC) is chronic hepatitis and cirrhosis. It is proposed that precancerous lesions of HCC include all stages of the disease, from dysplastic foci (DF), and dysplastic nodule (DN), to early HCC (eHCC) and progressed HCC (pHCC), which is a complex multi-step process. Accurately identifying precancerous hepatocellular lesions can significantly impact the early detection and treatment of HCC. The changes in high-grade dysplastic nodules (HGDN) were similar to those seen in HCC, and the risk of malignant transformation significantly increased. Nevertheless, it is challenging to diagnose precancerous lesions of HCC. We integrated the literature and combined imaging, pathology, laboratory, and other relevant examinations to improve the accuracy of the diagnosis of precancerous lesions.
Collapse
Affiliation(s)
- Ziyue Liao
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Chongqing Medical University, No. 76 Linjiang Road, Yuzhong District, Chongqing 400010, China
| | - Cuiping Tang
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Chongqing Medical University, No. 76 Linjiang Road, Yuzhong District, Chongqing 400010, China
| | - Rui Luo
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Chongqing Medical University, No. 76 Linjiang Road, Yuzhong District, Chongqing 400010, China
| | - Xiling Gu
- Department of Pathology, The Second Affiliated Hospital of Chongqing Medical University, No. 76 Linjiang Road, Yuzhong District, Chongqing 400010, China
| | - Jun Zhou
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, No. 76 Linjiang Road, Yuzhong District, Chongqing 400010, China
| | - Jian Gao
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Chongqing Medical University, No. 76 Linjiang Road, Yuzhong District, Chongqing 400010, China
| |
Collapse
|
4
|
Siculella L, Giannotti L, Di Chiara Stanca B, Spedicato F, Calcagnile M, Quarta S, Massaro M, Damiano F. A comprehensive understanding of hnRNP A1 role in cancer: new perspectives on binding with noncoding RNA. Cancer Gene Ther 2023; 30:394-403. [PMID: 36460805 DOI: 10.1038/s41417-022-00571-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/23/2022] [Accepted: 11/23/2022] [Indexed: 12/03/2022]
Abstract
The heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) is the most abundant and ubiquitously expressed member of the heterogeneous nuclear ribonucleoproteins family (hnRNPs). hnRNP A1 is an RNA-binding protein associated with complexes active in diverse biological processes such as RNA splicing, transactivation of gene expression, and modulation of protein translation. It is overexpressed in several cancers, where it actively promotes the expression and translation of several key proteins and regulators associated with tumorigenesis and cancer progression. Interesting recent studies have focused on the RNA-binding property of hnRNP A1 and revealed previously under-explored functions of hnRNP A1 in the processing of miRNAs, and loading non-coding RNAs into exosomes. Here, we will report the recent advancements in our knowledge of the role of hnRNP A1 in the biological processes underlying cancer proliferation and growth, with a particular focus on metabolic reprogramming.
Collapse
Affiliation(s)
- Luisa Siculella
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Laura Giannotti
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Benedetta Di Chiara Stanca
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Francesco Spedicato
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Matteo Calcagnile
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Stefano Quarta
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Marika Massaro
- Institute of Clinical Physiology (IFC), National Research Council (CNR), Lecce, Italy
| | - Fabrizio Damiano
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy.
| |
Collapse
|
5
|
Mehta M, Raguraman R, Ramesh R, Munshi A. RNA binding proteins (RBPs) and their role in DNA damage and radiation response in cancer. Adv Drug Deliv Rev 2022; 191:114569. [PMID: 36252617 PMCID: PMC10411638 DOI: 10.1016/j.addr.2022.114569] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 01/24/2023]
Abstract
Traditionally majority of eukaryotic gene expression is influenced by transcriptional and post-transcriptional events. Alterations in the expression of proteins that act post-transcriptionally can affect cellular signaling and homeostasis. RNA binding proteins (RBPs) are a family of proteins that specifically bind to RNAs and are involved in post-transcriptional regulation of gene expression and important cellular processes such as cell differentiation and metabolism. Deregulation of RNA-RBP interactions and any changes in RBP expression or function can lead to various diseases including cancer. In cancer cells, RBPs play an important role in regulating the expression of tumor suppressors and oncoproteins involved in various cell-signaling pathways. Several RBPs such as HuR, AUF1, RBM38, LIN28, RBM24, tristetrapolin family and Musashi play critical roles in various types of cancers and their aberrant expression in cancer cells makes them an attractive therapeutic target for cancer treatment. In this review we provide an overview of i). RBPs involved in cancer progression and their mechanism of action ii). the role of RBPs, including HuR, in breast cancer progression and DNA damage response and iii). explore RBPs with emphasis on HuR as therapeutic target for breast cancer therapy.
Collapse
Affiliation(s)
- Meghna Mehta
- Department of Radiation Oncology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73013, USA; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73013, USA
| | - Rajeswari Raguraman
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73013, USA; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73013, USA
| | - Rajagopal Ramesh
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73013, USA; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73013, USA
| | - Anupama Munshi
- Department of Radiation Oncology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73013, USA; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73013, USA.
| |
Collapse
|
6
|
The Role of Alternative Splicing Factors hnRNP G and Fox-2 in the Progression and Prognosis of Esophageal Cancer. DISEASE MARKERS 2022; 2022:3043737. [DOI: 10.1155/2022/3043737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 08/10/2022] [Accepted: 10/08/2022] [Indexed: 11/24/2022]
Abstract
Aim. Alternative splicing (AS) has been widely demonstrated in the occurrence and progression of many cancers. Nevertheless, the involvement of cancer-associated splicing factors in the development of esophageal carcinoma (ESCA) remains to be explored. Method. RNA-Seq data and the corresponding clinical information of the ESCA cohort were downloaded from The Cancer Genome Atlas database. Bioinformatics methods were used to further analyzed the differently expressed AS (DEAS) events and their splicing network. Kaplan–Meier, Cox regression, and unsupervised cluster analyses were used to assess the association between AS events and clinical characteristics of ESCA patients. The splicing factors screened out were verified in vitro at the cellular level. Results. A total of 50,342 AS events were identified, of which 3,988 were DEAS events and 46 of these were associated with overall survival (OS) of ESCA patients, with a 5-year OS rate of 0.941. By constructing a network of AS events with survival-related splicing factors, the AS factors related to prognosis can be further identified. In vitro experiments and database analysis confirmed that the high expression of hnRNP G in ESCA is related to the high invasion ability of ESCA cells and the poor prognosis of ESCA patients. In contrast, the low expression of fox-2 in esophageal cancer is related to a better prognosis. Conclusion. ESCA-associated AS factors hnRNP G and Fox-2 are of great value in deciphering the underlying mechanisms of AS in ESCA and providing clues for therapeutic goals for further validation.
Collapse
|
7
|
Tram J, Mesnard JM, Peloponese JM. Alternative RNA splicing in cancer: what about adult T-cell leukemia? Front Immunol 2022; 13:959382. [PMID: 35979354 PMCID: PMC9376482 DOI: 10.3389/fimmu.2022.959382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/08/2022] [Indexed: 11/21/2022] Open
Abstract
Eukaryotic cells employ a broad range of mechanisms to regulate gene expression. Among others, mRNA alternative splicing is a key process. It consists of introns removal from an immature mRNA (pre-mRNA) via a transesterification reaction to create a mature mRNA molecule. Large-scale genomic studies have shown that in the human genome, almost 95% of protein-encoding genes go through alternative splicing and produce transcripts with different exons combinations (and sometimes retained introns), thus increasing the proteome diversity. Considering the importance of RNA regulation in cellular proliferation, survival, and differentiation, alterations in the alternative splicing pathway have been linked to several human cancers, including adult T-cell leukemia/lymphoma (ATL). ATL is an aggressive and fatal malignancy caused by the Human T-cell leukemia virus type 1 (HTLV-1). HTLV-1 genome encodes for two oncoproteins: Tax and HBZ, both playing significant roles in the transformation of infected cells and ATL onset. Here, we review current knowledge on alternative splicing and its link to cancers and reflect on how dysregulation of this pathway could participate in HTLV-1-induced cellular transformation and adult T-cell leukemia/lymphoma development.
Collapse
|
8
|
Heterogeneous nuclear ribonucleoprotein A/B: an emerging group of cancer biomarkers and therapeutic targets. Cell Death Dis 2022; 8:337. [PMID: 35879279 PMCID: PMC9314375 DOI: 10.1038/s41420-022-01129-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 11/20/2022]
Abstract
Heterogeneous nuclear ribonucleoprotein A/B (hnRNPA/B) is one of the core members of the RNA binding protein (RBP) hnRNPs family, including four main subtypes, A0, A1, A2/B1 and A3, which share the similar structure and functions. With the advance in understanding the molecular biology of hnRNPA/B, it has been gradually revealed that hnRNPA/B plays a critical role in almost the entire steps of RNA life cycle and its aberrant expression and mutation have important effects on the occurrence and progression of various cancers. This review focuses on the clinical significance of hnRNPA/B in various cancers and systematically summarizes its biological function and molecular mechanisms.
Collapse
|
9
|
Dhir H, Choudhury M, Patil K, Cheung C, Bodlak A, Pardo D, Adams A, Travaglino S, Rojas JA, Pai SB. Interception of Signaling Circuits of Esophageal Adenocarcinoma Cells by Resveratrol Reveals Molecular and Immunomodulatory Signatures. Cancers (Basel) 2021; 13:cancers13225811. [PMID: 34830970 PMCID: PMC8616317 DOI: 10.3390/cancers13225811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/12/2021] [Accepted: 11/17/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Adenocarcinoma of the esophagus has been on the rise lately. Increase in mortality due to a paucity of efficacious drugs for this cancer prompted us to discover molecular signatures to combat this malady. To this end, we chose resveratrol—a polyphenol and studied its impact on three esophageal adenocarcinoma cell lines (OE33, OE19 and FLO-1) by multilevel profiling. Here, we show the impact of resveratrol on the viability of the three cell systems studied, at the cellular, molecular level and by proteomic analysis. Impact on programmed cell death pathway resulting in an increase in apoptotic and caspase-positive cells were observed. Decrease in Bcl2. levels and impact on reactive oxygen species (ROS) was also observed. Moreover, proteomic profiling highlighted pivotal differentially regulated signaling molecules. Notably, the downregulation of Ku80 by resveratrol could be harnessed for chemo-radiation therapy to prevent DNA break repair after radiation therapy. Additionally, protein profiling has shed light on molecular and immune-modulatory signatures with implications for discovering novel treatments such as chemo-immunotherapy. Abstract Deregulation of signaling pathways due to mutations sets the cell on a path to neoplasia. Therefore, recent reports of increased mutations observed in esophageal tissue reflects the enhanced risk of tumor formation. In fact, adenocarcinoma of the esophagus has been on the rise lately. Increase in mortality due to a paucity of efficacious drugs for this cancer prompted us to discover molecular signatures to combat this malady. To this end, we chose resveratrol—a polyphenol with anticancer property—and studied its impact on three esophageal adenocarcinoma cell lines (OE33, OE19 and FLO-1) by multilevel profiling. Here, we show the impact of resveratrol on the viability of the three adenocarcinoma esophageal cell systems studied, at the cellular level. Furthermore, an analysis at the molecular level revealed that the action was through the programmed cell death pathway, resulting in an increase in apoptotic and caspase-positive cells. The impact on reactive oxygen species (ROS) and a decrease in Bcl2 levels were also observed. Moreover, proteomic profiling highlighted pivotal differentially regulated signaling molecules. The phenotypic effect observed in resveratrol-treated esophageal cells could be due to the stoichiometry per se of the fold changes observed in entities of key signaling pathways. Notably, the downregulation of Ku80 and other pivotal entities by resveratrol could be harnessed for chemo-radiation therapy to prevent DNA break repair after radiation therapy. Additionally, multilevel profiling has shed light on molecular and immune-modulatory signatures with implications for discovering novel treatments, including chemo-immunotherapy, for esophageal adenocarcinomas which are known to be aggressive cancers.
Collapse
|
10
|
Gachet-Castro C, Freitas-Castro F, Gonzáles-Córdova RA, da Fonseca CK, Gomes MD, Ishikawa-Ankerhold HC, Baqui MMA. Modulation of the Host Nuclear Compartment by Trypanosoma cruzi Uncovers Effects on Host Transcription and Splicing Machinery. Front Cell Infect Microbiol 2021; 11:718028. [PMID: 34737973 PMCID: PMC8560699 DOI: 10.3389/fcimb.2021.718028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/24/2021] [Indexed: 11/22/2022] Open
Abstract
Host manipulation is a common strategy for invading pathogens. Trypanosoma cruzi, the causative agent of Chagas Disease, lives intracellularly within host cells. During infection, parasite-associated modifications occur to the host cell metabolism and morphology. However, little is known about the effect of T. cruzi infection on the host cell nucleus and nuclear functionality. Here, we show that T. cruzi can modulate host transcription and splicing machinery in non-professional phagocytic cells during infection. We found that T. cruzi regulates host RNA polymerase II (RNAPII) in a time-dependent manner, resulting in a drastic decrease in RNAPII activity. Furthermore, host cell ribonucleoproteins associated with mRNA transcription (hnRNPA1 and AB2) are downregulated concurrently. We reasoned that T. cruzi may hijack the host U2AF35 auxiliary factor, a key regulator for RNA processing, as a strategy to affect the splicing machinery activities directly. In support of our hypothesis, we carried out in vivo splicing assays using an adenovirus E1A pre-mRNA splicing reporter, showing that intracellular T. cruzi directly modulates the host cells by appropriating U2AF35. For the first time, our results provide evidence of a complex and intimate molecular relationship between T. cruzi and the host cell nucleus during infection.
Collapse
Affiliation(s)
- Camila Gachet-Castro
- Department of Cellular and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Felipe Freitas-Castro
- Department of Cellular and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Raul Alexander Gonzáles-Córdova
- Department of Cellular and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Carol Kobori da Fonseca
- Department of Cellular and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Marcelo Damário Gomes
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Munira Muhammad Abdel Baqui
- Department of Cellular and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
11
|
Yadav S, Pant D, Samaiya A, Kalra N, Gupta S, Shukla S. ERK1/2-EGR1-SRSF10 Axis Mediated Alternative Splicing Plays a Critical Role in Head and Neck Cancer. Front Cell Dev Biol 2021; 9:713661. [PMID: 34616729 PMCID: PMC8489685 DOI: 10.3389/fcell.2021.713661] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 08/16/2021] [Indexed: 12/21/2022] Open
Abstract
Aberrant alternative splicing is recognized to promote cancer pathogenesis, but the underlying mechanism is yet to be clear. Here, in this study, we report the frequent upregulation of SRSF10 (serine and arginine-rich splicing factor 10), a member of an expanded family of SR splicing factors, in the head and neck cancer (HNC) patients sample in comparison to paired normal tissues. We observed that SRSF10 plays a crucial role in HNC tumorigenesis by affecting the pro-death, pro-survical splice variants of BCL2L1 (BCL2 Like 1: BCLx: Apoptosis Regulator) and the two splice variants of PKM (Pyruvate kinase M), PKM1 normal isoform to PKM2 cancer-specific isoform. SRSF10 is a unique splicing factor with a similar domain organization to that of SR proteins but functions differently as it acts as a sequence-specific splicing activator in its phosphorylated form. Although a body of research studied the role of SRSF10 in the splicing process, the regulatory mechanisms underlying SRSF10 upregulation in the tumor are not very clear. In this study, we aim to dissect the pathway that regulates the SRSF10 upregulation in HNC. Our results uncover the role of transcription factor EGR1 (Early Growth Response1) in elevating the SRSF10 expression; EGR1 binds to the promoter of SRSF10 and promotes TET1 binding leading to the CpG demethylation (hydroxymethylation) in the adjacent position of the EGR1 binding motif, which thereby instigate SRSF10 expression in HNC. Interestingly we also observed that the EGR1 level is in the sink with the ERK1/2 pathway, and therefore, inhibition of the ERK1/2 pathway leads to the decreased EGR1 and SRSF10 expression level. Together, this is the first report to the best of our knowledge where we characterize the ERK 1/2-EGR1-SRSF10 axis regulating the cancer-specific splicing, which plays a critical role in HNC and could be a therapeutic target for better management of HNC patients.
Collapse
Affiliation(s)
- Sandhya Yadav
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Deepak Pant
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | | | | | - Sanjay Gupta
- Cancer Research Institute, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, India.,Homi Bhabha National Institute, Training School Complex, Mumbai, India
| | - Sanjeev Shukla
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| |
Collapse
|
12
|
Xu W, Kannan S, Verma CS, Nacro K. Update on the Development of MNK Inhibitors as Therapeutic Agents. J Med Chem 2021; 65:983-1007. [PMID: 34533957 DOI: 10.1021/acs.jmedchem.1c00368] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Mitogen-activated protein kinase-interacting kinases 1 and 2 (MNK1/2) represent a central class of enzymes that are activated by extracellular signal-regulated kinase (ERK) or p38 mitogen-activated protein (MAP) kinases. MNK1 and MNK2 coordinate cellular signaling, control production of inflammatory chemokines, and regulate cell proliferation and survival. MNK1/2 are referred to as serine/threonine kinases as they phosphorylate serine or threonine residues on their substrates. Upon activation, MNK1/2 phosphorylate eukaryotic translation initiation factor 4E (eIF4E) at Ser209, which in turn initiates ribosome assembly and protein translation. Deleterious overexpression of MNK1/2 and/or eIF4E have been reported in several diseases including cancers, neurological disorders, autism, and inflammation. Recently, there have been intense efforts toward the development of potent and selective inhibitors of MNK1/2 in both academia and industry. Herein, we review the current understanding of the structural and biological aspects of MNK1/2 and provide an update of pharmacological inhibitors of MNK1/2 including candidates in clinical trials.
Collapse
Affiliation(s)
- Weijun Xu
- Experimental Drug Development Centre (EDDC), A*STAR, 10 Biopolis Road, Chromos #05-01, 138670, Singapore
| | | | - Chandra S Verma
- Bioinformatics Institute (BII), A*STAR, 30 Biopolis Street, #07-01 Matrix, 138671, Singapore.,Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, 117558, Singapore.,School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Kassoum Nacro
- Experimental Drug Development Centre (EDDC), A*STAR, 10 Biopolis Road, Chromos #05-01, 138670, Singapore
| |
Collapse
|
13
|
Thibault PA, Ganesan A, Kalyaanamoorthy S, Clarke JPWE, Salapa HE, Levin MC. hnRNP A/B Proteins: An Encyclopedic Assessment of Their Roles in Homeostasis and Disease. BIOLOGY 2021; 10:biology10080712. [PMID: 34439945 PMCID: PMC8389229 DOI: 10.3390/biology10080712] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/16/2021] [Accepted: 07/21/2021] [Indexed: 12/13/2022]
Abstract
The hnRNP A/B family of proteins is canonically central to cellular RNA metabolism, but due to their highly conserved nature, the functional differences between hnRNP A1, A2/B1, A0, and A3 are often overlooked. In this review, we explore and identify the shared and disparate homeostatic and disease-related functions of the hnRNP A/B family proteins, highlighting areas where the proteins have not been clearly differentiated. Herein, we provide a comprehensive assembly of the literature on these proteins. We find that there are critical gaps in our grasp of A/B proteins' alternative splice isoforms, structures, regulation, and tissue and cell-type-specific functions, and propose that future mechanistic research integrating multiple A/B proteins will significantly improve our understanding of how this essential protein family contributes to cell homeostasis and disease.
Collapse
Affiliation(s)
- Patricia A. Thibault
- Office of the Saskatchewan Multiple Sclerosis Clinical Research Chair, University of Saskatchewan, Saskatoon, SK S7K 0M7, Canada; (P.A.T.); (J.-P.W.E.C.); (H.E.S.)
- Department of Medicine, Neurology Division, University of Saskatchewan, Saskatoon, SK S7N 0X8, Canada
| | - Aravindhan Ganesan
- ArGan’s Lab, School of Pharmacy, Faculty of Science, University of Waterloo, Waterloo, ON N2L 3G1, Canada;
| | - Subha Kalyaanamoorthy
- Department of Chemistry, Faculty of Science, University of Waterloo, Waterloo, ON N2L 3G1, Canada;
| | - Joseph-Patrick W. E. Clarke
- Office of the Saskatchewan Multiple Sclerosis Clinical Research Chair, University of Saskatchewan, Saskatoon, SK S7K 0M7, Canada; (P.A.T.); (J.-P.W.E.C.); (H.E.S.)
- Department of Health Sciences, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
- Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Hannah E. Salapa
- Office of the Saskatchewan Multiple Sclerosis Clinical Research Chair, University of Saskatchewan, Saskatoon, SK S7K 0M7, Canada; (P.A.T.); (J.-P.W.E.C.); (H.E.S.)
- Department of Medicine, Neurology Division, University of Saskatchewan, Saskatoon, SK S7N 0X8, Canada
| | - Michael C. Levin
- Office of the Saskatchewan Multiple Sclerosis Clinical Research Chair, University of Saskatchewan, Saskatoon, SK S7K 0M7, Canada; (P.A.T.); (J.-P.W.E.C.); (H.E.S.)
- Department of Medicine, Neurology Division, University of Saskatchewan, Saskatoon, SK S7N 0X8, Canada
- Department of Health Sciences, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
- Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
- Correspondence:
| |
Collapse
|
14
|
Biology of the mRNA Splicing Machinery and Its Dysregulation in Cancer Providing Therapeutic Opportunities. Int J Mol Sci 2021; 22:ijms22105110. [PMID: 34065983 PMCID: PMC8150589 DOI: 10.3390/ijms22105110] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/07/2021] [Accepted: 05/07/2021] [Indexed: 12/13/2022] Open
Abstract
Dysregulation of messenger RNA (mRNA) processing—in particular mRNA splicing—is a hallmark of cancer. Compared to normal cells, cancer cells frequently present aberrant mRNA splicing, which promotes cancer progression and treatment resistance. This hallmark provides opportunities for developing new targeted cancer treatments. Splicing of precursor mRNA into mature mRNA is executed by a dynamic complex of proteins and small RNAs called the spliceosome. Spliceosomes are part of the supraspliceosome, a macromolecular structure where all co-transcriptional mRNA processing activities in the cell nucleus are coordinated. Here we review the biology of the mRNA splicing machinery in the context of other mRNA processing activities in the supraspliceosome and present current knowledge of its dysregulation in lung cancer. In addition, we review investigations to discover therapeutic targets in the spliceosome and give an overview of inhibitors and modulators of the mRNA splicing process identified so far. Together, this provides insight into the value of targeting the spliceosome as a possible new treatment for lung cancer.
Collapse
|
15
|
Ren X, Dong Y, Duan M, Zhang H, Gao P. Abnormal expression of HNRNPA3 in multistep hepatocarcinogenesis. Oncol Lett 2020; 21:46. [PMID: 33281957 PMCID: PMC7709557 DOI: 10.3892/ol.2020.12307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 09/08/2020] [Indexed: 12/30/2022] Open
Abstract
Hepatocarcinogenesis is a multistep process involving progression from cirrhosis, to low-grade dysplastic nodule, to high-grade dysplastic nodule (HGDN) and, eventually, to hepatocellular carcinoma (HCC). Early detection of HCC is challenging as the differential diagnosis between HGDN and early HCC (eHCC) is difficult. The aim of the present study was to identify a novel biomarker to specifically differentiate between HGDN and eHCC, which may facilitate early diagnosis of HCC. Immunohistochemistry was performed to determine the expression of heterogeneous nuclear ribonucleoprotein A3 (HNRNPA3) in cirrhosis, dysplastic nodules (DNs), well-differentiated HCC and progressed HCC. The staining was evaluated by assigning a staining intensity score of 0–3 and a percentage of positively stained cells score of 0–4. Receiver operator characteristic (ROC) curve analysis was used to assess the ability of HNRNPA3 expression to differentiate between DNs and HCC. HNRNPA3 expression increased in a stepwise trend in non-tumor hepatic tissue, DNs, eHCC and progressed HCC. ROC curves revealed that HNRNPA3 expression could be used to differentiate between HGDN and eHCC, particularly in combination with glypican 3 (GPC3), with a specificity of 100%. Moreover, HNRNPA3 expression was associated with HCC differentiation. In addition, high expression of HNRNPA3 was found to be associated with poor survival rates in patients with HCC. These findings demonstrated that HNRNPA3 combined with GPC3 is a helpful diagnostic biomarker in the differential diagnosis during the multistep process of hepatocarcinogenesis, particularly in the differential diagnosis between HGDN and eHCC. To the best of our knowledge, this is the first study to report the significance of HNRNPA3 in hepatocarcinogenesis and its potential role in carcinogenesis.
Collapse
Affiliation(s)
- Xinlu Ren
- Department of Clinical Medicine, Queen Mary College of Nanchang University, Nanchang, Jiangxi 330031, P.R. China
| | - Yi Dong
- Key Laboratory for Experimental Teratology of The Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Miao Duan
- Key Laboratory for Experimental Teratology of The Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Hui Zhang
- Key Laboratory for Experimental Teratology of The Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, P.R. China.,Department of Pathology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Peng Gao
- Key Laboratory for Experimental Teratology of The Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, P.R. China.,Department of Pathology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
16
|
Ma Y, Yang L, Li R. HnRNPA2/B1 Is a Novel Prognostic Biomarker for Breast Cancer Patients. Genet Test Mol Biomarkers 2020; 24:701-707. [PMID: 32985904 DOI: 10.1089/gtmb.2020.0086] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Aims: Heterogeneous nuclear ribonucleoprotein A2/B1 (hnRNPA2/B1) is highly expressed in multiple types of tumor tissues and could potentially be used as a biomarker for the early detection of lung cancer. However, there is little evidence supporting its clinical significance as a prognostic marker in breast cancer. Materials and Methods: We retrospectively analyzed the protein expression and localization of hnRNPA2/B1 protein in breast cancer tissues and adjacent normal tissues from 50 patients with Stage II and III breast cancer who were treated at Shanxi Provincial People's Hospital from May 2018 to May 2019 using western blot, and immunofluorescent and immunohistochemical staining assays. In addition, bioinformatic analyses using the Affymetrix Human Genome database were performed to examine the mRNA levels of hnRNPA2/B1 in normal and breast cancer tissues, and to determine their correlation with the survival rates of breast cancer patients. Results: Based on the cohort of 50 patients, HnRNPA2/B1 protein was expressed in both the cytoplasm and nucleus of breast cancer cells. The protein levels of hnRNPA2/B1 in breast cancer tissues were significantly higher than those in adjacent normal tissues (p < 0.001). Furthermore, bioinformatic analyses of hnRNPA2/B1 mRNA expression levels demonstrated that they were negatively correlated with overall survival and disease-specific survival rates in breast cancer patients. Conclusion: Our study indicates that hnRNPA2/B1 could serve as a novel prognostic biomarker for breast cancer.
Collapse
Affiliation(s)
- Yuehong Ma
- Department of Nephrology, The Affiliated People's Hospital of Shanxi Medical University, Shanxi Precision Medicine Center, Shanxi Provincial People's Hospital, Taiyuan, P.R. China
| | - Lizhu Yang
- Department of Pathology, The Affiliated People's Hospital of Shanxi Medical University, Shanxi Provincial People's Hospital, Taiyuan, P.R. China
| | - Rongshan Li
- Department of Nephrology, The Affiliated People's Hospital of Shanxi Medical University, Shanxi Precision Medicine Center, Shanxi Provincial People's Hospital, Taiyuan, P.R. China
| |
Collapse
|
17
|
Cerasuolo A, Buonaguro L, Buonaguro FM, Tornesello ML. The Role of RNA Splicing Factors in Cancer: Regulation of Viral and Human Gene Expression in Human Papillomavirus-Related Cervical Cancer. Front Cell Dev Biol 2020; 8:474. [PMID: 32596243 PMCID: PMC7303290 DOI: 10.3389/fcell.2020.00474] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/20/2020] [Indexed: 12/12/2022] Open
Abstract
The spliceosomal complex components, together with the heterogeneous nuclear ribonucleoproteins (hnRNPs) and serine/arginine-rich (SR) proteins, regulate the process of constitutive and alternative splicing, the latter leading to the production of mRNA isoforms coding multiple proteins from a single pre-mRNA molecule. The expression of splicing factors is frequently deregulated in different cancer types causing the generation of oncogenic proteins involved in cancer hallmarks. Cervical cancer is caused by persistent infection with oncogenic human papillomaviruses (HPVs) and constitutive expression of viral oncogenes. The aberrant activity of hnRNPs and SR proteins in cervical neoplasia has been shown to trigger the production of oncoproteins through the processing of pre-mRNA transcripts either derived from human genes or HPV genomes. Indeed, hnRNP and SR splicing factors have been shown to regulate the production of viral oncoprotein isoforms necessary for the completion of viral life cycle and for cell transformation. Target-therapy strategies against hnRNPs and SR proteins, causing simultaneous reduction of oncogenic factors and inhibition of HPV replication, are under development. In this review, we describe the current knowledge of the functional link between RNA splicing factors and deregulated cellular as well as viral RNA maturation in cervical cancer and the opportunity of new therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | - Maria Lina Tornesello
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumouri IRCCS–Fondazione G. Pascale, Naples, Italy
| |
Collapse
|
18
|
Möller K, Wecker AL, Höflmayer D, Fraune C, Makrypidi-Fraune G, Hube-Magg C, Kluth M, Steurer S, Clauditz TS, Wilczak W, Simon R, Sauter G, Huland H, Heinzer H, Haese A, Schlomm T, Weidemann S, Luebke AM, Minner S, Bernreuther C, Bonk S, Marx A. Upregulation of the heterogeneous nuclear ribonucleoprotein hnRNPA1 is an independent predictor of early biochemical recurrence in TMPRSS2:ERG fusion-negative prostate cancers. Virchows Arch 2020; 477:625-636. [PMID: 32417965 PMCID: PMC7581599 DOI: 10.1007/s00428-020-02834-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 04/20/2020] [Accepted: 04/28/2020] [Indexed: 11/25/2022]
Abstract
Heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1) is a ubiquitous RNA splicing factor that is overexpressed and prognostically relevant in various human cancer types. To study the impact of hnRNPA1 expression in prostate cancer, we analyzed a tissue microarray containing 17,747 clinical prostate cancer specimens by immunohistochemistry. hnRNPA1 was expressed in normal prostate glandular cells but often overexpressed in cancer cells. hnRNPA1 immunostaining was interpretable in 14,258 cancers and considered strong in 33.4%, moderate in 45.9%, weak in 15.3%, and negative in 5.4%. Moderate to strong hnRNPA1 immunostaining was strongly linked to adverse tumor features including high classical and quantitative Gleason score, lymph node metastasis, advanced tumor stage, positive surgical margin, and early biochemical recurrence (p < 0.0001 each). The prognostic impact of hnRNPA1 immunostaining was independent of established preoperatively or postoperatively available prognostic parameters (p < 0.0001). Subset analyses revealed that all these associations were strongly driven by the fraction of cancers lacking the TMPRSS2:ERG gene fusion. Comparison with other key molecular data that were earlier obtained on the same TMA showed that hnRNPA1 overexpression was linked to high levels of androgen receptor (AR) expression (p < 0.0001) as well as presence of 9 of 11 chromosomal deletions (p < 0.05 each). A strong association between hnRNPA1 upregulation and tumor cell proliferation that was independent from the Gleason score supports a role for tumor cell aggressiveness. In conclusion, hnRNPA1 overexpression is an independent predictor of poor prognosis in ERG-negative prostate cancer. hnRNPA1 measurement, either alone or in combination, might provide prognostic information in ERG-negative prostate cancer.
Collapse
Affiliation(s)
- Katharina Möller
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Anna Lena Wecker
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Doris Höflmayer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Christoph Fraune
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Georgia Makrypidi-Fraune
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Claudia Hube-Magg
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Martina Kluth
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Stefan Steurer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Till S Clauditz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Waldemar Wilczak
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Hartwig Huland
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hans Heinzer
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alexander Haese
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Schlomm
- Department of Urology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sören Weidemann
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Andreas M Luebke
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Sarah Minner
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Christian Bernreuther
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Sarah Bonk
- General, Visceral and Thoracic Surgery Department and Clinic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas Marx
- Institute of Pathology, Klinikum Fürth, Fürth, Germany
| |
Collapse
|
19
|
Profiling of subcellular EGFR interactome reveals hnRNP A3 modulates nuclear EGFR localization. Oncogenesis 2020; 9:40. [PMID: 32321917 PMCID: PMC7176650 DOI: 10.1038/s41389-020-0225-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 04/04/2020] [Accepted: 04/07/2020] [Indexed: 12/19/2022] Open
Abstract
The aberrant subcellular translocation and distribution of epidermal growth factor receptor (EGFR) represent a major yet currently underappreciated cancer development mechanism in non-small cell lung cancer (NSCLC). In this study, we investigated the subcellular interactome of EGFR by using a spectral counting-based approach combined with liquid chromatography–tandem mass spectrometry to understand the associated protein networks involved in the tumorigenesis of NSCLC. A total of 54, 77, and 63 EGFR-interacting proteins were identified specifically in the cytosolic, mitochondrial, and nuclear fractions from a NSCLC cell line, respectively. Pathway analyses of these proteins using the KEGG database shown that the EGFR-interacting proteins of the cytosol and nucleus are involved in the ribosome and spliceosome pathways, respectively, while those of the mitochondria are involved in metabolizing propanoate, fatty acid, valine, leucine, and isoleucine. A selected nuclear EGFR-interacting protein, hnRNP A3, was found to modulate the accumulation of nuclear EGFR. Downregulation of hnRNP A3 reduced the nuclear accumulation of EGFR, and this was accompanied by reduced tumor growth ability in vitro and in vivo. These results indicate that variations in the subcellular translocation and distribution of EGFR within NSCLC cells could affect tumor progression.
Collapse
|
20
|
A surface plasmon resonance biosensor in conjunction with a DNA aptamer-antibody bioreceptor pair for heterogeneous nuclear ribonucleoprotein A1 concentrations in colorectal cancer plasma solutions. Biosens Bioelectron 2020; 154:112065. [PMID: 32056960 DOI: 10.1016/j.bios.2020.112065] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/25/2020] [Accepted: 01/27/2020] [Indexed: 02/07/2023]
Abstract
A new DNA aptamer and antibody pair was incorporated into surface plasmon resonance (SPR) sensing platform to detect heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) in plasma at clinically relevant native concentrations for the diagnosis of colorectal cancer (CRC). SPR detection of hnRNP A1 was realized via formation of the surface sandwich complex of aptamer/hnRNP A1/anti-hnRNP A; the specific adsorption of hnRNP A1 onto a gold chip surface modified with a DNA aptamer followed by the adsorption of anti-hnRNP A1. Changes in the refractive unit (RU) with respect to the hnRNP A1 concentration in buffer solutions were monitored at a fixed anti-hnRNP A1 concentration of 90 nM, resulting in a dynamic range of 0.1-10 nM of hnRNP A1. The surface sandwich SPR biosensor was further applied to the direct analysis of undiluted human normal and pooled CRC patient plasma solutions. Our plasma analysis results were compared to those obtained with a commercial enzyme-linked immunosorbent assay kit.
Collapse
|
21
|
Li F, Su M, Zhao H, Xie W, Cao S, Xu Y, Chen W, Wang L, Hou L, Tan W. HnRNP-F promotes cell proliferation by regulating TPX2 in bladder cancer. Am J Transl Res 2019; 11:7035-7048. [PMID: 31814907 PMCID: PMC6895536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 09/30/2019] [Indexed: 06/10/2023]
Abstract
Heterogeneous nuclear ribonucleoprotein F (hnRNP-F) is crucial for gene expression and signal transduction as a tumor-promoting molecule with the ability to promote cell proliferation in various cancers. However, the role and mechanism of hnRNP-F in bladder cancer (BC) remain unclear. Therefore, we investigated the effect of hnRNP-F on the proliferation of BC cells and the potential mechanism. In this study, hnRNP-F was found to be upregulated in BC tissues and cells by western blotting. The knockdown of hnRNP-F could inhibit proliferation and delay cell cycle progression in EJ and UMUC-3 cells. Mechanistically, hnRNP-F was shown to bind to Targeting protein for Xenopus kinesin-like protein 2 (TPX2) by mass spectrometry and coimmunoprecipitation. Furthermore, Pearson correlation analysis showed that the expression of hnRNP-F was positively associated with that of TPX2 in BC tissues (P<0.001, r=0.8180). Notably, TPX2 was correspondingly markedly decreased in cells upon hnRNP-F knockdown. In addition, the decrease in TPX2 after hnRNP-F knockdown further decreased cyclin D1 protein expression and evoked p21 protein expression, eventually resulting in cell cycle arrest and proliferation inhibition in BC cells. Moreover, the overexpression of TPX2 protein was found to reverse the effect of hnRNP-F knockdown on the cell cycle and cell proliferation in BC cells. In conclusion, these findings suggest that hnRNP-F could promote cell proliferation and drive cell cycle progression by regulating TPX2 in BC, which may serve as a potential target for the treatment of BC patients.
Collapse
Affiliation(s)
- Fei Li
- Department of Urology, Nanfang Hospital, Southern Medical UniversityGuangzhou 510515, Guangdong, P. R. China
| | - Mingqiang Su
- Department of Urology, Nanfang Hospital, Southern Medical UniversityGuangzhou 510515, Guangdong, P. R. China
- Department of Urology, Zigong Fourth People’s HospitalZigong 643000, Sichuan, P. R. China
| | - Hongfan Zhao
- Department of Urology, Nanfang Hospital, Southern Medical UniversityGuangzhou 510515, Guangdong, P. R. China
| | - Weiwei Xie
- Department of Urology, Nanfang Hospital, Southern Medical UniversityGuangzhou 510515, Guangdong, P. R. China
| | - Sai Cao
- Department of Thoracic Surgery, Nanfang Hospital, Southern Medical UniversityGuangzhou 510515, Guangdong, P. R. China
| | - Ying Xu
- Department of Urology, Nanfang Hospital, Southern Medical UniversityGuangzhou 510515, Guangdong, P. R. China
| | - Weihong Chen
- Department of Urology, Nanfang Hospital, Southern Medical UniversityGuangzhou 510515, Guangdong, P. R. China
| | - Lili Wang
- Department of Urology, Nanfang Hospital, Southern Medical UniversityGuangzhou 510515, Guangdong, P. R. China
| | - Lina Hou
- Department of Healthy Management, Nanfang Hospital, Southern Medical UniversityGuangzhou 510515, Guangdong, P. R. China
| | - Wanlong Tan
- Department of Urology, Nanfang Hospital, Southern Medical UniversityGuangzhou 510515, Guangdong, P. R. China
| |
Collapse
|
22
|
Li L, Yang X, Li K, Zhang G, Ma Y, Cai B, Li S, Ding H, Deng J, Nan X, Sun J, Wu Y, Shao N, Zhang L, Yang Z. d-/l-Isothymidine incorporation in the core sequence of aptamer BC15 enhanced its binding affinity to the hnRNP A1 protein. Org Biomol Chem 2019; 16:7488-7497. [PMID: 30272759 DOI: 10.1039/c8ob01454j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) was reported to participate in the development of a variety of tumors. BC15 is a DNA aptamer targeting hnRNP A1. Firstly, through sequence truncation, we identified 31-mer sequence BC15-31 as the core sequence of BC15 with a strong binding affinity and high selectivity to the hnRNP A1 protein. Isothymidine (isoT) modification was then applied for the structural optimization of BC15-31, systematic modification and biological evaluation were carried out. Incorporation of isoT in the 1,3 sites at the 5'-end of BC15-31 can significantly enhance the protein affinity. Chemical modifications close to the 3'-end can greatly improve the stability of the aptamer. Furthermore, BC15-31 modified with isoT at both the 5'-end and 3'-end displayed an additive effect with enhanced bioactivity and stability at the same time. Our study strategy on BC15 provides a useful guideline for chemical modification and optimization of the aptamer for further clinical application.
Collapse
Affiliation(s)
- Liyu Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Coltri PP, Dos Santos MGP, da Silva GHG. Splicing and cancer: Challenges and opportunities. WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 10:e1527. [PMID: 30773852 DOI: 10.1002/wrna.1527] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/14/2018] [Accepted: 01/17/2019] [Indexed: 12/11/2022]
Abstract
Cancer arises from alterations in several metabolic processes affecting proliferation, growth, replication and death of cells. A fundamental challenge in the study of cancer biology is to uncover molecular mechanisms that lead to malignant cellular transformation. Recent genomic analyses revealed that many molecular alterations observed in cancers come from modifications in the splicing process, including mutations in pre-mRNA regulatory sequences, mutations in spliceosome components, and altered ratio of specific splicing regulators. While alterations in splice site preferences might generate alternative isoforms enabling different biological functions, these might also be responsible for nonfunctional isoforms that can eventually cause dysregulation in cellular processes. Molecular characteristics of regulatory sequences and proteins might also be important prognostic tools revealing a cancer-specific splicing pattern and linking splicing control to cancer development. The connection between cancer biology and splicing regulation is of primary importance to understand the mechanisms leading to disease and also to improve development of therapeutic approaches. Splicing modulation is being explored in new anti-cancer therapies and further investigation of targeted splicing factors is critical for the success of these strategies. This article is categorized under: RNA Processing > Splicing Mechanisms RNA-Based Catalysis > RNA Catalysis in Splicing and Translation RNA Processing > Splicing Regulation/Alternative Splicing RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Patricia P Coltri
- Department of Cell and Developmental Biology, Institute for Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Maria G P Dos Santos
- Department of Cell and Developmental Biology, Institute for Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Guilherme H G da Silva
- Department of Cell and Developmental Biology, Institute for Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
24
|
Shishkin SS, Kovalev LI, Pashintseva NV, Kovaleva MA, Lisitskaya K. Heterogeneous Nuclear Ribonucleoproteins Involved in the Functioning of Telomeres in Malignant Cells. Int J Mol Sci 2019; 20:E745. [PMID: 30744200 PMCID: PMC6387250 DOI: 10.3390/ijms20030745] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/31/2019] [Accepted: 02/04/2019] [Indexed: 12/12/2022] Open
Abstract
Heterogeneous nuclear ribonucleoproteins (hnRNPs) are structurally and functionally distinct proteins containing specific domains and motifs that enable the proteins to bind certain nucleotide sequences, particularly those found in human telomeres. In human malignant cells (HMCs), hnRNP-A1-the most studied hnRNP-is an abundant multifunctional protein that interacts with telomeric DNA and affects telomerase function. In addition, it is believed that other hnRNPs in HMCs may also be involved in the maintenance of telomere length. Accordingly, these proteins are considered possible participants in the processes associated with HMC immortalization. In our review, we discuss the results of studies on different hnRNPs that may be crucial to solving molecular oncological problems and relevant to further investigations of these proteins in HMCs.
Collapse
Affiliation(s)
- Sergey S Shishkin
- Laboratory of Biomedical Research, Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospekt, 33, bld. 2, 119071 Moscow, Russia.
| | - Leonid I Kovalev
- Laboratory of Biomedical Research, Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospekt, 33, bld. 2, 119071 Moscow, Russia.
| | - Natalya V Pashintseva
- Laboratory of Biomedical Research, Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospekt, 33, bld. 2, 119071 Moscow, Russia.
| | - Marina A Kovaleva
- Laboratory of Biomedical Research, Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospekt, 33, bld. 2, 119071 Moscow, Russia.
| | - Ksenia Lisitskaya
- Laboratory of Biomedical Research, Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospekt, 33, bld. 2, 119071 Moscow, Russia.
| |
Collapse
|
25
|
Ryu HG, Kim S, Lee S, Lee E, Kim HJ, Kim DY, Kim KT. HNRNP Q suppresses polyglutamine huntingtin aggregation by post-transcriptional regulation of vaccinia-related kinase 2. J Neurochem 2019; 149:413-426. [PMID: 30488434 DOI: 10.1111/jnc.14638] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 11/20/2018] [Accepted: 11/22/2018] [Indexed: 12/22/2022]
Abstract
Misfolded proteins with abnormal polyglutamine (polyQ) expansion cause neurodegenerative disorders, including Huntington's disease. Recently, it was found that polyQ aggregates accumulate as a result of vaccinia-related kinase 2 (VRK2)-mediated degradation of TCP-1 ring complex (TRiC)/chaperonin-containing TCP-1 (CCT), which has an essential role in the prevention of polyQ protein aggregation and cytotoxicity. The levels of VRK2 are known to be much higher in actively proliferating cells but are maintained at a low level in the brain via an unknown mechanism. Here, we found that basal levels of neuronal cell-specific VRK2 mRNA are maintained by post-transcriptional, rather than transcriptional, regulation. Moreover, heterogeneous nuclear ribonucleoprotein Q (HNRNP Q) specifically binds to the 3'untranslated region of VRK2 mRNA in neuronal cells to reduce the mRNA stability. As a result, we found a dramatic decrease in CCT4 protein levels in response to a reduction in HNRNP Q levels, which was followed by an increase in polyQ aggregation in human neuroblastoma cells and mouse cortical neurons. Taken together, these results provide new insights into how neuronal HNRNP Q decreases VRK2 mRNA stability and contributes to the prevention of Huntington's disease, while also identifying new prognostic markers of HD.
Collapse
Affiliation(s)
- Hye Guk Ryu
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Korea
| | - Sangjune Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Korea.,Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Baltimore, Maryland, USA.,Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Saebom Lee
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Korea.,Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Baltimore, Maryland, USA.,Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Eunju Lee
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Korea.,Advanced Bio Convergence Center, Pohang Technopark, Pohang, Korea
| | - Hyo-Jin Kim
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Korea.,SL BIGEN, Seongnam, Korea
| | - Do-Yeon Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Korea.,Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu, Korea.,Brain Science & Engineering Institute, Kyungpook National University, Daegu, Korea
| | - Kyong-Tai Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Korea.,Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Korea
| |
Collapse
|
26
|
Wang N, Yu Y, Xu B, Zhang M, Li Q, Miao L. Pivotal prognostic and diagnostic role of the long non‑coding RNA colon cancer‑associated transcript 1 expression in human cancer (Review). Mol Med Rep 2018; 19:771-782. [PMID: 30535444 PMCID: PMC6323215 DOI: 10.3892/mmr.2018.9721] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 10/30/2018] [Indexed: 01/17/2023] Open
Abstract
Long non‑coding RNAs (lncRNAs) have been classically defined as regulatory RNA members >200 nucleotides in length, without detectable open‑reading frames to encode proteins. Previous studies have demonstrated that lncRNAs serve critical roles in multiple cancer types. Colon cancer‑associated transcript 1 (CCAT1), a novel cancer‑associated lncRNA, is significantly overexpressed in a number of malignancies. Functionally, as an oncogenic lncRNA, CCAT1 is involved in proliferation, migration, cell cycle progression, apoptosis, chemoresistance and other biological processes of cancer cells through complex regulation mechanisms in the cytoplasm or nucleus. In clinical applications, CCAT1 is additionally positively associated with histological differentiation, tumour node metastasis stage, vascular invasion, overall survival and recurrence‑free survival, which demonstrates its important role as a diagnostic and prognostic marker in cancer. The present review summarises the current research progress of the oncogenic potential and clinical uses of CCAT1 in various human cancer types.
Collapse
Affiliation(s)
- Ni Wang
- Medical Center for Digestive Diseases, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 21001, P.R. China
| | - Yang Yu
- Medical Center for Digestive Diseases, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 21001, P.R. China
| | - Boming Xu
- Department of Gastroenterology, The Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Mingjiong Zhang
- Medical Center for Digestive Diseases, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 21001, P.R. China
| | - Quanpeng Li
- Medical Center for Digestive Diseases, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 21001, P.R. China
| | - Lin Miao
- Medical Center for Digestive Diseases, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 21001, P.R. China
| |
Collapse
|
27
|
Mishra N, Reddy KS, Timilsina U, Gaur D, Gaur R. Human APOBEC3B interacts with the heterogenous nuclear ribonucleoprotein A3 in cancer cells. J Cell Biochem 2018; 119:6695-6703. [PMID: 29693745 DOI: 10.1002/jcb.26855] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 03/09/2018] [Indexed: 11/07/2022]
Abstract
Human APOBEC3B (A3B), like other APOBEC3 members, is a cytosine deaminase which causes hypermutation of single stranded genome. Recent studies have shown that A3B is predominantly elevated in multiple cancer tissues and cell lines such as the bladder, cervix, lung, head and neck, and breast. Upregulation and activation of A3B in developing tumors can cause an unexpected cluster of mutations which promote cancer development and progression. The cellular proteins which facilitate A3B function through direct or indirect interactions remain largely unknown. In this study, we performed LC-MS-based proteomics to identify cellular proteins which coimmunoprecipitated with A3B. Our results indicated a specific interaction of A3B with hnRNP A3 (heterogeneous nuclear ribonucleoprotein). This interaction was verified by co-immunoprecipitation and was found to be RNA-dependent. Furthermore, A3B and hnRNP A3 colocalized as evident from immunofluorescence analysis.
Collapse
Affiliation(s)
- Nawneet Mishra
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
| | - K Sony Reddy
- School of Biotechnology, KIIT University, Odisha, India
| | - Uddhav Timilsina
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
| | - Deepak Gaur
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Ritu Gaur
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
| |
Collapse
|
28
|
Howard JM, Lin H, Wallace AJ, Kim G, Draper JM, Haeussler M, Katzman S, Toloue M, Liu Y, Sanford JR. HNRNPA1 promotes recognition of splice site decoys by U2AF2 in vivo. Genome Res 2018; 28:689-698. [PMID: 29650551 PMCID: PMC5932609 DOI: 10.1101/gr.229062.117] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Accepted: 03/22/2018] [Indexed: 12/04/2022]
Abstract
Alternative pre-mRNA splicing plays a major role in expanding the transcript output of human genes. This process is regulated, in part, by the interplay of trans-acting RNA binding proteins (RBPs) with myriad cis-regulatory elements scattered throughout pre-mRNAs. These molecular recognition events are critical for defining the protein-coding sequences (exons) within pre-mRNAs and directing spliceosome assembly on noncoding regions (introns). One of the earliest events in this process is recognition of the 3′ splice site (3′ss) by U2 small nuclear RNA auxiliary factor 2 (U2AF2). Splicing regulators, such as the heterogeneous nuclear ribonucleoprotein A1 (HNRNPA1), influence spliceosome assembly both in vitro and in vivo, but their mechanisms of action remain poorly described on a global scale. HNRNPA1 also promotes proofreading of 3′ss sequences though a direct interaction with the U2AF heterodimer. To determine how HNRNPA1 regulates U2AF–RNA interactions in vivo, we analyzed U2AF2 RNA binding specificity using individual-nucleotide resolution crosslinking immunoprecipitation (iCLIP) in control and HNRNPA1 overexpression cells. We observed changes in the distribution of U2AF2 crosslinking sites relative to the 3′ss of alternative cassette exons but not constitutive exons upon HNRNPA1 overexpression. A subset of these events shows a concomitant increase of U2AF2 crosslinking at distal intronic regions, suggesting a shift of U2AF2 to “decoy” binding sites. Of the many noncanonical U2AF2 binding sites, Alu-derived RNA sequences represented one of the most abundant classes of HNRNPA1-dependent decoys. We propose that one way HNRNPA1 regulates exon definition is to modulate the interaction of U2AF2 with decoy or bona fide 3′ss.
Collapse
Affiliation(s)
- Jonathan M Howard
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Cruz, Santa Cruz, California 95064, USA
| | - Hai Lin
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | - Andrew J Wallace
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Cruz, Santa Cruz, California 95064, USA
| | - Garam Kim
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Cruz, Santa Cruz, California 95064, USA
| | - Jolene M Draper
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Cruz, Santa Cruz, California 95064, USA
| | - Maximilian Haeussler
- Center for Biomolecular Science and Engineering, University of California Santa Cruz, Santa Cruz, California 95064, USA
| | - Sol Katzman
- Center for Biomolecular Science and Engineering, University of California Santa Cruz, Santa Cruz, California 95064, USA
| | - Masoud Toloue
- Bioo Scientific Corporation, Austin, Texas 78744, USA
| | - Yunlong Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | - Jeremy R Sanford
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Cruz, Santa Cruz, California 95064, USA
| |
Collapse
|
29
|
Therapeutic Applications of Targeted Alternative Splicing to Cancer Treatment. Int J Mol Sci 2017; 19:ijms19010075. [PMID: 29283381 PMCID: PMC5796025 DOI: 10.3390/ijms19010075] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 12/22/2017] [Accepted: 12/24/2017] [Indexed: 12/16/2022] Open
Abstract
A growing body of studies has documented the pathological influence of impaired alternative splicing (AS) events on numerous diseases, including cancer. In addition, the generation of alternatively spliced isoforms is frequently noted to result in drug resistance in many cancer therapies. To gain comprehensive insights into the impacts of AS events on cancer biology and therapeutic developments, this paper highlights recent findings regarding the therapeutic routes of targeting alternative-spliced isoforms and splicing regulators to treatment strategies for distinct cancers.
Collapse
|
30
|
Chen CY, Jan CI, Pi WC, Wang WL, Yang PC, Wang TH, Karni R, Wang TCV. Heterogeneous nuclear ribonucleoproteins A1 and A2 modulate expression of Tid1 isoforms and EGFR signaling in non-small cell lung cancer. Oncotarget 2017; 7:16760-72. [PMID: 26919236 PMCID: PMC4941349 DOI: 10.18632/oncotarget.7606] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 02/10/2016] [Indexed: 11/25/2022] Open
Abstract
The Tid1 protein is a DnaJ co-chaperone that has two alternative splicing isoforms: Tid1 long form (Tid1-L) and Tid1 short form (Tid1-S). Recent studies have shown that Tid1-L functions as a tumor suppressor by decreasing EGFR signaling in various cancers, including head and neck cancer and non-small cell lung cancer (NSCLC). However, the molecular mechanism responsible for regulating the alternative splicing of Tid1 is not yet known. Two splicing factors, heterogeneous nuclear ribonucleoproteins (hnRNP) A1 and A2, participate in alternative splicing and are known to be overexpressed in lung cancers. In this work, we examined if hnRNP A1 and A2 could regulate the alternative splicing of Tid1 to modulate tumorigenesis in NSCLC. We report that RNAi-mediated depletion of both hnRNP A1/A2 (but not single depletion of either) increased Tid1-L expression, inhibited cell proliferation and attenuated EGFR signaling. Analyses of the expression levels of hnRNP A1, hnRNP A2, EGFR and Tid1-L in NSCLC tissues revealed that hnRNP A1 and A2 are positively correlated with EGFR, but negatively correlated with Tid1-L. NSCLC patients with high-level expression of hnRNP A1, hnRNP A2 and EGFR combined with low-level expression of Tid1-L were associated with poor overall survival. Taken together, our results suggest that hnRNP A1 or A2 are both capable of facilitating the alternative splicing of exon 11 in the Tid1 pre-mRNA, thereby suppressing the expression of Tid1-L and allowing EGFR-related signaling to facilitate NSCLC tumorigenesis.
Collapse
Affiliation(s)
- Chi-Yuan Chen
- Graduate Institute of Health Industry Technology and Research Center for Industry of Human Ecology, College of Human Ecology, Chang Gung University of Science and Technology, Kwei-San, Tao-Yuan 333, Taiwan
| | - Chia-Ing Jan
- Department of Pathology, China Medical University and Hospital, Taichung, Taiwan 404, Taiwan.,Department of Pathology, China Medical University and Beigang Hospital, Yunlin, Taiwan 651, Taiwan
| | - Wen-Chieh Pi
- Department of Molecular and Cellular Biology, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan 333, Taiwan
| | - Wen-Lung Wang
- Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung City 833, Taiwan
| | - Pan-Chyr Yang
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Tong-Hong Wang
- Graduate Institute of Health Industry Technology and Research Center for Industry of Human Ecology, College of Human Ecology, Chang Gung University of Science and Technology, Kwei-San, Tao-Yuan 333, Taiwan.,Tissue Bank, Chang Gung Memorial Hospital, Tao-Yuan 333, Taiwan
| | - Rotem Karni
- The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Ein Karem, 91120, Jerusalem, Israel
| | - Tzu-Chien V Wang
- Department of Molecular and Cellular Biology, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan 333, Taiwan
| |
Collapse
|
31
|
Song L, Lin HS, Gong JN, Han H, Wang XS, Su R, Chen MT, Shen C, Ma YN, Yu J, Zhang JW. microRNA-451-modulated hnRNP A1 takes a part in granulocytic differentiation regulation and acute myeloid leukemia. Oncotarget 2017; 8:55453-55466. [PMID: 28903433 PMCID: PMC5589672 DOI: 10.18632/oncotarget.19325] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 06/11/2017] [Indexed: 01/22/2023] Open
Abstract
Myelopoiesis is under the control of a complex network containing various regulation factors. Deregulation of any important regulation factors may result in serious consequences including acute myeloid leukemia (AML). In order to find out the genes that may take a part in AML development, we analyzed data from AML cDNA microarray (GSE2191) in the NCBI data pool and noticed that heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) is abnormally over-expressed in AML patients. Then we investigated the function and mechanisms of hnRNP A1 in myeloid development. A gradually decreased hnRNP A1 expression was detected during granulocytic differentiation in ATRA-induced-NB4 and HL-60 cells and cytokines-induced hematopoietic stem and progenitor cells. By function-loss and winning experiments we demonstrated hnRNP A1's inhibition role via inhibiting expression of C/EBPα, a key regulator of granulocytic differentiation, in the granulocytic differentiation. During granulocytic differentiation the decrease of hnRNP A1 reduces inhibition on C/EBPα expression, and the increased C/EBPα promotes the differentiation. We also demonstrated that miR-451 promotes granulocytic differentiation via targeting to and down-regulating hnRNP A1, and hnRNP A1 positively regulates c-Myc expression. Summarily, our results revealed new function and mechanisms of hnRNP A1 in normal granulocytiesis and the involvement of a feed-back loop comprising c-Myc, miR-451 and hnRNP A1 in AML development.
Collapse
Affiliation(s)
- Li Song
- The State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Hai-Shuang Lin
- The State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Jia-Nan Gong
- The State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Hua Han
- Department of Obstetrics and Gynecology, Hebei General Hospital, Shijiazhuang 050051, China
| | - Xiao-Shuang Wang
- The State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Rui Su
- The State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Ming-Tai Chen
- The State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Chao Shen
- The State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Yan-Ni Ma
- The State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Jia Yu
- The State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Jun-Wu Zhang
- The State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| |
Collapse
|
32
|
Dai L, Li J, Tsay JCJ, Yie TA, Munger JS, Pass H, Rom WN, Tan EM, Zhang JY. Identification of autoantibodies to ECH1 and HNRNPA2B1 as potential biomarkers in the early detection of lung cancer. Oncoimmunology 2017. [PMID: 28638733 DOI: 10.1080/2162402x.2017.1310359] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Identification of biomarkers for early detection of lung cancer (LC) is important, in turn leading to more effective treatment and reduction of mortality. Serological proteome analysis (SERPA) was used to identify proteins around 34 kD as ECH1 and HNRNPA2B1, which had been recognized by serum autoantibody from 25 LC patients. In the validation study, including 90 sera from LC patients and 89 sera from normal individuals, autoantibody to ECH1 achieved an area under the curve (AUC) of 0.799 with sensitivity of 62.2% and specificity of 95.5% in discriminating LC from normal individuals, and showed negative correlation with tumor size (rs = -0.256, p = 0.023). Autoantibody to HNRNPA2B1 performed an AUC of 0.874 with sensitivity of 72.2% and specificity of 95.5%, and showed negative correlation with lymph node metastasis (rs = -0.279, p = 0.012). By using longitudinal preclinical samples, autoantibody to ECH1 showed an AUC of 0.763 with sensitivity of 60.0% and specificity of 89.3% in distinguishing early stage LC from matched normal controls, and elevated autoantibody levels could be detected greater than 2 y before LC diagnosis. ECH1 and HNRNPA2B1 are autoantigens that elicit autoimmune responses in LC and their autoantibody can be the potential biomarkers for the early detection of LC.
Collapse
Affiliation(s)
- Liping Dai
- Institute of Medical and Pharmaceutical Sciences & Henan Key Laboratory for Tumor Epidemiology, Zhengzhou University, Zhengzhou, Henan, China.,Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX, USA
| | - Jitian Li
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX, USA
| | - Jun-Chieh J Tsay
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, New York University School of Medicine, New York, NY, USA
| | - Ting-An Yie
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, New York University School of Medicine, New York, NY, USA
| | - John S Munger
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, New York University School of Medicine, New York, NY, USA
| | - Harvey Pass
- Department of Cardiothoracic Surgery, New York University School of Medicine, New York, NY, USA
| | - William N Rom
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, New York University School of Medicine, New York, NY, USA
| | - Eng M Tan
- The Scripps Research Institute, La Jolla, CA, USA
| | - Jian-Ying Zhang
- Institute of Medical and Pharmaceutical Sciences & Henan Key Laboratory for Tumor Epidemiology, Zhengzhou University, Zhengzhou, Henan, China.,Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX, USA
| |
Collapse
|
33
|
Kędzierska H, Piekiełko-Witkowska A. Splicing factors of SR and hnRNP families as regulators of apoptosis in cancer. Cancer Lett 2017; 396:53-65. [PMID: 28315432 DOI: 10.1016/j.canlet.2017.03.013] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/08/2017] [Accepted: 03/08/2017] [Indexed: 12/19/2022]
Abstract
SR and hnRNP proteins were initially discovered as regulators of alternative splicing: the process of controlled removal of introns and selective joining of exons through which multiple transcripts and, subsequently, proteins can be expressed from a single gene. Alternative splicing affects genes involved in all crucial cellular processes, including apoptosis. During cancerogenesis impaired apoptotic control facilitates survival of cells bearing molecular aberrations, contributing to their unrestricted proliferation and chemoresistance. Apparently, SR and hnRNP proteins regulate all levels of expression of apoptotic genes, including transcription initiation and elongation, alternative splicing, mRNA stability, translation, and protein degradation. The frequently disturbed expressions of SR/hnRNP proteins in cancers lead to impaired functioning of target apoptotic genes, including regulators of the extrinsic (Fas, caspase-8, caspase-2, c-FLIP) and the intrinsic pathway (Apaf-1, caspase-9, ICAD), genes encoding Bcl-2 proteins, IAPs, and p53 tumor suppressor. Prototypical members of SR/hnRNP families, SRSF1 and hnRNP A1, promote synthesis of anti-apoptotic splice variants of Bcl-x and Mcl-1, which results in attenuation of programmed cell death in breast cancer and chronic myeloid leukemia. SR/hnRNP proteins significantly affect responses to chemotherapy, acting as mediators or modulators of drug-induced apoptosis. Aberrant expression of SRSF1 and hnRNP K can interfere with tumor responses to chemotherapy in pancreatic and liver cancers. Currently, a number of splicing factor inhibitors is being tested in pre-clinical and clinical trials. In this review we discuss recent findings on the role of SR and hnRNP proteins in apoptotic control in cancer cells as well as their significance in anticancer treatments.
Collapse
Affiliation(s)
- Hanna Kędzierska
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, ul. Marymoncka 99/103, 01-813 Warsaw, Poland
| | - Agnieszka Piekiełko-Witkowska
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, ul. Marymoncka 99/103, 01-813 Warsaw, Poland.
| |
Collapse
|
34
|
Suzuki H, Matsuoka M. hnRNPA1 autoregulates its own mRNA expression to remain non-cytotoxic. Mol Cell Biochem 2016; 427:123-131. [PMID: 28000042 DOI: 10.1007/s11010-016-2904-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 12/03/2016] [Indexed: 01/03/2023]
Abstract
Heterogeneous nuclear ribonucleoprotein (hnRNP)A1, a member of the hnRNP family, is involved in a variety of RNA metabolisms. The hnRNPA1 expression is altered in some human diseases and mutations of the hnRNPA1 gene cause amyotrophic lateral sclerosis and multisystem proteinopathy. It has been therefore assumed that the dysregulation of hnRNPA1 is linked to the pathogenesis of the diseases. However, the mechanism underlying the regulation of the hnRNPA1 expression remains unknown. In this study, using cell-based models, we have found that hnRNPA1 negatively regulates its own mRNA expression by inhibiting the intron10 splicing of hnRNPA1 pre-mRNA. This mechanism likely serves as an autoregulation of the hnRNPA1 expression. We have also found that a low-grade excess of hnRNPA1 expression causes cytotoxicity by activating the mitochondrial apoptosis pathway. Collectively, these data suggest that the level of hnRNPA1 is strictly controlled to be within a certain range by the mRNA autoregulation in the physiological condition so that the cytotoxicity-causative alteration of hnRNPA1 expression does not take place.
Collapse
Affiliation(s)
- Hiroaki Suzuki
- Department of Pharmacology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-Ku, Tokyo, 160-8402, Japan
| | - Masaaki Matsuoka
- Department of Pharmacology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-Ku, Tokyo, 160-8402, Japan. .,Department of Dermatological Neuroscience, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-Ku, Tokyo, 160-8402, Japan.
| |
Collapse
|
35
|
Wang H, Han L, Zhao G, Shen H, Wang P, Sun Z, Xu C, Su Y, Li G, Tong T, Chen J. hnRNP A1 antagonizes cellular senescence and senescence-associated secretory phenotype via regulation of SIRT1 mRNA stability. Aging Cell 2016; 15:1063-1073. [PMID: 27613566 PMCID: PMC6398525 DOI: 10.1111/acel.12511] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2016] [Indexed: 12/12/2022] Open
Abstract
Senescent cells display a senescence‐associated secretory phenotype (SASP) which contributes to tumor suppression, aging, and cancer. However, the underlying mechanisms for SASP regulation are not fully elucidated. SIRT1, a nicotinamide adenosine dinucleotide‐dependent deacetylase, plays multiple roles in metabolism, inflammatory response, and longevity, etc. However, its posttranscriptional regulation and its roles in cellular senescence and SASP regulation are still elusive. Here, we identify the RNA‐binding protein hnRNP A1 as a posttranscriptional regulator of SIRT1, as well as cell senescence and SASP regulator. hnRNP A1 directly interacts with the 3′ untranslated region of SIRT1 mRNA, promotes its stability, and increases SIRT1 expression. hnRNP A1 delays replicative cellular senescence and prevents from Ras OIS via upregulation of SIRT1 expression to deacetylate NF‐κB, thus blunting its transcriptional activity and subsequent IL‐6/IL‐8 induction. hnRNP A1 overexpression promotes cell transformation and tumorigenesis in a SIRT1‐dependent manner. Together, our findings unveil a novel posttranscriptional regulation of SIRT1 by hnRNP A1 and uncover a critical role of hnRNP A1‐SIRT1–NF‐κB pathway in regulating cellular senescence and SASP expression.
Collapse
Affiliation(s)
- Hui Wang
- Peking University Research Center on Aging Department of Biochemistry and Molecular Biology Peking University Health Science Center Beijing China
| | - Limin Han
- Peking University Research Center on Aging Department of Biochemistry and Molecular Biology Peking University Health Science Center Beijing China
| | - Ganye Zhao
- Peking University Research Center on Aging Department of Biochemistry and Molecular Biology Peking University Health Science Center Beijing China
| | - Hong Shen
- Peking University Research Center on Aging Department of Biochemistry and Molecular Biology Peking University Health Science Center Beijing China
| | - Pengfeng Wang
- Peking University Research Center on Aging Department of Biochemistry and Molecular Biology Peking University Health Science Center Beijing China
| | - Zhaomeng Sun
- Peking University Research Center on Aging Department of Biochemistry and Molecular Biology Peking University Health Science Center Beijing China
| | - Chenzhong Xu
- Peking University Research Center on Aging Department of Biochemistry and Molecular Biology Peking University Health Science Center Beijing China
| | - Yuanyuan Su
- Peking University Research Center on Aging Department of Biochemistry and Molecular Biology Peking University Health Science Center Beijing China
| | - Guodong Li
- Peking University Research Center on Aging Department of Biochemistry and Molecular Biology Peking University Health Science Center Beijing China
| | - Tanjun Tong
- Peking University Research Center on Aging Department of Biochemistry and Molecular Biology Peking University Health Science Center Beijing China
| | - Jun Chen
- Peking University Research Center on Aging Department of Biochemistry and Molecular Biology Peking University Health Science Center Beijing China
| |
Collapse
|
36
|
Chen X, Gu P, Xie R, Han J, Liu H, Wang B, Xie W, Xie W, Zhong G, Chen C, Xie S, Jiang N, Lin T, Huang J. Heterogeneous nuclear ribonucleoprotein K is associated with poor prognosis and regulates proliferation and apoptosis in bladder cancer. J Cell Mol Med 2016; 21:1266-1279. [PMID: 27862976 PMCID: PMC5487918 DOI: 10.1111/jcmm.12999] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 08/27/2016] [Indexed: 12/01/2022] Open
Abstract
Heterogeneous nuclear ribonucleoprotein K (hnRNPK) is an essential RNA- and DNA-binding protein that regulates diverse biological events, especially DNA transcription. hnRNPK overexpression is related to tumorigenesis in several cancers. However, both the expression patterns and biological mechanisms of hnRNPK in bladder cancer are unclear. We investigated hnRNPK expression by immunohistochemistry in 188 patients with bladder cancer, and found that hnRNPK expression levels were significantly increased in bladder cancer tissues and that high-hnRNPK expression was closely correlated with poor prognosis. Loss- and gain-of-function assays demonstrated that hnRNPK promoted proliferation, anti-apoptosis, and chemoresistance in bladder cancer cells in vitro, and hnRNPK knockdown suppressed tumorigenicity in vivo. Mechanistically, hnRNPK regulated various functions in bladder cancer by directly mediating cyclin D1, G0/G1 switch 2 (G0S2), XIAP-associated factor 1, and ERCC excision repair 4, endonuclease catalytic subunit (ERCC4) transcription. In conclusion, we discovered that hnRNPK plays an important role in bladder cancer, suggesting that it is a potential prognostic marker and a promising target for treating bladder cancer.
Collapse
Affiliation(s)
- Xu Chen
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Peng Gu
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Ruihui Xie
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jinli Han
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hao Liu
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Bo Wang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Weibin Xie
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Weijie Xie
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Guangzheng Zhong
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Changhao Chen
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shujie Xie
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ning Jiang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Tianxin Lin
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jian Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
37
|
Kim HR, Lee GO, Choi KH, Kim DK, Ryu JS, Hwang KE, Na KJ, Choi C, Kuh JH, Chung MJ, Lee MK, So HS, Yoon KH, Park MC, Na KS, Kim YS, Park DS. SRSF5: a novel marker for small-cell lung cancer and pleural metastatic cancer. Lung Cancer 2016; 99:57-65. [DOI: 10.1016/j.lungcan.2016.05.018] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 05/23/2016] [Accepted: 05/25/2016] [Indexed: 11/26/2022]
|
38
|
Abstract
The 3′ untranslated regions (3′UTRs) of mammalian mRNAs direct an extensive range of alternative post-transcriptional outcomes, including regulation of mRNA decay and translation, contributing significantly to overall gene regulation. However, our knowledge of the underlying sequences and mechanisms is incomplete. We identified a novel 3′UTR sequence motif in mammals that targets mRNAs for transcript degradation. The motif is found in hundreds of mRNAs and is enriched in transcripts encoding regulatory proteins, such as transcription and signaling factors. Degradation of mRNAs containing the motif is mediated by the CCR4-NOT deadenylation complex. We identified hnRNPs A1 and A2/B1 as trans factors that directly bind to the motif, indicating a novel role for these proteins in deadenylation. Interestingly, a genome-wide analysis of the impact of this new regulatory pathway showed that the most active motifs are located within the 5′ and 3′-terminal portions of 3′UTRs, whereas elements in the center tend to be inactive. The highly position-specific function of the motif adds a new layer of regulation to gene expression mediated by 3′UTRs.
Collapse
Affiliation(s)
- Rene Geissler
- a Department of Molecular Biology and Genetics , Cornell University , Ithaca , NY , USA
| | - Andrew Grimson
- a Department of Molecular Biology and Genetics , Cornell University , Ithaca , NY , USA
| |
Collapse
|
39
|
Bruun GH, Doktor TK, Borch-Jensen J, Masuda A, Krainer AR, Ohno K, Andresen BS. Global identification of hnRNP A1 binding sites for SSO-based splicing modulation. BMC Biol 2016; 14:54. [PMID: 27380775 PMCID: PMC4932749 DOI: 10.1186/s12915-016-0279-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 06/23/2016] [Indexed: 01/14/2023] Open
Abstract
Background Many pathogenic genetic variants have been shown to disrupt mRNA splicing. Besides splice mutations in the well-conserved splice sites, mutations in splicing regulatory elements (SREs) may deregulate splicing and cause disease. A promising therapeutic approach is to compensate for this deregulation by blocking other SREs with splice-switching oligonucleotides (SSOs). However, the location and sequence of most SREs are not well known. Results Here, we used individual-nucleotide resolution crosslinking immunoprecipitation (iCLIP) to establish an in vivo binding map for the key splicing regulatory factor hnRNP A1 and to generate an hnRNP A1 consensus binding motif. We find that hnRNP A1 binding in proximal introns may be important for repressing exons. We show that inclusion of the alternative cassette exon 3 in SKA2 can be significantly increased by SSO-based treatment which blocks an iCLIP-identified hnRNP A1 binding site immediately downstream of the 5’ splice site. Because pseudoexons are well suited as models for constitutive exons which have been inactivated by pathogenic mutations in SREs, we used a pseudoexon in MTRR as a model and showed that an iCLIP-identified hnRNP A1 binding site downstream of the 5′ splice site can be blocked by SSOs to activate the exon. Conclusions The hnRNP A1 binding map can be used to identify potential targets for SSO-based therapy. Moreover, together with the hnRNP A1 consensus binding motif, the binding map may be used to predict whether disease-associated mutations and SNPs affect hnRNP A1 binding and eventually mRNA splicing. Electronic supplementary material The online version of this article (doi:10.1186/s12915-016-0279-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gitte H Bruun
- Department of Biochemistry and Molecular Biology and The Villum Center for Bioanalytical Sciences, University of Southern Denmark, Campusvej 55, DK-5230, Odense M, Denmark
| | - Thomas K Doktor
- Department of Biochemistry and Molecular Biology and The Villum Center for Bioanalytical Sciences, University of Southern Denmark, Campusvej 55, DK-5230, Odense M, Denmark
| | - Jonas Borch-Jensen
- Department of Biochemistry and Molecular Biology and The Villum Center for Bioanalytical Sciences, University of Southern Denmark, Campusvej 55, DK-5230, Odense M, Denmark
| | - Akio Masuda
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Adrian R Krainer
- Cold Spring Harbor Laboratory, PO Box 100, Cold Spring Harbor, NY, 11724, USA
| | - Kinji Ohno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Brage S Andresen
- Department of Biochemistry and Molecular Biology and The Villum Center for Bioanalytical Sciences, University of Southern Denmark, Campusvej 55, DK-5230, Odense M, Denmark.
| |
Collapse
|
40
|
Zhou B, Wang Y, Jiang J, Jiang H, Song J, Han T, Shi J, Qiao H. The long noncoding RNA colon cancer-associated transcript-1/miR-490 axis regulates gastric cancer cell migration by targeting hnRNPA1. IUBMB Life 2016; 68:201-10. [PMID: 26825578 DOI: 10.1002/iub.1474] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 12/30/2015] [Indexed: 01/17/2023]
Abstract
Colon cancer-associated transcript-1 (CCAT1) is a highly conserved long noncoding RNA that is deregulated in several cancers. However, its role in gastric carcinoma and its post-transcriptional regulation remain poorly understood. In this study, we provide the first evidence that CCAT1 regulates miR-490 in gastric cancer (GC) cells. Interestingly, miR-490 can also repress CCAT1 expression. CCAT1 expression was significantly upregulated, and miR-490 expression was downregulated in GC. The negative correlation between miR-490 and CCAT1 expression was observed in GC tissues. Importantly, CCAT1 contains a putative miR-490-binding site, and deletion of this binding site abolishes their miR-490 responsiveness. Post-transcriptional CCAT1 silencing by miR-490 significantly suppressed GC cell migration. Furthermore, miR-490 directly bound to the hnRNPA1 mRNA 3'-UTR to repress its translation. Inhibition of miR-490 rescued CCAT1 siRNA-mediated suppression of cell migration. hnRNPA1 expression was significantly upregulated in GC specimens, and there was a negative correlation between miR-490 and hnRNPA1 expression and also a positive correlation between hnRNAP1 expression level and CCAT1 level. Taken together, we show for the first time that the CCAT1/miR-490/hnRNPA1 axis promotes GC migration, and it may have a possible diagnostic and therapeutic potential in GC.
Collapse
Affiliation(s)
- Baoguo Zhou
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yuli Wang
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Jinpeng Jiang
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Hongpeng Jiang
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Jianwei Song
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Taotao Han
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Juan Shi
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haiquan Qiao
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
41
|
Leduc V, Théroux L, Dea D, Dufour R, Poirier J. Effects of rs3846662 Variants on HMGCR mRNA and Protein Levels and on Markers of Alzheimer's Disease Pathology. J Mol Neurosci 2015; 58:109-19. [PMID: 26541602 DOI: 10.1007/s12031-015-0666-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 10/09/2015] [Indexed: 01/23/2023]
Abstract
3-Hydroxy-3-methyglutaryl coenzyme A reductase (HMGCR) is a cholesterol-regulating gene with statin relevance. rs3846662 being involved in regulation of HMGCR alternative splicing, we explored its impact on HMGCR messenger RNA (mRNA) and protein levels in the brain and the associations between those levels and levels of Alzheimer's disease pathological markers. We used brain samples derived from a cohort of 33 non-demented controls and 90 Alzheimer's disease autopsied-confirmed cases. HMGCR mRNA levels were determined in the frontal cortex (n = 114) and cerebellum (n = 110) using Taqman-qPCR, and HMGCR protein levels were determined in the frontal cortex (n = 117) using a commercial enzyme immunoassay. While densities of neurofibrillary tangles and senile plaques were determined in the frontal cortex (n = 74), total tau, phosphorylated Tau, and beta-amyloid 1-42 levels were determined in the frontal cortex (n = 94) and cerebellum (n = 91) using commercial enzyme immunoassays. Despite an increase in full-length HMGCR mRNA ratio in the frontal cortex of women carrying the AA genotype, there were no associations between rs3846662 and HMGCR mRNA or protein levels. An increased Δ13 HMGCR mRNA ratio was associated with increased levels of HMGCR proteins and neurofibrillary tangles in the frontal cortex but with reduced beta-amyloid 1-42 levels in the cerebellum, suggesting a brain cell type- or a disease progression-dependent association.
Collapse
Affiliation(s)
- Valerie Leduc
- Centre for Studies on Prevention of Alzheimer's Disease (StoP-AD Centre), Douglas Mental Health University Institute, 6875 Lasalle, Verdun, Quebec, H4H 1R3, Canada.,Institut de Recherches Cliniques de Montréal, Department of Nutrition, Université de Montréal, Montréal, Quebec, Canada
| | - Louise Théroux
- Centre for Studies on Prevention of Alzheimer's Disease (StoP-AD Centre), Douglas Mental Health University Institute, 6875 Lasalle, Verdun, Quebec, H4H 1R3, Canada
| | - Doris Dea
- Centre for Studies on Prevention of Alzheimer's Disease (StoP-AD Centre), Douglas Mental Health University Institute, 6875 Lasalle, Verdun, Quebec, H4H 1R3, Canada
| | - Robert Dufour
- Institut de Recherches Cliniques de Montréal, Department of Nutrition, Université de Montréal, Montréal, Quebec, Canada
| | - Judes Poirier
- Centre for Studies on Prevention of Alzheimer's Disease (StoP-AD Centre), Douglas Mental Health University Institute, 6875 Lasalle, Verdun, Quebec, H4H 1R3, Canada. .,Centre for Studies in the Prevention of Alzheimer's Disease, McGill University, Montréal, Quebec, Canada.
| |
Collapse
|
42
|
An Optimization-Driven Analysis Pipeline to Uncover Biomarkers and Signaling Paths: Cervix Cancer. MICROARRAYS 2015; 4:287-310. [PMID: 26388997 PMCID: PMC4573573 DOI: 10.3390/microarrays4020287] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Establishing how a series of potentially important genes might relate to each other is relevant to understand the origin and evolution of illnesses, such as cancer. High-throughput biological experiments have played a critical role in providing information in this regard. A special challenge, however, is that of trying to conciliate information from separate microarray experiments to build a potential genetic signaling path. This work proposes a two-step analysis pipeline, based on optimization, to approach meta-analysis aiming to build a proxy for a genetic signaling path.
Collapse
|
43
|
Nadiminty N, Tummala R, Liu C, Lou W, Evans CP, Gao AC. NF-κB2/p52:c-Myc:hnRNPA1 Pathway Regulates Expression of Androgen Receptor Splice Variants and Enzalutamide Sensitivity in Prostate Cancer. Mol Cancer Ther 2015; 14:1884-95. [PMID: 26056150 DOI: 10.1158/1535-7163.mct-14-1057] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 05/29/2015] [Indexed: 02/02/2023]
Abstract
Castration-resistant prostate cancer (CRPC) remains dependent on androgen receptor (AR) signaling. Alternative splicing of the AR to generate constitutively active, ligand-independent variants is one of the principal mechanisms that promote the development of resistance to next-generation antiandrogens such as enzalutamide. Here, we demonstrate that the splicing factor heterogeneous nuclear RNA-binding protein A1 (hnRNPA1) plays a pivotal role in the generation of AR splice variants such as AR-V7. hnRNPA1 is overexpressed in prostate tumors compared with benign prostates, and its expression is regulated by NF-κB2/p52 and c-Myc. CRPC cells resistant to enzalutamide exhibit higher levels of NF-κB2/p52, c-Myc, hnRNPA1, and AR-V7. Levels of hnRNPA1 and AR-V7 are positively correlated with each other in prostate cancer. The regulatory circuit involving NF-κB2/p52, c-Myc, and hnRNPA1 plays a central role in the generation of AR splice variants. Downregulation of hnRNPA1 and consequently of AR-V7 resensitizes enzalutamide-resistant cells to enzalutamide, indicating that enhanced expression of hnRNPA1 may confer resistance to AR-targeted therapies by promoting the generation of splice variants. These findings may provide a rationale for cotargeting these pathways to achieve better efficacy through AR blockade.
Collapse
Affiliation(s)
| | - Ramakumar Tummala
- Department of Urology, University of California at Davis, Sacramento, California
| | - Chengfei Liu
- Department of Urology, University of California at Davis, Sacramento, California
| | - Wei Lou
- Department of Urology, University of California at Davis, Sacramento, California
| | - Christopher P Evans
- Department of Urology, University of California at Davis, Sacramento, California. Comprehensive Cancer Center, University of California at Davis, Sacramento, California
| | - Allen C Gao
- Department of Urology, University of California at Davis, Sacramento, California. Comprehensive Cancer Center, University of California at Davis, Sacramento, California.
| |
Collapse
|
44
|
Shilo A, Siegfried Z, Karni R. The role of splicing factors in deregulation of alternative splicing during oncogenesis and tumor progression. Mol Cell Oncol 2015; 2:e970955. [PMID: 27308389 PMCID: PMC4905244 DOI: 10.4161/23723548.2014.970955] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 09/13/2014] [Accepted: 09/15/2014] [Indexed: 04/18/2023]
Abstract
In past decades, cancer research has focused on genetic alterations that are detected in malignant tissues and contribute to the initiation and progression of cancer. These changes include mutations, copy number variations, and translocations. However, it is becoming increasingly clear that epigenetic changes, including alternative splicing, play a major role in cancer development and progression. There are relatively few studies on the contribution of alternative splicing and the splicing factors that regulate this process to cancer development and progression. Recently, multiple studies have revealed altered splicing patterns in cancers and several splicing factors were found to contribute to tumor development. Studies using high-throughput genomic analysis have identified mutations in components of the core splicing machinery and in splicing factors in several cancers. In this review, we will highlight new findings on the role of alternative splicing and its regulators in cancer initiation and progression, in addition to novel approaches to correct oncogenic splicing.
Collapse
Affiliation(s)
- Asaf Shilo
- Department of Biochemistry and Molecular Biology; Institute for Medical Research Israel-Canada; Hebrew University-Hadassah Medical School; Ein Karem, Jerusalem, Israel
| | - Zahava Siegfried
- Department of Biochemistry and Molecular Biology; Institute for Medical Research Israel-Canada; Hebrew University-Hadassah Medical School; Ein Karem, Jerusalem, Israel
| | - Rotem Karni
- Department of Biochemistry and Molecular Biology; Institute for Medical Research Israel-Canada; Hebrew University-Hadassah Medical School; Ein Karem, Jerusalem, Israel
- Correspondence to: Rotem Karni;
| |
Collapse
|
45
|
Du YJ, Hou YL, Hou WR. Nucleotide sequences of an important functional gene hnRNPA2/B1 from Ailuropoda melanoleuca and Ursus thibetanus mupinensis and its potential value in phylogenetic study. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2014; 33:18-30. [PMID: 24588753 DOI: 10.1080/15257770.2013.857028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The cDNA fragments of hnRNPA2/B1 were cloned from the giant panda and black bear using RT-PCR method, which were, respectively, 1029bp and 1026bp in length encoding 343 and 341 amino acids. Analysis indicated the cDNA cloned from the giant panda encoded variant B1 while the cDNA cloned from black bear encoded variant A2. Analyzing the hnRNPA2B1 peptide of the giant panda and black bear, 76 glycine residues and 86 glycine residues were, respectively, found, and moreover, most glycine are concentrated in the latter halves of the hnRNPA2B1 peptides. Functional sites prediction also showed many N-myristoylation sites existed in the glycine-rich domain, which is probably related to the role of telomere maintenance. From base bias and substitution analysis, we can conclude that the ORF of hnRNPA2/B1 biased G while hated C, and transition of the third site did not achieve the level of saturation. Orthology analysis indicated that both the nucleotide sequence and the deduced amino acid sequence showed high identity to other 26 hnRNPA2/B1 sequences from mammals and nonmammals reported. These sequences were used to construct phylogenetic trees employing the NJ method with 1000 bootstrap, and the obtained tree demonstrated similar topology with the classical systematics, which suggested the potential value of hnRNPA2/B1 in phylogenetic analysis. This report will be the first step to the study function of hnRNPA2/B1 in the giant panda and black bear, and will provide a scientific basis to disease surveillance, captive breeding, and conservation of the endangered species.
Collapse
Affiliation(s)
- Yu-jie Du
- a Biochemical Department , Basic Education College of Zhanjiang Normal University , ZhanJiang , China
| | | | | |
Collapse
|
46
|
Shilo A, Ben Hur V, Denichenko P, Stein I, Pikarsky E, Rauch J, Kolch W, Zender L, Karni R. Splicing factor hnRNP A2 activates the Ras-MAPK-ERK pathway by controlling A-Raf splicing in hepatocellular carcinoma development. RNA (NEW YORK, N.Y.) 2014; 20:505-15. [PMID: 24572810 PMCID: PMC3964912 DOI: 10.1261/rna.042259.113] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 01/22/2014] [Indexed: 06/03/2023]
Abstract
In recent years, it has become clear that splicing factors play a direct role in cancer development. We showed previously that splicing factors SRSF1, SRSF6, and hnRNP A2/B1 are up-regulated in several cancers and can act as oncogenes when up-regulated. Here we examined the role of splicing factors hnRNP A1/A1b and hnRNP A2/B1 in hepatocellular carcinoma (HCC). We show that the splicing factors hnRNP A1 and hnRNP A2 are up-regulated in HCC tumors derived from inflammation-induced liver cancer mouse model. Overexpression of hnRNP A1 or hnRNP A2, but not the splicing isoform hnRNP B1, induced tumor formation of immortalized liver progenitor cells, while knockdown of these proteins inhibited anchorage-independent growth and tumor growth of human liver cancer cell lines. In addition, we found that cells overexpressing hnRNP A2 showed constitutive activation of the Ras-MAPK-ERK pathway. In contrast, knockdown of hnRNP A2 inhibited the Ras-MAPK-ERK pathway and prevented ERK1/2 activation by EGF. Moreover, we found that hnRNP A2 regulates the splicing of A-Raf, reducing the production of a short dominant-negative isoform of A-Raf and elevating the full-length A-Raf transcript. Taken together, our data suggest that hnRNP A2 up-regulation in HCC induces an alternative splicing switch that down-regulates a dominant-negative isoform of A-Raf, leading to activation of the Raf-MEK-ERK pathway and cellular transformation.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B/physiology
- Alternative Splicing
- Animals
- Carcinoma, Hepatocellular/etiology
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Cell Transformation, Neoplastic/pathology
- Cells, Cultured
- Hepatocytes/metabolism
- Hepatocytes/pathology
- Heterogeneous Nuclear Ribonucleoprotein A1
- Heterogeneous-Nuclear Ribonucleoprotein Group A-B/antagonists & inhibitors
- Heterogeneous-Nuclear Ribonucleoprotein Group A-B/genetics
- Heterogeneous-Nuclear Ribonucleoprotein Group A-B/metabolism
- Humans
- Inflammation/complications
- Inflammation/genetics
- Inflammation/pathology
- Liver Neoplasms/etiology
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Mice
- Mice, Knockout
- Mice, Nude
- Mice, SCID
- Mitogen-Activated Protein Kinase 1/genetics
- Mitogen-Activated Protein Kinase 1/metabolism
- Mitogen-Activated Protein Kinase 3/genetics
- Mitogen-Activated Protein Kinase 3/metabolism
- Mitogen-Activated Protein Kinases/genetics
- Mitogen-Activated Protein Kinases/metabolism
- Proto-Oncogene Proteins A-raf/genetics
- RNA, Small Interfering/genetics
- Tumor Suppressor Protein p53/physiology
- Xenograft Model Antitumor Assays
- ras Proteins/genetics
- ras Proteins/metabolism
- ATP-Binding Cassette Sub-Family B Member 4
Collapse
Affiliation(s)
- Asaf Shilo
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada (IMRIC), Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Vered Ben Hur
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada (IMRIC), Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Polina Denichenko
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada (IMRIC), Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Ilan Stein
- Department of Immunology and Cancer Research, Institute for Medical Research Israel-Canada (IMRIC), Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
- Department of Pathology, Hebrew University-Hadassah Medical Center, Jerusalem 91120, Israel
| | - Eli Pikarsky
- Department of Immunology and Cancer Research, Institute for Medical Research Israel-Canada (IMRIC), Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
- Department of Pathology, Hebrew University-Hadassah Medical Center, Jerusalem 91120, Israel
| | - Jens Rauch
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland
| | - Walter Kolch
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland
| | - Lars Zender
- Division of Molecular Oncology of Solid Tumors, Department of Internal Medicine I, University Hospital Tuebingen, 72076 Tuebingen, Germany
| | - Rotem Karni
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada (IMRIC), Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| |
Collapse
|
47
|
Jean-Philippe J, Paz S, Lu ML, Caputi M. A truncated hnRNP A1 isoform, lacking the RGG-box RNA binding domain, can efficiently regulate HIV-1 splicing and replication. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:251-8. [PMID: 24530421 DOI: 10.1016/j.bbagrm.2014.02.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 01/31/2014] [Accepted: 02/05/2014] [Indexed: 10/25/2022]
Abstract
Heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) is one of the most abundant RNA binding proteins. hnRNP A1 is localized prevalently in the nucleus but it can relocate to the cytoplasm in response to specific stimuli shuttling between nuclear and cytoplasmic compartments. The cellular localization of this protein is regulated by a short C-terminus motif (M9) and other less defined sequences. The RNA binding specificity of this protein is dependent on multiple RNA binding domains (RBDs), which regulate its role in RNA processing and expression. hnRNP A1 plays multiple roles in gene expression by regulating the biogenesis and translation of messengers RNAs, the processing of miRNAs, affecting transcription and controlling telomere maintenance. The multiple functions of this protein correlate with diverse roles in genetic disease, cancer and the replication of viral pathogens. Utilizing a tagged hnRNP A1 deletion library we have shown that the three hnRNP A1 RBDs contribute to the prevalent nuclear distribution of the protein. Our data also indicate that a truncated form of the protein, lacking one of the RBDs, the RGG-box, can regulate splicing of a splicing reporter minigene and down-regulate replication of the HIV-1 virus with efficiency comparable to the wild-type protein. This functional hnRNP A1 deletion mutant is similar to a predicted hnRNP A1 isoform, which had not been previously experimentally characterized.
Collapse
Affiliation(s)
- Jacques Jean-Philippe
- Charles E. Schmidt College of Medicine, Florida Atlantic University, 777 Glades Rd, Boca Raton, FL 33431, USA
| | - Sean Paz
- Charles E. Schmidt College of Medicine, Florida Atlantic University, 777 Glades Rd, Boca Raton, FL 33431, USA
| | - Michael L Lu
- Charles E. Schmidt College of Medicine, Florida Atlantic University, 777 Glades Rd, Boca Raton, FL 33431, USA
| | - Massimo Caputi
- Charles E. Schmidt College of Medicine, Florida Atlantic University, 777 Glades Rd, Boca Raton, FL 33431, USA.
| |
Collapse
|
48
|
Chen J, Weiss WA. Alternative splicing in cancer: implications for biology and therapy. Oncogene 2014; 34:1-14. [PMID: 24441040 DOI: 10.1038/onc.2013.570] [Citation(s) in RCA: 194] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 11/26/2013] [Accepted: 11/26/2013] [Indexed: 12/11/2022]
Abstract
Alternative splicing has critical roles in normal development and can promote growth and survival in cancer. Aberrant splicing, the production of noncanonical and cancer-specific mRNA transcripts, can lead to loss-of-function in tumor suppressors or activation of oncogenes and cancer pathways. Emerging data suggest that aberrant splicing products and loss of canonically spliced variants correlate with stage and progression in malignancy. Here, we review the splicing landscape of TP53, BARD1 and AR to illuminate roles for alternative splicing in cancer. We also examine the intersection between alternative splicing pathways and novel therapeutic approaches.
Collapse
Affiliation(s)
- J Chen
- 1] Biomedical Sciences Graduate Program, University of California, San Francisco, CA, USA [2] Department of Neurology, University of California, San Francisco, CA, USA
| | - W A Weiss
- 1] Department of Neurology, University of California, San Francisco, CA, USA [2] Department of Neurological Surgery and Pediatrics, University of California, San Francisco, CA, USA
| |
Collapse
|
49
|
Romero-Garcia S, Prado-Garcia H, Lopez-Gonzalez JS. Transcriptional analysis of hnRNPA0, A1, A2, B1, and A3 in lung cancer cell lines in response to acidosis, hypoxia, and serum deprivation conditions. Exp Lung Res 2013; 40:12-21. [DOI: 10.3109/01902148.2013.856049] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
50
|
Phueaouan T, Chaiyawat P, Netsirisawan P, Chokchaichamnankit D, Punyarit P, Srisomsap C, Svasti J, Champattanachai V. Aberrant O-GlcNAc-modified proteins expressed in primary colorectal cancer. Oncol Rep 2013; 30:2929-36. [PMID: 24126823 DOI: 10.3892/or.2013.2794] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 08/28/2013] [Indexed: 11/05/2022] Open
Abstract
O-GlcNAcylation is a post-translational modification of serine and threonine residues which is dynamically regulated by 2 enzymes; O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA) that catalyze the addition and removal of a single N-acetylglucosamine (GlcNAc) molecule, respectively. This modification is thought to be a nutrient sensor in highly proliferating cells via the hexosamine biosynthesis pathway, a minor branch of glycolysis. Although emerging evidence suggests that O-GlcNAc modification is associated with many types of cancer, identification of O-GlcNAc-modified proteins and their role in cancer remain unexplored. In the present study, we demonstrated that O-GlcNAcylation is increased in primary colorectal cancer tissues, and that this augmentation is associated with an increased expression of OGT levels. Using 2-dimensional O-GlcNAc immunoblotting and LC-MS/MS analysis, 16 proteins were successfully identified and 8 proteins showed an increase in O-GlcNAcylation, including cytokeratin 18, heterogeneous nuclear ribonucleoproteins A2/B1 (hnRNP A2/B1), hnRNP H, annexin A2, annexin A7, laminin-binding protein, α-tubulin and protein DJ-1. Among these identified proteins, annexin A2 was further confirmed to show overexpression of O-GlcNAc in all cancer samples. The results, therefore, indicate that aberrant O-GlcNAcylation of proteins is associated with colorectal cancer and that identification of O-GlcNAc-modified proteins may provide novel biomarkers of cancer.
Collapse
Affiliation(s)
- Thanong Phueaouan
- Applied Biological Sciences Program, Chulabhorn Graduate Institute, Bangkok, Thailand
| | | | | | | | | | | | | | | |
Collapse
|