1
|
Gadre S, M M, Chakraborty G, Rayrikar A, Paul S, Patra C, Patra M. Development of a Highly In Vivo Efficacious Dual Antitumor and Antiangiogenic Organoiridium Complex as a Potential Anti-Lung Cancer Agent. J Med Chem 2023; 66:13481-13500. [PMID: 37784224 DOI: 10.1021/acs.jmedchem.3c00704] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
While the phenomenal clinical success of blockbuster platinum (Pt) drugs is highly encouraging, the inherent and acquired resistance and dose-limiting side effects severely limit their clinical application. To find a better alternative with translational potential, we synthesized a library of six organo-IrIII half-sandwich [(η5-CpX)Ir(N∧N)Cl]+-type complexes. In vitro screening identified two lead candidates [(η5-CpXPh)Ir(Ph2Phen)Cl]+ (5, CpXPh = tetramethyl-phenyl-cyclopentadienyl and Ph2Phen = 4,7-diphenyl-1,10-phenanthroline) and [(η5-CpXBiPh)Ir(Ph2Phen)Cl]+ (6, CpXBiPh = tetramethyl-biphenyl-cyclopentadienyl) with nanomolar IC50 values. Both 5 and 6 efficiently overcame Pt resistance and presented excellent cancer cell selectivity in vitro. Potent antiangiogenic properties of 6 were demonstrated in the zebrafish model. Satisfyingly, 6 and its nanoliposome Lipo-6 presented considerably higher in vivo antitumor efficacy as compared to cisplatin, as well as earlier reported IrIII half-sandwich complexes in mice bearing the A549 non-small lung cancer xenograft. In particular, complex 6 is the first example of this class that exerted dual in vivo antiangiogenic and antitumor properties.
Collapse
Affiliation(s)
- Shubhankar Gadre
- Medicinal Chemistry and Cell Biology Laboratory, Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai, Maharashtra 400005, India
| | - Manikandan M
- Medicinal Chemistry and Cell Biology Laboratory, Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai, Maharashtra 400005, India
| | - Gourav Chakraborty
- Department of Developmental Biology, Agharkar Research Institute, G G Agarkar Road, Pune, Maharashtra 411004, India
| | - Amey Rayrikar
- Department of Developmental Biology, Agharkar Research Institute, G G Agarkar Road, Pune, Maharashtra 411004, India
| | - Subhadeep Paul
- Medicinal Chemistry and Cell Biology Laboratory, Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai, Maharashtra 400005, India
| | - Chinmoy Patra
- Department of Developmental Biology, Agharkar Research Institute, G G Agarkar Road, Pune, Maharashtra 411004, India
| | - Malay Patra
- Medicinal Chemistry and Cell Biology Laboratory, Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai, Maharashtra 400005, India
| |
Collapse
|
2
|
Papadakos SP, Dedes N, Gkolemi N, Machairas N, Theocharis S. The EPH/Ephrin System in Pancreatic Ductal Adenocarcinoma (PDAC): From Pathogenesis to Treatment. Int J Mol Sci 2023; 24:3015. [PMID: 36769332 PMCID: PMC9917762 DOI: 10.3390/ijms24033015] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/09/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a major concern for health care systems worldwide, since its mortality remains unaltered despite the surge in cutting-edge science. The EPH/ephrin signaling system was first investigated in the 1980s. EPH/ephrins have been shown to exert bidirectional signaling and cell-to-cell communication, influencing cellular morphology, adhesion, migration and invasion. Recent studies have highlighted the critical role of the EPH/ephrin system in various physiologic processes, including cellular proliferation, survival, synaptic plasticity and angiogenesis. Thus, it has become evident that the EPH/ephrin signaling system may have compelling effects on cell homeostasis that contribute to carcinogenesis. In particular, the EPH/ephrins have an impact on pancreatic morphogenesis and development, whereas several EPHs and ephrins are altered in PDAC. Several clinical and preclinical studies have attempted to elucidate the effects of the EPH/ephrin pathway, with multilayered effects on PDAC development. These studies have highlighted its highly promising role in the diagnosis, prognosis and therapeutic management of PDAC. The aim of this review is to explore the obscure aspects of the EPH/ephrin system concerning the development, physiology and homeostasis of the pancreas.
Collapse
Affiliation(s)
- Stavros P. Papadakos
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Nikolaos Dedes
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Nikolina Gkolemi
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Nikolaos Machairas
- Second Department of Propaedeutic Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, 11527 Athens, Greece
| | - Stamatios Theocharis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
3
|
Zalpoor H, Aziziyan F, Liaghat M, Bakhtiyari M, Akbari A, Nabi-Afjadi M, Forghaniesfidvajani R, Rezaei N. The roles of metabolic profiles and intracellular signaling pathways of tumor microenvironment cells in angiogenesis of solid tumors. Cell Commun Signal 2022; 20:186. [PMID: 36419156 PMCID: PMC9684800 DOI: 10.1186/s12964-022-00951-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/06/2022] [Indexed: 11/27/2022] Open
Abstract
Innate and adaptive immune cells patrol and survey throughout the human body and sometimes reside in the tumor microenvironment (TME) with a variety of cell types and nutrients that may differ from those in which they developed. The metabolic pathways and metabolites of immune cells are rooted in cell physiology, and not only provide nutrients and energy for cell growth and survival but also influencing cell differentiation and effector functions. Nowadays, there is a growing awareness that metabolic processes occurring in cancer cells can affect immune cell function and lead to tumor immune evasion and angiogenesis. In order to safely treat cancer patients and prevent immune checkpoint blockade-induced toxicities and autoimmunity, we suggest using anti-angiogenic drugs solely or combined with Immune checkpoint blockers (ICBs) to boost the safety and effectiveness of cancer therapy. As a consequence, there is significant and escalating attention to discovering techniques that target metabolism as a new method of cancer therapy. In this review, a summary of immune-metabolic processes and their potential role in the stimulation of intracellular signaling in TME cells that lead to tumor angiogenesis, and therapeutic applications is provided. Video abstract.
Collapse
Affiliation(s)
- Hamidreza Zalpoor
- grid.412571.40000 0000 8819 4698Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran ,grid.510410.10000 0004 8010 4431Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Fatemeh Aziziyan
- grid.510410.10000 0004 8010 4431Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran ,grid.412266.50000 0001 1781 3962Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mahsa Liaghat
- grid.510410.10000 0004 8010 4431Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran ,Department of Medical Laboratory Sciences, Faculty of Medical Sciences, Islamic Azad University, Kazerun Branch, Kazerun, Iran
| | - Maryam Bakhtiyari
- grid.510410.10000 0004 8010 4431Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran ,grid.412606.70000 0004 0405 433XDepartment of Medical Laboratory Sciences, Faculty of Allied Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Abdullatif Akbari
- grid.412571.40000 0000 8819 4698Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran ,grid.510410.10000 0004 8010 4431Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Mohsen Nabi-Afjadi
- grid.412266.50000 0001 1781 3962Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Razieh Forghaniesfidvajani
- grid.510410.10000 0004 8010 4431Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- grid.510410.10000 0004 8010 4431Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran ,grid.411705.60000 0001 0166 0922Research Center for Immunodeficiencies, Children’s Medical Center, Tehran University of Medical Sciences, Dr. Gharib St, Keshavarz Blvd, Tehran, Iran ,grid.411705.60000 0001 0166 0922Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Bhatia S, Nguyen D, Darragh LB, Van Court B, Sharma J, Knitz MW, Piper M, Bukkapatnam S, Gadwa J, Bickett TE, Bhuvane S, Corbo S, Wu B, Lee Y, Fujita M, Joshi M, Heasley LE, Ferris RL, Rodriguez O, Albanese C, Kapoor M, Pasquale EB, Karam SD. EphB4 and ephrinB2 act in opposition in the head and neck tumor microenvironment. Nat Commun 2022; 13:3535. [PMID: 35725568 PMCID: PMC9209511 DOI: 10.1038/s41467-022-31124-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/06/2022] [Indexed: 01/14/2023] Open
Abstract
Differential outcomes of EphB4-ephrinB2 signaling offers formidable challenge for the development of cancer therapeutics. Here, we interrogate the effects of targeting EphB4 and ephrinB2 in head and neck squamous cell carcinoma (HNSCC) and within its microenvironment using genetically engineered mice, recombinant constructs, pharmacologic agonists and antagonists. We observe that manipulating the EphB4 intracellular domain on cancer cells accelerates tumor growth and angiogenesis. EphB4 cancer cell loss also triggers compensatory upregulation of EphA4 and T regulatory cells (Tregs) influx and their targeting results in reversal of accelerated tumor growth mediated by EphB4 knockdown. EphrinB2 knockout on cancer cells and vasculature, on the other hand, results in maximal tumor reduction and vascular normalization. We report that EphB4 agonism provides no additional anti-tumoral benefit in the absence of ephrinB2. These results identify ephrinB2 as a tumor promoter and its receptor, EphB4, as a tumor suppressor in HNSCC, presenting opportunities for rational drug design.
Collapse
Affiliation(s)
- Shilpa Bhatia
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Diemmy Nguyen
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Laurel B Darragh
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Benjamin Van Court
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Jaspreet Sharma
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Michael W Knitz
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Miles Piper
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Sanjana Bukkapatnam
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Jacob Gadwa
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Thomas E Bickett
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Shiv Bhuvane
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Sophia Corbo
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Brian Wu
- Krembil Research Institute, University Health Network and University of Toronto, Toronto, ON, Canada
| | - Yichien Lee
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Mayumi Fujita
- Department of Dermatology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Molishree Joshi
- Department of Pharmacology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Lynn E Heasley
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Robert L Ferris
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Olga Rodriguez
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Christopher Albanese
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Mohit Kapoor
- Krembil Research Institute, University Health Network and University of Toronto, Toronto, ON, Canada
| | - Elena B Pasquale
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Sana D Karam
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
5
|
Tyrosine Phosphoproteomics of Patient-Derived Xenografts Reveals Ephrin Type-B Receptor 4 Tyrosine Kinase as a Therapeutic Target in Pancreatic Cancer. Cancers (Basel) 2021; 13:cancers13143404. [PMID: 34298619 PMCID: PMC8303779 DOI: 10.3390/cancers13143404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/04/2021] [Accepted: 06/28/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Pancreatic cancer is one of the deadliest solid malignancies. Pancreatic ductal adenocarcinoma accounts for 90% of pancreatic cancer cases with minimal response to traditional chemotherapies. Protein tyrosine kinases have been shown to be hyperactivated in cancers and thus can serve as therapeutic targets. Patient-derived tumor xenografts (PDXs) in animal models such as mice are an appropriate resource to identify such activated kinases. PDXs models are excellent for the identification of therapeutic targets as compared to cell line models as they better reflect an in vivo environment. We identified ephrin type-B receptor 4 (EphB4) as hyperactivated in PDXs derived from pancreatic ductal adenocarcinoma. Abstract Pancreatic ductal adenocarcinoma is a recalcitrant tumor with minimal response to conventional chemotherapeutic approaches. Oncogenic signaling by activated tyrosine kinases has been implicated in cancers resulting in activation of diverse effector signaling pathways. Thus, the discovery of aberrantly activated tyrosine kinases is of great interest in developing novel therapeutic strategies in the treatment and management of pancreatic cancer. Patient-derived tumor xenografts (PDXs) in mice serve as potentially valuable preclinical models as they maintain the histological and molecular heterogeneity of the original human tumor. Here, we employed high-resolution mass spectrometry combined with immunoaffinity purification using anti-phosphotyrosine antibodies to profile tyrosine phosphoproteome across 13 pancreatic ductal adenocarcinoma PDX models. This analysis resulted in the identification of 1199 tyrosine-phosphorylated sites mapping to 704 proteins. The mass spectrometric analysis revealed widespread and heterogeneous activation of both receptor and non-receptor tyrosine kinases. Preclinical studies confirmed ephrin type-B receptor 4 (EphB4) as a potential therapeutic target based on the efficacy of human serum albumin-conjugated soluble EphB4 in mice bearing orthotopic xenografts. Immunohistochemistry-based validation using tissue microarrays from 346 patients with PDAC showed significant expression of EphB4 in >70% of patients. In summary, we present a comprehensive landscape of tyrosine phosphoproteome with EphB4 as a promising therapeutic target in pancreatic ductal adenocarcinoma.
Collapse
|
6
|
Kubo H, Yagyu S, Nakamura K, Yamashima K, Tomida A, Kikuchi K, Iehara T, Nakazawa Y, Hosoi H. Development of non-viral, ligand-dependent, EPHB4-specific chimeric antigen receptor T cells for treatment of rhabdomyosarcoma. MOLECULAR THERAPY-ONCOLYTICS 2021; 20:646-658. [PMID: 33816783 PMCID: PMC7985479 DOI: 10.1016/j.omto.2021.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 03/01/2021] [Indexed: 02/06/2023]
Abstract
Ephrin type-B receptor 4 (EPHB4), expressed in tumors including rhabdomyosarcoma, is a suitable target for chimeric antigen receptor (CAR)-T cells. Ligand-independent activation of EPHB4 causes cell proliferation and malignant transformation in rhabdomyosarcoma, whereas ligand-dependent stimulation of EPHB4 induces apoptosis in rhabdomyosarcoma. Therefore, we hypothesized that ligand-based, EPHB4-specific CAR-T cells may kill rhabdomyosarcoma cells without stimulating downstream cell proliferation mechanisms. We developed novel CAR-T cells by targeting EPHB4 via EPHRIN B2, a natural ligand of EPHB4. The generation of EPHB4-CAR-T cells via piggyBac (PB) transposon-based gene transfer resulted in sufficient T cell expansion and CAR positivity (78.5% ± 5.9%). PB-EPHB4-CAR-T cells displayed a dominant stem cell memory fraction (59.4% ± 7.2%) as well as low PD-1 expression (0.60% ± 0.21%) after 14 days of expansion. The PB-EPHB4-CAR-T cells inhibited EPHB4-positive tumor cells without activating cell proliferation downstream of EPHB4, even after multiple tumor re-challenges and suppressed tumor growth in xenograft-bearing mice. Therefore, PB-EPHB4-CAR-T cells possess a memory-rich fraction without early T cell exhaustion and show potential as promising therapeutic agents for treating rhabdomyosarcoma and other EPHB4-positive tumors.
Collapse
Affiliation(s)
- Hiroshi Kubo
- Department of Pediatrics, Graduate School of Medicine, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Shigeki Yagyu
- Department of Pediatrics, Graduate School of Medicine, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Kayoko Nakamura
- Department of Pediatrics, Shinshu University School of Medicine, Matsumoto, Japan
| | - Kumiko Yamashima
- Department of Pediatrics, Graduate School of Medicine, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Akimasa Tomida
- Department of Pediatrics, Graduate School of Medicine, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Ken Kikuchi
- Department of Pediatrics, Graduate School of Medicine, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Tomoko Iehara
- Department of Pediatrics, Graduate School of Medicine, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Yozo Nakazawa
- Department of Pediatrics, Shinshu University School of Medicine, Matsumoto, Japan.,Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Matsumoto, Japan
| | - Hajime Hosoi
- Department of Pediatrics, Graduate School of Medicine, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| |
Collapse
|
7
|
Wan X, Saban DV, Kim SN, Weng Y, Dammann P, Keyvani K, Sure U, Zhu Y. PDCD10-Deficiency Promotes Malignant Behaviors and Tumor Growth via Triggering EphB4 Kinase Activity in Glioblastoma. Front Oncol 2020; 10:1377. [PMID: 32850441 PMCID: PMC7427606 DOI: 10.3389/fonc.2020.01377] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/30/2020] [Indexed: 12/18/2022] Open
Abstract
We previously reported an angiogenic and tumor-suppressor-like function of programmed cell death 10 (PDCD10) in glioblastoma (GBM). However, the underlying mechanism remains to be elucidated. We hypothesized that loss of PDCD10 activates GBM cells and tumor progression via EphB4. To this end, PDCD10 was knocked down in U87 and T98g by lentiviral mediated shRNA transduction (shPDCD10). GBM cell phenotype in vitro and tumor growth in a mouse xenograft model were investigated in presence or absence of the treatment with a specific EphB4 kinase inhibitor NVP-BHG712 (NVP). We demonstrated that knockdown of PDCD10 in GBM cells significantly upregulated the mRNA and protein expression of EphB4 accompanied by the activation of Erk1/2. EphB4 kinase activity, reflected by phospho-EphB4, significantly increased in shPDCD10 GBM cells, and in tumors derived from shPDCD10 GBM xenografts, which was abolished by the treatment with NVP. Furthermore, NVP treatment significantly suppressed PDCD10-knockdown mediated aggressive GBM cell phenotype in vitro and extensive tumor cell proliferation, the tumor neo-angiogenesis, and a quick progression of tumor formation in vivo. In summary, loss of PDCD10 activates GBM cells and promotes tumor growth via triggering EphB4. Targeting EphB4 might be an effective strategy particularly for the personalized therapy in GBM patients with PDCD10-deficiency.
Collapse
Affiliation(s)
- Xueyan Wan
- Department of Neurosurgery, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dino Vitali Saban
- Department of Neurosurgery, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Su Na Kim
- Department of Neurosurgery, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Yinlun Weng
- Department of Neurosurgery, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Philipp Dammann
- Department of Neurosurgery, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Kathy Keyvani
- Institute of Neuropathology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ulrich Sure
- Department of Neurosurgery, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Yuan Zhu
- Department of Neurosurgery, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
8
|
Xiu MX, Liu YM, Kuang BH. The Role of DLLs in Cancer: A Novel Therapeutic Target. Onco Targets Ther 2020; 13:3881-3901. [PMID: 32440154 PMCID: PMC7213894 DOI: 10.2147/ott.s244860] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 04/06/2020] [Indexed: 12/18/2022] Open
Abstract
Delta-like ligands (DLLs) control Notch signaling. DLL1, DLL3 and DLL4 are frequently deregulated in cancer and influence tumor growth, the tumor vasculature and tumor immunity, which play different roles in cancer progression. DLLs have attracted intense research interest as anti-cancer therapeutics. In this review, we discuss the role of DLLs in cancer and summarize the emerging DLL-relevant targeting methods to aid future studies.
Collapse
Affiliation(s)
- Meng-Xi Xiu
- Medical School of Nanchang University, Nanchang, People's Republic of China
| | - Yuan-Meng Liu
- Medical School of Nanchang University, Nanchang, People's Republic of China
| | - Bo-Hai Kuang
- Medical School of Nanchang University, Nanchang, People's Republic of China
| |
Collapse
|
9
|
Targeting Forward and Reverse EphB4/EFNB2 Signaling by a Peptide with Dual Functions. Sci Rep 2020; 10:520. [PMID: 31949258 PMCID: PMC6965176 DOI: 10.1038/s41598-020-57477-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 11/19/2019] [Indexed: 11/09/2022] Open
Abstract
The tyrosine kinase receptor EphB4 is frequently overexpressed in ovarian and other solid tumors and is involved in interactions between tumor cells and the tumor microenvironment, contributing to metastasis. Trans-interaction between EphB4 and its membrane-bound ligand ephrin B2 (EFNB2) mediates bi-directional signaling: forward EFNB2-to-EphB4 signaling suppresses tumor cell proliferation, while reverse EphB4-to-EFNB2 signaling stimulates the invasive and angiogenic properties of endothelial cells. Currently, no small molecule–based, dual-function, EphB4-binding peptides are available. Here, we report our discovery of a bi-directional ephrin agonist peptide, BIDEN-AP which, when selectively internalized via receptor-mediated endocytosis, suppressed invasion and epithelial-mesenchymal transition of ovarian cancer cells. BIDEN-AP also inhibited endothelial migration and tube formation. In vivo, BIDEN-AP and its nanoconjugate CCPM-BIDEN-AP significantly reduced growth of orthotopic ovarian tumors, with CCPM-BIDEN-AP displaying greater antitumor potency than BIDEN-AP. Both BIDEN-AP and CCPM-BIDEN-AP compromised angiogenesis by downregulating epithelial-mesenchymal transition and angiogenic pathways. Thus, we report a novel EphB4-based therapeutic approach against ovarian cancer.
Collapse
|
10
|
Li J, Sun Y, Wang X, Wang J, Zhu Y. The expressions of EphB4 and ephrinB2 in lung adenocarcinomas: a high level of the EphB4 protein is associated with lymph node metastasis. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2019; 12:3447-3452. [PMID: 31934189 PMCID: PMC6949841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 07/26/2019] [Indexed: 06/10/2023]
Abstract
Eph tyrosine kinase receptors and their ephrin ligands are involved in normal development and tumorigenesis. Eph receptors are frequently over expressed in a wide variety of human malignant tumors, being associated with tumor growth, invasion, angiogenesis, and metastasis. This study aimed to evaluate the clinical significance of EphB4 and its ligand of ephrinB2 protein expressions in human lung adenocarcinomas. EphB4 and ephrinB2 protein expressions were assessed immunohistochemically on paraffin embedded tissues obtained from 93 patients with lung adenocarcinoma. Fifty-one out of 93 (54.8%) specimens were negative for EphB4 expression, and 42 out of 93 (45.2%) were positive for EphB4 expression. EphrinB2 expression was consistently negative in all tissues. EphB4 expression was significantly associated with tumor differentiation (P = 0.001), lymph node metastasis (P = 0.021), and Ki67 (P = 0.012). No significant relationship was found between EphB4 expression and gender, age, or ALK mutation. Our data show that EphB4 is differentially expressed in lung adenocarcinoma tissues. A high level of EphB4 protein expression was associated with lymph node metastasis in lung adenocarcinoma.
Collapse
Affiliation(s)
- Ji Li
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow UniversitySuzhou 215006, Jiangsu, China
- Department of Respiratory Medicine, The Affiliated Jiangyin Hospital of Southeast University Medical College163 Shoushan Road, Jiangyin 214400, China
| | - Yuejun Sun
- Department of Pathology, The Affiliated Jiangyin Hospital of Southeast University Medical College163 Shoushan Road, Jiangyin 214400, China
| | - Xiaoxia Wang
- Department of Pathology, Jinling Hospital, Nanjing University School of MedicineZhong Shan Dong Lu 305, Nanjing 210002, China
| | - Jiandong Wang
- Department of Pathology, Jinling Hospital, Nanjing University School of MedicineZhong Shan Dong Lu 305, Nanjing 210002, China
| | - Yehang Zhu
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow UniversitySuzhou 215006, Jiangsu, China
| |
Collapse
|
11
|
Metastasis is impaired by endothelial-specific Dll4 loss-of-function through inhibition of epithelial-to-mesenchymal transition and reduction of cancer stem cells and circulating tumor cells. Clin Exp Metastasis 2019; 36:365-380. [PMID: 31119445 DOI: 10.1007/s10585-019-09973-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 05/13/2019] [Indexed: 01/09/2023]
Abstract
Systemic inhibition of Dll4 has been shown to thoroughly reduce cancer metastasis. The exact cause of this effect and whether it is endothelial mediated remains to be clarified. Therefore, we proposed to analyze the impact of endothelial Dll4 loss-of-function on metastasis induction on three early steps of the metastatic process, regulation of epithelial-to-mesenchymal transition (EMT), cancer stem cell (CSC) frequency and circulating tumor cell (CTC) number. For this, Lewis Lung Carcinoma (LLC) cells were used to model mouse tumor metastasis in vivo, by subcutaneous transplantation into endothelial-specific Dll4 loss-of-function mice. We observed that endothelial-specific Dll4 loss-of-function is responsible for the tumor vascular regression that leads to the reduction of tumor burden. It induces an increase in tumoral blood vessel density, but the neovessels are poorly perfused, with increased leakage and reduced perivascular maturation. Unexpectedly, although hypoxia was increased in the tumor, the number and burden of macro-metastasis was significantly reduced. This is likely to be a consequence of the observed reduction in both EMT and CSC numbers caused by the endothelial-specific Dll4 loss-of-function. This multifactorial context may explain the concomitantly observed reduction of the circulating tumor cell count. Furthermore, our results suggest that endothelial Dll4/Notch-function mediates tumor hypoxia-driven increase of EMT. Therefore, it appears that endothelial Dll4 may constitute a promising target to prevent metastasis.
Collapse
|
12
|
Huang Q, Li J, Zheng J, Wei A. The Carcinogenic Role of the Notch Signaling Pathway in the Development of Hepatocellular Carcinoma. J Cancer 2019; 10:1570-1579. [PMID: 31031867 PMCID: PMC6485212 DOI: 10.7150/jca.26847] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 01/12/2019] [Indexed: 12/11/2022] Open
Abstract
The Notch signaling pathway, known to be a highly conserved signaling pathway in embryonic development and adult tissue homeostasis, participates in cell fate decisions that include cellular differentiation, cell survival and cell death. However, other studies have shown that aberrant in Notch signaling is pro-tumorigenic, particularly in hepatocellular carcinoma (HCC). HCC is one of the most common malignant tumors in the world and has a high mortality rate. Growing evidence supports that Notch signaling plays a critical role in the development of HCC by regulating the tumor microenvironment, tumorigenesis, progression, angiogenesis, invasion and metastasis. Accordingly, overexpression of Notch is closely associated with poor prognosis in HCC. In this review, we focus on the pro-tumorigenic role of Notch signaling in HCC, summarize the current knowledge of Notch signaling and its role in HCC development, and outline the therapeutic potential of targeting Notch signaling in HCC.
Collapse
Affiliation(s)
- Qinfeng Huang
- Graduate School, Hunan University of Chinese Medicine, Changsha 410208, Hunan, China
| | - Junhong Li
- The First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning 530023, Guangxi, China
| | - Jinghui Zheng
- Discipline Construction Office, Guangxi University of Chinese Medicine, Nanning 530200, Guangxi, China
| | - Ailing Wei
- The First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning 530023, Guangxi, China
| |
Collapse
|
13
|
Boardman R, Pang V, Malhi N, Lynch AP, Leach L, Benest AV, Bates DO, Machado MJC. Activation of Notch signaling by soluble Dll4 decreases vascular permeability via a cAMP/PKA-dependent pathway. Am J Physiol Heart Circ Physiol 2019; 316:H1065-H1075. [PMID: 30681366 DOI: 10.1152/ajpheart.00610.2018] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The Notch ligand delta-like ligand 4 (Dll4), upregulated by VEGF, is a key regulator of vessel morphogenesis and function, controlling tip and stalk cell selection during sprouting angiogenesis. Inhibition of Dll4 results in hypersprouting, nonfunctional, poorly perfused vessels, suggesting a role for Dll4 in the formation of mature, reactive, functional vessels, with low permeability and able to restrict fluid and solute exchange. We tested the hypothesis that Dll4 controls transvascular fluid exchange. A recombinant protein expressing only the extracellular portion of Dll4 [soluble Dll4 (sDll4)] induced Notch signaling in endothelial cells (ECs), resulting in increased expression of vascular-endothelial cadherin, but not the tight junctional protein zonula occludens 1, at intercellular junctions. sDll4 decreased the permeability of FITC-labeled albumin across EC monolayers, and this effect was abrogated by coculture with the γ-secretase inhibitor N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester. One of the known molecular effectors responsible for strengthening EC-EC contacts is PKA, so we tested the effect of modulation of PKA on the sDll4-mediated reduction of permeability. Inhibition of PKA reversed the sDll4-mediated reduction in permeability and reduced expression of the Notch target gene Hey1. Knockdown of PKA reduced sDLL4-mediated vascular-endothelial cadherin junctional expression. sDll4 also caused a significant decrease in the hydraulic conductivity of rat mesenteric microvessels in vivo. This reduction was abolished upon coperfusion with the PKA inhibitor H89 dihydrochloride. These results indicate that Dll4 signaling through Notch activation acts through a cAMP/PKA pathway upon intercellular adherens junctions, but not tight junctions, to regulate endothelial barrier function. NEW & NOTEWORTHY Notch signaling reduces vascular permeability through stimulation of cAMP-dependent protein kinase A.
Collapse
Affiliation(s)
- Rachel Boardman
- Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, Queen's Medical Centre, University of Nottingham , Nottingham , United Kingdom
| | - Vincent Pang
- Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, Queen's Medical Centre, University of Nottingham , Nottingham , United Kingdom
| | - Naseeb Malhi
- Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, Queen's Medical Centre, University of Nottingham , Nottingham , United Kingdom
| | - Amy P Lynch
- Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, Queen's Medical Centre, University of Nottingham , Nottingham , United Kingdom
| | - Lopa Leach
- Division of Physiology Pharmacology and Neuroscience, School of Life Sciences, The Medical School , Nottingham , United Kingdom
| | - Andrew V Benest
- Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, Queen's Medical Centre, University of Nottingham , Nottingham , United Kingdom.,The Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, Midlands, United Kingdom
| | - David O Bates
- Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, Queen's Medical Centre, University of Nottingham , Nottingham , United Kingdom.,The Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, Midlands, United Kingdom
| | - Maria J C Machado
- Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, Queen's Medical Centre, University of Nottingham , Nottingham , United Kingdom
| |
Collapse
|
14
|
Jaud M, Philippe C, Van Den Berghe L, Ségura C, Mazzolini L, Pyronnet S, Laurell H, Touriol C. The PERK Branch of the Unfolded Protein Response Promotes DLL4 Expression by Activating an Alternative Translation Mechanism. Cancers (Basel) 2019; 11:cancers11020142. [PMID: 30691003 PMCID: PMC6406545 DOI: 10.3390/cancers11020142] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/15/2019] [Accepted: 01/22/2019] [Indexed: 12/23/2022] Open
Abstract
Delta-like 4 (DLL4) is a pivotal endothelium specific Notch ligand that has been shown to function as a regulating factor during physiological and pathological angiogenesis. DLL4 functions as a negative regulator of angiogenic branching and sprouting. Interestingly, Dll4 is with Vegf-a one of the few examples of haplo-insufficiency, resulting in obvious vascular abnormalities and in embryonic lethality. These striking phenotypes are a proof of concept of the crucial role played by the bioavailability of VEGF and DLL4 during vessel patterning and that there must be a very fine-tuning of DLL4 expression level. However, to date the expression regulation of this factor was poorly studied. In this study, we showed that the DLL4 5′-UTR harbors an Internal Ribosomal Entry Site (IRES) that, in contrast to cap-dependent translation, was efficiently utilized in cells subjected to several stresses including hypoxia and endoplasmic reticulum stress (ER stress). We identified PERK, a kinase activated by ER stress, as the driver of DLL4 IRES-mediated translation, and hnRNP-A1 as an IRES-Trans-Acting Factor (ITAF) participating in the IRES-dependent translation of DLL4 during endoplasmic reticulum stress. The presence of a stress responsive internal ribosome entry site in the DLL4 msRNA suggests that the process of alternative translation initiation, by controlling the expression of this factor, could have a crucial role in the control of endothelial tip cell function.
Collapse
Affiliation(s)
- Manon Jaud
- Inserm UMR1037, CRCT (Cancer Research Center of Toulouse), CNRS ERL5294, Université Toulouse III Paul-Sabatier, F-31037 Toulouse, France.
| | - Céline Philippe
- Inserm UMR1037, CRCT (Cancer Research Center of Toulouse), CNRS ERL5294, Université Toulouse III Paul-Sabatier, F-31037 Toulouse, France.
| | - Loic Van Den Berghe
- Inserm UMR1037, CRCT (Cancer Research Center of Toulouse), CNRS ERL5294, Université Toulouse III Paul-Sabatier, F-31037 Toulouse, France.
- Vectorology Plateform, Technological pole CRCT, F-31037 Toulouse, France.
| | - Christèle Ségura
- Inserm UMR1037, CRCT (Cancer Research Center of Toulouse), CNRS ERL5294, Université Toulouse III Paul-Sabatier, F-31037 Toulouse, France.
- Vectorology Plateform, Technological pole CRCT, F-31037 Toulouse, France.
| | - Laurent Mazzolini
- Inserm UMR1037, CRCT (Cancer Research Center of Toulouse), CNRS ERL5294, Université Toulouse III Paul-Sabatier, F-31037 Toulouse, France.
| | - Stéphane Pyronnet
- Inserm UMR1037, CRCT (Cancer Research Center of Toulouse), CNRS ERL5294, Université Toulouse III Paul-Sabatier, F-31037 Toulouse, France.
| | - Henrik Laurell
- Inserm UMR1048, I2MC (Institut des Maladies Métaboliques et Cardiovasculaires), Toulouse, France.
| | - Christian Touriol
- Inserm UMR1037, CRCT (Cancer Research Center of Toulouse), CNRS ERL5294, Université Toulouse III Paul-Sabatier, F-31037 Toulouse, France.
| |
Collapse
|
15
|
Sun W, Li J, Li Y, Zheng J, Zhang X, Huang X, Li S. Gamma-Secretase Inhibitor, DAPT, Prevents the Development of Retinopathy of Prematurity in a Rat Model by Regulating the Delta-Like Ligand 4/Notch Homolog-1 (DLL4/Notch-1) Pathway. Med Sci Monit 2019; 25:492-499. [PMID: 30652694 PMCID: PMC6345111 DOI: 10.12659/msm.913828] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background Retinopathy of prematurity (ROP), or retrolental fibroplasia, affects premature infants who have undergone intensive care with oxygen therapy. This study aimed to investigate the inhibitory effect of the gamma-secretase inhibitor, DAPT, on neovascularization and its mechanism in a rat model of ROP. Material/Methods Sixty neonatal Sprague-Dawley (SD) rats included the control group (n=20), the model group (n=20), and the DAPT-treated group (n=20). The rat model of ROP was established using repeat cycles of oxygen inhalation. Enzyme-linked immunosorbent assay (ELISA) measured serum levels of vascular endothelial growth factor (VEGF), VEGF receptor-1 (VEGFR-1), and VEGFR-2. Histology of the retinal tissue included immunohistochemistry for the expression of Notch homolog-1 (Notch-1) and delta-like ligand 4 (DLL4). Retinal mRNA levels of DLL4, Notch-1, VEGF, VEGFR-1, and VEGFR-2 were evaluated with quantitative real-time polymerase chain reaction (qRT-PCR). Results The rat model of ROP showed increased serum levels of VEGF, VEGFR-1, and VEGFR-2 compared with the control group, which were decreased in the DAPT group. Histology of the retinal tissue in the model group showed degeneration of the retinal ganglion cells, and immunohistochemistry showed increased expression of Notch-1 and DLL4 compared with the control group and DAPT group. Retinal tissue in the model group had increased mRNA levels of DLL4, Notch-1, VEGF, VEGFR-1, and VEGFR-2 compared with the control group, and the DAPT group. Conclusions In a rat model, treatment with DAPT reduced the retinal changes associated with ROP with a mechanism that involved VEGF and its receptors through the DLL4/Notch-1 pathway.
Collapse
Affiliation(s)
- Wei Sun
- Department of Ophthalmology, Guangdong Women and Childrens' Hospital, Guangzhou, Guangdong, China (mainland)
| | - Jing Li
- Department of Ophthalmology, Guangdong Women and Childrens' Hospital, Guangzhou, Guangdong, China (mainland)
| | - Yinan Li
- Department of Anesthesiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China (mainland)
| | - Jiao Zheng
- Department of Ophthalmology, Guangdong Women and Childrens' Hospital, Guangzhou, Guangdong, China (mainland)
| | - Xiaoming Zhang
- Department of Ophthalmology, Guangdong Women and Childrens' Hospital, Guangzhou, Guangdong, China (mainland)
| | - Xuelin Huang
- Department of Ophthalmology, Guangdong Women and Childrens' Hospital, Guangzhou, Guangdong, China (mainland)
| | - Shujun Li
- Department of Oncology, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China (mainland)
| |
Collapse
|
16
|
Alabi RO, Farber G, Blobel CP. Intriguing Roles for Endothelial ADAM10/Notch Signaling in the Development of Organ-Specific Vascular Beds. Physiol Rev 2019; 98:2025-2061. [PMID: 30067156 DOI: 10.1152/physrev.00029.2017] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The vasculature is a remarkably interesting, complex, and interconnected organ. It provides a conduit for oxygen and nutrients, filtration of waste products, and rapid communication between organs. Much remains to be learned about the specialized vascular beds that fulfill these diverse, yet vital functions. This review was prompted by the discovery that Notch signaling in mouse endothelial cells is crucial for the development of specialized vascular beds found in the heart, kidneys, liver, intestines, and bone. We will address the intriguing questions raised by the role of Notch signaling and that of its regulator, the metalloprotease ADAM10, in the development of specialized vascular beds. We will cover fundamentals of ADAM10/Notch signaling, the concept of Notch-dependent cell fate decisions, and how these might govern the development of organ-specific vascular beds through angiogenesis or vasculogenesis. We will also consider common features of the affected vessels, including the presence of fenestra or sinusoids and their occurrence in portal systems with two consecutive capillary beds. We hope to stimulate further discussion and study of the role of ADAM10/Notch signaling in the development of specialized vascular structures, which might help uncover new targets for the repair of vascular beds damaged in conditions like coronary artery disease and glomerulonephritis.
Collapse
Affiliation(s)
- Rolake O Alabi
- Weill Cornell/Rockefeller/Sloan-Kettering Tri-Institutional MD-PhD Program, New York, New York ; Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, New York ; Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, New York ; Department of Medicine, Weill Cornell Medicine, New York, New York ; and Institute for Advanced Study, Technical University Munich , Munich , Germany
| | - Gregory Farber
- Weill Cornell/Rockefeller/Sloan-Kettering Tri-Institutional MD-PhD Program, New York, New York ; Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, New York ; Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, New York ; Department of Medicine, Weill Cornell Medicine, New York, New York ; and Institute for Advanced Study, Technical University Munich , Munich , Germany
| | - Carl P Blobel
- Weill Cornell/Rockefeller/Sloan-Kettering Tri-Institutional MD-PhD Program, New York, New York ; Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, New York ; Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, New York ; Department of Medicine, Weill Cornell Medicine, New York, New York ; and Institute for Advanced Study, Technical University Munich , Munich , Germany
| |
Collapse
|
17
|
Kadife E, Ware TMB, Luwor RB, Chan STF, Nurgali K, Senior PV. Effects of EphB4 receptor expression on colorectal cancer cells, tumor growth, vascularization and composition. Acta Oncol 2018; 57:1043-1056. [PMID: 29368976 DOI: 10.1080/0284186x.2018.1429650] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the most common causes of cancer-related deaths worldwide. Increased expression of the molecular target, EphB4 receptor, has been observed in several cancer types. However, studies on the role of EphB4 receptor in CRC have yielded contradictory results. The aim of this study was to investigate the influence of EphB4 expression levels on CRC cell behavior and its contribution to tumor growth and vascularization. METHODS SW480, LIM2405 and CT26 CRC cell lines were transfected with EphB4 expression vector. High EphB4 expressing cells were compared to low EphB4 expressing empty vector controls. Proliferation and migration assays as well as EphrinB2-Fc cell stimulations were conducted in vitro and subcutaneous xenografts of CRC were analyzed in vivo. RESULTS High EphB4 expression enhanced migratory ability of these CRC cell lines in vitro and contributed to a significant increase in tumor growth and vascularization in vivo. Tumours induced with high EphB4 expressing SW480 and LIM2405 cells yielded homogenous masses densely packed with cancer cells. EphrinB2-Fc cell stimulations induced cell clustering of high EphB4 expressing SW480 and LIM2405 in vitro. CONCLUSION These results suggest that with enhanced vascularization and an increase in migratory abilities, the high EphB4 expressing cells may be able to metastasize more readily.
Collapse
Affiliation(s)
- Elif Kadife
- Centre for Chronic Diseases, College of Health and Biomedicine, Victoria University, Melbourne, Australia
- Department of Medicine, Western Health, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Regenerative Medicine and Stem Cells Program, Australian Institute of Musculoskeletal Sciences (AIMSS), Melbourne, Australia
| | | | - Rodney Brian Luwor
- Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital, Parkville, Australia
| | - Steven Tuck Foo Chan
- Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital, Parkville, Australia
| | - Kulmira Nurgali
- Centre for Chronic Diseases, College of Health and Biomedicine, Victoria University, Melbourne, Australia
- Department of Medicine, Western Health, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Regenerative Medicine and Stem Cells Program, Australian Institute of Musculoskeletal Sciences (AIMSS), Melbourne, Australia
| | - Paul Vincent Senior
- Department of Medicine, Western Health, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Regenerative Medicine and Stem Cells Program, Australian Institute of Musculoskeletal Sciences (AIMSS), Melbourne, Australia
| |
Collapse
|
18
|
Salgia R, Kulkarni P, Gill PS. EphB4: A promising target for upper aerodigestive malignancies. Biochim Biophys Acta Rev Cancer 2018; 1869:128-137. [PMID: 29369779 PMCID: PMC5955724 DOI: 10.1016/j.bbcan.2018.01.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/11/2018] [Accepted: 01/11/2018] [Indexed: 12/14/2022]
Abstract
The erythropoietin-producing hepatocellular carcinoma (Eph) receptors are the largest family of receptor tyrosine kinases (RTKs) that include two major subclasses, EphA and EphB. They form an important cell communication system with critical and diverse roles in a variety of biological processes during embryonic development. However, dysregulation of the Eph/ephrin interactions is implicated in cancer contributing to tumour growth, metastasis, and angiogenesis. Here, we focus on EphB4 and review recent developments in elucidating its role in upper aerodigestive malignancies to include lung cancer, head and neck cancer, and mesothelioma. In particular, we summarize information regarding EphB4 structure/function and role in disease pathobiology. We also review the data supporting EphB4 as a potential pharmacological and immunotherapy target and finally, progress in the development of new therapeutic strategies including small molecule inhibitors of its activity is discussed. The emerging picture suggests that EphB4 is a valuable and attractive therapeutic target for upper aerodigestive malignancies.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/therapeutic use
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Squamous Cell/drug therapy
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/pathology
- Gene Expression Regulation, Neoplastic
- Head and Neck Neoplasms/drug therapy
- Head and Neck Neoplasms/genetics
- Head and Neck Neoplasms/metabolism
- Head and Neck Neoplasms/pathology
- Humans
- Lung Neoplasms/drug therapy
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Mesothelioma/drug therapy
- Mesothelioma/genetics
- Mesothelioma/metabolism
- Mesothelioma/pathology
- Mesothelioma, Malignant
- Molecular Targeted Therapy
- Receptor, EphB4/antagonists & inhibitors
- Receptor, EphB4/genetics
- Receptor, EphB4/metabolism
- Signal Transduction
- Squamous Cell Carcinoma of Head and Neck
Collapse
Affiliation(s)
- Ravi Salgia
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA, United States.
| | - Prakash Kulkarni
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA, United States
| | - Prakash S Gill
- Department of Medicine, Division of Medical Oncology, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
19
|
Ferguson SW, Wang J, Lee CJ, Liu M, Neelamegham S, Canty JM, Nguyen J. The microRNA regulatory landscape of MSC-derived exosomes: a systems view. Sci Rep 2018; 8:1419. [PMID: 29362496 PMCID: PMC5780426 DOI: 10.1038/s41598-018-19581-x] [Citation(s) in RCA: 248] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 01/04/2018] [Indexed: 02/08/2023] Open
Abstract
Mesenchymal stem cell (MSC)-derived exosomes mediate tissue regeneration in a variety of diseases including ischemic heart injury, liver fibrosis, and cerebrovascular disease. Despite an increasing number of studies reporting the therapeutic effects of MSC exosomes, the underlying molecular mechanisms and their miRNA complement are poorly characterized. Here we microRNA (miRNA)-profiled MSC exosomes and conducted a network analysis to identify the dominant biological processes and pathways modulated by exosomal miRNAs. At a system level, miRNA-targeted genes were enriched for (cardio)vascular and angiogenesis processes in line with observed cardiovascular regenerative effects. Targeted pathways were related to Wnt signaling, pro-fibrotic signaling via TGF-β and PDGF, proliferation, and apoptosis. When tested, MSC exosomes reduced collagen production by cardiac fibroblasts, protected cardiomyocytes from apoptosis, and increased angiogenesis in HUVECs. The intrinsic beneficial effects were further improved by virus-free enrichment of MSC exosomes with network-informed regenerative miRNAs capable of promoting angiogenesis and cardiomyocyte proliferation. The data presented here help define the miRNA landscape of MSC exosomes, establish their biological functions through network analyses at a system level, and provide a platform for modulating the overall phenotypic effects of exosomes.
Collapse
Affiliation(s)
- Scott W Ferguson
- Department of Pharmaceutical Sciences, School of Pharmacy, University at Buffalo, The State University of New York, Buffalo, NY, 14214, USA
| | - Jinli Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, University at Buffalo, The State University of New York, Buffalo, NY, 14214, USA
| | - Christine J Lee
- Department of Pharmaceutical Sciences, School of Pharmacy, University at Buffalo, The State University of New York, Buffalo, NY, 14214, USA
| | - Maixian Liu
- Department of Pharmaceutical Sciences, School of Pharmacy, University at Buffalo, The State University of New York, Buffalo, NY, 14214, USA
| | - Sriram Neelamegham
- Department of Chemical and Biological Engineering, Department of Biomedical Engineering, Clinical and Translational Research Center of the University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - John M Canty
- Department of Medicine, Department of Physiology and Biophysics, Department of Biomedical Engineering, The Clinical and Translational Research Center of the University at Buffalo, Buffalo, New York and the VA Western New York Healthcare System, Buffalo, NY, 14214, USA
| | - Juliane Nguyen
- Department of Pharmaceutical Sciences, School of Pharmacy, University at Buffalo, The State University of New York, Buffalo, NY, 14214, USA.
| |
Collapse
|
20
|
Redundant angiogenic signaling and tumor drug resistance. Drug Resist Updat 2018; 36:47-76. [DOI: 10.1016/j.drup.2018.01.002] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/22/2017] [Accepted: 01/11/2018] [Indexed: 02/07/2023]
|
21
|
Distinct EphB4-mediated mechanisms of apoptotic and resistance to dasatinib in human chronic myeloid leukemia and K562 cell lines. Leuk Res 2017; 63:28-33. [PMID: 29096333 DOI: 10.1016/j.leukres.2017.10.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 09/26/2017] [Accepted: 10/26/2017] [Indexed: 01/02/2023]
Abstract
OBJECTIVE To determine the role and mechanism of EphB4 in dasatinib (DAS) resistance in advanced chronic myeloid leukemia (CML), we explored the EphB4-mediated apoptotic and matrix microenvironment pathway in human CML and K562 cell lines. METHOD Heparinized bone marrow samples were obtained from enrolled five patients (identified as A to E and visits identified by number) at initial diagnosis (A1-E1) and in the DAS-resistance advanced phase (A2-E2). Meanwhile, highly DAS-resistant cells, named K562-R cells, were obtained from K562-W cells with increasing concentrations of DAS. Stable under-expressing EphB4 cells (K562-R-EphB4-sh) were obtained from K562-R cells by RNA interference. K562-W, K562-R and K562-R-EphB4-sh cells (108) were respectively injected subcutaneously on the dorsal surface of BALB/C female nude mice to establish the xenografts models. RESULT The mRNA/protein of EphB4 was overexpressed in the DAS-resistant A2-E2 in comparison with the A1-E1 human cell lines. Further, compared with K562-R cells, the expressions of EphB4 and p-Rac1/Cdc42 protein/mRNA were significantly downregulated in K562-R-EphB4-sh cells (P<0.01). K562-R cells showed the highest DAS resistance (IC50 10.54±0.67μg/ml), but K562-R-EphB4-sh cells became sensitive to DAS (IC50 1.02±0.1μg/ml, P<0.01). The expression of EphB4/p-RhoA/MCL-1 protein was gradually increased in the stimulating of EphrinB2-Fc, which partly made K562-R-EphB4-sh cells restore sensitivity to DAS (4.18±0.30μg/ml). Meanwhile, the K562-R-EphB4-sh xenografts group had relatively good efficacy compared to K562-R xenografts nude mice receiving the same dose of DAS. The analysis of xenografts tissue also suggested parallel results with the overexpression of EphB4/RhoA/ROCK1/PTEN/MCL-1 in K562-R xenografts, which decreased in the A2-R-EphB4-sh xenografts (P<0.01). CONCLUSIONS The present study found that a new DAS resistance pathway of EphB4 overexpression was triggered by EphrinB2-Fc, which induced the resistance to DAS by activating RhoA/ROCK1/PTEN/MCL-1 signaling.
Collapse
|
22
|
Chen Y, Zhang H, Zhang Y. Targeting receptor tyrosine kinase EphB4 in cancer therapy. Semin Cancer Biol 2017; 56:37-46. [PMID: 28993206 DOI: 10.1016/j.semcancer.2017.10.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 09/13/2017] [Accepted: 10/04/2017] [Indexed: 12/12/2022]
Abstract
Eph receptors and their Eph receptor-interacting (ephrin) ligands together form an important cell communication system with diverse roles. Experimental evidence demonstrated Eph receptor bidirectional signaling with both tumor-suppressing and tumor-promoting activities in cancer cells. The tyrosine kinase EphB4, a member of the Eph receptor family, has been associated with tumor angiogenesis, growth and metastasis, thus making it a valuable and attractive target for drug design for therapeutic applications. In the past decade, many studies have focused on elucidating the structure and function of EphB4 in complex with its ligand ephrinB2 for their role in carcinogenesis. Meanwhile, an array of compounds targeting EphB4 have been studied and several selective inhibitors have been tested in clinical studies. This review discusses the structure and function of the EphB4 receptor, analyzes its potential as a target for anticancer therapy, and summarizes the information about inhibitors of EphB4 kinase activity. Conclusively, EphB4 is a challenging but promising therapeutic target in cancer.
Collapse
Affiliation(s)
- Yinnan Chen
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Hongmei Zhang
- Department of Endocrinology, Xinhua Hospital affiliated to Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, PR China.
| | - Yanmin Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, No. 76, Yanta West Street, #54, Xi'an, Shaanxi Province 710061, PR China.
| |
Collapse
|
23
|
You C, Zhao K, Dammann P, Keyvani K, Kreitschmann‐Andermahr I, Sure U, Zhu Y. EphB4 forward signalling mediates angiogenesis caused by CCM3/PDCD10-ablation. J Cell Mol Med 2017; 21:1848-1858. [PMID: 28371279 PMCID: PMC5571521 DOI: 10.1111/jcmm.13105] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 12/13/2016] [Indexed: 11/28/2022] Open
Abstract
CCM3, also named as PDCD10, is a ubiquitous protein expressed in nearly all tissues and in various types of cells. It is essential for vascular development and post-natal vessel maturation. Loss-of-function mutation of CCM3 predisposes for the familial form of cerebral cavernous malformation (CCM). We have previously shown that knock-down of CCM3 stimulated endothelial angiogenesis via impairing DLL4-Notch signalling; moreover, loss of endothelial CCM3 stimulated tumour angiogenesis and promoted tumour growth. The present study was designed to further elucidate the inside signalling pathway involved in CCM3-ablation-mediated angiogenesis. Here we report for the first time that silencing endothelial CCM3 led to a significant up-regulation of EphB4 mRNA and protein expression and to an increased kinase activity of EphB4, concomitantly accompanied by an activation of Erk1/2, which was reversed by treatment with the specific EphB4 kinase inhibitor NVP-BHG712 (NVP), indicating that silencing CCM3 activates EphB4 kinase forward signalling. Furthermore, treatment with NVP rescued the hyper-angiogenic phenotype induced by knock-down of endothelial CCM3 in vitro and in vivo. Additional study demonstrated that the activation of EphB4 forward signalling in endothelial cells under basal condition and after CCM3-silence was modulated by DLL4/Notch signalling, relying EphB4 at downstream of DLL4/Notch signalling. We conclude that angiogenesis induced by CCM3-silence is mediated by the activation of EphB4 forward signalling. The identified endothelial signalling pathway of CCM3-DLL4/Notch-EphB4-Erk1/2 may provide an insight into mechanism of CCM3-ablation-mediated angiogenesis and could potentially contribute to novel therapeutic concepts for disrupting aberrant angiogenesis in CCM and in hyper-vascularized tumours.
Collapse
Affiliation(s)
- Chao You
- Department of NeurosurgeryUniversity of Duisburg‐EssenEssenGermany
- Department of NeurosurgeryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Kai Zhao
- Department of NeurosurgeryUniversity of Duisburg‐EssenEssenGermany
- Department of NeurosurgeryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Philipp Dammann
- Department of NeurosurgeryUniversity of Duisburg‐EssenEssenGermany
| | - Kathy Keyvani
- Institute of NeuropathologyUniversity of Duisburg‐EssenEssenGermany
| | | | - Ulrich Sure
- Department of NeurosurgeryUniversity of Duisburg‐EssenEssenGermany
| | - Yuan Zhu
- Department of NeurosurgeryUniversity of Duisburg‐EssenEssenGermany
| |
Collapse
|
24
|
Eryiğit Eroğul L. Pterjium Büyümesinde Etkili Yeni Mediatörler Ve Büyüme Faktörleri. ACTA MEDICA ALANYA 2017. [DOI: 10.30565/medalanya.294045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
25
|
Zhang J, Gao H, Zhang Y. Differential expression of the Notch1 receptor, and its ligands Dll1, Dll3 and Dll4 in distinct human pituitary adenoma subtypes. Oncol Lett 2017; 13:4533-4539. [PMID: 28599454 DOI: 10.3892/ol.2017.5997] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 02/07/2017] [Indexed: 12/14/2022] Open
Abstract
Pituitary adenoma (PA) is a common type of benign tumor of the pituitary gland that is characterized by specific signs and symptoms, primarily associated with hypersecretion of pituitary glycoprotein hormones (thyroid-stimulating, growth and adrenocorticotrophic hormones, and prolactin). Surgery is the first-line treatment, although postoperative residual tissues/cells and subsequent recurrence remain notable complications. Gene therapy is an effective approach for treatment, as previous studies have demonstrated that the Notch signaling pathway participates in the pathogenesis of PA. The focus of the present study was on the associations between the expression of the Notch1 receptor and its ligands δ-like canonical Notch ligand (Dll) 1, Dll3 and Dll4 in patients with PA. Using reverse transcription-quantitative polymerase chain reaction and western blot analyses, to the best of our knowledge, this is the first study to provide a description of the differential expression of the Notch1 receptor and its ligands Dll1, Dll3, and Dll4 in various types of human PA at the mRNA and protein levels. The results of the present study demonstrated that Notch1 protein expression was positively correlated with Dll4 protein expression, but negatively correlated with Dll3 protein expression, indicating synergistic effects between the Notch1 receptor and Dll4 ligand. Furthermore, the Dll3 ligand may be an inhibitor of the Notch1 receptor, indicating an antagonistic association between Notch1 and the Dll3 ligand. These results have identified a potential target for the treatment of patients with PA.
Collapse
Affiliation(s)
- Jianfu Zhang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100050, P.R. China.,Neurosurgical Department, Weihai Municipal Hospital, Huancui, Weihai 264200, P.R. China
| | - Hua Gao
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100050, P.R. China
| | - Yazhuo Zhang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100050, P.R. China
| |
Collapse
|
26
|
Zheng Y, Wang S, Xue X, Xu A, Liao W, Deng A, Dai G, Liu AP, Fu J. Notch signaling in regulating angiogenesis in a 3D biomimetic environment. LAB ON A CHIP 2017; 17:1948-1959. [PMID: 28470301 PMCID: PMC6223016 DOI: 10.1039/c7lc00186j] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Angiogenesis is a complex cellular process involving highly orchestrated invasion and organization of endothelial cells (ECs) in a three-dimensional (3D) environment. Recent evidence indicates that Notch signaling is critically involved in regulating specialized functions and distinct fates of ECs in newly formed vasculatures during angiogenesis. Here, we demonstrated, for the first time, the application of a microengineered biomimetic system to quantitatively investigate the role of Notch signaling in regulating early angiogenic sprouting and vasculature formation of ECs in a 3D extracellular matrix. Morphological features of angiogenesis including invasion distance, invasion area, and tip cell number were quantified and compared under pharmacological perturbations of Notch signaling. In addition, influences of Notch signaling on EC proliferation in angiogenic vasculatures and directional invasion of tip cells were also investigated. Moreover, leveraging a novel nanobiosensor system, mRNA expression of Dll4, a Notch ligand, was monitored in invading tip cells using live cell imaging during the dynamic angiogenic process. Our data showed that inhibition of Notch signaling resulted in hyper-sprouting endothelial structures, while activation of Notch signaling led to opposite effects. Our results also supported the role of Notch signaling in regulating EC proliferation and dynamic invasion of tip cells during angiogenesis.
Collapse
Affiliation(s)
- Yi Zheng
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Shue Wang
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xufeng Xue
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Alan Xu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Wei Liao
- Department of Precision Instrument, Tsinghua University, Beijing, 100084, P.R. China
| | - Alice Deng
- School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Guohao Dai
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA
| | - Allen P. Liu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI 48109, USA
- Biophysics Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jianping Fu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
27
|
Trindade A, Djokovic D, Gigante J, Mendonça L, Duarte A. Endothelial Dll4 overexpression reduces vascular response and inhibits tumor growth and metastasization in vivo. BMC Cancer 2017; 17:189. [PMID: 28288569 PMCID: PMC5348880 DOI: 10.1186/s12885-017-3171-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 03/04/2017] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND The inhibition of Delta-like 4 (Dll4)/Notch signaling has been shown to result in excessive, nonfunctional vessel proliferation and significant tumor growth suppression. However, safety concerns emerged with the identification of side effects resulting from chronic Dll4/Notch blockade. Alternatively, we explored the endothelial Dll4 overexpression using different mouse tumor models. METHODS We used a transgenic mouse model of endothelial-specific Dll4 overexpression, previously produced. Growth kinetics and vascular histopathology of several types of solid tumors was evaluated, namely Lewis Lung Carcinoma xenografts, chemically-induced skin papillomas and RIP1-Tag2 insulinomas. RESULTS We found that increased Dll4/Notch signaling reduces tumor growth by reducing vascular endothelial growth factor (VEGF)-induced endothelial proliferation, tumor vessel density and overall tumor blood supply. In addition, Dll4 overexpression consistently improved tumor vascular maturation and functionality, as indicated by increased vessel calibers, enhanced mural cell recruitment and increased network perfusion. Importantly, the tumor vessel normalization is not more effective than restricted vessel proliferation, but was found to prevent metastasis formation and allow for increased delivery to the tumor of concomitant chemotherapy, improving its efficacy. CONCLUSIONS By reducing endothelial sensitivity to VEGF, these results imply that Dll4/Notch stimulation in tumor microenvironment could be beneficial to solid cancer patient treatment by reducing primary tumor size, improving tumor drug delivery and reducing metastization. Endothelial specific Dll4 overexpression thus appears as a promising anti-angiogenic modality that might improve cancer control.
Collapse
Affiliation(s)
- Alexandre Trindade
- Centro Interdisciplinar de Investigação em Sanidade Animal (CIISA), Faculdade de Medicina Veterinária, University of Lisbon, Lisbon, Portugal
| | - Dusan Djokovic
- Centro Interdisciplinar de Investigação em Sanidade Animal (CIISA), Faculdade de Medicina Veterinária, University of Lisbon, Lisbon, Portugal.,Faculdade de Ciências Médicas, Nova Medical School, Nova University of Lisbon, Lisbon, Portugal.,Serviço de Obstetrícia e Ginecologia, Centro Hospitalar de Lisboa Ocidental, Hospital de São Francisco Xavier, Lisbon, Portugal
| | - Joana Gigante
- Centro Interdisciplinar de Investigação em Sanidade Animal (CIISA), Faculdade de Medicina Veterinária, University of Lisbon, Lisbon, Portugal
| | - Liliana Mendonça
- Centro Interdisciplinar de Investigação em Sanidade Animal (CIISA), Faculdade de Medicina Veterinária, University of Lisbon, Lisbon, Portugal
| | - António Duarte
- Centro Interdisciplinar de Investigação em Sanidade Animal (CIISA), Faculdade de Medicina Veterinária, University of Lisbon, Lisbon, Portugal.
| |
Collapse
|
28
|
Badenes M, Trindade A, Pissarra H, Lopes-da-Costa L, Duarte A. Delta-like 4/Notch signaling promotes Apc Min/+ tumor initiation through angiogenic and non-angiogenic related mechanisms. BMC Cancer 2017; 17:50. [PMID: 28086833 PMCID: PMC5237288 DOI: 10.1186/s12885-016-3036-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 12/27/2016] [Indexed: 01/27/2023] Open
Abstract
Background Delta like 4 (Dll4)/Notch signaling is a key regulator of tumor angiogenesis. Additionally, the role of Dll4 has been studied on tumor stem cells. However, as these cells are implicated in tumor angiogenesis, it is conceivable that the effect of Dll4 on these cells may be a consequence of its angiogenic function. Our aim was to evaluate the expression and dissect the functions of Dll4 in the ApcMin/+ model of colorectal cancer. Methods We evaluated the protein expression pattern of Dll4 and other Notch members in the ApcMin/+ tumors relatively to the normal gut and compared endothelial-specific with ubiquitous Dll4 knockout mice on an ApcMin/+ background. Results All Notch pathway members were present in the normal small and large intestine and in the adenomas of the same regions. Dll4, all Notch receptors and Hes1 expression seemed upregulated in the tumors, with some regional differences. The same members and Hes5, instead of Hes1, presented ectopic expression in the tumor parenchyma. Dll4 expression was most pronounced in the tumor cells but it was also present in the tumor blood vessels and in other stromal cells. Ubiquitous and endothelial-specific Dll4 deletion led to an equivalent reduction of tumor growth because of a similarly marked tumoral angiogenic phenotype promoting non-productive vasculature and consequently hypoxia and apoptosis. The ubiquitous Dll4 inhibition led to a stronger decrease of tumor multiplicity than the endothelial-specific deletion by further reducing tumor proliferation and tumor stem cell density through upregulation of the cyclin-dependent kinase inhibitors 1C and 1B and downregulation of Myc, Cyclin D1 and D2 independently of β-catenin activation. This phenotype was associated to the observed increased epithelial differentiation deviated towards the secretory lineages by Atoh1 and Klf4 upregulation only in the ubiquitous Dll4 mutants. Conclusions Dll4 seems to promote ApcMin/+ tumorigenesis through both angiogenic and non-angiogenic related mechanisms. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-3036-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marina Badenes
- Centro Interdisciplinar de Investigação em Sanidade Animal (CIISA), University of Lisbon, Lisbon, Portugal
| | - Alexandre Trindade
- Centro Interdisciplinar de Investigação em Sanidade Animal (CIISA), University of Lisbon, Lisbon, Portugal
| | - Hugo Pissarra
- Centro Interdisciplinar de Investigação em Sanidade Animal (CIISA), University of Lisbon, Lisbon, Portugal
| | - Luís Lopes-da-Costa
- Centro Interdisciplinar de Investigação em Sanidade Animal (CIISA), University of Lisbon, Lisbon, Portugal
| | - António Duarte
- Centro Interdisciplinar de Investigação em Sanidade Animal (CIISA), University of Lisbon, Lisbon, Portugal.
| |
Collapse
|
29
|
Pierscianek D, Wolf S, Keyvani K, El Hindy N, Stein KP, Sandalcioglu IE, Sure U, Mueller O, Zhu Y. Study of angiogenic signaling pathways in hemangioblastoma. Neuropathology 2016; 37:3-11. [PMID: 27388534 DOI: 10.1111/neup.12316] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 05/16/2016] [Accepted: 05/22/2016] [Indexed: 01/30/2023]
Abstract
Hemangioblastoma (HB) is mainly located in the brain and the spinal cord. The tumor is composed of two major components, namely neoplastic stromal cells and abundant microvessels. Thus, hyper-vascularization is the hallmark of this tumor. Despite the identification of germline and/or epigenetic mutations of Von Hippel Lindau (VHL) gene as an important pathogenic mechanism of HB, little is known about the molecular signaling involved in this highly vascularized tumor. The present study investigated the key players of multiple angiogenic signaling pathways including VEGF/VEGFR2, EphB4/EphrinB2, SDF1α/CXCR4 and Notch/Dll4 pathways in surgical specimens of 22 HB. The expression of key angiogenic factors was detected by RT2 -PCR and Western blot. Immunofluorescent staining revealed the cellular localization of these proteins. We demonstrated a massive upregulation of mRNA levels of VEGF and VEGFR2, CXCR4 and SDF1α, EphB4 and EphrinB2, as well as the main components of Dll4-Notch signaling in HB. An increase in the protein expression of VEGF, CXCR4 and the core-components of Dll4-Notch signaling was associated with an activation of Akt and Erk1/2 and accompanied by an elevated expression of PCNA. Immuofluorescent staining revealed the expression of VEGF and CXCR4 in endothelial cells as well as in tumor cells. Dll4 protein was predominantly found in tumor cells, whereas EphB4 immunoreactivity was exclusively detected in endothelial cells. We conclude that multiple key angiogenic pathways were activated in HB, which may synergistically contribute to the abundant vascularization in this tumor. Identification of these aberrant pathways provides potential targets for a possible future application of anti-angiogenic therapy for this tumor, particularly when a total surgical resection becomes difficult due to the localization or multiplicity of the tumor.
Collapse
Affiliation(s)
| | - Stefanie Wolf
- Department of Neurosurgery, Universitatsklinikum Essen, Germany
| | - Kathy Keyvani
- Institute of Neuropathology, University Hospital Essen, Essen, Germany
| | | | - Klaus-Peter Stein
- Department of Neurosurgery, KRH Hospital Nordstadt, Hannover, Germany
| | | | - Ulrich Sure
- Department of Neurosurgery, Universitatsklinikum Essen, Germany
| | - Oliver Mueller
- Department of Neurosurgery, Universitatsklinikum Essen, Germany
| | - Yuan Zhu
- Department of Neurosurgery, Universitatsklinikum Essen, Germany
| |
Collapse
|
30
|
Alabi RO, Glomski K, Haxaire C, Weskamp G, Monette S, Blobel CP. ADAM10-Dependent Signaling Through Notch1 and Notch4 Controls Development of Organ-Specific Vascular Beds. Circ Res 2016; 119:519-31. [PMID: 27354212 DOI: 10.1161/circresaha.115.307738] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 06/24/2016] [Indexed: 12/22/2022]
Abstract
RATIONALE Endothelial Notch signaling is critical for early vascular development and survival. Yet, previously described mice lacking endothelial a disintegrin and metalloproteinase 10 (ADAM10), a key regulator of Notch signaling, survived into adulthood with organ-specific vascular defects. These findings raised questions about whether these vascular defects were related to Notch signaling or other functions of ADAM10. OBJECTIVE The aims of the study are to determine whether compensatory or redundant functions of ADAM17 in Notch signaling can explain the survival of Adam10ΔEC mice, explore the contribution of different Tie2-Cre transgenes to the differences in survival, and establish whether the Adam10ΔEC vascular phenotypes can be recapitulated by inactivation of Notch receptors in endothelial cells. METHODS AND RESULTS Mice lacking ADAM10 and ADAM17 in endothelial cells (Adam10/Adam17ΔEC), which survived postnatally with organ-specific vascular defects, resembled Adam10ΔEC mice. In contrast, Adam10ΔEC mice generated with the Tie2Cre transgene previously used to inactivate endothelial Notch (Adam10ΔEC(Flv)) died by E10.5. Quantitative polymerase chain reaction analysis demonstrated that Cre-mediated recombination occurs earlier in Adam10ΔEC(Flv) mice than in the previously described Adam10ΔEC mice. Finally, mice lacking endothelial Notch1 (Notch1ΔEC) share some organ-specific vascular defects with Adam10ΔEC mice, whereas Notch4(-/-) mice lacking endothelial Notch1 (Notch1ΔEC/Notch4(-/-)) had defects in all vascular beds affected in Adam10ΔEC mice. CONCLUSIONS Our results argue against a major role for ADAM17 in endothelial Notch signaling and clarify the difference in phenotypes of previously described mice lacking ADAM10 or Notch in endothelial cells. Most notably, these findings uncover new roles for Notch signaling in the development of organ-specific vascular beds.
Collapse
Affiliation(s)
- Rolake O Alabi
- From the Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, NY (R.O.A., K.G., C.H., G.W., C.P.B.); Weill Cornell/Rockefeller/Sloan-Kettering Tri-Institutional MD-PhD Program, New York, NY (R.O.A., K.G., C.P.B.); Tri-Institutional Laboratory of Comparative Pathology, Memorial Sloan-Kettering Cancer Center, Weill Cornell Medicine, Rockefeller University, New York, NY (S.M.); Institute for Advanced Study, Technical University Munich, Munich, Germany (C.P.B.); and Departments of Medicine and of Physiology, Systems Biology and Biophysics, Weill Cornell Medicine, New York, NY (C.P.B.)
| | - Krzysztof Glomski
- From the Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, NY (R.O.A., K.G., C.H., G.W., C.P.B.); Weill Cornell/Rockefeller/Sloan-Kettering Tri-Institutional MD-PhD Program, New York, NY (R.O.A., K.G., C.P.B.); Tri-Institutional Laboratory of Comparative Pathology, Memorial Sloan-Kettering Cancer Center, Weill Cornell Medicine, Rockefeller University, New York, NY (S.M.); Institute for Advanced Study, Technical University Munich, Munich, Germany (C.P.B.); and Departments of Medicine and of Physiology, Systems Biology and Biophysics, Weill Cornell Medicine, New York, NY (C.P.B.)
| | - Coline Haxaire
- From the Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, NY (R.O.A., K.G., C.H., G.W., C.P.B.); Weill Cornell/Rockefeller/Sloan-Kettering Tri-Institutional MD-PhD Program, New York, NY (R.O.A., K.G., C.P.B.); Tri-Institutional Laboratory of Comparative Pathology, Memorial Sloan-Kettering Cancer Center, Weill Cornell Medicine, Rockefeller University, New York, NY (S.M.); Institute for Advanced Study, Technical University Munich, Munich, Germany (C.P.B.); and Departments of Medicine and of Physiology, Systems Biology and Biophysics, Weill Cornell Medicine, New York, NY (C.P.B.)
| | - Gisela Weskamp
- From the Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, NY (R.O.A., K.G., C.H., G.W., C.P.B.); Weill Cornell/Rockefeller/Sloan-Kettering Tri-Institutional MD-PhD Program, New York, NY (R.O.A., K.G., C.P.B.); Tri-Institutional Laboratory of Comparative Pathology, Memorial Sloan-Kettering Cancer Center, Weill Cornell Medicine, Rockefeller University, New York, NY (S.M.); Institute for Advanced Study, Technical University Munich, Munich, Germany (C.P.B.); and Departments of Medicine and of Physiology, Systems Biology and Biophysics, Weill Cornell Medicine, New York, NY (C.P.B.)
| | - Sébastien Monette
- From the Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, NY (R.O.A., K.G., C.H., G.W., C.P.B.); Weill Cornell/Rockefeller/Sloan-Kettering Tri-Institutional MD-PhD Program, New York, NY (R.O.A., K.G., C.P.B.); Tri-Institutional Laboratory of Comparative Pathology, Memorial Sloan-Kettering Cancer Center, Weill Cornell Medicine, Rockefeller University, New York, NY (S.M.); Institute for Advanced Study, Technical University Munich, Munich, Germany (C.P.B.); and Departments of Medicine and of Physiology, Systems Biology and Biophysics, Weill Cornell Medicine, New York, NY (C.P.B.)
| | - Carl P Blobel
- From the Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, NY (R.O.A., K.G., C.H., G.W., C.P.B.); Weill Cornell/Rockefeller/Sloan-Kettering Tri-Institutional MD-PhD Program, New York, NY (R.O.A., K.G., C.P.B.); Tri-Institutional Laboratory of Comparative Pathology, Memorial Sloan-Kettering Cancer Center, Weill Cornell Medicine, Rockefeller University, New York, NY (S.M.); Institute for Advanced Study, Technical University Munich, Munich, Germany (C.P.B.); and Departments of Medicine and of Physiology, Systems Biology and Biophysics, Weill Cornell Medicine, New York, NY (C.P.B.).
| |
Collapse
|
31
|
Lu J, Xia Y, Chen K, Zheng Y, Wang J, Lu W, Yin Q, Wang F, Zhou Y, Guo C. Oncogenic role of the Notch pathway in primary liver cancer. Oncol Lett 2016; 12:3-10. [PMID: 27347091 DOI: 10.3892/ol.2016.4609] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 04/08/2016] [Indexed: 02/07/2023] Open
Abstract
Primary liver cancer, which includes hepatocellular carcinoma (HCC), intrahepatic cholangiocarcinoma (ICC) and fibrolamellar HCC, is one of the most common malignancies and the third leading cause of cancer-associated mortality, worldwide. Despite the development of novel therapies, the prognosis of liver cancer patients remains extremely poor. Thus, investigation of the genetic background and molecular mechanisms underlying the development and progression of this disease has gained significant attention. The Notch signaling pathway is a crucial determinant of cell fate during development and disease in several organs. In the liver, Notch signaling is involved in biliary tree development and tubulogenesis, and is also significant in the development of HCC and ICC. These findings suggest that the modulation of Notch pathway activity may have therapeutic relevance. The present review summarizes Notch signaling during HCC and ICC development and discusses the findings of recent studies regarding Notch expression, which reveal novel insights into its function in liver cancer progression.
Collapse
Affiliation(s)
- Jie Lu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai 200072, P.R. China
| | - Yujing Xia
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai 200072, P.R. China
| | - Kan Chen
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai 200072, P.R. China
| | - Yuanyuan Zheng
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai 200072, P.R. China
| | - Jianrong Wang
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai 200072, P.R. China; Department of Gastroenterology, The First Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Wenxia Lu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai 200072, P.R. China; Department of Gastroenterology, The First Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Qin Yin
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai 200072, P.R. China; Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Fan Wang
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai 200072, P.R. China
| | - Yingqun Zhou
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai 200072, P.R. China
| | - Chuanyong Guo
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai 200072, P.R. China
| |
Collapse
|
32
|
Zhang R, Zhu W, Su H. Vascular Integrity in the Pathogenesis of Brain Arteriovenous Malformation. ACTA NEUROCHIRURGICA. SUPPLEMENT 2016; 121:29-35. [PMID: 26463919 DOI: 10.1007/978-3-319-18497-5_6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Brain arteriovenous malformation (bAVM) is an important cause of intracranial hemorrhage (ICH), particularly in the young population. ICH is the first clinical symptom in about 50 % of bAVM patients. The vessels in bAVM are fragile and prone to rupture, causing bleeding into the brain. About 30 % of unruptured and non-hemorrhagic bAVMs demonstrate microscopic evidence of hemosiderin in the vascular wall. In bAVM mouse models, vascular mural cell coverage is reduced in the AVM lesion, accompanied by vascular leakage and microhemorrhage. In this review, we discuss possible signaling pathways involved in abnormal vascular development in bAVM.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Anesthesia and Perioperative Care, Center for Cerebrovascular Research, University of California, San Francisco, 1001 Potrero Avenue, 1363, San Francisco, CA, 94110, USA
| | - Wan Zhu
- Department of Anesthesia and Perioperative Care, Center for Cerebrovascular Research, University of California, San Francisco, 1001 Potrero Avenue, 1363, San Francisco, CA, 94110, USA
| | - Hua Su
- Department of Anesthesia and Perioperative Care, Center for Cerebrovascular Research, University of California, San Francisco, 1001 Potrero Avenue, 1363, San Francisco, CA, 94110, USA.
| |
Collapse
|
33
|
Khan KA, Bicknell R. Anti-angiogenic alternatives to VEGF blockade. Clin Exp Metastasis 2015; 33:197-210. [PMID: 26620208 PMCID: PMC4761368 DOI: 10.1007/s10585-015-9769-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 11/11/2015] [Indexed: 12/18/2022]
Abstract
Angiogenesis is a major requirement for tumour formation and development. Anti-angiogenic treatments aim to starve the tumour of nutrients and oxygen and also guard against metastasis. The main anti-angiogenic agents to date have focused on blocking the pro-angiogenic vascular endothelial growth factors (VEGFs). While this approach has seen some success and has provided a proof of principle that such anti-angiogenic agents can be used as treatment, the overall outcome of VEGF blockade has been somewhat disappointing. There is a current need for new strategies in inhibiting tumour angiogenesis; this article will review current and historical examples in blocking various membrane receptors and components of the extracellular matrix important in angiogenesis. Targeting these newly discovered pro-angiogenic proteins could provide novel strategies for cancer therapy.
Collapse
Affiliation(s)
- Kabir A Khan
- Angiogenesis Laboratory, Institute for Biomedical Research, School of Cardiovascular Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.
| | - Roy Bicknell
- Angiogenesis Laboratory, Institute for Biomedical Research, School of Cardiovascular Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.
| |
Collapse
|
34
|
Inhibition of the Notch Pathway Promotes Flap Survival by Inducing Functional Neoangiogenesis. Ann Plast Surg 2015; 75:455-62. [DOI: 10.1097/sap.0000000000000197] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
35
|
Kuhnert F, Chen G, Coetzee S, Thambi N, Hickey C, Shan J, Kovalenko P, Noguera-Troise I, Smith E, Fairhurst J, Andreev J, Kirshner JR, Papadopoulos N, Thurston G. Dll4 Blockade in Stromal Cells Mediates Antitumor Effects in Preclinical Models of Ovarian Cancer. Cancer Res 2015; 75:4086-96. [PMID: 26377940 DOI: 10.1158/0008-5472.can-14-3773] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 07/14/2015] [Indexed: 11/16/2022]
Abstract
The Notch ligand delta-like 4 (Dll4) has been identified as a promising target in tumor angiogenesis in preclinical studies, and Dll4 inhibitors have recently entered clinical trials for solid tumors, including ovarian cancers. In this study, we report the development of REGN421 (enoticumab), a fully human IgG1 monoclonal antibody that binds human Dll4 with sub-nanomolar affinity and inhibits Notch signaling. Administering REGN421 to immunodeficient mice engineered to express human Dll4 inhibited the growth of several human tumor xenografts in association with the formation of nonfunctional tumor blood vessels. In ovarian tumor xenograft models, Dll4 was expressed specifically by the tumor endothelium, and Dll4 blockade by human-specific or mouse-specific Dll4 antibodies exerted potent antitumor activity, which relied entirely on targeting Dll4 expressed by tumor stromal cells but not by the tumor cells themselves. However, Dll4 blockade reduced Notch signaling in both blood vessels and tumor cells surrounding the blood vessels, suggesting that endothelial-expressed Dll4 might induce Notch signaling in adjacent ovarian tumor cells. The antitumor effects of targeting Dll4 were augmented significantly by simultaneous inhibition of VEGF signaling, whereas this combined blockade reversed normal organ vascular changes induced by Dll4 blockade alone. Overall, our findings deepen the rationale for antibody-based strategies to target Dll4 in ovarian cancers, especially in combination with VEGF blockade.
Collapse
Affiliation(s)
- Frank Kuhnert
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York.
| | - Guoying Chen
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York
| | | | - Nithya Thambi
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York
| | - Carlos Hickey
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York
| | - Jing Shan
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York
| | | | | | - Eric Smith
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York
| | | | | | | | | | | |
Collapse
|
36
|
Zhou B, Wang H, Liu R, Wang M, Deng H, Giglio BC, Gill PS, Shan H, Li Z. PET Imaging of Dll4 Expression in Glioblastoma and Colorectal Cancer Xenografts Using (64)Cu-Labeled Monoclonal Antibody 61B. Mol Pharm 2015; 12:3527-34. [PMID: 26288060 DOI: 10.1021/acs.molpharmaceut.5b00105] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Delta-like ligand 4 (Dll4) expressed in tumor cells plays a key role to promote tumor growth of numerous cancer types. Based on a novel antihuman Dll4 monoclonal antibody (61B), we developed a (64)Cu-labeled probe for positron emission tomography (PET) imaging of tumor Dll4 expression. In this study, 61B was conjugated with the (64)Cu-chelator DOTA through lysine on the antibody. Human IgG (hIgG)-DOTA, which did not bind to Dll4, was also prepared as a control. The Dll4 binding activity of the probes was evaluated through the bead-based binding assay with Dll4-alkaline phosphatase. The resulting PET probes were evaluated in U87MG glioblastoma and HT29 colorectal cancer xenografts in athymic nude mice. Our results demonstrated that the 61B-DOTA retained (77.2 ± 3.7) % Dll4 binding activity of the unmodified 61B, which is significantly higher than that of hIgG-DOTA (0.06 ± 0.03) %. Confocal microscopy analysis confirmed that 61B-Cy5.5, but not IgG-Cy5.5, predominantly located within the U87MG and HT29 cells cytoplasm. U87MG cells showed higher 61B-Cy5.5 binding as compared to HT29 cells. In U87MG xenografts, 61B-DOTA-(64)Cu demonstrated remarkable tumor accumulation (10.5 ± 1.7 and 10.2 ± 1.2%ID/g at 24 and 48 h postinjection, respectively). In HT29 xenografts, tumor accumulation of 61B-DOTA-(64)Cu was significantly lower than that of U87MG (7.3 ± 1.3 and 6.6 ± 1.3%ID/g at 24 and 48 h postinjection, respectively). The tumor accumulation of 61B-DOTA-(64)Cu was significantly higher than that of hIgG-DOTA-(64)Cu in both xenografts models. Immunofluorescence staining of the tumor tissues further confirmed that tumor accumulation of 61B-Cy5.5 was correlated well with in vivo PET imaging data using 61B-DOTA-(64)Cu. In conclusion, 61B-DOTA-(64)Cu PET probe was successfully synthesized and demonstrated prominent tumor uptake by targeting Dll4. 61B-DOTA-(64)Cu has great potential to be used for noninvasive Dll4 imaging, which could be valuable for tumor detection, Dll4 expression level evaluation, and Dll4-based treatment monitoring.
Collapse
Affiliation(s)
- Bin Zhou
- Department of Radiology, The Third Affiliated Hospital of Sun Yat-sen University , Guangzhou 510630, China.,Biomedical Research Imaging Center, Department of Radiology, University of North Carolina , Chapel Hill, North Carolina 27514, United States
| | - Hui Wang
- Biomedical Research Imaging Center, Department of Radiology, University of North Carolina , Chapel Hill, North Carolina 27514, United States
| | - Ren Liu
- Department of Pathology, University of Southern California , Los Angeles, California 90033, United States
| | - Mengzhe Wang
- Biomedical Research Imaging Center, Department of Radiology, University of North Carolina , Chapel Hill, North Carolina 27514, United States
| | - Huaifu Deng
- Biomedical Research Imaging Center, Department of Radiology, University of North Carolina , Chapel Hill, North Carolina 27514, United States
| | - Benjamin C Giglio
- Biomedical Research Imaging Center, Department of Radiology, University of North Carolina , Chapel Hill, North Carolina 27514, United States
| | - Parkash S Gill
- Department of Pathology, University of Southern California , Los Angeles, California 90033, United States
| | - Hong Shan
- Department of Radiology, The Third Affiliated Hospital of Sun Yat-sen University , Guangzhou 510630, China.,Interventional Radiology Institute, Sun Yat-sen University , Guangzhou 510630, China
| | - Zibo Li
- Biomedical Research Imaging Center, Department of Radiology, University of North Carolina , Chapel Hill, North Carolina 27514, United States
| |
Collapse
|
37
|
Djokovic D, Trindade A, Gigante J, Pinho M, Harris AL, Duarte A. Incomplete Dll4/Notch signaling inhibition promotes functional angiogenesis supporting the growth of skin papillomas. BMC Cancer 2015; 15:608. [PMID: 26314892 PMCID: PMC4552132 DOI: 10.1186/s12885-015-1605-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 08/17/2015] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND In invasive malignancies, Dll4/Notch signaling inhibition enhances non-functional vessel proliferation and limits tumor growth by reducing its blood perfusion. METHODS To assess the effects of targeted Dll4 allelic deletion in the incipient stages of tumor pathogenesis, we chemically induced skin papillomas in wild-type and Dll4 (+/-) littermates, and compared tumor growth, their histological features, vascularization and the expression of angiogenesis-related molecules. RESULTS We observed that Dll4 down-regulation promotes productive angiogenesis, although with less mature vessels, in chemically-induced pre-cancerous skin papillomas stimulating their growth. The increase in endothelial activation was associated with an increase in the VEGFR2 to VEGFR1 ratio, which neutralized the tumor-suppressive effect of VEGFR-targeting sorafenib. Thus, in early papillomas, lower levels of Dll4 increase vascularization through raised VEGFR2 levels, enhancing sensitivity to endogenous levels of VEGF, promoting functional angiogenesis and tumor growth. CONCLUSION Tumor promoting effect of low-dosage inhibition needs to be considered when implementing Dll4 targeting therapies.
Collapse
Affiliation(s)
- Dusan Djokovic
- Centro Interdisciplinar de Investigação em Sanidade Animal (CIISA), Universidade de Lisboa (ULisboa), Lisbon, Portugal.
| | - Alexandre Trindade
- Centro Interdisciplinar de Investigação em Sanidade Animal (CIISA), Universidade de Lisboa (ULisboa), Lisbon, Portugal.
| | - Joana Gigante
- Centro Interdisciplinar de Investigação em Sanidade Animal (CIISA), Universidade de Lisboa (ULisboa), Lisbon, Portugal.
| | - Mario Pinho
- Centro Interdisciplinar de Investigação em Sanidade Animal (CIISA), Universidade de Lisboa (ULisboa), Lisbon, Portugal.
| | - Adrian L Harris
- Cancer Research UK Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.
| | - Antonio Duarte
- Centro Interdisciplinar de Investigação em Sanidade Animal (CIISA), Universidade de Lisboa (ULisboa), Lisbon, Portugal.
| |
Collapse
|
38
|
Nakazawa Y, Kawano S, Matsui J, Funahashi Y, Tohyama O, Muto H, Nakagawa T, Matsushima T. Multitargeting strategy using lenvatinib and golvatinib: maximizing anti-angiogenesis activity in a preclinical cancer model. Cancer Sci 2015; 106:201-7. [PMID: 25458359 PMCID: PMC4399030 DOI: 10.1111/cas.12581] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 11/19/2014] [Accepted: 11/26/2014] [Indexed: 01/02/2023] Open
Abstract
Almost all cancers show intrinsic and/or evasive resistance to vascular endothelial growth factor (VEGF) inhibitors by multiple mechanisms. Serum angiopoietin-2 (Ang2) level has been proposed as a potential biomarker of VEGF inhibitor response in several cancers. From these clinical observations, the Ang2 and Tie2 (its receptor) axis has been focused on as a promising target. Here, we show a novel strategy to circumvent the resistance by combining multi-tyrosine kinase inhibitors lenvatinib (VEGF receptor, fibroblast growth factor receptor, and RET inhibitor) and golvatinib (E7050; c-Met, Tie2, and EphB4 inhibitor). Tie2 identifies a highly pro-angiogenic macrophage subset, Tie2-expressing macrophages (TEM). Angi-Tie2 and EphB4-EphrinB2 signaling plays critical roles in pericyte-mediated vessel stabilization. In vitro analyses suggested that golvatinib combined with lenvatinib inhibited pericyte-mediated vessel stabilization and TEM differentiation. In thyroid and endometrial cancer models, golvatinib and lenvatinib inhibited pericyte network development and TEM infiltration, resulting in severe perfusion disorder and massive apoptosis. Body weight loss was tolerable, and no macroscopic change was observed. These preclinical studies suggest that modulation of the tumor microenvironment by a strategic and well-tolerated combination of multi-targeting tyrosine kinase inhibitors may sensitize cancer to VEGF inhibitors.
Collapse
Affiliation(s)
- Youya Nakazawa
- Tsukuba Research Laboratory, Eisai Co., Ltd., Ibaraki, Japan
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Li P, Chen W, Wang Y, Fu X, Wen K, Qian J, Huang C, Fu Z. Effects of ephrinB2 gene siRNA on the biological behavior of human colorectal cancer cells. Oncol Rep 2014; 33:758-66. [PMID: 25434750 DOI: 10.3892/or.2014.3633] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 10/09/2014] [Indexed: 11/05/2022] Open
Abstract
Colorectal cancer (CRC) is a common gastrointestinal malignancy worldwide and is a lethal and aggressive malignancy with a dismal prognosis. EphrinB2 is a membrane-bound ligand and has an intracellular domain that also possesses an intrinsic signaling capacity called 'reverse signaling'. In the present study, CRC cell lines were screened for high expression of ephrinB2. Small interfering RNA (siRNA) knockdown of ephrinB2 was performed in human SW480 CRC cells. The levels of expression of ephrinB2, VEGF, CD105 and matrix metalloproteinase 9 (MMP9) protein were measured by western blotting, and messenger RNA (mRNA) levels were measured using real-time PCR. Apoptosis and cell cycle distribution were determined using flow cytometry. Cell proliferation was measured by a methyl thiazole tetrazolium (MTT) test and a scratch healing experiment was used to measure the extent of cell migration. A Transwell assay was used to detect the extent of cell invasion. The results showed that RNA interference (RNAi) of ephrinB2 effectively silenced the ephrinB2 gene at both the mRNA and protein levels in SW480 cells and inhibited the proliferation, invasion, migration and angiogenesis and induced apoptosis in SW480 cells. These effects may be attributed to VEGF and MMP9 regulation.
Collapse
Affiliation(s)
- Peiwu Li
- Department of General Surgery, First Affiliated Hospital, Chongqing Medical University, Chongqing 400010, P.R. China
| | - Wangsheng Chen
- Department of General Surgery, First Affiliated Hospital, Chongqing Medical University, Chongqing 400010, P.R. China
| | - Yingzhen Wang
- Department of Emergency, Lanzhou University Second Hospital, Lanzhou 730000, P.R. China
| | - Xu Fu
- Department of Emergency, Lanzhou University Second Hospital, Lanzhou 730000, P.R. China
| | - Kunming Wen
- Department of General Surgery, First Affiliated Hospital, Chongqing Medical University, Chongqing 400010, P.R. China
| | - Jiang Qian
- Department of General Surgery, First Affiliated Hospital, Chongqing Medical University, Chongqing 400010, P.R. China
| | - Chun Huang
- Department of General Surgery, First Affiliated Hospital, Chongqing Medical University, Chongqing 400010, P.R. China
| | - Zhongxue Fu
- Department of General Surgery, First Affiliated Hospital, Chongqing Medical University, Chongqing 400010, P.R. China
| |
Collapse
|
40
|
Xue C, Chen Y, Huang Z, Ge Y, Wang H, Wang J. EphB4 expression in pterygium is associated with microvessel density. Int J Clin Exp Med 2014; 7:4008-4015. [PMID: 25550909 PMCID: PMC4276167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 11/08/2014] [Indexed: 06/04/2023]
Abstract
OBJECTIVE Angiogenesis is a key component of the pathogenesis process of pterygium, which is the growth of fibrovascular tissue on the cornea. It has been reported that EphB4, a receptor tyrosine kinase of the ephrin-Eph system, plays important role in vascular development during embryogenesis and tumor angiogenesis and is potentially involved in ocular angiogenesis. The aim of this study is to investigate the role of EphB4 in pterygia. METHODS Fifteen pterygium samples and their paired upper bulbar conjunctiva were evaluated for expression of EphB4 and CD31 by using immunohistochemical staining. The expression level of the mRNA of EphB4 gene in 7 pterygia and matched upper bulbar conjunctiva was evaluated by using a quantitative real-time RT-PCR analysis. Microvessel density (MVD) was assessed with antibody that targets CD31. RESULTS EphB4 protein was high expressed in the epithelium and stroma of pterygia compared to those in upper bulbar conjunctiva. Immunohistochemical staining showed that pterygia presented with statistically significant higher average count of microvessel compared to normal conjunctivae (28.24 ± 6.79 vs 11.09 ± 2.96 per high power field, P < 0.001). MVD values in stroma of the pterygium and normal conjunctiva presented a significant correlation with EphB4 staining (P < 0.001). Compared with autologous upper bulbar conjunctiva grafts, the expression of the EphB4 mRNA was increased in pterygia in 4 paired samples, including those 3 recurrent ones. CONCLUSION The expression of EphB4 in pterygium was significantly related with the increased MVD and may be involved in angiogenesis. EphB4 protein is a potential target for treatment of pterygium.
Collapse
Affiliation(s)
- Chunyan Xue
- Department of Ophthalmology, Jinling Hospital, Nanjing University School of MedicineNanjing 210002, P. R. China
| | - Yueqin Chen
- Department of Ophthalmology, Jinling Hospital, Nanjing University School of MedicineNanjing 210002, P. R. China
| | - Zhenping Huang
- Department of Ophthalmology, Jinling Hospital, Nanjing University School of MedicineNanjing 210002, P. R. China
| | - Yirui Ge
- Department of Ophthalmology, Jinling Hospital, Nanjing University School of MedicineNanjing 210002, P. R. China
| | - Haiyan Wang
- Department of Pathology, Jinling Hospital, Nanjing University School of MedicineNanjing 210002, P. R. China
| | - Jiandong Wang
- Department of Pathology, Jinling Hospital, Nanjing University School of MedicineNanjing 210002, P. R. China
| |
Collapse
|
41
|
Abstract
The erythropoietin-producing hepatocellular carcinoma (Eph) receptor tyrosine kinase family plays important roles in developmental processes, adult tissue homeostasis, and various diseases. Interaction with Eph receptor-interacting protein (ephrin) ligands on the surface of neighboring cells triggers Eph receptor kinase-dependent signaling. The ephrins can also transmit signals, leading to bidirectional cell contact-dependent communication. Moreover, Eph receptors and ephrins can function independently of each other through interplay with other signaling systems. Given their involvement in many pathological conditions ranging from neurological disorders to cancer and viral infections, Eph receptors and ephrins are increasingly recognized as attractive therapeutic targets, and various strategies are being explored to modulate their expression and function. Eph receptor/ephrin upregulation in cancer cells, the angiogenic vasculature, and injured or diseased tissues also offer opportunities for Eph/ephrin-based targeted drug delivery and imaging. Thus, despite the challenges presented by the complex biology of the Eph receptor/ephrin system, exciting possibilities exist for therapies exploiting these molecules.
Collapse
Affiliation(s)
- Antonio Barquilla
- Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, California 92037; ,
| | | |
Collapse
|
42
|
Shi S, Li X, Li Y, Pei C, Yang H, Chen X. Expression and function of Delta-like ligand 4 in a rat model of retinopathy of prematurity. Neural Regen Res 2014; 8:723-30. [PMID: 25206719 PMCID: PMC4146072 DOI: 10.3969/j.issn.1673-5374.2013.08.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2012] [Accepted: 01/15/2013] [Indexed: 01/08/2023] Open
Abstract
The Delta-like ligand 4/Notch signaling pathway was shown to participate in the process of retinal development and angiogenesis. However, the function of the Delta-like ligand 4/Notch signaling pathway in retinopathy of prematurity requires further study. Retinopathy of prematurity was induced in 5-day-old Sprague-Dawley rats exposed to hyperoxia for 7 days, and then returned to room air. Reverse transcription-PCR and western blot revealed that Delta-like ligand 4 levels decreased at postnatal day 12 and increased at postnatal day 17 in retinopathy of prematurity rats. Flat-mounted adenosine diphosphatase stained retina and hematoxylin-eosin stained retinal tissue slices showed that the clock hour scores and the nuclei counts in retinopathy of prematurity rats were significantly different compared to normal control rats. After retinopathy of prematurity rats were intravitreally injected with Delta-like ligand 4 monoclonal antibody to inhibit the Delta-like ligand 4/Notch signaling pathway, there was a significant increase in the severity of retinal neovascularization (clock hours) in the intravitreally injected eyes. The nuclei count was highly correlated with the clock hour score. These results suggest that Delta-like ligand 4/Notch signaling plays an essential role in the process of physiological and pathological angiogenesis in the retina.
Collapse
Affiliation(s)
- Shaoyang Shi
- Department of Ophthalmology, Shengjing Hospital, China Medical University, Shenyang 110004, Liaoning Province, China ; Department of Ophthalmology, the 230 Hospital of Chinese PLA, Dandong 118000, Liaoning Province, China
| | - Xun Li
- Department of Ophthalmology, Shengjing Hospital, China Medical University, Shenyang 110004, Liaoning Province, China
| | - You Li
- Department of Ophthalmology, Shengjing Hospital, China Medical University, Shenyang 110004, Liaoning Province, China
| | - Cunwen Pei
- Department of Ophthalmology, Shengjing Hospital, China Medical University, Shenyang 110004, Liaoning Province, China
| | - Hongwei Yang
- Department of Ophthalmology, Shengjing Hospital, China Medical University, Shenyang 110004, Liaoning Province, China
| | - Xiaolong Chen
- Department of Ophthalmology, Shengjing Hospital, China Medical University, Shenyang 110004, Liaoning Province, China
| |
Collapse
|
43
|
Li X, Choi WW, Yan R, Yu H, Krasnoperov V, Kumar SR, Schuckman A, Klumpp DJ, Pan CX, Quinn D, Gill IS, Gill PS, Liu R. The differential expression of EphB2 and EphB4 receptor kinases in normal bladder and in transitional cell carcinoma of the bladder. PLoS One 2014; 9:e105326. [PMID: 25148033 PMCID: PMC4141800 DOI: 10.1371/journal.pone.0105326] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 07/20/2014] [Indexed: 11/19/2022] Open
Abstract
Effective treatment of transitional cell carcinoma (TCC) of the bladder requires early diagnosis. Identifying novel molecular markers in TCC would guide the development of diagnostic and therapeutic targets. Ephrins mediate signals via tyrosine kinase activity that modulates diverse physiologic and developmental processes, and ephrins are increasingly implicated in carcinogenesis. The aim of our study was to examine the differential regulation of EphB4 and EphB2 in normal bladder and in TCC of the bladder in 40 patients undergoing radical cystectomy for curative intent. Immunostaining and Western blotting revealed that normal urothelium expresses EphB2 (20 of 24 cases, 83% of the time) not EphB4 (0 of 24 cases, 0%). In sharp contrast, TCC specimens show loss of EphB2 expression (0 of 34 cases, 0%) and gain of EphB4 expression (32 of 34, 94%). Furthermore, EphB4 signal strength statistically correlated with higher tumor stage, and trended toward the presence of carcinoma in situ (CIS). These results are confirmed by analysis of normal urothelial and tumor cell lines. EphB2 is not a survival factor in normal urothelium, while EphB4 is a survival factor in TCC. Treatment of bladder tumor xenograft with an EphB4 inhibitor sEphB4-HSA leads to 62% tumor regression and complete remission when combined with Bevacizumab. Furthermore, tissue analysis revealed that sEphB4-HSA led to increased apoptosis, decreased proliferation, and reduced vessel density, implicating direct tumor cell targeting as well as anti-angiogenesis effect. In summary loss of EphB2 and gain of EphB4 expression represents an inflection point in the development, growth and possibly progression of TCC. Therapeutic compounds targeting EphB4 have potential for diagnosing and treating TCC.
Collapse
MESH Headings
- Angiogenesis Inhibitors/pharmacology
- Animals
- Antibodies, Monoclonal, Humanized/pharmacology
- Bevacizumab
- Carcinoma in Situ/genetics
- Carcinoma in Situ/metabolism
- Carcinoma, Transitional Cell/genetics
- Carcinoma, Transitional Cell/metabolism
- Carcinoma, Transitional Cell/pathology
- Cell Line, Tumor
- Cell Survival/drug effects
- Cell Survival/genetics
- Disease Models, Animal
- Female
- Gene Expression Regulation
- Humans
- Male
- Neoplasm Staging
- Neovascularization, Pathologic/drug therapy
- Receptor, EphB2/genetics
- Receptor, EphB2/metabolism
- Receptor, EphB4/genetics
- Receptor, EphB4/metabolism
- Signal Transduction
- Urinary Bladder/metabolism
- Urinary Bladder Neoplasms/genetics
- Urinary Bladder Neoplasms/metabolism
- Urinary Bladder Neoplasms/pathology
- Urothelium/metabolism
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Xiuqing Li
- Department of Medicine, University of Southern California Keck School of Medicine, Los Angeles, California, United States of America
| | - Wesley W. Choi
- Department of Urology, University of Southern California Keck School of Medicine, Los Angeles, California, United States of America
| | - Rui Yan
- Department of Medicine, University of Southern California Keck School of Medicine, Los Angeles, California, United States of America
| | - Haiyang Yu
- Department of Medicine, University of Southern California Keck School of Medicine, Los Angeles, California, United States of America
- Department of Surgery, Central South University National Hepatobiliary & Enteric Surgery Research Center, Changsha, Hunan, People's Republic of China
| | - Valery Krasnoperov
- VasGene Therapeutics Incorporated, Los Angeles, California, United States of America
| | - S. Ram Kumar
- Department of Surgery, University of Southern California Keck School of Medicine, Los Angeles, California, United States of America
| | - Anne Schuckman
- Department of Surgery, University of Southern California Keck School of Medicine, Los Angeles, California, United States of America
| | - David J. Klumpp
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Chong-Xian Pan
- Department of Internal Medicine, University of California at Davis Comprehensive Cancer, Sacramento, California, United States of America
| | - David Quinn
- Department of Medicine, University of Southern California Keck School of Medicine, Los Angeles, California, United States of America
| | - Inderbir S. Gill
- Department of Urology, University of Southern California Keck School of Medicine, Los Angeles, California, United States of America
| | - Parkash S. Gill
- Department of Medicine, University of Southern California Keck School of Medicine, Los Angeles, California, United States of America
- * E-mail: (RL); (PSG)
| | - Ren Liu
- Department of Medicine, University of Southern California Keck School of Medicine, Los Angeles, California, United States of America
- * E-mail: (RL); (PSG)
| |
Collapse
|
44
|
James AW, Nguyen A, Said J, Genshaft S, Lassman CR, Teitell M. Splenic hamartomas in Alagille syndrome: case report and literature review. Fetal Pediatr Pathol 2014; 33:216-25. [PMID: 24865822 DOI: 10.3109/15513815.2014.913748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Alagille syndrome is a rare autosomal dominant disorder with characteristic findings of paucity of intrahepatic bile ducts, congenital heart disease, and vertebral, ocular, and renal abnormalities. We present a unique autopsy case of an 18-year-old female with Alagille syndrome and splenic hamartomas. Autopsy findings included growth restriction, Tetralogy of Fallot, paucity of intrahepatic bile ducts, end-stage renal disease with mesangiolipidosis, and splenomegaly with two well-circumscribed, splenic tumors. Histologic findings of the splenic tumors revealed disorganized vascular channels lined by cells without cytologic atypia. Immunohistochemical analysis demonstrated CD8(+)CD31(+) endothelial cells, consistent with splenic hamartomas. In summary, Alagille syndrome is a rare genetic disorder characterized by JAG1 mutations and disrupted Notch signaling. Review of the literature highlights the importance of Notch signaling in vascular development and disorders. However, to our knowledge this is the first description of splenic hamartomas in Alagille syndrome.
Collapse
|
45
|
|
46
|
Therapeutic perspectives of Eph-ephrin system modulation. Drug Discov Today 2013; 19:661-9. [PMID: 24291785 DOI: 10.1016/j.drudis.2013.11.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 10/23/2013] [Accepted: 11/20/2013] [Indexed: 12/24/2022]
Abstract
Eph receptors are the largest class of kinase receptors and, together with their ligands ephrins, they have a primary role in embryogenesis. Their expression has been found deregulated in several cancer tissues and, in many cases, abnormal levels of these proteins have been correlated to a poor prognosis. Recently, the Eph-ephrin system was found to be deregulated in other pathological processes, involving the nervous and cardiovascular systems. The increasing body of evidence supports the Eph-ephrin system as a target not only for the treatment of solid tumors, but also to face other critical diseases such as amyotrophic lateral sclerosis and diabetes driving current efforts toward the development of pharmacological tools potentially able to treat these pathologies.
Collapse
|
47
|
Liu Z, Fan F, Wang A, Zheng S, Lu Y. Dll4-Notch signaling in regulation of tumor angiogenesis. J Cancer Res Clin Oncol 2013; 140:525-36. [DOI: 10.1007/s00432-013-1534-x] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 09/28/2013] [Indexed: 12/26/2022]
|
48
|
Li RX, Chen ZH, Chen ZK. The role of EPH receptors in cancer-related epithelial-mesenchymal transition. CHINESE JOURNAL OF CANCER 2013; 33:231-40. [PMID: 24103789 PMCID: PMC4026543 DOI: 10.5732/cjc.013.10108] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Erythropoietin-producing hepatoma (EPH) receptors are considered the largest family of receptor tyrosine kinases and play key roles in physiological and pathologic processes in development and disease. EPH receptors are often overexpressed in human malignancies and are associated with poor prognosis. However, the functions of EPH receptors in epithelial-mesenchymal transition (EMT) remain largely unknown. This review depicts the relationship between EPH receptors and the EMT marker E-cadherin as well as the crosstalk between EPH receptors and the signaling pathways involved EMT. Further discussion is focused on the clinical significance of EPH receptors as candidates for targeting in cancer therapeutics. Finally, we summarize how targeted inhibition of both EPH receptors and EMT-related signaling pathways represents a novel strategy for cancer treatment.
Collapse
Affiliation(s)
- Rui-Xin Li
- Department of Gastrointestinal Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P. R. China.
| | | | | |
Collapse
|
49
|
Liu R, Ferguson BD, Zhou Y, Naga K, Salgia R, Gill PS, Krasnoperov V. EphB4 as a therapeutic target in mesothelioma. BMC Cancer 2013; 13:269. [PMID: 23721559 PMCID: PMC3671960 DOI: 10.1186/1471-2407-13-269] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 05/28/2013] [Indexed: 12/29/2022] Open
Abstract
Background Malignant pleural mesothelioma (MPM) often develops decades following exposure to asbestos. Current best therapy produces a response in only half of patients, and the median survival with this therapy remains under a year. A search for novel targets and therapeutics is underway, and recently identified targets include VEGF, Notch, and EphB4-Ephrin-B2. Each of these targets has dual activity, promoting tumor cell growth as well as tumor angiogenesis. Methods We investigated EphB4 expression in 39 human mesothelioma tissues by immunohistochemistry. Xenograft tumors established with human mesothelioma cells were treated with an EphB4 inhibitor (monomeric soluble EphB4 fused to human serum albumin, or sEphB4-HSA). The combinatorial effect of sEphB4-HSA and biologic agent was also studied. Results EphB4 was overexpressed in 72% of mesothelioma tissues evaluated, with 85% of epithelioid and 38% of sarcomatoid subtypes demonstrating overexpression. The EphB4 inhibitor sEphB4-HSA was highly active as a single agent to inhibit tumor growth, accompanied by tumor cell apoptosis and inhibition of PI3K and Src signaling. Combination of sEphB4-HSA and the anti-VEGF antibody (Bevacizumab) was superior to each agent alone and led to complete tumor regression. Conclusion EphB4 is a potential therapeutic target in mesothelioma. Clinical investigation of sEphB4-HSA as a single agent and in combination with VEGF inhibitors is warranted.
Collapse
Affiliation(s)
- Ren Liu
- School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| | | | | | | | | | | | | |
Collapse
|
50
|
Witting SR, Vallanda P, Gamble AL. Characterization of a third generation lentiviral vector pseudotyped with Nipah virus envelope proteins for endothelial cell transduction. Gene Ther 2013; 20:997-1005. [PMID: 23698741 PMCID: PMC3839624 DOI: 10.1038/gt.2013.23] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 03/20/2013] [Accepted: 04/22/2013] [Indexed: 12/11/2022]
Abstract
Lentiviruses are becoming progressively more popular as gene therapy vectors due to their ability to integrate into quiescent cells and recent clinical trial successes. Directing these vectors to specific cell types and limiting off-target transduction in vivo remains a challenge. Replacing the viral envelope proteins responsible for cellular binding, or pseudotyping, remains a common method to improve lentiviral targeting. Here, we describe the development of a high titer, 3rd generation lentiviral vector pseudotyped with Nipah virus fusion protein (NiV-F) and attachment protein (NiV-G). Critical to high titers was truncation of the cytoplasmic domains of both NiV-F and NiV-G. As known targets of wild-type Nipah virus, primary endothelial cells are shown to be effectively transduced by the Nipah pseudotype. In contrast, human CD34+ hematopoietic progenitors were not significantly transduced. Additionally, the Nipah pseudotype has increased stability in human serum compared to VSV pseudotyped lentivirus. These findings suggest that the use of Nipah virus envelope proteins in 3rd generation lentiviral vectors would be a valuable tool for gene delivery targeted to endothelial cells.
Collapse
Affiliation(s)
- S R Witting
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | | |
Collapse
|