1
|
Tsai HL, Huang CW, Chen YC, Su WC, Chang TK, Chen PJ, Li CC, Chang YT, Wang JY. Real-World Outcomes of First-Line FOLFIRI Plus Bevacizumab with Irinotecan Dose Escalation versus FOLFOXIRI Plus Bevacizumab in BRAFV600E-Mutant Metastatic Colorectal Cancer: The Preliminary Data from a Single-Center Observational Study. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:2108. [PMID: 38138211 PMCID: PMC10745094 DOI: 10.3390/medicina59122108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023]
Abstract
Background and Objectives: Approximately 5-10% of all patients with metastatic colorectal cancer (mCRC) harbor a BRAFV600E mutation. These patients exhibit distinct metastatic patterns, poor prognosis, and heterogenous survival outcomes. The findings from the TRIBE study indicated that the administration of FOLFOXIRI plus bevacizumab as first-line treatment extended the median duration of overall survival (OS). In this study, we explored the effects of UGT1A1 polymorphism on the outcomes of irinotecan dose escalation versus FOLFOXIRI plus bevacizumab in patients with BRAFV600E-mutant mCRC. Materials and Methods: We retrospectively reviewed the medical records of 25 patients who had received a diagnosis of BRAFV600E-mutant mCRC between October 2015 and August 2022. All patients underwent UGT1A1 genotyping before receiving bevacizumab plus FOLFIRI. The primary end point was progression-free survival (PFS), and secondary endpoints were OS and adverse events (AEs). The two treatment arms were compared in terms of 6-month PFS and 12-month OS. Results: Over a median follow-up duration of 15.0 (interquartile range, 10.0-30.5) months, no significant differences were noted between the treatment arms in severe AEs (SAEs), 6-month PFS, or 12-month OS (all p < 0.05). Regarding AEs, the FOLFIRI plus bevacizumab regimen was associated with a lower incidence of anorexia than was the FOLFOXIRI plus bevacizumab regimen (p = 0.042). Conclusions: Our findings indicate that FOLFIRI plus bevacizumab with irinotecan dose escalation is an effective first-line treatment regimen for patients with BRAFV600E-mutant mCRC. This regimen leads to acceptable clinical outcomes with manageable AEs. However, the effects on survival and safety outcomes could only be speculated, and further studies are needed because of the sample size, the follow-up for the OS evaluation, and the non-uniformity in all the variables considered in the two groups.
Collapse
Affiliation(s)
- Hsiang-Lin Tsai
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (H.-L.T.); (C.-W.H.); (Y.-C.C.); (W.-C.S.); (T.-K.C.); (P.-J.C.); (C.-C.L.); (Y.-T.C.)
- Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ching-Wen Huang
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (H.-L.T.); (C.-W.H.); (Y.-C.C.); (W.-C.S.); (T.-K.C.); (P.-J.C.); (C.-C.L.); (Y.-T.C.)
- Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yen-Cheng Chen
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (H.-L.T.); (C.-W.H.); (Y.-C.C.); (W.-C.S.); (T.-K.C.); (P.-J.C.); (C.-C.L.); (Y.-T.C.)
- Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Wei-Chih Su
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (H.-L.T.); (C.-W.H.); (Y.-C.C.); (W.-C.S.); (T.-K.C.); (P.-J.C.); (C.-C.L.); (Y.-T.C.)
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Surgery, Faculty of Post-Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Tsung-Kun Chang
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (H.-L.T.); (C.-W.H.); (Y.-C.C.); (W.-C.S.); (T.-K.C.); (P.-J.C.); (C.-C.L.); (Y.-T.C.)
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Surgery, Faculty of Post-Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Po-Jung Chen
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (H.-L.T.); (C.-W.H.); (Y.-C.C.); (W.-C.S.); (T.-K.C.); (P.-J.C.); (C.-C.L.); (Y.-T.C.)
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ching-Chun Li
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (H.-L.T.); (C.-W.H.); (Y.-C.C.); (W.-C.S.); (T.-K.C.); (P.-J.C.); (C.-C.L.); (Y.-T.C.)
| | - Yu-Tang Chang
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (H.-L.T.); (C.-W.H.); (Y.-C.C.); (W.-C.S.); (T.-K.C.); (P.-J.C.); (C.-C.L.); (Y.-T.C.)
- Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Division of Pediatric Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Jaw-Yuan Wang
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (H.-L.T.); (C.-W.H.); (Y.-C.C.); (W.-C.S.); (T.-K.C.); (P.-J.C.); (C.-C.L.); (Y.-T.C.)
- Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
2
|
Differential properties of KRAS transversion and transition mutations in non-small cell lung cancer: associations with environmental factors and clinical outcomes. BMC Cancer 2022; 22:1148. [PMID: 36348317 PMCID: PMC9641926 DOI: 10.1186/s12885-022-10246-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 10/28/2022] [Indexed: 11/11/2022] Open
Abstract
Background KRAS-mutated non-small cell lung cancer (NSCLC) accounts for 23–35% and 13–20% of all NSCLCs in white patients and East Asians, respectively, and is therefore regarded as a major therapeutic target. However, its epidemiology and clinical characteristics have not been fully elucidated because of its wide variety of mutational subtypes. Here, we focused on two distinct base substitution types: transversion mutations and transition mutations, as well as their association with environmental factors and clinical outcome. Methods Dataset from the Japan Molecular Epidemiology Study, which is a prospective, multicenter, and molecular study epidemiology cohort study involving 957 NSCLC patients who underwent surgery, was used for this study. Questionnaire-based detailed information on clinical background and lifestyles was also used to assess their association with mutational subtypes. Somatic mutations in 72 cancer-related genes were analyzed by next-generation sequencing, and KRAS mutations were classified into three categories: transversions (G > C or G > T; G12A, G12C, G12R, G12V), transitions (G > A; G12D, G12S, G13D), and wild-type (WT). Clinical correlations between these subtypes have been investigated, and recurrence-free survival (RFS) and overall survival (OS) were evaluated. Results Of the 957 patients, KRAS mutations were detected in 80 (8.4%). Of these, 61 were transversions and 19 were transitions mutations. Both pack-years of smoking and smoking duration had significant positive correlation with the occurrence of transversion mutations (p = 0.03 and < 0.01, respectively). Notably, transitions showed an inverse correlation with vegetable intake (p = 0.01). Patients with KRAS transitions had the shortest RFS and OS compared to KRAS transversions and WT. Multivariate analysis revealed that KRAS transitions, along with age and stage, were significant predictors of shorter RFS and OS (HR 2.15, p = 0.01; and HR 2.84, p < 0.01, respectively). Conclusions Smoking exposure positively correlated with transversions occurrence in a dose-dependent manner. However, vegetable intake negatively correlated with transitions. Overall, KRAS transition mutations are significantly poor prognostic factors among resected NSCLC patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-10246-7.
Collapse
|
3
|
Wang F, Ugai T, Haruki K, Wan Y, Akimoto N, Arima K, Zhong R, Twombly TS, Wu K, Yin K, Chan AT, Giannakis M, Nowak JA, Meyerhardt JA, Liang L, Song M, Smith‐Warner SA, Zhang X, Giovannucci EL, Willett WC, Ogino S. Healthy and unhealthy plant-based diets in relation to the incidence of colorectal cancer overall and by molecular subtypes. Clin Transl Med 2022; 12:e893. [PMID: 35998061 PMCID: PMC9398226 DOI: 10.1002/ctm2.893] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 04/30/2022] [Accepted: 05/09/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Plant-based foods have been recommended for health. However, not all plant foods are healthy, and little is known about the association between plant-based diets and specific molecular subtypes of colorectal cancer (CRC). We examined the associations of healthy and unhealthy plant-based diets with the incidence of CRC and its molecular subtypes. METHODS While 123 773 participants of the Nurses' Health Study and the Health Professionals Follow-up Study had been followed up (3 143 158 person-years), 3077 of them had developed CRC. Healthy and unhealthy plant-based diet indices (hPDI and uPDI, respectively) were calculated using repeated food frequency questionnaire data. We determined the tumoural status of microsatellite instability (MSI), CpG island methylator phenotype (CIMP), and BRAF and KRAS mutations. RESULTS Higher hPDI was associated with lower CRC incidence (multivariable hazard ratio [HR] comparing extreme quartiles, 0.86, 95% confidence interval [CI]: 0.77, 0.96; P-trend = .04), whereas higher uPDI was associated with higher CRC incidence (multivariable HR comparing extreme quartiles, 1.16, 95% CI: 1.04, 1.29; P-trend = .005). The association of hPDI significantly differed by KRAS status (P-heterogeneity = .003) but not by other tumour markers. The hPDI was associated with lower incidence of KRAS-wildtype CRC (multivariable HR comparing extreme quartiles, 0.74, 95% CI: 0.57, 0.96; P-trend = .004) but not KRAS-mutant CRC (P-trend = .22). CONCLUSIONS While unhealthy plant-based diet enriched with refined grains and sugar is associated with higher CRC incidence, healthy plant-based diet rich in whole grains, fruits and vegetables is associated with lower incidence of CRC, especially KRAS-wildtype CRC.
Collapse
|
4
|
El Asri A, Ouldim K, Bouguenouch L, Sekal M, Moufid FZ, Kampman E, Huybrechts I, Gunter MJ, Abbaoui S, Znati K, Karkouri M, Kinany KE, Hatime Z, Deoula MMS, Chbani L, Zarrouq B, El Rhazi K. Dietary Fat Intake and KRAS Mutations in Colorectal Cancer in a Moroccan Population. Nutrients 2022; 14:318. [PMID: 35057499 PMCID: PMC8779768 DOI: 10.3390/nu14020318] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/05/2022] [Accepted: 01/09/2022] [Indexed: 01/27/2023] Open
Abstract
Epidemiologic data support an association between diet and mutations in the Kirsten-ras (KRAS) gene involved in colorectal cancer (CRC) development. This study aimed to explore the associations between fat intake and KRAS mutations in codons 12 and 13 in cases of CRC in the Moroccan population. A multicenter case-series study nested in a large-scale Moroccan CRC case-control study was conducted. Among all CRC cases recruited, 151 specimens were available for the DNA mutation analysis. Logistic regression was used to calculate odds ratios (ORs) and 95% confidence intervals (Cis) for KRAS mutation status according to the fat intake variables. A KRAS mutation was detected in the CRC tumor of 34.4% of the patients among whom 65.4% had a single mutation at codon 12 and 34.6% had a single mutation at codon 13. Compared to low levels of consumption, a positive association was observed between high polyunsaturated fatty acids (PUFA) consumption (>16.9 g/day) and prevalence of KRAS mutations (OR = 2.15, 95% CI = 1.01-4.59). No statistically significant associations were observed for total fat, monounsaturated fatty acids, saturated fatty acids and KRAS mutations. The results of this study suggest that PUFA may be relevant in the etiology of CRC, possibly through the generation of G > A transitions at the KRAS oncogene. Further studies are needed to verify and explain this finding.
Collapse
Affiliation(s)
- Achraf El Asri
- Laboratory of Epidemiology and Research in Health Sciences, Department of Epidemiology and Public Health, Faculty of Medicine and Pharmacy, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco; (K.E.K.); (Z.H.); (M.M.S.D.); (B.Z.); (K.E.R.)
| | - Karim Ouldim
- Medical Genetics and Oncogenetics Unit, Hassan II University Hospital, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco; (K.O.); (L.B.); (F.Z.M.)
- Cancer Research Institute, Fez 20192, Morocco
| | - Laila Bouguenouch
- Medical Genetics and Oncogenetics Unit, Hassan II University Hospital, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco; (K.O.); (L.B.); (F.Z.M.)
| | - Mohammed Sekal
- Department of Anatomy and Cytopathology, Hassan II University Hospital, Sidi Mohammed Ben Abdallah University, Fez 30000, Morocco; (M.S.); (L.C.)
| | - Fatima Zahra Moufid
- Medical Genetics and Oncogenetics Unit, Hassan II University Hospital, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco; (K.O.); (L.B.); (F.Z.M.)
| | - Ellen Kampman
- Division of Human Nutrition and Health, Wageningen University and Research, 69000 Wageningen, The Netherlands;
| | - Inge Huybrechts
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, World Health Organization, 69372 Lyon, France; (I.H.); (M.J.G.)
| | - Marc J. Gunter
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, World Health Organization, 69372 Lyon, France; (I.H.); (M.J.G.)
| | - Sanae Abbaoui
- Faculty of Medicine and Pharmacy, Ibn Zohr University, Agadir 80035, Morocco;
| | - Kaoutar Znati
- Department of Pathology, Ibn Sina University Hospital, Mohammed V University, Rabat 10001, Morocco;
| | - Mehdi Karkouri
- Pathologic Anatomy and Cytology Laboratory, Ibn Rochd University Hospital, Casablanca 20360, Morocco;
| | - Khaoula El Kinany
- Laboratory of Epidemiology and Research in Health Sciences, Department of Epidemiology and Public Health, Faculty of Medicine and Pharmacy, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco; (K.E.K.); (Z.H.); (M.M.S.D.); (B.Z.); (K.E.R.)
| | - Zineb Hatime
- Laboratory of Epidemiology and Research in Health Sciences, Department of Epidemiology and Public Health, Faculty of Medicine and Pharmacy, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco; (K.E.K.); (Z.H.); (M.M.S.D.); (B.Z.); (K.E.R.)
| | - Meimouna Mint Sidi Deoula
- Laboratory of Epidemiology and Research in Health Sciences, Department of Epidemiology and Public Health, Faculty of Medicine and Pharmacy, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco; (K.E.K.); (Z.H.); (M.M.S.D.); (B.Z.); (K.E.R.)
| | - Laila Chbani
- Department of Anatomy and Cytopathology, Hassan II University Hospital, Sidi Mohammed Ben Abdallah University, Fez 30000, Morocco; (M.S.); (L.C.)
| | - Btissame Zarrouq
- Laboratory of Epidemiology and Research in Health Sciences, Department of Epidemiology and Public Health, Faculty of Medicine and Pharmacy, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco; (K.E.K.); (Z.H.); (M.M.S.D.); (B.Z.); (K.E.R.)
- Department of Biology and Geology, Teachers Training College (Ecole Normale Superieure), Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
| | - Karima El Rhazi
- Laboratory of Epidemiology and Research in Health Sciences, Department of Epidemiology and Public Health, Faculty of Medicine and Pharmacy, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco; (K.E.K.); (Z.H.); (M.M.S.D.); (B.Z.); (K.E.R.)
| |
Collapse
|
5
|
Xu J, Zhao W, Liao K, Tu L, Jiang X, Dai H, Yu Y, Xiong Q, Xiong Z. Clinical retrospective study on the expression of the PD-L1 molecule in sporadic colorectal cancer and its correlation with K-ras gene mutations in Chinese patients. Am J Transl Res 2021; 13:6142-6155. [PMID: 34306353 PMCID: PMC8290729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 03/02/2021] [Indexed: 06/13/2023]
Abstract
OBJECTIVE To detect the expression of PD-L1 and K-ras gene status in colorectal cancer tissues and analyze the relationship between PD-L1 expression and the clinicopathological features and K-ras gene status in colorectal cancer. METHODS Two hundred fifty colorectal cancer tissues were collected from the First Affiliated Hospital of Nanchang University. The normal intestinal mucosal tissues of 20 patients were randomly selected for inclusion in the control group. PD-L1 expression was detected by immunohistochemistry. K-ras gene mutation in colorectal cancer tissues was detected by sequencing. The clinical significance of PD-L1 expression and relationship between PD-L1 expression and K-ras gene mutation were analyzed. RESULTS The immunohistochemistry assay showed that PD-L1 was highly expressed in colorectal cancer. The positive expression of PD-L1 was increased with lymph node metastasis and high TNM stage. The 5-year survival rate of PD-L1-positive patients was significantly lower than that of PD-L1-negative patients. The K-ras gene mutation rate was 35.6%, and the main mutation site was in codon 12. The positive PD-L1 expression rate in patients with K-ras gene mutations was significantly higher than that in patients with wild-type K-ras gene mutations. CONCLUSION PD-L1 is highly expressed in colorectal cancer, and its expression is related to metastasis and tumor stage. PD-L1 expression is closely related to K-ras gene mutation, and the K-ras gene status may affect PD-L1 expression. TRIAL REGISTRATION retrospectively registered.
Collapse
Affiliation(s)
- Jiasheng Xu
- Department of Pathology, The First Affiliated Hospital of Nanchang UniversityNo. 17 Yongwaizheng Street, Nanchang 330006, Jiangxi, China
| | - Wenpeng Zhao
- Department of Vascular Surgery, The Second Affiliated Hospital of Nanchang UniversityNo. 1 Minde Road, Nanchang 330006, Jiangxi, China
| | - Kaili Liao
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang UniversityNo. 1 Minde Road, Nanchang 330006, Jiangxi, China
| | - Luxia Tu
- Department of Pathology, The First Affiliated Hospital of Nanchang UniversityNo. 17 Yongwaizheng Street, Nanchang 330006, Jiangxi, China
| | - Xiaozhen Jiang
- Department of Pathology, The First Affiliated Hospital of Nanchang UniversityNo. 17 Yongwaizheng Street, Nanchang 330006, Jiangxi, China
| | - Hua Dai
- Department of Pathology, The First Affiliated Hospital of Nanchang UniversityNo. 17 Yongwaizheng Street, Nanchang 330006, Jiangxi, China
| | - Yanqing Yu
- Department of Pathology, The First Affiliated Hospital of Nanchang UniversityNo. 17 Yongwaizheng Street, Nanchang 330006, Jiangxi, China
| | - Qiuying Xiong
- Department of Pathology, The First Affiliated Hospital of Nanchang UniversityNo. 17 Yongwaizheng Street, Nanchang 330006, Jiangxi, China
| | - Zhenfang Xiong
- Department of Pathology, The First Affiliated Hospital of Nanchang UniversityNo. 17 Yongwaizheng Street, Nanchang 330006, Jiangxi, China
| |
Collapse
|
6
|
Clinicopathological Features and Prognostic Value of KRAS/NRAS/BRAF Mutations in Colorectal Cancer Patients of Central China. Curr Med Sci 2021; 41:118-126. [PMID: 33582915 DOI: 10.1007/s11596-021-2326-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 08/03/2020] [Indexed: 02/07/2023]
Abstract
The incidence of colorectal cancer (CRC) is increasing in China, with high mortality. Here, we aimed to evaluate the latest clinicopathological features and prognostic value of the KRAS/NRAS/BRAF mutation status in CRC patients in Central China. The clinical data of 1549 CRC patients with stage I-IV disease diagnosed at Union Hospital, Tongji Medical College of Huazhong University of Science and Technology from 2015 to 2017 were collected and analyzed retrospectively. KRAS/NRAS/BRAF mutations were detected by real-time quantitative polymerase chain reaction (q-PCR) in 410 CRC patients, with mutation frequencies of KRAS, NRAS and BRAF of 47.56%, 2.93% and 4.15%, respectively. The gene mutation status and clinicopathological characteristics of 410 patients with CRC who underwent qPCR were analyzed. The KRAS and BRAF gene mutations were related to the pathological differentiation and number of metastatic lymph nodes. The BRAF gene mutation was also associated with cancer thrombosis in blood vessels. Cox regression analysis showed that there was no statistically significant difference in the overall survival (OS) between patients with KRAS, NRAS mutants and wild-type CRC patients, while the BRAF gene mutation was negatively correlated with the OS rate of CRC patients. It is suggested that the BRAF gene mutation may be an independent risk factor for the prognosis of CRC.
Collapse
|
7
|
Hidaka A, Harrison TA, Cao Y, Sakoda LC, Barfield R, Giannakis M, Song M, Phipps AI, Figueiredo JC, Zaidi SH, Toland AE, Amitay EL, Berndt SI, Borozan I, Chan AT, Gallinger S, Gunter MJ, Guinter MA, Harlid S, Hampel H, Jenkins MA, Lin Y, Moreno V, Newcomb PA, Nishihara R, Ogino S, Obón-Santacana M, Parfrey PS, Potter JD, Slattery ML, Steinfelder RS, Um CY, Wang X, Woods MO, Van Guelpen B, Thibodeau SN, Hoffmeister M, Sun W, Hsu L, Buchanan DD, Campbell PT, Peters U. Intake of Dietary Fruit, Vegetables, and Fiber and Risk of Colorectal Cancer According to Molecular Subtypes: A Pooled Analysis of 9 Studies. Cancer Res 2020; 80:4578-4590. [PMID: 32816852 PMCID: PMC7572895 DOI: 10.1158/0008-5472.can-20-0168] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/12/2020] [Accepted: 07/31/2020] [Indexed: 12/13/2022]
Abstract
Protective associations of fruits, vegetables, and fiber intake with colorectal cancer risk have been shown in many, but not all epidemiologic studies. One possible reason for study heterogeneity is that dietary factors may have distinct effects by colorectal cancer molecular subtypes. Here, we investigate the association of fruit, vegetables, and fiber intake with four well-established colorectal cancer molecular subtypes separately and in combination. Nine observational studies including 9,592 cases with molecular subtypes for microsatellite instability (MSI), CpG island methylator phenotype (CIMP), and somatic mutations in BRAF and KRAS genes, and 7,869 controls were analyzed. Both case-only logistic regression analyses and polytomous logistic regression analyses (with one control set and multiple case groups) were used. Higher fruit intake was associated with a trend toward decreased risk of BRAF-mutated tumors [OR 4th vs. 1st quartile = 0.82 (95% confidence interval, 0.65-1.04)] but not BRAF-wildtype tumors [1.09 (0.97-1.22); P difference as shown in case-only analysis = 0.02]. This difference was observed in case-control studies and not in cohort studies. Compared with controls, higher fiber intake showed negative association with colorectal cancer risk for cases with microsatellite stable/MSI-low, CIMP-negative, BRAF-wildtype, and KRAS-wildtype tumors (P trend range from 0.03 to 3.4e-03), which is consistent with the traditional adenoma-colorectal cancer pathway. These negative associations were stronger compared with MSI-high, CIMP-positive, BRAF-mutated, or KRAS-mutated tumors, but the differences were not statistically significant. These inverse associations for fruit and fiber intake may explain, in part, inconsistent findings between fruit or fiber intake and colorectal cancer risk that have previously been reported. SIGNIFICANCE: These analyses by colorectal cancer molecular subtypes potentially explain the inconsistent findings between dietary fruit or fiber intake and overall colorectal cancer risk that have previously been reported.
Collapse
Affiliation(s)
- Akihisa Hidaka
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington.
| | - Tabitha A Harrison
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Yin Cao
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St Louis, Missouri
- Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine, St. Louis, Missouri
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Lori C Sakoda
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Division of Research, Kaiser Permanente Northern California, Oakland, California
| | - Richard Barfield
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Marios Giannakis
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Mingyang Song
- Departments of Epidemiology and Nutrition, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Amanda I Phipps
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Department of Epidemiology, University of Washington, Seattle, Washington
| | - Jane C Figueiredo
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Syed H Zaidi
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Amanda E Toland
- Departments of Cancer Biology and Genetics and Internal Medicine, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Efrat L Amitay
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sonja I Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Ivan Borozan
- Ontario Institute for Cancer Research, Toronto, Canada
| | - Andrew T Chan
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
| | - Steven Gallinger
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Marc J Gunter
- Nutrition and Metabolism Section, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Mark A Guinter
- Behavioral and Epidemiology Research Group, American Cancer Society, Atlanta, Georgia
| | - Sophia Harlid
- Department of Radiation Sciences, Oncology Unit, Umeå University, Umeå, Sweden
| | - Heather Hampel
- Departments of Cancer Biology and Genetics and Internal Medicine, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Mark A Jenkins
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Yi Lin
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Victor Moreno
- Oncology Data Analytics Program, Catalan Institute of Oncology-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, Spain
- ONCOBEL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Polly A Newcomb
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- School of Public Health, University of Washington, Seattle, Washington
| | - Reiko Nishihara
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Shuji Ogino
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Mireia Obón-Santacana
- Oncology Data Analytics Program, Catalan Institute of Oncology-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
- ONCOBEL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | | | - John D Potter
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Martha L Slattery
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - Robert S Steinfelder
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Caroline Y Um
- Behavioral and Epidemiology Research Group, American Cancer Society, Atlanta, Georgia
| | - Xiaoliang Wang
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Michael O Woods
- Memorial University of Newfoundland, Discipline of Genetics, St. John's, Canada
| | - Bethany Van Guelpen
- Department of Radiation Sciences, Oncology Unit, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Stephen N Thibodeau
- Division of Laboratory Genetics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Wei Sun
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Li Hsu
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Department of Biostatistics, University of Washington, Seattle, Washington
| | - Daniel D Buchanan
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia
- Genetic Medicine and Family Cancer Clinic, The Royal Melbourne Hospital, Parkville, Victoria, Australia
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia
| | - Peter T Campbell
- Behavioral and Epidemiology Research Group, American Cancer Society, Atlanta, Georgia
| | - Ulrike Peters
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Department of Epidemiology, University of Washington, Seattle, Washington
| |
Collapse
|
8
|
El Asri A, Zarrouq B, El Kinany K, Bouguenouch L, Ouldim K, El Rhazi K. Associations between nutritional factors and KRAS mutations in colorectal cancer: a systematic review. BMC Cancer 2020; 20:696. [PMID: 32723394 PMCID: PMC7388532 DOI: 10.1186/s12885-020-07189-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 07/16/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Between 30 and 50% of colon tumors have mutations in the Kirsten-ras (KRAS) gene, which have a large nutritional attributable risk. Despite its high frequency in colorectal cancer (CRC), data to support specific associations between KRAS mutations in CRC and diet are sparse. Here, we conducted a systematic review to summarize the current epidemiological evidence on the association between various dietary factors and KRAS mutations. METHODS PubMed, Science Direct, and Cochrane databases were searched for relevant studies published until December 31, 2019, using inclusion and exclusion criteria in accordance with PRISMA guidelines. We analyzed the studies to find associations between nutritional factors and CRC tumors with KRAS mutations in humans. RESULTS We identified 28 relevant studies to include in this systematic review. In-depth analyses showed unclear associations between nutritional factors and KRAS mutations in CRC. Most epidemiological studies in the same nutrient or food often reported conflicting and/or inconclusive findings, whereas for some dietary factors, the results were homogeneous. CONCLUSIONS Further research using a more robust prospective cohort study is needed to lend more credence to the epidemiological associations found between KRAS mutations and dietary factors.
Collapse
Affiliation(s)
- Achraf El Asri
- Laboratory of Epidemiology and Research in Health Sciences, Faculty of Medicine and Pharmacy, Sidi Mohammed Ben Abdallah University, Fez, Morocco
- Medical Genetics and Oncogenetics Unit, Hassan II University Hospital, Fez, Morocco
| | - Btissame Zarrouq
- Laboratory of Epidemiology and Research in Health Sciences, Faculty of Medicine and Pharmacy, Sidi Mohammed Ben Abdallah University, Fez, Morocco
- Teacher’s Training College (Ecole Normale Superieure), Department of Biology and Geology, Sidi Mohammed Ben Abdallah University, Fez, Morocco
| | - Khaoula El Kinany
- Laboratory of Epidemiology and Research in Health Sciences, Faculty of Medicine and Pharmacy, Sidi Mohammed Ben Abdallah University, Fez, Morocco
| | - Laila Bouguenouch
- Medical Genetics and Oncogenetics Unit, Hassan II University Hospital, Fez, Morocco
| | - Karim Ouldim
- Medical Genetics and Oncogenetics Unit, Hassan II University Hospital, Fez, Morocco
- Cancer Research Institute, Fez, Morocco
| | - Karima El Rhazi
- Laboratory of Epidemiology and Research in Health Sciences, Faculty of Medicine and Pharmacy, Sidi Mohammed Ben Abdallah University, Fez, Morocco
| |
Collapse
|
9
|
Mint Sidi Ould Deoula M, Huybrechts I, El Kinany K, Boudouaya H, Hatime Z, El Asri A, Benslimane A, Nejjari C, Sidi Adil I, El Rhazi K. Behavioral, Nutritional, and Genetic Risk Factors of Colorectal Cancers in Morocco: Protocol for a Multicenter Case-Control Study. JMIR Res Protoc 2020; 9:e13998. [PMID: 31929106 PMCID: PMC7006499 DOI: 10.2196/13998] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 06/27/2019] [Accepted: 07/19/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Colorectal cancer (CRC) has been reported as the third most commonly diagnosed cancer worldwide and is currently considered as a major public health concern. A peak increase in incidence has been noted in economically transitioning countries like Morocco where industrialization started shifting from a traditional lifestyle and diet toward a more westernized diet and lifestyle. OBJECTIVE This paper aims to present the protocol of a large-scale Moroccan case-control study that aims at investigating associations of diet, other lifestyle factors, and genetic traits with CRC risk in Morocco. METHODS A case-control study was conducted between 2009 and 2017, including 3032 case-control pairs (1516 cases and 1516 controls) matched on sex, age, and center in 5 major public health hospitals in Morocco. Questionnaires on sociodemographic data, lifestyle, family history of CRC, and nonsteroidal anti-inflammatory drugs (NSAIDs) were completed by trained investigators during face-to-face interviews. In addition, participants completed a semiquantitative food-frequency questionnaire, developed to assess food intake in the Moroccan population. Information regarding genetic factors was recorded for cases, and paraffin blocks (with embedded tumor tissues) are available in 3 collaborating hospitals. Conditional logistic regression analysis is planned to assess associations between diet and CRC risk. Binary logistic regression is considered to predict associations between mutations and nutritional risk factors including only CRC case series. RESULTS Altogether, 2966 cases-control pairs (1483 cases and 1483 controls) were considered eligible and included in this study. Both cases and controls did not differ significantly with respect to age (P=.36), sex (P=.51), center (P>.99), marital status (P=.30), and NSAID use (P=.08). However, participants in the control group were significantly more likely to have a high income level and live in urban areas and to have a high level of education than cases. CONCLUSIONS This is the first study investigating potential risk factors of CRC such as lifestyle, diet, and genetic factors, originating from a southern Mediterranean country with low but increasing CRC prevalence. Identified risk factors allow the establishment of evidence-based preventive actions regarding nutrition and other lifestyle habits adapted to the Moroccan context. In brief, this study will promote cancer research and prevention in Morocco. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) RR1-10.2196/13998.
Collapse
Affiliation(s)
| | | | | | | | - Zineb Hatime
- Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | | | | | | | | | | |
Collapse
|
10
|
Wang J, Shen J, Huang C, Cao M, Shen L. Clinicopathological Significance of BRAFV600E Mutation in Colorectal Cancer: An Updated Meta-Analysis. J Cancer 2019; 10:2332-2341. [PMID: 31258736 PMCID: PMC6584400 DOI: 10.7150/jca.30789] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 04/20/2019] [Indexed: 12/18/2022] Open
Abstract
Background and Aims: Numerous studies have identified BRAFV600E mutation as a predictive factor of anti-EGFR antibodies in colorectal cancer (CRC). However, the association between BRAFV600E mutation and clinicopathological features remains unclear. Therefore, we aimed to conduct an updated and comprehensive meta-analysis to evaluate the above issues. Methods: We performed a systematic literature search from PubMed, Web of Science, Embase, and PMC database examining the association between BRAFV600E mutation and clinicopathological features in CRC patients. Odds ratio with 95% confidence interval were used to estimate the effects of BRAFV600E mutation on each clinicopathological parameter with fixed-effect model or random-effect model. Results: Sixty-one studies published, including 32407 CRC patients from multiple countries, were included in the meta-analysis. The overall BRAFV600E mutation rate was 11.38%, and BRAFV600E mutation was positively related to high disease stage (OR=0.81; 95% CI=0.72-0.92; P=0.001), high T stage (OR=0.51; 95% CI=0.40-0.65; P<0.00001), proximal colon (OR=4.76; 95% CI=3.81-5.96; P<0.00001) or right colon (OR=5.15; 95% CI=4.35-6.10, P<0.00001) tumor location, poor tumor differentiation (OR=0.27; 95% CI=0.21-0.34; P<0.00001), mucinous histology (OR=2.97; 95% CI=2.37-3.72; P<0.00001), K-ras-wild type (OR=0.04; 95% CI=0.02-0.07; P<0.00001), TP53-wild type (OR=0.50; 95% CI=0.31-0.78; P=0.003), deficient DNA mismatch repair (OR=2.93; 95% CI=1.78-4.82; P<0.00001), high microsatellite instability (OR=11.15; 95% CI=8.51-14.61; P<0.00001) and high CpG island methylator phenotype (OR=0.04; 95% CI=0.03-0.08; P<0.00001). Conclusions: Our updated meta-analysis demonstrated that BRAFV600E mutation was related to poor prognosis of CRC and associated with the distinct molecular phenotypes.
Collapse
Affiliation(s)
- Jianhua Wang
- Division of Gastrointestinal Surgery, Department of General Surgery, First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China.,Department of General Surgery, Affiliated Hospital of Integrated Chinese and Western Medicine of Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Jiajia Shen
- Division of Gastrointestinal Surgery, Department of General Surgery, First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Chi Huang
- Department of General Surgery, Affiliated Hospital of Integrated Chinese and Western Medicine of Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Meng Cao
- Lab of cellular and molecular biology, Affiliated Hospital of Integrated Chinese and Western Medicine of Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Lizong Shen
- Division of Gastrointestinal Surgery, Department of General Surgery, First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China.,Department of Surgical Oncology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| |
Collapse
|
11
|
Schirripa M, Biason P, Lonardi S, Pella N, Pino MS, Urbano F, Antoniotti C, Cremolini C, Corallo S, Pietrantonio F, Gelsomino F, Cascinu S, Orlandi A, Munari G, Malapelle U, Saggio S, Fontanini G, Rugge M, Mescoli C, Lazzi S, Reggiani Bonetti L, Lanza G, Dei Tos AP, De Maglio G, Martini M, Bergamo F, Zagonel V, Loupakis F, Fassan M. Class 1, 2, and 3 BRAF-Mutated Metastatic Colorectal Cancer: A Detailed Clinical, Pathologic, and Molecular Characterization. Clin Cancer Res 2019; 25:3954-3961. [PMID: 30967421 DOI: 10.1158/1078-0432.ccr-19-0311] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/26/2019] [Accepted: 04/03/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE BRAF mutations are grouped in activating RAS-independent signaling as monomers (class 1-V600E) or as dimers (class 2-codons 597/601), and RAS-dependent with impaired kinase activity (class 3-codons 594/596). Although clinical, pathologic, and molecular features of V600EBRAF-mutated metastatic colorectal cancer (mCRC) are well known, limited data are available from the two other classes. EXPERIMENTAL DESIGN Data from 117 patients with BRAF (92 class 1, 12 class 2, and 13 class 3)-mutated mCRC were collected. A total of 540 BRAF wt mCRCs were included as control. IHC profiling was performed to determine the consensus molecular subtypes (CMS), cytokeratin 7/20 profiles, tumor-infiltrating lymphocyte infiltration, and BM1/BM2 categorization. Overall survival (OS) and progression-free survival were evaluated by Kaplan-Meier and log-rank test. RESULTS Class 3 BRAF-mutated mCRC was more frequently left sided (P = 0.0028), pN0 (P = 0.0159), and without peritoneal metastases (P = 0.0176) compared with class 1, whereas class 2 cases were similar to class 1. Hazard ratio for OS, as compared with BRAF wt, was 2.38 [95% confidence interval (CI), 1.61-3.54] for class 1, 1.90 (95% CI, 0.85-4.26) for class 2, and 0.93 (95% CI, 0.51-1.69) for class 3 (P < 0.0001). Class 2 and 3 tumors were all assigned to CMS2-3. A higher median CD3/CD8-positive lymphocyte infiltration was observed in BRAF-mutated class 2 (P = 0.033) compared with class 3 cases. CONCLUSIONS For the first time, different clinical and pathologic features and outcome data were reported according to the three BRAF mutation classes in mCRC. Specific targeted treatment strategies should be identified in the near future for such patients.
Collapse
Affiliation(s)
- Marta Schirripa
- Department of Oncology, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Paola Biason
- Department of Oncology, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Sara Lonardi
- Department of Oncology, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Nicoletta Pella
- Department of Oncology, University and General Hospital, Udine, Italy
| | - Maria Simona Pino
- Medical Oncology Unit, Department of Oncology, Azienda USL Toscana Centro, S. Maria Annunziata Hospital, Florence, Italy
| | - Federica Urbano
- Department of Radiological Sciences, Oncology and Pathology, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Carlotta Antoniotti
- Unit of Medical Oncology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Chiara Cremolini
- Unit of Medical Oncology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Salvatore Corallo
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Filippo Pietrantonio
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.,Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy
| | - Fabio Gelsomino
- Department of Oncology and Haematology, University Hospital of Modena, Modena, Italy
| | - Stefano Cascinu
- Department of Oncology and Haematology, University Hospital of Modena, Modena, Italy
| | - Armando Orlandi
- U.O.C Oncologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Giada Munari
- Department of Oncology, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy.,Surgical Pathology and Cytopathology Unit, Department of Medicine (DIMED), University of Padua, Padua, Italy
| | - Umberto Malapelle
- Department of Public Health, University Federico II of Naples, Naples, Italy
| | - Serena Saggio
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Gabriella Fontanini
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Massimo Rugge
- Surgical Pathology and Cytopathology Unit, Department of Medicine (DIMED), University of Padua, Padua, Italy
| | - Claudia Mescoli
- Surgical Pathology and Cytopathology Unit, Department of Medicine (DIMED), University of Padua, Padua, Italy
| | - Stefano Lazzi
- Department of Medical Biotechnology, Section of Pathology, University of Siena, Siena, Italy
| | - Luca Reggiani Bonetti
- Department of Diagnostic Medicine and Public Health, Section of Pathology, Università di Modena e Reggio Emilia, Policlinico di Modena, Modena, Italy
| | - Giovanni Lanza
- Department of Pathology, University of Ferrara, Ferrara, Italy
| | - Angelo Paolo Dei Tos
- Department of Pathology and Molecular Genetics, Treviso General Hospital, Treviso, Italy
| | | | - Maurizio Martini
- Dipartimento Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, area di Anatomia Patologica, Fondazione policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Istituto di Anatomia Patologica, Università Cattolica Del Sacro Cuore, Rome, Italy
| | - Francesca Bergamo
- Department of Oncology, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Vittorina Zagonel
- Department of Oncology, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Fotios Loupakis
- Department of Oncology, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy.
| | - Matteo Fassan
- Surgical Pathology and Cytopathology Unit, Department of Medicine (DIMED), University of Padua, Padua, Italy
| |
Collapse
|
12
|
Abstract
BACKGROUND The methylator pathway of colorectal carcinogenesis, characterized by CpG island hypermethylation and BRAF mutations, accounts for ≈25% of colorectal cancers. Because these cancers tend to be right sided and because DNA methylation in the right colon increases with age, we expect an increasing proportion of right-sided cancer over time. Conversely, we expect young patients (age <50 y) to have less methylated and fewer right-sided cancers OBJECTIVE:: The purpose of this study was to analyze the distribution and genetic traits of colorectal cancer from different age groups. DESIGN This was a retrospective cohort study. SETTING The study was conducted at a high-volume tertiary referral center. PATIENTS Patient samples included those from our colorectal cancer biobank of resected colorectal cancer specimens. MAIN OUTCOME MEASURES Tumor CpG island hypermethylation, microsatellite instability, and mutations in KRAS and BRAF oncogenes were analyzed in resected specimens and stratified by age and tumor location. Comparisons included age >50 or <50 years and decade of diagnosis (≤50, 51-60, 61-70, 71-80, and >81 y). Patients with IBD or hereditary syndromes were excluded. RESULTS A total of 497 colorectal cancers were analyzed (266 men and 231 women); 57 patients (11.5%) were ≤50 years of age. No young cancers (0/57) were hypermethylated compared with 97 (22%) of 440 cancers of patients aged >50 years (p < 0.001). An increasing percentage of tumors were CpG island phenotype high with each decade of age at diagnosis. No cancers in patients <50 years of age were microsatellite unstable compared with 91 (23.6%) of 346 for those >50 years of age. No young cancers contained a BRAF mutation compared with 46 (10.6%) of 434 in older cancers (p < 0.001). KRAS mutations were less common in young cancers compared with older cancers (13/57 (22.8%) vs 126/410 (30.7%); p < 0.01). Eleven (19.3%) of 57 young cancers were proximal compared with 228 (51.8%) of 440 (p < 0.001) older cancers. LIMITATIONS This study was limited by its retrospective design. CONCLUSIONS The lack of CpG island methylator phenotype tumors in young patients is consistent with the dominant left-sided cancer distribution seen in the young and focuses efforts to understand and prevent cancer in this age group on causes of chromosomal instability. See Video Abstract at http://links.lww.com/DCR/A709.
Collapse
|
13
|
Dolatkhah R, Somi MH, Shabanloei R, Farassati F, Fakhari A, Dastgiri S. Main Risk Factors Association with Proto-Oncogene Mutations in Colorectal Cancer. Asian Pac J Cancer Prev 2018; 19:2183-2190. [PMID: 30139223 PMCID: PMC6171391 DOI: 10.22034/apjcp.2018.19.8.2183] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Objective: Although several factors have been shown to have etiological roles in colorectal cancer, few investigations
have addressed how and to what extent these factors affect the genetics and pathology of the disease. Precise relationships
with specific genetic mutations that could alter signaling pathways involved in colorectal cancer remain unknown.
We therefore aimed to investigate possible links between lifestyle, dietary habits, and socioeconomic factors and specific
mutations that are common in colorectal cancers. Methods: Data were retrieved from a baseline survey of lifestyle factors,
dietary behavior, and SES, as well as anthropometric evaluations during a physical examination, for 100 confirmed
primary sporadic colorectal cancer patients from Northwest Iran. Results: High socioeconomic status was significantly
associated with higher likelihood of a KRAS gene mutation (P < 0.05) (odds ratio: 3.01; 95% CI: 0.69–13.02). Consuming
carbohydrates and alcohol, working less, and having a sedentary lifestyle also increased the odds of having a KRAS
mutation. Conclusion: Although research has not yet described the exact relationships among genetic mutations with
different known risk factors in colorectal cancer, examples of the latter may have an impact on KRAS gene mutations.
Collapse
Affiliation(s)
- Roya Dolatkhah
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | | | | | | | | | | |
Collapse
|
14
|
Chat-Uthai N, Vejvisithsakul P, Udommethaporn S, Meesiri P, Danthanawanit C, Wongchai Y, Teerapakpinyo C, Shuangshoti S, Poungvarin N. Development of ultra-short PCR assay to reveal BRAF V600 mutation status in Thai colorectal cancer tissues. PLoS One 2018; 13:e0198795. [PMID: 29879227 PMCID: PMC5991739 DOI: 10.1371/journal.pone.0198795] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 05/25/2018] [Indexed: 02/06/2023] Open
Abstract
The protein kinase BRAF is one of the key players in regulating cellular responses to extracellular signals. Somatic mutations of the BRAF gene, causing constitutive activation of BRAF, have been found in various types of human cancers such as malignant melanoma, and colorectal cancer. BRAF V600E and V600K, most commonly observed mutations in these cancers, may predict response to targeted therapies. Many techniques suffer from a lack of diagnostic sensitivity in mutation analysis in clinical samples with a low cancer cell percentage or poor-quality fragmented DNA. Here we present allele-specific real-time PCR assay for amplifying 35- to 45-base target sequences in BRAF gene. Forward primer designed for BRAF V600E detection is capable of recognizing both types of BRAF V600E mutation, i.e. V600E1 (c.1799T>A) and V600E2 (c.1799_1800delTGinsAA), as well as complex tandem mutation caused by nucleotide changes in codons 600 and 601. We utilized this assay to analyze Thai formalin-fixed paraffin-embedded tissues. Forty-eight percent of 178 Thai colorectal cancer tissues has KRAS mutation detected by highly sensitive commercial assays. Although these DNA samples contain low overall yield of amplifiable DNA, our newly-developed assay successfully revealed BRAF V600 mutations in 6 of 93 formalin-fixed paraffin-embedded colorectal cancer tissues which KRAS mutation was not detected. Ultra-short PCR assay with forward mutation-specific primers is potentially useful to detect BRAF V600 mutations in highly fragmented DNA specimens from cancer patients.
Collapse
Affiliation(s)
- Nunthawut Chat-Uthai
- Research Division, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | | | - Sutthirat Udommethaporn
- Clinical Molecular Pathology Laboratory, Department of Clinical Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Puttarakun Meesiri
- Clinical Molecular Pathology Laboratory, Department of Clinical Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Chetiya Danthanawanit
- Clinical Molecular Pathology Laboratory, Department of Clinical Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Yannawan Wongchai
- Research Division, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Chinachote Teerapakpinyo
- Chulalongkorn GenePRO Center, Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Shanop Shuangshoti
- Chulalongkorn GenePRO Center, Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Pathology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Naravat Poungvarin
- Clinical Molecular Pathology Laboratory, Department of Clinical Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- * E-mail:
| |
Collapse
|
15
|
Zhang X, Ran W, Wu J, Li H, Liu H, Wang L, Xiao Y, Wang X, Li Y, Xing X. Deficient mismatch repair and RAS mutation in colorectal carcinoma patients: a retrospective study in Eastern China. PeerJ 2018; 6:e4341. [PMID: 29423347 PMCID: PMC5804321 DOI: 10.7717/peerj.4341] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 01/18/2018] [Indexed: 12/12/2022] Open
Abstract
Objectives To investigate the frequency and prognostic role of deficient mismatch repair (dMMR) and RAS mutation in Chinese patients with colorectal carcinoma. Methods Clinical and pathological information from 813 patients were reviewed and recorded. Expression of mismatch repair proteins was tested by immunohistochemistry. Mutation analyses for RAS gene were performed by real-time polymerase chain reaction. Correlations of mismatch repair status and RAS mutation status with clinicopathological characteristics and disease survival were determined. Results The overall percentage of dMMR was 15.18% (121/797). The proportion of dMMR was higher in patients <50 years old (p < 0.001) and in the right side of the colon (p < 0.001). Deficient mismatch repair was also associated with mucinous production (p < 0.001), poor differentiation (p < 0.001), early tumor stage (p < 0.05) and bowel wall invasion (p < 0.05). The overall RAS mutation rate was 45.88%, including 42.56% (346/813) KRAS mutation and 3.69% (30/813) NRAS mutation (including three patients with mutations in both). KRAS mutation was significantly associated with mucinous production (p < 0.05), tumor stage (p < 0.05) and was higher in non-smokers (p < 0.05) and patients with a family history of colorectal carcinoma (p < 0.05). Overall, 44.63% (54/121) dMMR tumors harbored KRAS mutation, however, dMMR tumors were less likely to have NRAS mutation. Moreover, dMMR, KRAS and NRAS mutation were not prognostic factors for stage I–III colorectal carcinoma. Conclusions This study confirms that the status of molecular markers involving mismatch repair status and RAS mutation reflects the specific clinicopathological characteristics of colorectal carcinoma.
Collapse
Affiliation(s)
- Xiangyan Zhang
- Department of Pathology, Affiliated Hospital of Qingdao University, Qingdao, China.,Department of Pathology, Qingdao University Basic Medicine College, Qingdao, China
| | - Wenwen Ran
- Department of Pathology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jie Wu
- Department of Pathology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hong Li
- Department of Pathology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Huamin Liu
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lili Wang
- Department of Pathology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yujing Xiao
- Department of Pathology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaonan Wang
- Department of Pathology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yujun Li
- Department of Pathology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaoming Xing
- Department of Pathology, Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
16
|
Lifestyle, Diet, and Colorectal Cancer Risk According to (Epi)genetic Instability: Current Evidence and Future Directions of Molecular Pathological Epidemiology. CURRENT COLORECTAL CANCER REPORTS 2017; 13:455-469. [PMID: 29249914 PMCID: PMC5725509 DOI: 10.1007/s11888-017-0395-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Purpose of Review In this review, we describe molecular pathological epidemiology (MPE) studies from around the world that have studied diet and/or lifestyle factors in relation to molecular markers of (epi)genetic pathways in colorectal cancer (CRC), and explore future perspectives in this realm of research. The main focus of this review is diet and lifestyle factors for which there is evidence for an association with CRC as identified by the World Cancer Research Fund reports. In addition, we review promising hypotheses, that warrant consideration in future studies. Recent Findings Associations between molecular characteristics of CRC have been published in relation to smoking, alcohol consumption; body mass index (BMI); waist:hip ratio; adult attained height; physical activity; early life energy restriction; dietary acrylamide, fiber, fat, methyl donors, omega 3 fatty acids; meat, including total protein, processed meat, and heme iron; and fruit and vegetable intake. Summary MPE studies help identify where associations between diet, lifestyle, and CRC risk may otherwise be masked and also shed light on how timing of exposure can influence etiology. Sample size is often an issue, but this may be addressed in the future by pooling data.
Collapse
|
17
|
Sanz-Garcia E, Argiles G, Elez E, Tabernero J. BRAF mutant colorectal cancer: prognosis, treatment, and new perspectives. Ann Oncol 2017; 28:2648-2657. [PMID: 29045527 DOI: 10.1093/annonc/mdx401] [Citation(s) in RCA: 186] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The MAPK cascade plays a crucial role in tumor cell proliferation and survival. Accumulating evidence suggests that mutations in the BRAF oncogene are not only associated with poor prognosis but also linked with less benefit when treated with anti-epidermal growth factor receptor antibodies in metastatic colorectal cancer (mCRC). Targeting this molecular aberration has thus become a matter of particular interest in mCRC drug development. In contrast to other malignances such as BRAF mutant melanoma, efficacy observed with BRAF inhibitors in monotherapy in mCRC is poor. Several mechanisms of resistance have been identified leading to the development of different treatment strategies that have shown promising activity in early clinical trials. Hence, rational combination of targeted therapies is expected to further increase the efficacy of selective BRAF inhibitors. Herein, we discuss the main clinical and molecular characteristics of BRAF mutant colorectal cancer and its translation into the clinic, with a focus on developmental therapeutics and combination strategies. In addition, we contextualize the available data with potential future approaches that include the extended access to next-generation sequencing platforms and gene expression strategies for molecular subtyping. These approaches will facilitate the identification of certain patient profiles providing more therapeutic possibilities.
Collapse
Affiliation(s)
- E Sanz-Garcia
- Medical Oncology Department, Vall D'Hebron University Hospital, Barcelona;; Medical Oncology Department, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - G Argiles
- Medical Oncology Department, Vall D'Hebron University Hospital, Barcelona;; Medical Oncology Department, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - E Elez
- Medical Oncology Department, Vall D'Hebron University Hospital, Barcelona;; Medical Oncology Department, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - J Tabernero
- Medical Oncology Department, Vall D'Hebron University Hospital, Barcelona;; Medical Oncology Department, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain.
| |
Collapse
|
18
|
Mehta RS, Song M, Nishihara R, Drew DA, Wu K, Qian ZR, Fung TT, Hamada T, Masugi Y, da Silva A, Shi Y, Li W, Gu M, Willett WC, Fuchs CS, Giovannucci EL, Ogino S, Chan AT. Dietary Patterns and Risk of Colorectal Cancer: Analysis by Tumor Location and Molecular Subtypes. Gastroenterology 2017; 152:1944-1953.e1. [PMID: 28249812 PMCID: PMC5447483 DOI: 10.1053/j.gastro.2017.02.015] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 02/09/2017] [Accepted: 02/20/2017] [Indexed: 01/14/2023]
Abstract
BACKGROUND & AIMS Western and prudent dietary patterns have been associated with higher and lower risks of colorectal cancer (CRC), respectively. However, little is known about the associations between dietary patterns and specific anatomic subsites or molecular subtypes of CRC. METHODS We used multivariable Cox proportional hazards models to examine the associations between Western and prudent dietary patterns and CRC risk in the Health Professionals Follow-up Study and Nurses' Health Study. RESULTS After up to 32 years of follow-up of 137,217 men and women, we documented 3260 cases of CRC. Among individuals from whom subsite data were available, we observed 1264 proximal colon, 866 distal colon, and 670 rectal tumors. Western diet was associated with an increased incidence of CRC (Ptrend < .0001), with a relative risk (RR) of 1.31 (95% CI, 1.15-1.48, comparing the highest to lowest quartile). The association of Western diet with CRC was evident for tumors of the distal colon (RR, 1.55; 95% CI, 1.22-1.96; Ptrend = .0004) and rectum (RR, 1.35; 95% CI, 1.03-1.77; Ptrend = .01) but not proximal colon (RR, 1.11; 95% CI, 0.91-1.35; Ptrend = .51) when we comparing extreme quartiles. In contrast, for the prudent pattern, we observed a RR of 0.86 for overall CRC (95% CI, 0.77-0.95; Ptrend = .01), with similar trends at anatomic subsites. However, the trend appeared stronger among men than women. Among 1285 cases (39%) with tissue available for molecular profiling, Western diet appeared to be more strongly associated with some CRC molecular subtypes (no mutations in KRAS [KRAS wildtype] or BRAF [BRAF wildtype], no or a low CpG island methylator phenotype, and microsatellite stability), although formal tests for heterogeneity did not produce statistically significant results. CONCLUSIONS Western dietary patterns are associated with an increased risk of CRC, particularly distal colon and rectal tumors. Western dietary patterns also appear more strongly associated with tumors that are KRAS wildtype, BRAF wildtype, have no or a low CpG island methylator phenotype, and microsatellite stability. In contrast, prudent dietary patterns are associated with a lower risk of CRC that does not vary according to anatomic subsite or molecular subtype.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Shuji Ogino
- Division of MPE Molecular Pathological Epidemiology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts; Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.
| | | |
Collapse
|
19
|
Takane K, Akagi K, Fukuyo M, Yagi K, Takayama T, Kaneda A. DNA methylation epigenotype and clinical features of NRAS-mutation(+) colorectal cancer. Cancer Med 2017; 6:1023-1035. [PMID: 28378457 PMCID: PMC5430106 DOI: 10.1002/cam4.1061] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 02/15/2017] [Accepted: 02/26/2017] [Indexed: 12/28/2022] Open
Abstract
Sporadic colorectal cancer (CRC) is classified into several molecular subtypes. We previously established two groups of DNA methylation markers through genome‐wide DNA methylation analysis to classify CRC into distinct subgroups: high‐, intermediate‐, and low‐methylation epigenotypes (HME, IME, and LME, respectively). HME CRC, also called CpG island methylator phenotype (CIMP)‐high CRC, shows methylation of both Group 1 markers (CIMP markers) and Group 2 markers, while IME/CIMP‐low CRC shows methylation of Group 2, but not of Group 1 markers, and LME CRC shows no methylation of either Group 1 or Group 2 markers. While BRAF‐ and KRAS‐mutation(+) CRC strongly correlated with HME and IME, respectively, clinicopathological features of NRAS‐mutation(+) CRC, including association with DNA methylation, remain unclear. To characterize NRAS‐mutation(+) CRC, the methylation levels of 19 methylation marker genes (6 Group 1 and 13 Group 2) were analyzed in 61 NRAS‐mutation(+) and 144 NRAS‐mutation(−) CRC cases by pyrosequencing, and their correlation with clinicopathological features was investigated. Different from KRAS‐mutation(+) CRC,NRAS‐mutation(+) CRC significantly correlated with LME. NRAS‐mutation(+) CRC showed significantly better prognosis than KRAS‐mutation(+) CRC (P = 3 × 10−4). NRAS‐mutation(+) CRC preferentially occurred in elder patients (P = 0.02) and at the distal colon (P = 0.006), showed significantly less lymph vessel invasion (P = 0.002), and correlated with LME (P = 8 × 10−5). DNA methylation significantly accumulated at the proximal colon. NRAS‐mutation(+) CRC may constitute a different subgroup from KRAS‐mutation(+) CRC, showing significant correlation with LME, older age, distal colon, and relatively better prognosis.
Collapse
Affiliation(s)
- Kiyoko Takane
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan.,Department of Digestive Surgery and Pathology, Nihon University School of Medicine, Tokyo, Japan
| | - Kiwamu Akagi
- Division of Molecular Diagnosis and Cancer Prevention, Saitama Cancer Center, Saitama, Japan
| | - Masaki Fukuyo
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Koichi Yagi
- Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tadatoshi Takayama
- Department of Digestive Surgery and Pathology, Nihon University School of Medicine, Tokyo, Japan
| | - Atsushi Kaneda
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
20
|
Huang CJ, Huang SH, Chien CC, Lee HHC, Yang SH, Chang CC, Lee CL. Impact of microsatellite status on chemotherapy for colorectal cancer patients with KRAS or BRAF mutation. Oncol Lett 2016; 12:4427-4434. [PMID: 28101205 PMCID: PMC5228315 DOI: 10.3892/ol.2016.5275] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 09/06/2016] [Indexed: 12/16/2022] Open
Abstract
KRAS and BRAF mutations are frequently detected in cases of colorectal cancer (CRC). The microsatellite status of patients with CRC and mutated KRAS/BRAF is important when determining cancer therapy. In the present study, the microsatellite status and genetic polymorphisms of KRAS (codons 12 and 13) and BRAF (V600E) were characterized in CRC tissue. The mismatch repair activity and oncogenic potential of KRAS were assessed by immunoblots from two KRAS-mutated CRC cell lines, SW480 and HCT116, with different microsatellite statuses, following treatment with 5-fluorouracil (5-FU) and oxaliplatin. Of all the 205 patients with CRC enrolled in the present study, 31.2% (64 of 205) had a KRAS or BRAF mutation, and 79.7% (51 of 64) of these patients with a KRAS/BRAF mutation exhibited microsatellite stability (MSS), indicating that microsatellite status is correlated with KRAS/BRAF mutation (P=0.027). A higher proportion (39.0%, 41 of 105) of elderly patients (≥62.6 years) had mutated KRAS or BRAF than younger patients (<62.6 years; 23.0%, 23 of 100; P=0.013). In the subgroup of 154 patients with MSS, patients without the KRAS or BRAF mutation (n=110) had longer disease-specific survival rates (58.8±9.4%) than patients with KRAS or BRAF mutations (n=44; 50.6±11.0%; P=0.043). Cytoplasmic KRAS levels decreased whereas nuclear MutS protein homolog 2 (MSH2) levels increased slightly in CRC HCT116 cells that were microsatellite instable, following treatment with 76.9 µM 5-FU for 2 days. In microsatellite stable SW480 cells, MSH2 levels markedly increased in the nucleus following 150 µM oxaliplatin treatment for 3 days. However, no significant change was observed regarding KRAS distribution in these cells. The results of the present study suggest that it is important to identify patients with CRC who may benefit from adjuvant chemotherapy with 5-FU or oxaliplatin, particularly CRC patients with MSS and mutated KRAS or BRAF, who have poorer overall survival rates than patients with microsatellite instability. Knowledge of the microsatellite status of patients and whether they harbor KRAS or BRAF mutations may enable more effective therapeutic strategies to be developed. Further prospective studies are required to validate the findings of the current study.
Collapse
Affiliation(s)
- Chi-Jung Huang
- Department of Medical Research, Cathay General Hospital, Taipei 10630, Taiwan, R.O.C.; Department of Biochemistry, National Defense Medical Center, Taipei 11490, Taiwan, R.O.C
| | - Shih-Hung Huang
- Department of Pathology, Cathay General Hospital, Taipei 10630, Taiwan, R.O.C
| | - Chih-Cheng Chien
- School of Medicine, Fu Jen Catholic University, New Taipei 24257, Taiwan, R.O.C.; Department of Anesthesiology, Sijhih Cathay General Hospital, New Taipei 22174, Taiwan, R.O.C
| | - Henry Hsin-Chung Lee
- School of Medicine, Fu Jen Catholic University, New Taipei 24257, Taiwan, R.O.C.; Department of Surgery, Hsinchu Cathay General Hospital, Hsinchu 30060, Taiwan, R.O.C.; Graduate Institute of Translational and Interdisciplinary Medicine, College of Health Sciences and Technology, National Central University, Taoyuan 32001, Taiwan, R.O.C
| | - Shung-Haur Yang
- Department of Surgery, Taipei Veterans General Hospital, Taipei 11217, Taiwan, R.O.C.; School of Medicine, National Yang Ming University, Taipei 11221, Taiwan, R.O.C
| | - Chun-Chao Chang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei 11031, Taiwan, R.O.C.; Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan, R.O.C
| | - Chia-Long Lee
- School of Medicine, Fu Jen Catholic University, New Taipei 24257, Taiwan, R.O.C.; Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan, R.O.C.; Department of Internal Medicine, Cathay General Hospital, Taipei 10630, Taiwan, R.O.C
| |
Collapse
|
21
|
Molecular pathological classification of colorectal cancer. Virchows Arch 2016; 469:125-34. [PMID: 27325016 PMCID: PMC4978761 DOI: 10.1007/s00428-016-1956-3] [Citation(s) in RCA: 232] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 05/04/2016] [Accepted: 05/09/2016] [Indexed: 12/12/2022]
Abstract
Colorectal cancer (CRC) shows variable underlying molecular changes with two major mechanisms of genetic instability: chromosomal instability and microsatellite instability. This review aims to delineate the different pathways of colorectal carcinogenesis and provide an overview of the most recent advances in molecular pathological classification systems for colorectal cancer. Two molecular pathological classification systems for CRC have recently been proposed. Integrated molecular analysis by The Cancer Genome Atlas project is based on a wide-ranging genomic and transcriptomic characterisation study of CRC using array-based and sequencing technologies. This approach classified CRC into two major groups consistent with previous classification systems: (1) ∼16 % hypermutated cancers with either microsatellite instability (MSI) due to defective mismatch repair (∼13 %) or ultramutated cancers with DNA polymerase epsilon proofreading mutations (∼3 %); and (2) ∼84 % non-hypermutated, microsatellite stable (MSS) cancers with a high frequency of DNA somatic copy number alterations, which showed common mutations in APC, TP53, KRAS, SMAD4, and PIK3CA. The recent Consensus Molecular Subtypes (CMS) Consortium analysing CRC expression profiling data from multiple studies described four CMS groups: almost all hypermutated MSI cancers fell into the first category CMS1 (MSI-immune, 14 %) with the remaining MSS cancers subcategorised into three groups of CMS2 (canonical, 37 %), CMS3 (metabolic, 13 %) and CMS4 (mesenchymal, 23 %), with a residual unclassified group (mixed features, 13 %). Although further research is required to validate these two systems, they may be useful for clinical trial designs and future post-surgical adjuvant treatment decisions, particularly for tumours with aggressive features or predicted responsiveness to immune checkpoint blockade.
Collapse
|
22
|
Clarke CN, Kopetz ES. BRAF mutant colorectal cancer as a distinct subset of colorectal cancer: clinical characteristics, clinical behavior, and response to targeted therapies. J Gastrointest Oncol 2015; 6:660-7. [PMID: 26697199 DOI: 10.3978/j.issn.2078-6891.2015.077] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Despite new and more effective cytotoxic chemotherapy, limitations to conventional agents have been reached in a subset of patients with advanced colorectal cancer (CRC). The identification of novel prognostic and predictive biomarkers to guide individualized treatment plans is critical to overcoming therapeutic resistance. Mutation of the BRAF proto-oncogene is linked to a variety of cancers and is increasingly being used as a prognostic tool and therapeutic target. This paper is a comprehensive review of the literature that summarizes the clinical, pathologic, and molecular features of BRAF mutated CRC that support the hypothesis that BRAF mutant cancers represent a distinct subset of CRC with its own clinical implications with regard to prognosis, treatments and emerging therapeutic strategies.
Collapse
Affiliation(s)
- Callisia N Clarke
- 1 Department of Surgical Oncology, 2 Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - E Scott Kopetz
- 1 Department of Surgical Oncology, 2 Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
23
|
Ye JX, Liu Y, Qin Y, Zhong HH, Yi WN, Shi XY. KRAS and BRAF gene mutations and DNA mismatch repair status in Chinese colorectal carcinoma patients. World J Gastroenterol 2015; 21:1595-1605. [PMID: 25663779 PMCID: PMC4316102 DOI: 10.3748/wjg.v21.i5.1595] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 10/28/2014] [Accepted: 12/08/2014] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate gene mutations and DNA mismatch repair (MMR) protein abnormality in Chinese colorectal carcinoma (CRC) patients and their correlations with clinicopathologic features.
METHODS: Clinical and pathological information for 535 patients including 538 tumors was reviewed and recorded. Mutation analyses for exon 2 of KRAS gene and exon 15 of BRAF gene were performed by Sanger sequencing except that in 9 tumors amplification refractory mutation system PCR was used. Expression of MMR proteins including MHL1, MSH2, MSH6 and PMS2 was evaluated by immunohistochemistry. Correlations of KRAS and BRAF mutation status and the expression status of MMR proteins with age, gender, cancer stage, location, and histology were analyzed. Correlations between KRAS or BRAF mutations and MMR protein expression were also explored.
RESULTS: The overall frequencies of KRAS and BRAF mutations were 37.9% and 4.4%, respectively. KRAS mutations were more common in patients ≥ 50 years old (39.8% vs 22% in patients < 50 years old, P < 0.05). The frequencies of BRAF mutants were higher in tumors from females (6.6% vs males 2.8%, P < 0.05), located in the right colon (9.6% vs 2.1% in the left colon, 1.8% in the rectum, P < 0.01), with mucinous differentiation (9.8% vs 2.8% without mucinous differentiation, P < 0.01), or being poorly differentiated (9.5% vs 3.4% well/moderately differentiated, P < 0.05). MMR deficiency was strongly associated with proximal location (20.5% in the right colon vs 9.2% in the left colon and 5.1% in the rectum, P < 0.001), early cancer stage (15.0% in stages I-II vs 7.7% in stages III-IV, P < 0.05), and mucinous differentiation (20.2% vs 9.2% without mucin, P < 0.01). A higher frequency of MLH1/PMS2 loss was found in females (9.2% vs 4.4% in males, P < 0.05), and MSH2/MSH6 loss tended to be seen in younger (<50 years old) patients (12.0% vs 4.0% ≥ 50 years old, P < 0.05). MMR deficient tumors were less likely to have KRAS mutations (18.8% vs 41.7% in MMR proficient tumors, P < 0.05) and tumors with abnormal MLH1/PMS2 tended to harbor BRAF mutations (15.4% vs 4.2% in MMR proficient tumors, P < 0.05).
CONCLUSION: The frequency of sporadic CRCs having BRAF mutation, MLH1 deficiency and MSI in Chinese population may be lower than that in the Western population.
Collapse
|
24
|
Kim ST, Chang WJ, Jin L, Sung JS, Choi YJ, Kim YH. Can Serum be Used for Analyzing the KRAS Mutation Status in Patients with Advanced Colorectal Cancer? Cancer Res Treat 2015; 47:796-803. [PMID: 25687873 PMCID: PMC4614179 DOI: 10.4143/crt.2014.106] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 08/12/2014] [Indexed: 12/18/2022] Open
Abstract
Purpose KRAS mutations have been used widely as prognostic or predictive marker in patients with advanced colorectal cancer (CRC). However, it may be difficult to obtain a tumor tissue for analyzing the status of KRAS mutation in large proportion of patients with advanced disease. Materials and Methods We obtained pairs of tumor and serum samples from 65 patients with advanced CRC, between March 2008 and July 2011. KRAS mutation status from the tumor samples was analyzed by genomic polymerase chain reaction and direct sequence, and KRASmutation status from the serum samples was determined by a genomic polymerase chain reaction–restriction fragment length polymorphism assay. Results KRAS mutations were detected in the serum samples of 26 patients and in the tumor samples of 31 patients. KRAS mutation status in the serum and tumor samples was consistent in 44 of the 65 pairs (67.7%). There was a significant correlation between the mutations detected in the serum sample and the mutations detected in the matched tumor sample (correlation index, 0.35; p < 0.004). Twenty-two of the 57 patients (38.5%) received anti-epidermal growth factor receptor therapy as any line therapy. There was no significant difference in the overall survival (OS) in accordance to the status of KRASmutations in both the serum and tumor samples (p > 0.05). In a multivariate analysis, liver metastasis and no cytoreductive operation were independent prognostic factors for decreased OS. Conclusion The serum sample might alternatively be used when it is difficult to obtain tumor tissues for analyzing the status of KRAS mutation in patients with advanced CRC.
Collapse
Affiliation(s)
- Seung Tae Kim
- Division of Hematology-Oncology, Department of Medicine, Korea University College of Medicine, Seoul, Korea.,Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Won Jin Chang
- Division of Hematology-Oncology, Department of Medicine, Korea University College of Medicine, Seoul, Korea
| | - Lihua Jin
- Genomic Research Center for Lung and Breast/Ovarian Cancers, Korea University Anam Hospital, Seoul, Korea
| | - Jae Sook Sung
- Genomic Research Center for Lung and Breast/Ovarian Cancers, Korea University Anam Hospital, Seoul, Korea
| | - Yun Ji Choi
- Division of Hematology-Oncology, Department of Medicine, Korea University College of Medicine, Seoul, Korea
| | - Yeul Hong Kim
- Division of Hematology-Oncology, Department of Medicine, Korea University College of Medicine, Seoul, Korea.,Genomic Research Center for Lung and Breast/Ovarian Cancers, Korea University Anam Hospital, Seoul, Korea
| |
Collapse
|
25
|
A pathway-centric survey of somatic mutations in Chinese patients with colorectal carcinomas. PLoS One 2015; 10:e0116753. [PMID: 25617745 PMCID: PMC4305320 DOI: 10.1371/journal.pone.0116753] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 12/11/2014] [Indexed: 12/12/2022] Open
Abstract
Previous genetic studies on colorectal carcinomas (CRC) have identified multiple somatic mutations in four candidate pathways (TGF-β, Wnt, P53 and RTK-RAS pathways) on populations of European ancestry. However, it is under-studied whether other populations harbor different sets of hot-spot somatic mutations in these pathways and other oncogenes. In this study, to evaluate the mutational spectrum of novel somatic mutations, we assessed 41 pairs of tumor-stroma tissues from Chinese patients with CRC, including 29 colon carcinomas and 12 rectal carcinomas. We designed Illumina Custom Amplicon panel to target 43 genes, including genes in the four candidate pathways, as well as several known oncogenes for other cancers. Candidate mutations were validated by Sanger sequencing, and we further used SIFT and PolyPhen-2 to assess potentially functional mutations. We discovered 3 new somatic mutations in gene APC, TCF7L2, and PIK3CA that had never been reported in the COSMIC or NCI-60 databases. Additionally, we confirmed 6 known somatic mutations in gene SMAD4, APC, FBXW7, BRAF and PTEN in Chinese CRC patients. While most were previously reported in CRC, one mutation in PTEN was reported only in malignant endometrium cancer. Our study confirmed the existence of known somatic mutations in the four candidate pathways for CRC in Chinese patients. We also discovered a number of novel somatic mutations in these pathways, which may have implications for the pathogenesis of CRC.
Collapse
|
26
|
Lochhead P, Chan AT, Nishihara R, Fuchs CS, Beck AH, Giovannucci E, Ogino S. Etiologic field effect: reappraisal of the field effect concept in cancer predisposition and progression. Mod Pathol 2015; 28:14-29. [PMID: 24925058 PMCID: PMC4265316 DOI: 10.1038/modpathol.2014.81] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 02/12/2014] [Accepted: 04/02/2014] [Indexed: 02/07/2023]
Abstract
The term 'field effect' (also known as field defect, field cancerization, or field carcinogenesis) has been used to describe a field of cellular and molecular alteration, which predisposes to the development of neoplasms within that territory. We explore an expanded, integrative concept, 'etiologic field effect', which asserts that various etiologic factors (the exposome including dietary, lifestyle, environmental, microbial, hormonal, and genetic factors) and their interactions (the interactome) contribute to a tissue microenvironmental milieu that constitutes a 'field of susceptibility' to neoplasia initiation, evolution, and progression. Importantly, etiological fields predate the acquisition of molecular aberrations commonly considered to indicate presence of filed effect. Inspired by molecular pathological epidemiology (MPE) research, which examines the influence of etiologic factors on cellular and molecular alterations during disease course, an etiologically focused approach to field effect can: (1) broaden the horizons of our inquiry into cancer susceptibility and progression at molecular, cellular, and environmental levels, during all stages of tumor evolution; (2) embrace host-environment-tumor interactions (including gene-environment interactions) occurring in the tumor microenvironment; and, (3) help explain intriguing observations, such as shared molecular features between bilateral primary breast carcinomas, and between synchronous colorectal cancers, where similar molecular changes are absent from intervening normal colon. MPE research has identified a number of endogenous and environmental exposures which can influence not only molecular signatures in the genome, epigenome, transcriptome, proteome, metabolome and interactome, but also host immunity and tumor behavior. We anticipate that future technological advances will allow the development of in vivo biosensors capable of detecting and quantifying 'etiologic field effect' as abnormal network pathology patterns of cellular and microenvironmental responses to endogenous and exogenous exposures. Through an 'etiologic field effect' paradigm, and holistic systems pathology (systems biology) approaches to cancer biology, we can improve personalized prevention and treatment strategies for precision medicine.
Collapse
Affiliation(s)
- Paul Lochhead
- Gastrointestinal Research Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Andrew T Chan
- 1] Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA [2] Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Reiko Nishihara
- 1] Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA [2] Department of Nutrition, Harvard School of Public Health, Boston, MA, USA
| | - Charles S Fuchs
- 1] Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA [2] Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Andrew H Beck
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Edward Giovannucci
- 1] Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA [2] Department of Nutrition, Harvard School of Public Health, Boston, MA, USA [3] Department of Epidemiology, Harvard School of Public Health, Boston, MA, USA
| | - Shuji Ogino
- 1] Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA [2] Department of Epidemiology, Harvard School of Public Health, Boston, MA, USA [3] Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
27
|
Tie J, Desai J. Targeting BRAF mutant metastatic colorectal cancer: clinical implications and emerging therapeutic strategies. Target Oncol 2014; 10:179-88. [PMID: 25119972 DOI: 10.1007/s11523-014-0330-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 07/24/2014] [Indexed: 12/16/2022]
Abstract
Increasing knowledge of the underlying signaling pathways and molecular defects involved in colorectal cancer growth or progression enabled the discovery of several prognostic and predictive biomarkers, leading to the development of novel molecularly targeted therapies. The mitogen-activated protein kinase (MAPK) signaling pathway plays a critical role in colorectal cancer progression. Mutations in BRAF, a principal effector of Ras in this signaling cascade, are found in 10 % of colorectal cancer and play a clear pathogenic role, particularly in patients with metastatic disease. Intense efforts have therefore focused on targeting BRAF as an oncogenic driver, with mixed early results. This article summarizes the molecular and clinical features of BRAF mutant colorectal cancer, the prognostic and predictive role of BRAFV600E mutation in colorectal cancer, initial clinical trial results in targeting BRAFV600E, and the more recent preclinical insights into potential mechanisms of resistance to BRAF inhibition that have now led to a number of rationale-driven combination therapeutic strategies.
Collapse
Affiliation(s)
- Jeanne Tie
- Ludwig Colon Cancer Initiative Laboratory, Ludwig Institute for Cancer Research, Parkville, VIC, Australia
| | | |
Collapse
|
28
|
Barrow TM, Michels KB. Epigenetic epidemiology of cancer. Biochem Biophys Res Commun 2014; 455:70-83. [PMID: 25124661 DOI: 10.1016/j.bbrc.2014.08.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Revised: 07/15/2014] [Accepted: 08/01/2014] [Indexed: 02/06/2023]
Abstract
Epigenetic epidemiology includes the study of variation in epigenetic traits and the risk of disease in populations. Its application to the field of cancer has provided insight into how lifestyle and environmental factors influence the epigenome and how epigenetic events may be involved in carcinogenesis. Furthermore, it has the potential to bring benefit to patients through the identification of diagnostic markers that enable the early detection of disease and prognostic markers that can inform upon appropriate treatment strategies. However, there are a number of challenges associated with the conduct of such studies, and with the identification of biomarkers that can be applied to the clinical setting. In this review, we delineate the challenges faced in the design of epigenetic epidemiology studies in cancer, including the suitability of blood as a surrogate tissue and the capture of genome-wide DNA methylation. We describe how epigenetic epidemiology has brought insight into risk factors associated with lung, breast, colorectal and bladder cancer and review relevant research. We discuss recent findings on the identification of epigenetic diagnostic and prognostic biomarkers for these cancers.
Collapse
Affiliation(s)
- Timothy M Barrow
- Institute for Prevention and Tumor Epidemiology, Freiburg Medical Center, University of Freiburg, 79106, Germany; German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Karin B Michels
- Institute for Prevention and Tumor Epidemiology, Freiburg Medical Center, University of Freiburg, 79106, Germany; Obstetrics and Gynecology Epidemiology Center, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Epidemiology, Harvard School of Public Health, Boston, MA 02115, USA.
| |
Collapse
|
29
|
Chen D, Huang JF, Liu K, Zhang LQ, Yang Z, Chuai ZR, Wang YX, Shi DC, Huang Q, Fu WL. BRAFV600E mutation and its association with clinicopathological features of colorectal cancer: a systematic review and meta-analysis. PLoS One 2014; 9:e90607. [PMID: 24594804 PMCID: PMC3940924 DOI: 10.1371/journal.pone.0090607] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 02/03/2014] [Indexed: 01/02/2023] Open
Abstract
Background Colorectal cancer (CRC) is a heterogeneous disease with multiple underlying causative genetic mutations. The B-type Raf proto-oncogene (BRAF) plays an important role in the mitogen-activated protein kinase (MAPK) signaling cascade during CRC. The presence of BRAFV600E mutation can determine the response of a tumor to chemotherapy. However, the association between the BRAFV600E mutation and the clinicopathological features of CRC remains controversial. We performed a systematic review and meta-analysis to estimate the effect of BRAFV600E mutation on the clinicopathological characteristics of CRC. Methods We identified studies that examined the effect of BRAFV600E mutation on CRC within the PubMed, ISI Science Citation Index, and Embase databases. The effect of BRAFV600E on outcome parameters was estimated by odds ratios (ORs) with 95% confidence intervals (CIs) for each study using a fixed effects or random effects model. Results 25 studies with a total of 11,955 CRC patients met inclusion criteria. The rate of BRAFV600 was 10.8% (1288/11955). The BRAFV600E mutation in CRC was associated with advanced TNM stage, poor differentiation, mucinous histology, microsatellite instability (MSI), CpG island methylator phenotype (CIMP). This mutation was also associated with female gender, older age, proximal colon, and mutL homolog 1 (MLH1) methylation. Conclusions This meta-analysis demonstrated that BRAFV600E mutation was significantly correlated with adverse pathological features of CRC and distinct clinical characteristics. These data suggest that BRAFV600E mutation could be used to supplement standard clinical and pathological staging for the better management of individual CRC patients, and could be considered as a poor prognostic marker for CRC.
Collapse
Affiliation(s)
- Dong Chen
- Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University, Chongqing, PR China
| | - Jun-Fu Huang
- Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University, Chongqing, PR China
| | - Kai Liu
- Research Center for Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing, PR China
| | - Li-Qun Zhang
- Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University, Chongqing, PR China
| | - Zhao Yang
- Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University, Chongqing, PR China
| | - Zheng-Ran Chuai
- Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University, Chongqing, PR China
| | - Yun-Xia Wang
- Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University, Chongqing, PR China
| | - Da-Chuan Shi
- Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University, Chongqing, PR China
| | - Qing Huang
- Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University, Chongqing, PR China
- * E-mail: (FW); (HQ)
| | - Wei-Ling Fu
- Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University, Chongqing, PR China
- * E-mail: (FW); (HQ)
| |
Collapse
|
30
|
Zahrani A, Kandil M, Badar T, Abdelsalam M, Al-Faiar A, Ismail A. Clinico-pathological Study of K-ras Mutations in Colorectal Tumors in Saudi Arabia. TUMORI JOURNAL 2014; 100:75-79. [DOI: 10.1177/1430.15819] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Affiliation(s)
- Ali Zahrani
- Department of Oncology, Prince Sultan Military Medical City, Oncology Department, Riyadh, Saudi Arabia
| | - Magdy Kandil
- Department of Oncology, Prince Sultan Military Medical City, Oncology Department, Riyadh, Saudi Arabia
| | - Talha Badar
- Department of Oncology, Medical Oncology, Comprehensive Cancer Centre, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Mahmoud Abdelsalam
- Department of Oncology, Prince Sultan Military Medical City, Oncology Department, Riyadh, Saudi Arabia
| | - Abdulla Al-Faiar
- Department of Pathology, Prince Sultan Military Medical City, Oncology Department, Riyadh, Saudi Arabia
| | - Abdelsalam Ismail
- Department of Oncology, Medical Oncology, Comprehensive Cancer Centre, King Fahad Medical City, Riyadh, Saudi Arabia
| |
Collapse
|
31
|
Kato I, Startup J, Ram JL. Fecal Biomarkers for Research on Dietary and Lifestyle Risk Factors in Colorectal Cancer Etiology. CURRENT COLORECTAL CANCER REPORTS 2013. [DOI: 10.1007/s11888-013-0195-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
32
|
Gilsing AMJ, Fransen F, de Kok TM, Goldbohm AR, Schouten LJ, de Bruïne AP, van Engeland M, van den Brandt PA, de Goeij AFPM, Weijenberg MP. Dietary heme iron and the risk of colorectal cancer with specific mutations in KRAS and APC. Carcinogenesis 2013; 34:2757-66. [PMID: 23983135 DOI: 10.1093/carcin/bgt290] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Red meat intake has been linked to increased colorectal cancer (CRC) risk. Although the underlying mechanisms remain unclear, experimental studies suggest a role for dietary heme iron. Because heme iron was shown to promote specific mutations, it would be insightful to link heme iron data to CRC with mutations in key genes in an observational, population-based study. We investigated the association between dietary heme iron intake and risk of CRC with mutations in APC (adenomatous polyposis coli) and KRAS (Kirsten ras) and P53 overexpression in the Netherlands Cohort Study. After 7.3 years of follow-up, excluding the first 2.3 years due to incomplete coverage of the pathology registry and to avoid preclinical disease, adjusted hazard ratios (including adjustment for total meat) and 95% confidence intervals were calculated, using 4026 subcohort members (aged 55-69 years at baseline), 435 colon and 140 rectal cancer patients. When comparing the highest with the lowest tertile of intake, heme iron intake was associated with an increased risk of CRC harboring activating mutations in KRAS (hazard ratio = 1.71, 95% confidence interval: 1.15-2.57; P for trend = 0.03) and CRC without truncating mutations in APC (hazard ratio = 1.79, 95% confidence interval: 1.23-2.60; P for trend = 0.003). We observed a positive association between heme iron intake and the risk of CRC with activating G>A mutations in KRAS (P for trend = 0.01) and overall G>A mutations in APC (P for trend = 0.005). No associations were found with CRC harboring G>T mutations in KRAS/APC. Heme iron intake was positively associated with the risk of P53 overexpressed tumors but not with tumors without P53 overexpression (Pheterogeneity = 0.12). Heme iron intake was associated with an increased risk of colorectal tumors harboring G>A transitions in KRAS and APC and overexpression of P53. These novel findings suggest that alkylating rather than oxidative DNA-damaging mechanisms are involved in heme-induced colorectal carcinogenesis.
Collapse
|
33
|
Lee SH, Ahn BK, Baek SU, Chang HK. BRAF mutation in multiple primary cancer with colorectal cancer and stomach cancer. Gastroenterol Rep (Oxf) 2013; 1:70-4. [PMID: 24759670 PMCID: PMC3941443 DOI: 10.1093/gastro/got004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Aims: Recently, BRAF mutation testing has been introduced as a marker in differentiating Lynch syndrome from sporadic colorectal cancers or in predicting colorectal cancers with worse prognosis. Individuals with hereditary predisposition to cancer development are at an increased risk of developing multiple primary cancers. The purpose of this study is to identify mutation in the BRAF gene in multiple primary cancers with colorectal cancer and stomach cancer. Methods: BRAF mutation was analysed in 45 patients with colorectal cancer and stomach cancer, synchronously or metachronously. Results: Mean age was 64.07 years (range: 47–83 years). For the colorectal cancer, tumors were located at the sigmoid colon in eight patients (17.8%) and at the rectum in 22 patients (48.9%). Twenty-three patients (51.1%) had synchronous cancer. Four patients (8.9%) had family members with cancer. BRAF mutation was identified in three patients (6.7%). All three of these patients had metachronous cancers. The colorectal cancers were located in the sigmoid colon (1 patient) and the rectum (2 patients). Conclusions: BRAF mutation rate was low in the multiple primary cancer with colorectal cancer and stomach cancer. With only BRAF gene study, it was not possible to identify any correlation with family history of colorectal cancer. Further study means considering other genes – MSI, MSH2, MLH1, MSH6.
Collapse
Affiliation(s)
- Seung-Hyun Lee
- Department of Surgery and Pathology, Kosin University College of Medicine, Busan, Korea
| | | | | | | |
Collapse
|
34
|
Li Z, Chen Y, Wang D, Wang G, He L, Suo J. Detection of KRAS mutations and their associations with clinicopathological features and survival in Chinese colorectal cancer patients. J Int Med Res 2013; 40:1589-98. [PMID: 22971512 DOI: 10.1177/147323001204000439] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVE Mutation of the KRAS (v-Kiras2 Kirsten rat sarcoma viral oncogene homologue) gene plays an important role in colorectal tumorigenesis. This study examined associations between KRAS gene mutations and clinicopathological and survival data in Chinese patients with colorectal cancer (CRC). METHODS CRC patients were recruited for the detection of KRAS gene mutations using polymerase chain reaction and DNA sequencing. Data on clinicopathological features and survival times were collected. RESULTS The study included 78 CRC patients. The overall mutation frequency of the KRAS gene at codons 12 and 13 was 33.3% (26/78). KRAS gene mutations were significantly associated with poor tumour differentiation and liver metastasis. Patients with the wild-type KRAS gene had significantly higher median survival times than patients with KRAS gene mutations (35.05 months versus 25.72 months). Those with KRAS gene mutations at codons 12 or 13 did not have significantly different median survival times (25.69 months versus 20.67 months, respectively). CONCLUSIONS These findings suggest that a high frequency of KRAS gene mutations exists in Chinese patients with CRC, and that such mutations are associated with poor survival, tumour differentiation and liver metastasis in CRC patients.
Collapse
Affiliation(s)
- Z Li
- Department of Gastrointestinal Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | | | | | | | | | | |
Collapse
|
35
|
BRAF mutations in melanoma and colorectal cancer: a single oncogenic mutation with different tumour phenotypes and clinical implications. Crit Rev Oncol Hematol 2012; 87:55-68. [PMID: 23246082 DOI: 10.1016/j.critrevonc.2012.11.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 10/15/2012] [Accepted: 11/14/2012] [Indexed: 01/08/2023] Open
Abstract
BRAF is an oncogene encoding a serine-threonine protein kinase involved in the MAPK signalling cascade. BRAF acts as direct effector of RAS and through the activation of MEK, promotes tumour growth and survival. Approximately, 8% of cancers carry a BRAF mutation. However, the prevalence of this mutation varies significantly across different tumour types. There has been increasing interest in the specific role of BRAF mutations in cancer growth and progression over the last few years, especially since the clinical introduction of therapeutic BRAF inhibitors. In this paper we review the published literature on the role of BRAF mutations in melanoma and colorectal cancer, focusing on similarities and differences of BRAF mutations with respect to frequency, demographics, risk factors, mutation-associated clinico-pathologic and molecular features and clinical implications between these two diseases.
Collapse
|
36
|
Gay LJ, Mitrou PN, Keen J, Bowman R, Naguib A, Cooke J, Kuhnle GG, Burns PA, Luben R, Lentjes M, Khaw KT, Ball RY, Ibrahim AE, Arends MJ. Dietary, lifestyle and clinicopathological factors associated with APC mutations and promoter methylation in colorectal cancers from the EPIC-Norfolk study. J Pathol 2012; 228:405-15. [PMID: 22864938 DOI: 10.1002/path.4085] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 07/27/2012] [Accepted: 07/29/2012] [Indexed: 12/21/2022]
Abstract
The tumour suppressor APC is the most commonly altered gene in colorectal cancer (CRC). Genetic and epigenetic alterations of APC may therefore be associated with dietary and lifestyle risk factors for CRC. Analysis of APC mutations in the extended mutation cluster region (codons 1276-1556) and APC promoter 1A methylation was performed on 185 archival CRC samples collected from participants of the European Prospective Investigation into Cancer (EPIC)-Norfolk study, with the aim of relating these to high-quality seven-day dietary and lifestyle data collected prospectively. Truncating APC mutations (APC(+) ) and promoter 1A methylation (PM(+) ) were identified in 43% and 23% of CRCs analysed, respectively. Distal CRCs were more likely than proximal CRCs to be APC(+) or PM(+) (p = 0.04). APC(+) CRCs were more likely to be moderately/well differentiated and microsatellite stable than APC(-) CRCs (p = 0.05 and 0.03). APC(+) CRC cases consumed more alcohol than their counterparts (p = 0.01) and PM(+) CRC cases consumed lower levels of folate and fibre (p = 0.01 and 0.004). APC(+) or PM(+) CRC cases consumed higher levels of processed meat and iron from red meat and red meat products (p = 0.007 and 0.006). Specifically, CRC cases harbouring GC-to-AT transition mutations consumed higher levels of processed meat (35 versus 24 g/day, p = 0.04) and iron from red meat and red meat products (0.8 versus 0.6 mg/day, p = 0.05). In a logistic regression model adjusted for age, sex and cigarette-smoking status, each 19 g/day (1SD) increment increase in processed meat consumption was associated with cases with GC-to-AT mutations (OR 1.68, 95% CI 1.03-2.75). In conclusion, APC(+) and PM(+) CRCs may be influenced by diet and GC-to-AT mutations in APC are associated with processed meat consumption, suggesting a mechanistic link with dietary alkylating agents, such as N-nitroso compounds.
Collapse
Affiliation(s)
- Laura J Gay
- Medical Research Council Dunn Human Nutrition Unit, Cambridge, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Association of folate intake, dietary habits, smoking and COX-2 promotor -765G>C polymorphism with K-ras mutation in patients with colorectal cancer. J Egypt Natl Canc Inst 2012; 24:115-22. [PMID: 22929917 DOI: 10.1016/j.jnci.2012.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Accepted: 05/15/2012] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Understanding the role of environmental and molecular influences on the nature and rate of K-ras mutations in colorectal neoplasms is crucial. COX-2 polymorphisms -765G>C may play a role in carcinogenic processes in combination with specific life-style conditions or dependent on the racial composition of a particular population. If mutational events play an important role in colorectal carcinogenesis sequence, one can hypothesize that modification of these events by life-style or other factors would be a useful prevention strategy. AIM OF WORK To explore the association between K-ras mutation and potential variables known or suspected to be related to the risk of colorectal cancer (CRC) as well as determining the possible modulating effect of the COX-2 polymorphism, -765G>C. SUBJECTS AND METHODS The study was conducted on 80 patients with colorectal cancer from Tropical Medicine and Gastrointestinal Tract endoscopy Departments and those attending clinic of the National Cancer Institute, Cairo University during the period extending from April 2009 to March 2010. Full history taking with emphasis on the risk factors of interest, namely age, sex, family history, smoking and dietary history. Serum CEA and CA19-9, RBCs folic acid and occult blood in stool were done to all samples. K-ras protooncogene mutation at codon 12 (exon 1) and cyclooxygenase 2 (COX-2) -765G>C polymorphism were determined by PCR-RFLP. RESULTS The K-ras mutation was positive in 23 (28.7%) patients. COX-2 polymorphism revealed GG in 62.5%, GC in 26.2 % and CC genotype was found in 11.3 % of cases. The mean red blood cell folic acid level was lower in the K-ras positive group (100.96±51.3 ng/ml) than the negative group (216.6±166.4 ng/ml), (P<0.01). Higher folate levels were found in males than females (median=173 ng/ml and 85 ng/ml; respectively, P=0.002) with adjusted odds ratio (OR) of 0.984. Only, the RBCs folate (P=0.0018) followed by gender (P=0.036) contributed significantly in the discrimination between patients prone to develop K-ras mutation and those who are not. CONCLUSION RBC folic acid was significantly deficient in CRC (colorectal cancer) patients with K-ras mutations in comparison with CRC patients free of the mutations, suggesting that folic acid may be a risk factor for K-ras mutation development.
Collapse
|
38
|
Ogino S, Shima K, Meyerhardt JA, McCleary NJ, Ng K, Hollis D, Saltz LB, Mayer RJ, Schaefer P, Whittom R, Hantel A, Benson AB, Spiegelman D, Goldberg RM, Bertagnolli MM, Fuchs CS. Predictive and prognostic roles of BRAF mutation in stage III colon cancer: results from intergroup trial CALGB 89803. Clin Cancer Res 2012; 18:890-900. [PMID: 22147942 PMCID: PMC3271172 DOI: 10.1158/1078-0432.ccr-11-2246] [Citation(s) in RCA: 219] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Alterations in the RAS-RAF-MAP2K (MEK)-MAPK signaling pathway are major drivers in colorectal carcinogenesis. In colorectal cancer, BRAF mutation is associated with microsatellite instability (MSI), and typically predicts inferior prognosis. We examined the effect of BRAF mutation on survival and treatment efficacy in patients with stage III colon cancer. METHODS We assessed status of BRAF c.1799T>A (p.V600E) mutation and MSI in 506 stage III colon cancer patients enrolled in a randomized adjuvant chemotherapy trial [5-fluorouracil and leucovorin (FU/LV) vs. irinotecan (CPT11), FU and LV (IFL); CALGB 89803]. Cox proportional hazards model was used to assess the prognostic role of BRAF mutation, adjusting for clinical features, adjuvant chemotherapy arm, and MSI status. RESULTS Compared with 431 BRAF wild-type patients, 75 BRAF-mutated patients experienced significantly worse overall survival [OS; log-rank P = 0.015; multivariate HR = 1.66; 95% CI: 1.05-2.63]. By assessing combined status of BRAF and MSI, it seemed that BRAF-mutated MSS (microsatellite stable) tumor was an unfavorable subtype, whereas BRAF wild-type MSI-high tumor was a favorable subtype, and BRAF-mutated MSI-high tumor and BRAF wild-type MSS tumor were intermediate subtypes. Among patients with BRAF-mutated tumors, a nonsignificant trend toward improved OS was observed for IFL versus FU/LV arm (multivariate HR = 0.52; 95% CI: 0.25-1.10). Among patients with BRAF wild-type cancer, IFL conferred no suggestion of benefit beyond FU/LV alone (multivariate HR = 1.02; 95% CI: 0.72-1.46). CONCLUSIONS BRAF mutation is associated with inferior survival in stage III colon cancer. Additional studies are necessary to assess whether there is any predictive role of BRAF mutation for irinotecan-based therapy.
Collapse
Affiliation(s)
- Shuji Ogino
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts 02215, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Alterations in PTEN and PIK3CA in colorectal cancers in the EPIC Norfolk study: associations with clinicopathological and dietary factors. BMC Cancer 2011; 11:123. [PMID: 21473780 PMCID: PMC3080834 DOI: 10.1186/1471-2407-11-123] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 04/07/2011] [Indexed: 02/06/2023] Open
Abstract
Background The PTEN tumour suppressor gene and PIK3CA proto-oncogene encode proteins which contribute to regulation and propagation of signal transduction through the PI3K/AKT signalling pathway. This study investigates the prevalence of loss of PTEN expression and mutations in both PTEN and PIK3CA in colorectal cancers (CRC) and their associations with tumour clinicopathological features, lifestyle factors and dietary consumptions. Methods 186 adenocarcinomas and 16 adenomas from the EPIC Norfolk study were tested for PTEN and PIK3CA mutations by DNA sequencing and PTEN expression changes by immunohistochemistry. Dietary and lifestyle data were collected prospectively using seven day food diaries and lifestyle questionnaires. Results Mutations in exons 7 and 8 of PTEN were observed in 2.2% of CRC and PTEN loss of expression was identified in 34.9% CRC. Negative PTEN expression was associated with lower blood low-density lipoprotein concentrations (p = 0.05). PIK3CA mutations were observed in 7% of cancers and were more frequent in CRCs in females (p = 0.04). Analysis of dietary intakes demonstrated no link between PTEN expression status and any specific dietary factor. PTEN expression negative, proximal CRC were of more advanced Dukes' stage (p = 0.02) and poor differentiation (p < 0.01). Testing of the prevalence of PIK3CA mutations and loss of PTEN expression demonstrated that these two events were independent (p = 0.55). Conclusion These data demonstrated the frequent occurrence (34.9%) of PTEN loss of expression in colorectal cancers, for which gene mutations do not appear to be the main cause. Furthermore, dietary factors are not associated with loss of PTEN expression. PTEN expression negative CRC were not homogenous, as proximal cancers were associated with a more advanced Dukes' stage and poor differentiation, whereas distal cancers were associated with earlier Dukes' stage.
Collapse
|
40
|
Naguib A, Wilson CH, Adams DJ, Arends MJ. Activation of K-RAS by co-mutation of codons 19 and 20 is transforming. J Mol Signal 2011; 6:2. [PMID: 21371307 PMCID: PMC3056876 DOI: 10.1186/1750-2187-6-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Accepted: 03/03/2011] [Indexed: 12/30/2022] Open
Abstract
The K-RAS oncogene is widely mutated in human cancers. Activating mutations in K-RAS give rise to constitutive signalling through the MAPK/ERK and PI3K/AKT pathways promoting increased cell division, reduced apoptosis and transformation. The majority of activating mutations in K-RAS are located in codons 12 and 13. In a human colorectal cancer we identified a novel K-RAS co-mutation that altered codons 19 and 20 resulting in transitions at both codons (L19F/T20A) in the same allele. Using focus forming transformation assays in vitro , we showed that co-mutation of L19F/T20A in K-RAS demonstrated intermediate transforming ability that was greater than that of individual L19F and T20A mutants, but less than that of G12D and G12V K-RAS mutants. This demonstrated the synergistic effects of co-mutation of codons 19 and 20 and illustrated that co-mutation of these codons is functionally significant.
Collapse
Affiliation(s)
- Adam Naguib
- Department of Pathology, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK, CB2 0QQ, UK.
| | | | | | | |
Collapse
|
41
|
Ogino S, Chan AT, Fuchs CS, Giovannucci E. Molecular pathological epidemiology of colorectal neoplasia: an emerging transdisciplinary and interdisciplinary field. Gut 2011; 60:397-411. [PMID: 21036793 PMCID: PMC3040598 DOI: 10.1136/gut.2010.217182] [Citation(s) in RCA: 436] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Colorectal cancer is a complex disease resulting from somatic genetic and epigenetic alterations, including locus-specific CpG island methylation and global DNA or LINE-1 hypomethylation. Global molecular characteristics such as microsatellite instability (MSI), CpG island methylator phenotype (CIMP), global DNA hypomethylation, and chromosomal instability cause alterations of gene function on a genome-wide scale. Activation of oncogenes including KRAS, BRAF and PIK3CA affects intracellular signalling pathways and has been associated with CIMP and MSI. Traditional epidemiology research has investigated various factors in relation to an overall risk of colon and/or rectal cancer. However, colorectal cancers comprise a heterogeneous group of diseases with different sets of genetic and epigenetic alterations. To better understand how a particular exposure influences the carcinogenic and pathologic process, somatic molecular changes and tumour biomarkers have been studied in relation to the exposure of interest. Moreover, an investigation of interactive effects of tumour molecular changes and the exposures of interest on tumour behaviour (prognosis or clinical outcome) can lead to a better understanding of tumour molecular changes, which may be prognostic or predictive tissue biomarkers. These new research efforts represent 'molecular pathologic epidemiology', which is a multidisciplinary field of investigations of the inter-relationship between exogenous and endogenous (eg, genetic) factors, tumoural molecular signatures and tumour progression. Furthermore, integrating genome-wide association studies (GWAS) with molecular pathological investigation is a promising area (GWAS-MPE approach). Examining the relationship between susceptibility alleles identified by GWAS and specific molecular alterations can help elucidate the function of these alleles and provide insights into whether susceptibility alleles are truly causal. Although there are challenges, molecular pathological epidemiology has unique strengths, and can provide insights into the pathogenic process and help optimise personalised prevention and therapy. In this review, we overview this relatively new field of research and discuss measures to overcome challenges and move this field forward.
Collapse
Affiliation(s)
- Shuji Ogino
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | | | | | | |
Collapse
|
42
|
Shen H, Yuan Y, Hu HG, Zhong X, Ye XX, Li MD, Fang WJ, Zheng S. Clinical significance of K-ras and BRAF mutations in Chinese colorectal cancer patients. World J Gastroenterol 2011; 17:809-16. [PMID: 21390154 PMCID: PMC3042662 DOI: 10.3748/wjg.v17.i6.809] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Revised: 01/04/2011] [Accepted: 01/11/2011] [Indexed: 02/06/2023] Open
Abstract
AIM: To identify and assess mutations in the K-ras and BRAF genes in a cohort of Chinese patients with colorectal cancer (CRC) for their association with various clinicopathological parameters and prognosis.
METHODS: Genomic DNA was isolated from frozen tissues. Pyrosequencing analysis was conducted to detect mutations in the K-ras (codons 12, 13, and 61) and BRAF genes (codon 600). Statistical analysis was carried out using SPSS-15.0 software.
RESULTS: Among the 118 colorectal cancer patients, we detected 41 (34.7%) mutations in the K-ras gene. Mutation frequencies at codon 12 and codon 13 were 23.7% (28/118) and 10.2% (12/118), respectively. Only one patient harbored a point mutation at codon 61 (0.8%, 1/118). Gender was the only factor that showed an obvious relationship with K-ras gene mutation (female 44.7% vs male 28.2%, P = 0.037). Other clinicopathological features, such as age, location of the tumor, tumor differentiation, Tumor, Node and Metastases classification, and the Union for International Cancer Control staging, showed no positive relationship with K-ras gene mutations. No significant correlation was observed between the presence of K-ras mutations (codons 12, 13, and 61) and the survival of the patients. BRAF mutations were rare, and only two patients (1.7%) harbored a detectable mutation at codon 600.
CONCLUSION: K-ras gene mutation is a common event in our 118 Chinese CRC patients, with an obvious relationship with gender. However, it seems not to be an independent prognostic factor in CRC patients. The BRAF gene is rarely mutated in Chinese CRC patients.
Collapse
|