1
|
Zhou H, Zhao C, Shao R, Xu Y, Zhao W. The functions and regulatory pathways of S100A8/A9 and its receptors in cancers. Front Pharmacol 2023; 14:1187741. [PMID: 37701037 PMCID: PMC10493297 DOI: 10.3389/fphar.2023.1187741] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 08/07/2023] [Indexed: 09/14/2023] Open
Abstract
Inflammation primarily influences the initiation, progression, and deterioration of many human diseases, and immune cells are the principal forces that modulate the balance of inflammation by generating cytokines and chemokines to maintain physiological homeostasis or accelerate disease development. S100A8/A9, a heterodimer protein mainly generated by neutrophils, triggers many signal transduction pathways to mediate microtubule constitution and pathogen defense, as well as intricate procedures of cancer growth, metastasis, drug resistance, and prognosis. Its paired receptors, such as receptor for advanced glycation ends (RAGEs) and toll-like receptor 4 (TLR4), also have roles and effects within tumor cells, mainly involved with mitogen-activated protein kinases (MAPKs), NF-κB, phosphoinositide 3-kinase (PI3K)/Akt, mammalian target of rapamycin (mTOR) and protein kinase C (PKC) activation. In the clinical setting, S100A8/A9 and its receptors can be used complementarily as efficient biomarkers for cancer diagnosis and treatment. This review comprehensively summarizes the biological functions of S100A8/A9 and its various receptors in tumor cells, in order to provide new insights and strategies targeting S100A8/A9 to promote novel diagnostic and therapeutic methods in cancers.
Collapse
Affiliation(s)
- Huimin Zhou
- State Key Laboratory of Respiratory Health and Multimorbidity, Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Cong Zhao
- State Key Laboratory of Respiratory Health and Multimorbidity, Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Rongguang Shao
- State Key Laboratory of Respiratory Health and Multimorbidity, Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yanni Xu
- NHC Key Laboratory of Biotechnology of Antibiotics, National Center for New Microbial Drug Screening, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wuli Zhao
- State Key Laboratory of Respiratory Health and Multimorbidity, Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
2
|
Pro-inflammatory protein S100A9 alters membrane organization by dispersing ordered domains. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184113. [PMID: 36567033 DOI: 10.1016/j.bbamem.2022.184113] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 12/06/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
Pro-inflammatory, calcium-binding protein S100A9 is localized in the cytoplasm of many cells and regulates several intracellular and extracellular processes. S100A9 is involved in neuroinflammation associated with the pathogenesis of Alzheimer's disease (AD). The number of studies on the impact of S100A9 in co-aggregation processes with amyloid-like proteins is increasing. However, there is still a lack of data on how this protein interacts with lipid membranes. We employed atomic force microscopy (AFM), dynamic light scattering (DLS), and fluorescence measurements (Laurdan and Thioflavin-T) to study the interaction between protein and the membrane surface. We used lipid vesicles in bulk and planar tethered lipid bilayers as biomimetic membrane models. We demonstrated that the protein accumulates on negatively charged lipid bilayers but with no further loss of the bilayer's integrity. The most important result is that the initial adsorption and accumulation of apo-form of S100A9 on the lipid membrane surface is lipid phase-sensitive. The breaking down of raft-like and disappearance of gel-like domains indicate that protein incorporates into the hydrophobic part of the lipid bilayer. We observed the most noticeable loss of integrity in lipid bilayers constructed from a lipid mixture (brain total lipid extract). Understanding the function and interactions of these proteins in cellular environments might expand the development of new diagnostic and therapeutic approaches for AD or other related diseases.
Collapse
|
3
|
Li J, Shu X, Xu J, Su SM, Chan UI, Mo L, Liu J, Zhang X, Adhav R, Chen Q, Wang Y, An T, Zhang X, Lyu X, Li X, Lei JH, Miao K, Sun H, Xing F, Zhang A, Deng C, Xu X. S100A9-CXCL12 activation in BRCA1-mutant breast cancer promotes an immunosuppressive microenvironment associated with resistance to immunotherapy. Nat Commun 2022; 13:1481. [PMID: 35304461 PMCID: PMC8933470 DOI: 10.1038/s41467-022-29151-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 02/28/2022] [Indexed: 12/22/2022] Open
Abstract
Immune checkpoint blockade (ICB) is a powerful approach for cancer therapy although good responses are only observed in a fraction of cancer patients. Breast cancers caused by deficiency of breast cancer-associated gene 1 (BRCA1) do not have an improved response to the treatment. To investigate this, here we analyze BRCA1 mutant mammary tissues and tumors derived from both BRCA1 mutant mouse models and human xenograft models to identify intrinsic determinants governing tumor progression and ICB responses. We show that BRCA1 deficiency activates S100A9-CXCL12 signaling for cancer progression and triggers the expansion and accumulation of myeloid-derived suppressor cells (MDSCs), creating a tumor-permissive microenvironment and rendering cancers insensitive to ICB. These oncogenic actions can be effectively suppressed by the combinatory treatment of inhibitors for S100A9-CXCL12 signaling with αPD-1 antibody. This study provides a selective strategy for effective immunotherapy in patients with elevated S100A9 and/or CXCL12 protein levels.
Collapse
Affiliation(s)
- Jianjie Li
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China.,Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Xiaodong Shu
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China.,Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Jun Xu
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China.,Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Sek Man Su
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China.,Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Un In Chan
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China.,Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Lihua Mo
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China.,Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Jianlin Liu
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China.,Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Xin Zhang
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China.,Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Ragini Adhav
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China.,Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Qiang Chen
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China.,Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Yuqing Wang
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China.,Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Tingting An
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China.,Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Xu Zhang
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China.,Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Xueying Lyu
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China.,Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Xiaoling Li
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China.,Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Josh Haipeng Lei
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China.,Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Kai Miao
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China.,Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China.,MOE Frontier Science Centre for Precision Oncology, University of Macau, Macau SAR, China
| | - Heng Sun
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China.,Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China.,MOE Frontier Science Centre for Precision Oncology, University of Macau, Macau SAR, China
| | - Fuqiang Xing
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China.,Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Aiping Zhang
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China.,Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Chuxia Deng
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China. .,Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China. .,MOE Frontier Science Centre for Precision Oncology, University of Macau, Macau SAR, China.
| | - Xiaoling Xu
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China. .,Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China. .,MOE Frontier Science Centre for Precision Oncology, University of Macau, Macau SAR, China.
| |
Collapse
|
4
|
Liao J, Li JZ, Xu J, Xu Y, Wen WP, Zheng L, Li L. High S100A9 + cell density predicts a poor prognosis in hepatocellular carcinoma patients after curative resection. Aging (Albany NY) 2021; 13:16367-16380. [PMID: 34157683 PMCID: PMC8266308 DOI: 10.18632/aging.203162] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/19/2021] [Indexed: 12/12/2022]
Abstract
S100A9 is differentially expressed in various cell types and is associated with the development, progression and metastasis of various cancers. However, the expression, distribution, and clinical significance of S100A9 in hepatocellular carcinoma (HCC) remain unclear. In the present study, The Cancer Genome Atlas (TCGA) database was used to examine S100A9 gene expression in HCC; we found that S100A9 expression was associated with HCC prognosis. In addition, S100A9 protein expression was assessed by immunohistochemistry analysis of tissues from 382 HCC patients. We found that the infiltration of S100A9+ cells in both tumor and nontumor tissues could predict poor overall survival (P = 0.0329, tumor; P = 0.0003, nontumor) and a high recurrence risk (P = 0.0387, tumor; P = 0.0015, nontumor) in our tissue microarray analysis. Furthermore, immunofluorescence double staining revealed that the primary S100A9-expressing cells in adjacent nontumoral tissue were CD15+ neutrophils, and both CD68+ macrophages and CD15+ neutrophils expressed S100A9 in HCC tumor tissues. Taken together, the results suggest that high S100A9+ cell density predicts a poor prognosis in HCC patients, and S100A9 expression could potentially serve as an independent prognostic marker for HCC.
Collapse
Affiliation(s)
- Jing Liao
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China.,Division of Head and Neck Surgery, Department of Otorhinolaryngology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China.,Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China
| | - Jin-Zhu Li
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Jing Xu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Yongquan Xu
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Wei-Ping Wen
- Division of Head and Neck Surgery, Department of Otorhinolaryngology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China
| | - Limin Zheng
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Lian Li
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| |
Collapse
|
5
|
Huang A, Fan W, Liu J, Huang B, Cheng Q, Wang P, Duan Y, Ma T, Chen L, Wang Y, Yu M. Prognostic Role of S100A8 in Human Solid Cancers: A Systematic Review and Validation. Front Oncol 2020; 10:564248. [PMID: 33240811 PMCID: PMC7682514 DOI: 10.3389/fonc.2020.564248] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 10/12/2020] [Indexed: 12/24/2022] Open
Abstract
Background S100A8 plays a key role in many cellular processes and is highly expressed in various solid cancers. However, the prognostic role of S100A8 has not been well defined. Therefore, we conducted a quantitative meta-analysis to investigate whether or not S100A8 could be used as a prognostic biomarker in solid tumors. Methods PubMed, Web of Science, Embase, and Cochrane library were searched to acquire relevant studies that evaluated the association between expression of S100A8 and prognosis of cancer patients. Pooled hazard ratios (HRs) with their corresponding 95% confidence intervals (CIs) were extracted to evaluate the association between S100A8 overexpression and Overall Survival (OS), Disease-Free Survival (DFS), Recurrence-Free Survival (RFS), and Progression-Free Survival (PFS). The expression of S100A8 was also validated by Flow cytometry, immunohistochemistry (IHC), and western blot. Results A total of 2,817 patients from 13 independent studies, ranging from 43 to 1,117 patients in size, were statistically analyzed. Our results indicated that a high level of S100A8 expression was significantly associated with poor OS, poor DFS, and poor PFS/RFS. In term of clinical pathological characteristics, a high expression level of S100A8 was significantly associated with differentiation grades, lymphatic metastasis, ER statue, and PR statue. The validation studies showed that the expression of S100A8 was at high levels in MDA-MB-231 (79.7%), MDA-MB-453 (89.2%), HTB-9 (70.2%), and T24 (53.3%) cells and it was higher in breast cancer tissue and bladder cancer tissue than their corresponding para-carcinoma tissue. Conclusions S100A8 overexpression was significantly associated with poor clinical prognosis in cancer patients. S100A8 is potential a prognostic biomarker in breast cancer and bladder cancer. More well-designed studies with adequate prognostic data are needed to confirm the prognostic role of S100A8 revealed in this study.
Collapse
Affiliation(s)
- An Huang
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, China.,Key Laboratory of Carcinogenesis andTranslational Research (Ministry of Education), Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, Beijing, China
| | - Wei Fan
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jiacui Liu
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ben Huang
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qingyuan Cheng
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ping Wang
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yiping Duan
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Tiantian Ma
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Liangyue Chen
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yanping Wang
- Department of Obstetrics and Gynecology, Hubei Provincial Hospital of TCM, Wuhan, China
| | - Mingxia Yu
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
6
|
Moaaz M, Lotfy H, Elsherbini B, Motawea MA, Fadali G. TGF-β Enhances the Anti-inflammatory Effect of Tumor- Infiltrating CD33+11b+HLA-DR Myeloid-Derived Suppressor Cells in Gastric Cancer: A Possible Relation to MicroRNA-494. Asian Pac J Cancer Prev 2020; 21:3393-3403. [PMID: 33247701 PMCID: PMC8033108 DOI: 10.31557/apjcp.2020.21.11.3393] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/25/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Accumulation of myeloid-derived suppressor cells (MDSCs) constitutes a key mechanism of tumor immune evasion in gastric cancer (GC). Therefore, searching for more accurate prognostic factors affecting their immunosuppressive role has become a growing interest in cancer immunotherapy research. Increased expression of microRNA-494 was noticed in MDSCs from tumor-bearing mice, suggesting another new therapeutic objective for cancer treatment. It was also discovered that tumor-derived transforming growth factor beta (TGF-β) is responsible for the up-regulation of microRNA-494 in MDSCs. The purpose of this study was to address the effect of recombinant (rTGF-β) on the anti-inflammatory activity of MDSCs in GC and its possible association with micro-RNA-494 expression in tumor tissue. METHODS Freshly obtained GC tumor tissue samples and peripheral blood were used for isolation of CD33+11b+HLADR- MDSCs cells from 40 GC patients and 31 corresponding controls using flow cytometry. MDSCs were co-cultured with isolated autologous T cells to assess proliferation and cytokine production in the presence and absence of rTGF-β. Real-time PCR and Enzyme linked immunosorbent assay were used to evaluate tumor expression of miRNA-494 and TGF-β respectively. RESULTS Results showed that rTGF-β markedly increased the suppressive ability of tumor MDSCs on proliferation of autologous T cells and interferon gamma production. However, no inhibitory effect was observed for MDSCs from circulation. In addition, infiltration of MDSCs in tumors is associated with the prognosis of GC. MiRNA-494 was also extensively expressed in tumor samples with a significant correlation to MDSCs. CONCLUSION These results indicate that tumor-derived MDSCs but not circulatory MDSCs have an immunosuppressive effect on T cells, potentially involving TGF-β mediated stimulation. Results also suggest a role for miRNA-494 in GC progression. Therefore, control of TGF-β and miRNA-494 may be used as a treatment strategy to downregulate the immunosuppressive effect of MDSCs. .
Collapse
Affiliation(s)
- Mai Moaaz
- Department of Immunology and Allergy, Medical Research Institute, Alexandria University, Alexandria, Egypt.
| | - Hassan Lotfy
- Department of Surgery, Vascular Surgery Unit, Faculty of Medicine, Alexandria University, Alexandria, Egypt.
| | - Bassem Elsherbini
- Department of Immunology and Allergy, Medical Research Institute, Alexandria University, Alexandria, Egypt.
| | - Mohamed A. Motawea
- Department of Experimental Surgery, Medical Research Institute, Alexandria University, Alexandria, Egypt.
| | - Geylan Fadali
- Department of Pathology, Medical Research Institute, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
7
|
Zhao Z, Zhang C, Zhao Q. S100A9 as a novel diagnostic and prognostic biomarker in human gastric cancer. Scand J Gastroenterol 2020; 55:338-346. [PMID: 32172630 DOI: 10.1080/00365521.2020.1737883] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Objective: The morbidity and mortality of gastric cancer (GC) is high, but there are lack of the biomarkers for early diagnosis and progression of GC. We aimed to identify a novel biomarker for the growth and progression of GC.Methods: The Cancer Genome Atlas (TCGA) database including 352 eligible patients was used to screen candidate genes related to the prognosis of GC. A proteomics analysis of Chinese Human Proteome Sketches (CHPS) including 84 eligible sample tissues was conducted to further identify candidate biomarkers. A series of in vitro assays were performed to investigate the functions of candidate proteins in GC. Next, to verify whether the candidate oncogene was associated with gastric carcinogenesis, we screened its expression levels using samples from 200 patients with chronic atrophic gastritis (CAG), intestinal metaplasia (IM), dysplasia, or GC and healthy controls.Results: According to the analyses of the TCGA database and CHPS, we found that S100A9 may be associated with the prognosis of GC. The results of proliferation, wound-healing and invasion assays, immunohistochemistry (IHC) and western blot showed that high levels of S100A9 in tissues were significantly associated with GC aggressiveness and a poor prognosis (p < .05). Furthermore, we found that the expression of S100A9 increased gradually during the process of gastric carcinogenesis (p < .05). The diagnostic sensitivity and specificity of S100A9 as a biomarker for early GC were 61.4% and 81.3%, respectively.Conclusions: This study reveals that S100A9 may be a novel biomarker for the early diagnosis and prognosis of GC patients.
Collapse
Affiliation(s)
- Zhanwei Zhao
- Department of Surgery, The Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Chaojun Zhang
- Department of Surgery, The Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Qingchuan Zhao
- Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
8
|
Liu Y, Luo G, He D. Clinical importance of S100A9 in osteosarcoma development and as a diagnostic marker and therapeutic target. Bioengineered 2019; 10:133-141. [PMID: 31055998 PMCID: PMC6527076 DOI: 10.1080/21655979.2019.1607709] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Objective: S100A9 is a calcium- and zinc-binding molecule of S100 family. The aim of the study was to evaluate the role of S100A9 in osteosarcoma (OS) and its value as a diagnostic and therapeutic target in OS. Methods: Quantitative real-time polymerase chain reaction (qRT-PCR), immunohistochemistry and microdissection-based mRNA analysis were used to detect S100A9 mRNA and protein expression in OS and normal bone tissues and its potential as a diagnostic marker in OS. In vitro experiments with RNA interference were performed to evaluate the functional role of S100A9 and its potential as a therapeutic target in OS. Results: S100A9 mRNA levels were significantly higher in OS tissues than that of in normal bone tissues. Receiver operating characteristic curves showed that S100A9 could be a useful diagnostic marker in OS. In vitro data showed that inhibition of S100A9 decreased the proliferation and invasiveness of OS cells, and these findings were supported by microarray data. Conclusions: Assessment of S100A9 mRNA expression is a promising tool for the diagnosis of OS, and S100A9 may be a promising therapeutic target in OS.
Collapse
Affiliation(s)
- Yongliang Liu
- a Department of Trauma Orthopedics , Linyi Central Hospital , Yishui , Shandong , China
| | - Gongzeng Luo
- a Department of Trauma Orthopedics , Linyi Central Hospital , Yishui , Shandong , China
| | - Dongyong He
- b Department of Internal Medcine , The Affiliated Hospital of Qingdao University , Qingdao , Shangdong , China
| |
Collapse
|
9
|
Minner S, Hager D, Steurer S, Höflmayer D, Tsourlakis MC, Möller-Koop C, Clauditz TS, Hube-Magg C, Luebke AM, Simon R, Sauter G, Göbel C, Weidemann S, Lebok P, Dum D, Fraune C, Izbicki J, Burandt E, Schlomm T, Huland H, Heinzer H, Haese A, Graefen M, Heumann A. Down-Regulation of S100A8 is an Independent Predictor of PSA Recurrence in Prostate Cancer Treated by Radical Prostatectomy. Neoplasia 2019; 21:872-881. [PMID: 31382165 PMCID: PMC6698296 DOI: 10.1016/j.neo.2019.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 07/17/2019] [Indexed: 12/24/2022]
Abstract
Dysregulation of S100A8 is described in many different human tumor types, but its role in prostate cancer is unknown. To evaluate the clinical relevance of S100A8 expression in prostate cancer, a tissue microarray containing 13,665 tumors was analyzed by immunohistochemistry. Cytoplasmic S100A8 staining was compared to prostate cancer phenotype, patient prognosis and molecular features including TMPRSS2:ERG fusion status and deletions of PTEN, 3p, 5q and 6q. S100A8 immunostaining was typically seen in normal prostate tissue but lost in 60% of 9786 interpretable prostate cancers. In the remaining tumors, S100A8 was considered weak in 17.9%, moderate in 17.8% and strong in 5.4% of cases. Loss of S100A8 expression was linked to advanced tumor stage, high Gleason grade, positive nodal status, positive surgical margin and high preoperative PSA (P < .0001 each). In addition, loss of S100A8 expression was associated with TMPRSS2:ERG fusions (P < .0001), deletions of PTEN, 3p, and 6q (P < .005), and a high number of genomic deletions per tumor (P = .0009). Absence of S100A8 immunostaining was also linked to an elevated risk for early PSA recurrence (P < .0001). In a multivariate analysis limited to features that are preoperatively available, the prognostic impact of S100A8 expression (P < .0001) was independent of clinical stage, Gleason grade, and serum PSA level (P < .0001). Taken together, the results of our study demonstrate that complete loss of S100A8 expression is linked to adverse tumor features and predicts early biochemical recurrence in prostate cancer. S100A8 measurement, either alone or in combination might be of clinical utility in prostate cancers.
Collapse
Affiliation(s)
- Sarah Minner
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Dominik Hager
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Stefan Steurer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Doris Höflmayer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | | | | | - Till S Clauditz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Claudia Hube-Magg
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Andreas M Luebke
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany.
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Cosima Göbel
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Sören Weidemann
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Patrick Lebok
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - David Dum
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Christoph Fraune
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Jakob Izbicki
- General, Visceral and Thoracic Surgery Department and Clinic, University Medical Center Hamburg-Eppendorf, Germany
| | - Eike Burandt
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Thorsten Schlomm
- Department of Urology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Hartwig Huland
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg- Eppendorf, Germany
| | - Hans Heinzer
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg- Eppendorf, Germany
| | - Alexander Haese
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg- Eppendorf, Germany
| | - Markus Graefen
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg- Eppendorf, Germany
| | - Asmus Heumann
- General, Visceral and Thoracic Surgery Department and Clinic, University Medical Center Hamburg-Eppendorf, Germany
| |
Collapse
|
10
|
Koh HM, An HJ, Ko GH, Lee JH, Lee JS, Kim DC, Yang JW, Kim MH, Kim SH, Jeon KN, Lee GW, Jang SM, Song DH. Prognostic Role of S100A8 and S100A9 Protein Expressions in Non-small Cell Carcinoma of the Lung. J Pathol Transl Med 2018; 53:13-22. [PMID: 30472816 PMCID: PMC6344806 DOI: 10.4132/jptm.2018.11.12] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 11/12/2018] [Indexed: 12/27/2022] Open
Abstract
Background S100A8 and S100A9 have been gaining recognition for modulating tumor growthand metastasis. This study aimed at evaluating the clinical significance of S100A8 and S100A9 innon-small cell lung cancer (NSCLC). Methods We analyzed the relationship between S100A8and S100A9 expressions, clinicopathological characteristics, and prognostic significance in tumorcells and peritumoral inflammatory cells. Results The positive staining of S100A8 in tumorcells was significantly increased in male (p < .001), smoker (p = .034), surgical method other thanlobectomy (p = .024), squamous cell carcinoma (SQCC) (p < .001) and higher TNM stage (p = .022)compared with female, non-smoker, lobectomy, adenocarcinoma (ADC), and lower stage. Theproportion of tumor cells stained for S100A8 was related to histologic type (p < .001) and patientsex (p = .027). The proportion of inflammatory cells stained for S100A8 was correlated with patientage (p = .022), whereas the proportion of inflammatory cells stained for S100A9 was correlatedwith patient sex (p < .001) and smoking history (p = .031). Moreover, positive staining in tumorcells, more than 50% of the tumor cells stained and less than 30% of the inflammatory cellsstained for S100A8 and S100A9 suggested a tendency towards increased survivability in SQCCbut towards decreased survivability in ADC. Conclusions S100A8 and S100A9 expressions might be potential prognostic markers in patients with NSCLC.
Collapse
Affiliation(s)
- Hyun Min Koh
- Department of pathology, Gyeongsang National University Changwon Hospital, Changwon, Korea
| | - Hyo Jung An
- Department of pathology, Gyeongsang National University Changwon Hospital, Changwon, Korea
| | - Gyung Hyuck Ko
- Gyeongsang National University School of Medicine, Jinju, Korea.,Gyeongsang Institute of Health Science, Jinju, Korea.,Department of Pathology, Gyeongsang National University Hospital, Jinju, Korea
| | - Jeong Hee Lee
- Gyeongsang National University School of Medicine, Jinju, Korea.,Gyeongsang Institute of Health Science, Jinju, Korea.,Department of Pathology, Gyeongsang National University Hospital, Jinju, Korea
| | - Jong Sil Lee
- Gyeongsang National University School of Medicine, Jinju, Korea.,Gyeongsang Institute of Health Science, Jinju, Korea.,Department of Pathology, Gyeongsang National University Hospital, Jinju, Korea
| | - Dong Chul Kim
- Gyeongsang National University School of Medicine, Jinju, Korea.,Gyeongsang Institute of Health Science, Jinju, Korea.,Department of Pathology, Gyeongsang National University Hospital, Jinju, Korea
| | - Jung Wook Yang
- Department of Pathology, Gyeongsang National University Hospital, Jinju, Korea
| | - Min Hye Kim
- Department of Pathology, Gyeongsang National University Hospital, Jinju, Korea
| | - Sung Hwan Kim
- Gyeongsang National University School of Medicine, Jinju, Korea.,Gyeongsang Institute of Health Science, Jinju, Korea.,Department of Thoracic and Cardiovascular Surgery, Gyeongsang National University Changwon Hospital, Changwon, Korea
| | - Kyung Nyeo Jeon
- Gyeongsang National University School of Medicine, Jinju, Korea.,Gyeongsang Institute of Health Science, Jinju, Korea.,Department of Radiology, Gyeongsang National University Changwon Hospital, Changwon, Korea
| | - Gyeong-Won Lee
- Gyeongsang National University School of Medicine, Jinju, Korea.,Gyeongsang Institute of Health Science, Jinju, Korea.,Department of internal medicine, Gyeongsang National University Hospital, Jinju, Korea
| | - Se Min Jang
- Department of Pathology, Konyang University Hospital, Daejeon, Korea
| | - Dae Hyun Song
- Department of pathology, Gyeongsang National University Changwon Hospital, Changwon, Korea.,Gyeongsang National University School of Medicine, Jinju, Korea.,Gyeongsang Institute of Health Science, Jinju, Korea
| |
Collapse
|
11
|
Distinct prognostic roles of S100 mRNA expression in gastric cancer. Pathol Res Pract 2018; 215:127-136. [PMID: 30414696 DOI: 10.1016/j.prp.2018.10.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 10/22/2018] [Accepted: 10/31/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND The S100 protein family is implicated in tumor invasion and metastasis, but its prognostic roles in gastric cancer (GC) has not been elucidated. MATERIALS AND METHODS In the current study, Kaplan-Meier plotter (KM plotter) database integrated the expression data and survival information of 1065 GC patients were downloaded from the Gene Expression Omnibus (GEO) (GSE22377, GSE14210 and GSE51105) that published by the three major cancer centers (Berlin, Bethesda and Melbourne). Then this database was used to explore the prognostic values of mRNA expression of each individual S100 in GC patients. We further assessed the prognostic value of S100 in different Lauren classifications, clinicopathological features and clinical treatment of gastric cancer. RESULTS Expression of 12 members of the S100 family correlated with overall survival (OS) for all GC patients. Increased expression of S100A3, S100A5, S100A7, S100A7A, S100A11, S100A13, S100Z and S100 G were found to be strongly associated with worse survival, while S100A8, S100A9, S100B and S100 P were correlated with better prognosis in all GC patients. Further assessment of prognostic values of S100 in gastric cancer with different clinical features indicated that different S100 members may interact with different signaling pathways and exerted different functions in gastric cancer development. CONCLUSIONS Although the results should be further testified in clinical studies, our findings offer new insights into the contribution of S100 members to GC progression and might promote development of S100 targeted reagents for treating GC.
Collapse
|
12
|
Presence of S100A8/Gr1-Positive Myeloid-Derived Suppressor Cells in Primary Tumors and Visceral Organs Invaded by Breast Carcinoma Cells. Clin Breast Cancer 2018; 18:e1067-e1076. [PMID: 29804651 DOI: 10.1016/j.clbc.2018.03.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 03/12/2018] [Accepted: 03/23/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND Increased S100A8/A9 expression in Gr1-positive cells has been shown in myeloid-derived suppressor cells and may play a role in the formation of a metastatic milieu. We aimed to determine S100A8/A9 expression alone and with coexpression of Gr1 (a myeloid marker) in primary tumor and visceral tissues invaded by metastatic breast carcinoma. MATERIALS AND METHODS Female BALB/c mice were injected with 4TLM, 4THM, and 67NR orthotopically. Confluent cells (75%-80%) were used. Primary tumor, lung, liver, and spleen tissue samples were removed 26 days after injection. Peripheral blood smears and metastasis assay were performed, as was immunohistochemistry and staining. RESULTS S100A8/A9 immunoreactivity alone or coexpressed with Gr1 was found in primary tumors formed by 4TLM and 4THM cells, which was markedly higher than in primary tumors formed by nonmetastatic 67NR cells. Similarly, liver and lung tissues obtained from mice injected with 4TLM or 4THM cells were invaded by S100A8/A9-positive and Gr1-positive cells. Double-positive cells were markedly fewer in liver and lung tissues of animals injected with 67NR cells. S100A8/A9-positive cells were mostly localized in red pulp of spleens. We observed an increased number of neutrophils in the peripheral blood of mice injected with metastatic breast carcinoma cells. CONCLUSION Tumor-derived factors may increase S100A8/A9-positive cells locally and systemically, and S100A8/A9-positive cells may provide an appropriate milieu for the formation of metastasis.
Collapse
|
13
|
Zhang W, Chen M, Cheng H, Shen Q, Wang Y, Zhu X. The role of calgranulin B gene on the biological behavior of squamous cervical cancer in vitro and in vivo. Cancer Manag Res 2018; 10:323-338. [PMID: 29497331 PMCID: PMC5818869 DOI: 10.2147/cmar.s153036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Objective The objective of the study was to explore the role of calgranulin B gene on the biological behavior of squamous cervical cancer. Methods Differential transcription in calgranulin B gene between human papillomavirus (HPV)-positive and negative cervical cancer groups was identified, and the relationship between calgranulin B gene and matrix metalloproteinase (MMP) genes were explored using The Cancer Genome Atlas database. Subsequently, the role of calgranulin B on the cell proliferation, apoptosis, invasion and migration was investigated, through overexpression and/or underexpression of calgranulin B in cervical cancer cells. In addition, the effect of calgranulin B on the growth of the cervical cancer was studied via constructing xenograft model in BALB/c nude mice that either overexpressed or underexpressed calgranulin B. Results Calgranulin B gene transcription in cervical cancer was highly correlated with the high-risk HPV-16 and HPV-45. In addition, overexpression of calgranulin B increased cell proliferation, invasion and migration, whereas it did not significantly affect cell apoptosis. This effect was also confirmed by calgranulin B knockdown assay. Additionally, we found that the transcription of calgranulin B gene was negatively correlated with MMP15 and MMP24 genes, but positively associated with MMP25 genes in cervical cancer. Furthermore, calgranulin B significantly promoted the growth of cervical cancer in vivo. Conclusion Calgranulin B promotes cell proliferation, migration and invasion of squamous cervical cancer, possibly via regulation of MMPs. Whether there are synergistic actions between calgranulin B and HPV-16/HPV-45 infection on the squamous cervical carcinogenesis or progression need further study.
Collapse
Affiliation(s)
- Wenwen Zhang
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Miaomiao Chen
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Huihui Cheng
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Qi Shen
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Ying Wang
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Xueqiong Zhu
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| |
Collapse
|
14
|
Argyris PP, Slama ZM, Ross KF, Khammanivong A, Herzberg MC. Calprotectin and the Initiation and Progression of Head and Neck Cancer. J Dent Res 2018; 97:674-682. [PMID: 29443623 DOI: 10.1177/0022034518756330] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Calprotectin (S100A8/A9), a heterodimeric complex of calcium-binding proteins S100A8 and S100A9, is encoded by genes mapping to the chromosomal locus 1q21.3 of the epidermal differentiation complex. Whereas extracellular calprotectin shows proinflammatory and antimicrobial properties by signaling through RAGE and TLR4, intracytoplasmic S100A8/A9 appears to be important for cellular development, maintenance, and survival. S100A8/A9 is constitutively expressed in myeloid cells and the stratified mucosal epithelia lining the oropharyngeal and genitourinary mucosae. While upregulated in adenocarcinomas and other cancers, calprotectin mRNA and protein levels decline in head and neck squamous cell carcinoma (HNSCC). S100A8/A9 is also lost during head and neck preneoplasia (dysplasia). Calprotectin decrease does not correlate with the clinical stage (TNM) of HNSCC. When expressed in carcinoma cells, S100A8/A9 downregulates matrix metalloproteinase 2 expression and inhibits invasion and migration in vitro. S100A8/A9 regulates cell cycle progression and decelerates cancer cell proliferation by arresting at the G2/M checkpoint in a protein phosphatase 2α-dependent manner. In HNSCC, S100A8 and S100A9 coregulate with gene networks controlling cellular development and differentiation, cell-to-cell signaling, and cell morphology, while S100A8/A9 appears to downregulate expression of invasion- and tumorigenesis-associated genes. Indeed, tumor formation capacity is attenuated in S100A8/A9-expressing carcinoma cells in vivo. Hence, intracellular calprotectin appears to function as a tumor suppressor in head and neck carcinogenesis. When compared with S100A8/A9-low HNSCC based on analysis of TCGA, S100A8/A9-high HNSCC shows significant upregulation of apoptosis-related genes, including multiple caspases. Accordingly, S100A8/A9 facilitates DNA damage responses in HNSCC, promotes apoptotic cell death, and confers sensitivity to cisplatin and X-radiation in vitro. In the tumor milieu, loss of S100A8/A9 strongly associates with poor squamous differentiation and higher tumor grading, EGFR upregulation, increased DNA methylation, and, finally, poorer overall survival for patients with HNSCC. Hence, intracellular calprotectin shows a multifaceted protective role against the development of HNSCC.
Collapse
Affiliation(s)
- P P Argyris
- 1 Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, USA
| | - Z M Slama
- 1 Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, USA
| | - K F Ross
- 1 Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, USA
| | - A Khammanivong
- 2 Department of Veterinary Clinical Sciences, University of Minnesota, St. Paul, MN, USA.,3 Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - M C Herzberg
- 1 Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
15
|
Xu D, Shao W, Jiang Y, Wang X, Liu Y, Liu X. FTO expression is associated with the occurrence of gastric cancer and prognosis. Oncol Rep 2017; 38:2285-2292. [DOI: 10.3892/or.2017.5904] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 07/28/2017] [Indexed: 11/05/2022] Open
|
16
|
Low D, Subramaniam R, Lin L, Aomatsu T, Mizoguchi A, Ng A, DeGruttola AK, Lee CG, Elias JA, Andoh A, Mino-Kenudson M, Mizoguchi E. Chitinase 3-like 1 induces survival and proliferation of intestinal epithelial cells during chronic inflammation and colitis-associated cancer by regulating S100A9. Oncotarget 2017; 6:36535-50. [PMID: 26431492 PMCID: PMC4742194 DOI: 10.18632/oncotarget.5440] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 09/16/2015] [Indexed: 01/20/2023] Open
Abstract
Many host-factors are inducibly expressed during the development of inflammatory bowel disease (IBD), each having their unique properties, such as immune activation, bacterial clearance, and tissue repair/remodeling. Dysregulation/imbalance of these factors may have pathogenic effects that can contribute to colitis-associated cancer (CAC). Previous reports showed that IBD patients inducibly express colonic chitinase 3-like 1 (CHI3L1) that is further upregulated during CAC development. However, little is known about the direct pathogenic involvement of CHI3L1 in vivo. Here we demonstrate that CHI3L1 (aka Brp39) knockout (KO) mice treated with azoxymethane (AOM)/dextran sulphate sodium (DSS) developed severe colitis but lesser incidence of CAC as compared to that in wild-type (WT) mice. Highest CHI3L1 expression was found during the chronic phase of colitis, rather than the acute phase, and is essential to promote intestinal epithelial cell (IEC) proliferation in vivo. This CHI3L1-mediated cell proliferation/survival involves partial downregulation of the pro-apoptotic S100A9 protein that is highly expressed during the acute phase of colitis, by binding to the S100A9 receptor, RAGE (Receptor for Advanced Glycation End products). This interaction disrupts the S100A9-associated expression positive feedback loop during early immune activation, creating a CHI3L1hi S100A9low colonic environment, especially in the later phase of colitis, which promotes cell proliferation/survival of both normal IECs and tumor cells.
Collapse
Affiliation(s)
- Daren Low
- Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Renuka Subramaniam
- Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Li Lin
- Laboratory of Cardiovascular Science, National Institutes on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Tomoki Aomatsu
- Division of Mucosal Immunology, Graduate School, Shiga University of Medical Science, Seta Tsukinowa, Otsu, Shiga, Japan
| | - Atsushi Mizoguchi
- Department of Immunology, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Aylwin Ng
- Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Arianna K DeGruttola
- Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Chun Geun Lee
- Department of Microbiology and Immunology, Warren Alpert School of Medicine, Brown University, Providence, RI, USA
| | - Jack A Elias
- Department of Microbiology and Immunology, Warren Alpert School of Medicine, Brown University, Providence, RI, USA
| | - Akira Andoh
- Division of Mucosal Immunology, Graduate School, Shiga University of Medical Science, Seta Tsukinowa, Otsu, Shiga, Japan
| | - Mari Mino-Kenudson
- Department of Pathology & Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Emiko Mizoguchi
- Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,Center for The Study of Inflammatory Bowel Disease, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
17
|
Li S, Xu F, Li H, Zhang J, Zhong A, Huang B, Lai M. S100A8 + stroma cells predict a good prognosis and inhibit aggressiveness in colorectal carcinoma. Oncoimmunology 2016; 6:e1260213. [PMID: 28197382 DOI: 10.1080/2162402x.2016.1260213] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 11/04/2016] [Accepted: 11/07/2016] [Indexed: 01/07/2023] Open
Abstract
Gene microarray and bioinformatic analysis showed that S100A8 was more abundant in the stroma surrounding tumor buddings (TBs) than in the stroma surrounding primary tumor cells in colorectal carcinomas. Here, S100A8+ cells in 419 colorectal carcinoma samples were stained by immunohistochemistry and counted using Image-pro plus 6.0. TBs were also counted and biomarkers associated with the epithelial-mesenchymal transition and apoptosis were assessed by immunohistochemistry. We evaluated the association between S100A8+ cells and clinico-pathological variables as well as survival. Migration and invasion as well as biomarkers of the epithelial-mesenchymal transition and apoptosis were tested in CRC cells, treated with graded concentrations of recombinant human S100A8 protein. We found that the density of S100A8+ cells in the tumor invasive front (S100A8+TIF) clearly distinguished patients with 5-y survival from those who did not survive (p = 0.01). The S100A8+-associated tumor budding (SATB) index determined by the S100A8+TIF and TB was an independent predictor of overall survival (p = 0.001) other than the S100A8+TIF or TB alone. Migration and invasion properties of CRC cells were inhibited by recombinant human S100A8 treatment. The particular S100A8+ cells in the stroma were associated with important biomarkers of the epithelial-mesenchymal transition (E-cadherin and SNAIL) and apoptosis (BCL2). In conclusion, S100A8+ cells in the stroma predict a good prognosis in colorectal carcinoma. An index combining S100A8+ cells and TB independently predicts survival. Recombinant human S100A8 inhibited CRC cell migration and invasion, which was involved in epithelial-mesenchymal transition (E-cadherin and SNAIL) and apoptosis (BCL2).
Collapse
Affiliation(s)
- Si Li
- Department of Pathology and Pathophysiology, Key Laboratory of Disease Proteomics of Zhejiang Province, School of Medicine, Zhejiang University , Hangzhou, China
| | - Fangying Xu
- Department of Pathology and Pathophysiology, Key Laboratory of Disease Proteomics of Zhejiang Province, School of Medicine, Zhejiang University , Hangzhou, China
| | - Hui Li
- Department of Pathology and Pathophysiology, Key Laboratory of Disease Proteomics of Zhejiang Province, School of Medicine, Zhejiang University , Hangzhou, China
| | - Jing Zhang
- Department of Pathology and Pathophysiology, Key Laboratory of Disease Proteomics of Zhejiang Province, School of Medicine, Zhejiang University , Hangzhou, China
| | - Anjing Zhong
- Department of Pathology and Pathophysiology, Key Laboratory of Disease Proteomics of Zhejiang Province, School of Medicine, Zhejiang University , Hangzhou, China
| | - Bin Huang
- Department of Pathology, The First Peoples Hospital of Xiaoshan , Hangzhou, Xiaoshan, China
| | - Maode Lai
- Department of Pathology and Pathophysiology, Key Laboratory of Disease Proteomics of Zhejiang Province, School of Medicine, Zhejiang University , Hangzhou, China
| |
Collapse
|
18
|
Protein Profiling Gastric Cancer and Neighboring Control Tissues Using High-Content Antibody Microarrays. MICROARRAYS 2016; 5:microarrays5030019. [PMID: 27600085 PMCID: PMC5040966 DOI: 10.3390/microarrays5030019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 05/25/2016] [Accepted: 06/13/2016] [Indexed: 12/26/2022]
Abstract
In this study, protein profiling was performed on gastric cancer tissue samples in order to identify proteins that could be utilized for an effective diagnosis of this highly heterogeneous disease and as targets for therapeutic approaches. To this end, 16 pairs of postoperative gastric adenocarcinomas and adjacent non-cancerous control tissues were analyzed on microarrays that contain 813 antibodies targeting 724 proteins. Only 17 proteins were found to be differentially regulated, with much fewer molecules than the numbers usually identified in studies comparing tumor to healthy control tissues. Insulin-like growth factor-binding protein 7 (IGFBP7), S100 calcium binding protein A9 (S100A9), interleukin-10 (IL‐10) and mucin 6 (MUC6) exhibited the most profound variations. For an evaluation of the proteins’ capacity for discriminating gastric cancer, a Receiver Operating Characteristic curve analysis was performed, yielding an accuracy (area under the curve) value of 89.2% for distinguishing tumor from non-tumorous tissue. For confirmation, immunohistological analyses were done on tissue slices prepared from another cohort of patients with gastric cancer. The utility of the 17 marker proteins, and particularly the four molecules with the highest specificity for gastric adenocarcinoma, is discussed for them to act as candidates for diagnosis, even in serum, and targets for therapeutic approaches.
Collapse
|
19
|
Narumi K, Miyakawa R, Ueda R, Hashimoto H, Yamamoto Y, Yoshida T, Aoki K. Proinflammatory Proteins S100A8/S100A9 Activate NK Cells via Interaction with RAGE. THE JOURNAL OF IMMUNOLOGY 2015; 194:5539-48. [DOI: 10.4049/jimmunol.1402301] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 03/29/2015] [Indexed: 11/19/2022]
|
20
|
Intratumoral CD68-, CD117-, CD56-, and CD1a-positive immune cells and the survival of Iranian patients with non-metastatic intestinal-type gastric carcinoma. Pathol Res Pract 2015; 211:326-31. [DOI: 10.1016/j.prp.2014.12.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 12/13/2014] [Accepted: 12/23/2014] [Indexed: 01/21/2023]
|
21
|
Kisluk J, Ciborowski M, Niemira M, Kretowski A, Niklinski J. Proteomics biomarkers for non-small cell lung cancer. J Pharm Biomed Anal 2014; 101:40-9. [DOI: 10.1016/j.jpba.2014.07.038] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 07/29/2014] [Accepted: 07/31/2014] [Indexed: 01/07/2023]
|
22
|
Yue Z, Feng W, Xiangke L, Liuxing W, Qingxia F, Jianbo G. WAVE3 promotes epithelial-mesenchymal transition of gastric cancer through upregulation of Snail. Cancer Gene Ther 2014; 21:499-506. [PMID: 25378074 DOI: 10.1038/cgt.2014.52] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 09/14/2014] [Accepted: 09/15/2014] [Indexed: 12/28/2022]
Abstract
WAVE3, an actin cytoskeleton remodeling protein overexpressed in many kinds of cancers, has been associated with a lot of metastatic diseases. However, the role and mechanisms of the high expression of WAVE3 in human gastric cancer has not been fully elucidated. Here we demonstrated that WAVE3 was expressed in all six kinds of gastric-cancer cell lines: BGC-823, SGC-7901, AGS, MGC803, MKN28 and MKN45. Furthermore, a correlation was found between aggressiveness of these cell lines and expression of WAVE3. Next, we investigated the role of WAVE3 in SGC-7901 cells and found that upregulating WAVE3 could promote the migration, invasion and proliferation of SGC-7901 cells in vitro. It has been reported that WAVE3 could induce cancer invasion and metastasis by participating epithelial-mesenchymal transition (EMT). However, the mechanisms are not entirely clear. In this study we showed that elevated WAVE3 levels could induce EMT in SGC-7901 cells by dampening the expression of E-cadherin while increasing the expression of vimentin. Elevated WAVE3 levels could also improve the expression of transcription factor Snail. In addition, downregulating Snail could particularly reduce EMT and the metastasis, invasion and proliferation activity in SGC-7901 cells elevated by overexpression of WAVE3. Taken together, we demonstrated that WAVE3 promoted gastric-cancer-cells migration and invasion by taking part in EMT via upregulation of Snail. WAVE3 could be a useful target for gastric-cancer prevention and therapy.
Collapse
Affiliation(s)
- Z Yue
- Department of Radiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PRC
| | - W Feng
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PRC
| | - L Xiangke
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PRC
| | - W Liuxing
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PRC
| | - F Qingxia
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PRC
| | - G Jianbo
- Department of Radiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PRC
| |
Collapse
|
23
|
Lu F, Xue JX, Hu YC, Gan L, Shi Y, Yang HS, Wei YQ. CARP is a potential tumor suppressor in gastric carcinoma and a single-nucleotide polymorphism in CARP gene might increase the risk of gastric carcinoma. PLoS One 2014; 9:e97743. [PMID: 24870804 PMCID: PMC4037221 DOI: 10.1371/journal.pone.0097743] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Accepted: 04/24/2014] [Indexed: 02/05/2023] Open
Abstract
Background The caspase-associated recruitment domain-containing protein (CARP) is expressed in almost all tissues. Recently, the tumor-suppressive function of CARP was discovered and attracted increasing attention. This study aimed to investigate the role of CARP in the carcinogenesis of human gastric carcinoma. Methodology/Principal Findings Compared with normal gastric tissue, the downregulation of CARP expression was observed in gastric carcinoma tissue by cDNA array and tissue microarray assay. In vitro, the gastric carcinoma cell line (BGC-823) was stably transfected with pcDNA3.1B-CARP or plus CARP siRNA, and we used MTT, flow cytometry, cell migration on type I collagen, cell-matrix adhesion assay and western blot analysis to investigate the potential anti-tumor effects of CARP. The data showed that overexpressing CARP suppressed the malignancy of gastric carcinoma BGC-823 cell line, including significant increases in apoptosis, as well as obvious decreases in cell proliferation, migration, adhesion ability, and tumor growth. The tumor-suppressive effects of CARP were almost restored by siRNA-directed CARP silence. In addition, overexpression of CARP induced G1 arrest, decreased the expressions of cyclin E and CDK2, and increased the expressions of p27, p53 and p21. In vivo, the tumor-suppressive effect of CARP was also verified. A single-nucleotide polymorphism (SNP) genotype of CARP (rs2297882) was located in the Kozak sequence of the CARP gene. The reporter gene assay showed that rs2297882 TT caused an obvious downregulation of activity of CARP gene promoter in BGC-823 cells. Furthermore, the association between rs2297882 and human gastric carcinoma susceptibility was analyzed in 352 cases and 889 controls. It displayed that the TT genotype of rs2297882 in the CARP gene was associated with an increased risk of gastric carcinoma. Conclusions/Significance CARP is a potential tumor suppressor of gastric carcinoma and the rs2297882 C>T phenotype of CARP may serve as a predictor of gastric carcinoma.
Collapse
Affiliation(s)
- Fang Lu
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, P.R. China
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, P.R. China
| | - Jian-xin Xue
- Department of Thoracic Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Yu-chang Hu
- Institute of Pathology, China Three Gorges University, Yichang, P.R. China
| | - Lu Gan
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Yi Shi
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, P.R. China
| | - Han-shuo Yang
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, P.R. China
- * E-mail:
| | - Yu-quan Wei
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, P.R. China
| |
Collapse
|
24
|
Chang WJ, Du Y, Zhao X, Ma LY, Cao GW. Inflammation-related factors predicting prognosis of gastric cancer. World J Gastroenterol 2014; 20:4586-4596. [PMID: 24782611 PMCID: PMC4000495 DOI: 10.3748/wjg.v20.i16.4586] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 12/24/2013] [Accepted: 01/20/2014] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer (GC), which is mainly induced by Helicobacter pylori (H. pylori) infection, is one of the leading causes of cancer-related death in the developing world. Active inflammation initiated by H. pylori infection and maintained by inherent immune disorders promotes carcinogenesis and postoperative recurrence. However, the presence with H. pylori in tumors has been linked to a better prognosis, possibly due to the induction of antitumor immunity. Tumor infiltrations of tumor-associated macrophages, myeloid-derived suppressor cells, neutrophils, Foxp3+ regulatory T cells are correlated with poor prognosis. Tumor infiltrating CD8+ cytotoxic T lymphocytes, dendritic cells, and CD45RO T cells are generally associated with good prognosis of GC, although some subsets of these immune cells have inverse prognosis prediction values. High ratios of Foxp3+/CD4+ and Foxp3+/CD8+ in tumors are associated with a poor prognosis; whereas high Th1/Th2 ratio in tumors predicts a good prognosis. High levels of interleukin (IL)-6, IL-10, IL-32, and chemokine C-C motif ligands (CCL)7 and CCL21 in circulation, high expression of CXC chemokine receptor 4, chemokine C-C motif receptor (CCR)3, CCR4, CCR5, CCR7, hypoxia-inducible factor-1α, signal transducer activator of transcription-3, cyclooxygenase-2, and orphan nuclear receptor 4A2 in tumors are associated with an unfavorable prognosis. Increased serum levels of matrix metalloproteinases (MMP)-3, MMP-7, and MMP-11 and increased levels of MMP-9, MMP-12, and MMP-21 in tumors are consistently associated with poor survival of GC. Further emphasis should be put on the integration of these biomarkers and validation in large cohorts for personalized prediction of GC postoperative prognosis.
Collapse
|
25
|
Chen H, Xu C, Jin Q, Liu Z. S100 protein family in human cancer. Am J Cancer Res 2014; 4:89-115. [PMID: 24660101 PMCID: PMC3960449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 02/10/2014] [Indexed: 06/03/2023] Open
Abstract
S100 protein family has been implicated in multiple stages of tumorigenesis and progression. Among the S100 genes, 22 are clustered at chromosome locus 1q21, a region frequently rearranged in cancers. S100 protein possesses a wide range of intracellular and extracellular functions such as regulation of calcium homeostasis, cell proliferation, apoptosis, cell invasion and motility, cytoskeleton interactions, protein phosphorylation, regulation of transcriptional factors, autoimmunity, chemotaxis, inflammation and pluripotency. Many lines of evidence suggest that altered expression of S100 proteins was associated with tumor progression and prognosis. Therefore, S100 proteins might also represent potential tumor biomarkers and therapeutic targets. In this review, we summarize the evidence connecting S100 protein family and cancer and discuss the mechanisms by which S100 exerts its diverse functions.
Collapse
Affiliation(s)
- Hongyan Chen
- The State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100021, China
| | - Chengshan Xu
- The State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100021, China
| | - Qing'e Jin
- The State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100021, China
| | - Zhihua Liu
- The State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100021, China
| |
Collapse
|
26
|
Clinicopathological roles of S100A8 and S100A9 in cutaneous squamous cell carcinoma in vivo and in vitro. Arch Dermatol Res 2014; 306:489-96. [PMID: 24550082 DOI: 10.1007/s00403-014-1453-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 01/20/2014] [Accepted: 01/30/2014] [Indexed: 10/25/2022]
Abstract
S100A8 and S100A9 are members of the S100 protein family and exist in neutrophils, monocytes, and macrophages. Recent studies have shown that S100A8 and S100A9 are associated with various neoplastic disorders; however, their roles in cutaneous squamous cell carcinoma (SCC) are not well defined. To investigate the expression and function of S100A8 and S100A9 in skin tumors, we examined the expression levels of S100A8 and S100A9 between premalignant and malignant skin tumors and investigated the functional roles of S100A8 and S100A9 in vitro and in vivo using recombinant adenovirus expressing S100A8 or S100A9. The immunopositive staining rates and intensities of S100A8 and S100A9 were higher in SCC than in premalignant skin tumors. When S100A8 and/or S100A9 were overexpressed in SCC12 cells using a recombinant adenovirus, cell growth and motility were increased. Similarly, when mouse skin was intradermally injected with SCC12 cells overexpressing S100A8 and/or S100A9, there were remarkable increases in tumor growth and volume. Both S100A8 and S100A9 are highly expressed in cutaneous SCC and play important roles in tumorigenesis. We suggest that S100A8 and S100A9 may be potential therapeutic targets for the prevention or treatment of SCC in skin.
Collapse
|
27
|
Popescu ID, Codrici E, Albulescu L, Mihai S, Enciu AM, Albulescu R, Tanase CP. Potential serum biomarkers for glioblastoma diagnostic assessed by proteomic approaches. Proteome Sci 2014; 12:47. [PMID: 25298751 PMCID: PMC4189552 DOI: 10.1186/s12953-014-0047-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 08/28/2014] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The rapid progress of proteomics over the past years has allowed the discovery of a large number of potential biomarker candidates to improve early tumor diagnosis and therapeutic response, thus being further integrated into clinical environment. High grade gliomas represent one of the most aggressive and treatment-resistant types of human brain cancer, with approximately 9-12 months median survival rate for patients with grade IV glioma (glioblastoma). Using state-of-the-art proteomics technologies, we have investigated the proteome profile for glioblastoma patients in order to identify a novel protein biomarker panel that could discriminate glioblastoma patients from controls and increase diagnostic accuracy. RESULTS In this study, SELDI-ToF MS technology was used to screen potential protein patterns in glioblastoma patients serum; furthermore, LC-MS/MS technology was applied to identify the candidate biomarkers peaks. Through these proteomic approaches, three proteins S100A8, S100A9 and CXCL4 were selected as putative biomarkers and confirmed by ELISA. Next step was to validate the above mentioned molecules as biomarkers through identification of protein expression by Western blot in tumoral versus peritumoral tissue. CONCLUSIONS Proteomic technologies have been used to investigate the protein profile of glioblastoma patients and established several potential diagnostic biomarkers. While it is unlikely for a single biomarker to be highly effective for glioblastoma diagnostic, our data proposed an alternative and efficient approach by using a novel combination of multiple biomarkers.
Collapse
Affiliation(s)
- Ionela Daniela Popescu
- Biochemistry-Proteomics Department, Victor Babes National Institute of Pathology, no 99-101 Splaiul Independentei, 050096 Sector 5, Bucharest, Romania
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, no. 91-95 Splaiul Independentei, 050095 Sector 5, Bucharest, Romania
| | - Elena Codrici
- Biochemistry-Proteomics Department, Victor Babes National Institute of Pathology, no 99-101 Splaiul Independentei, 050096 Sector 5, Bucharest, Romania
| | - Lucian Albulescu
- Biochemistry-Proteomics Department, Victor Babes National Institute of Pathology, no 99-101 Splaiul Independentei, 050096 Sector 5, Bucharest, Romania
- Current address: Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Simona Mihai
- Biochemistry-Proteomics Department, Victor Babes National Institute of Pathology, no 99-101 Splaiul Independentei, 050096 Sector 5, Bucharest, Romania
| | - Ana-Maria Enciu
- Biochemistry-Proteomics Department, Victor Babes National Institute of Pathology, no 99-101 Splaiul Independentei, 050096 Sector 5, Bucharest, Romania
- Cellular and Molecular Medicine Department, Carol Davila University of Medicine and Pharmacy, no 8 B-dul Eroilor Sanitari, 050474 Sector 5, Bucharest, Romania
| | - Radu Albulescu
- Biochemistry-Proteomics Department, Victor Babes National Institute of Pathology, no 99-101 Splaiul Independentei, 050096 Sector 5, Bucharest, Romania
- National Institute for Chemical Pharmaceutical R&D, 112 Calea Vitan, 031299 Sector 3, Bucharest, Romania
| | - Cristiana Pistol Tanase
- Biochemistry-Proteomics Department, Victor Babes National Institute of Pathology, no 99-101 Splaiul Independentei, 050096 Sector 5, Bucharest, Romania
| |
Collapse
|