1
|
Marques AVL, Ruginsk BE, Prado LDO, de Lima DE, Daniel IW, Moure VR, Valdameri G. The association of ABC proteins with multidrug resistance in cancer. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119878. [PMID: 39571941 DOI: 10.1016/j.bbamcr.2024.119878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/07/2024] [Accepted: 11/10/2024] [Indexed: 11/28/2024]
Abstract
Multidrug resistance (MDR) poses one of the primary challenges for cancer treatment, especially in cases of metastatic disease. Various mechanisms contribute to MDR, including the overexpression of ATP-binding cassette (ABC) proteins. In this context, we reviewed the literature to establish a correlation between the overexpression of ABC proteins and MDR in cancer, considering both in vitro and clinical studies. Initially, we presented an overview of the seven subfamilies of ABC proteins, along with the subcellular localization of each protein. Subsequently, we identified a panel of 20 ABC proteins (ABCA1-3, ABCA7, ABCB1-2, ABCB4-6, ABCC1-5, ABCC10-11, ABCE1, ABCF2, ABCG1, and ABCG2) associated with MDR. We also emphasize the significance of drug sequestration by certain ABC proteins into intracellular compartments. Among the anticancer drugs linked to MDR, 29 were definitively identified as substrates for at least one of the three most crucial ABC transporters: ABCB1, ABCC1, and ABCG2. We further discussed that the most commonly used drugs in standard regimens for mainly breast cancer, lung cancer, and acute lymphoblastic leukemia could be subject to MDR mediated by ABC transporters. Collectively, these insights will aid in conducting new studies aimed at a deeper understanding of the clinical MDR mediated by ABC proteins and in designing more effective pharmacological treatments to enhance the objective response rate in cancer patients.
Collapse
Affiliation(s)
- Andrezza Viviany Lourenço Marques
- Graduate Program in Pharmaceutical Sciences, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, Paraná, Brazil
| | - Bruna Estelita Ruginsk
- Graduate Program in Pharmaceutical Sciences, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, Paraná, Brazil
| | - Larissa de Oliveira Prado
- Graduate Program in Pharmaceutical Sciences, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, Paraná, Brazil
| | - Diogo Eugênio de Lima
- Graduate Program in Pharmaceutical Sciences, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, Paraná, Brazil
| | - Isabelle Watanabe Daniel
- Graduate Program in Pharmaceutical Sciences, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, Paraná, Brazil
| | - Vivian Rotuno Moure
- Graduate Program in Pharmaceutical Sciences, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, Paraná, Brazil.
| | - Glaucio Valdameri
- Graduate Program in Pharmaceutical Sciences, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, Paraná, Brazil.
| |
Collapse
|
2
|
Fujisawa S, Takagi K, Yamaguchi-Tanaka M, Sato A, Miki Y, Miyashita M, Tada H, Ishida T, Suzuki T. Receptor for Hyaluronan Mediated Motility (RHAMM)/Hyaluronan Axis in Breast Cancer Chemoresistance. Cancers (Basel) 2024; 16:3600. [PMID: 39518040 PMCID: PMC11545538 DOI: 10.3390/cancers16213600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Background/Objectives: Receptor for hyaluronan-mediated motility (RHAMM) is a hyaluronan (HA) receptor, which exerts diverse biological functions in not only physiological but also pathological conditions in human malignancies, including breast cancer. Although chemoresistance is a significant clinical challenge in breast cancer, a possible contribution of RHAMM and hyaluronan to breast cancer chemoresistance has remained unclear. Methods: We immunolocalized RHAMM and HA in breast carcinoma tissues. Also, we utilized epirubicin-sensitive (parental) and rpirubicin-resistant (EPIR) breast cancer cell lines to explore the role of RHAMMM in breast cancer progression. Results: We found out that RHAMM and HA were cooperatively correlated with breast cancer aggressiveness and recurrence after chemotherapy. In vitro studies demonstrated that RHAMM was overexpressed in EPIR cells compared to parental cells. In addition, the knockdown of RHAMM significantly suppressed proliferation and migration of both parental and EPIR cells. On the other hand, the expression level of cancer stem cell marker CD44, which was overexpressed in M-EPIR (epirubicin-resistant MCF-7 subline) compared to MCF-7, was significantly suppressed by knockdown of RHAMM. In addition, the knockdown of RHAMM significantly altered the expression of N-cadherin and E-cadherin, leading to an epithelial phenotype. Conclusions: Aberrant RHAMM signaling were considered to cause chemoresistance related to cancer stemness and epithelial to mesenchymal transition, and increased cell proliferation and migration of both chemo-sensitive and chemo-resistant breast cancer cells.
Collapse
Affiliation(s)
- Shiori Fujisawa
- Department of Breast and Endocrine Surgical Oncology, Graduate School of Medicine, Tohoku University, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan; (S.F.); (M.M.); (H.T.)
- Department of Pathology and Histotechnology, Graduate School of Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan; (M.Y.-T.); (A.S.); (T.S.)
| | - Kiyoshi Takagi
- Department of Pathology and Histotechnology, Graduate School of Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan; (M.Y.-T.); (A.S.); (T.S.)
| | - Mio Yamaguchi-Tanaka
- Department of Pathology and Histotechnology, Graduate School of Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan; (M.Y.-T.); (A.S.); (T.S.)
- Personalized Medicine Center, Tohoku University Hospital, Sendai 980-8574, Miyagi, Japan
| | - Ai Sato
- Department of Pathology and Histotechnology, Graduate School of Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan; (M.Y.-T.); (A.S.); (T.S.)
| | - Yasuhiro Miki
- Department of Anatomic Pathology, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Miyagi, Japan;
| | - Minoru Miyashita
- Department of Breast and Endocrine Surgical Oncology, Graduate School of Medicine, Tohoku University, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan; (S.F.); (M.M.); (H.T.)
| | - Hiroshi Tada
- Department of Breast and Endocrine Surgical Oncology, Graduate School of Medicine, Tohoku University, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan; (S.F.); (M.M.); (H.T.)
| | - Takanori Ishida
- Department of Breast and Endocrine Surgical Oncology, Graduate School of Medicine, Tohoku University, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan; (S.F.); (M.M.); (H.T.)
| | - Takashi Suzuki
- Department of Pathology and Histotechnology, Graduate School of Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan; (M.Y.-T.); (A.S.); (T.S.)
- Department of Anatomic Pathology, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Miyagi, Japan;
- Department of Pathology, Tohoku University Hospital, Sendai 980-8574, Miyagi, Japan
| |
Collapse
|
3
|
Yu S, Wang S, Wang X, Xu X. The axis of tumor-associated macrophages, extracellular matrix proteins, and cancer-associated fibroblasts in oncogenesis. Cancer Cell Int 2024; 24:335. [PMID: 39375726 PMCID: PMC11459962 DOI: 10.1186/s12935-024-03518-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 09/29/2024] [Indexed: 10/09/2024] Open
Abstract
The extracellular matrix (ECM) is a complex, dynamic network of multiple macromolecules that serve as a crucial structural and physical scaffold for neighboring cells. In the tumor microenvironment (TME), ECM proteins play a significant role in mediating cellular communication between cancer-associated fibroblasts (CAFs) and tumor-associated macrophages (TAMs). Revealing the ECM modification of the TME necessitates the intricate signaling cascades that transpire among diverse cell populations and ECM proteins. The advent of single-cell sequencing has enabled the identification and refinement of specific cellular subpopulations, which has substantially enhanced our comprehension of the intricate milieu and given us a high-resolution perspective on the diversity of ECM proteins. However, it is essential to integrate single-cell data and establish a coherent framework. In this regard, we present a comprehensive review of the relationships among ECM, TAMs, and CAFs. This encompasses insights into the ECM proteins released by TAMs and CAFs, signaling integration in the TAM-ECM-CAF axis, and the potential applications and limitations of targeted therapies for CAFs. This review serves as a reliable resource for focused therapeutic strategies while highlighting the crucial role of ECM proteins as intermediates in the TME.
Collapse
Affiliation(s)
- Shuhong Yu
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Siyu Wang
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xuanyu Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Ximing Xu
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
4
|
Berdiaki A, Neagu M, Tzanakakis P, Spyridaki I, Pérez S, Nikitovic D. Extracellular Matrix Components and Mechanosensing Pathways in Health and Disease. Biomolecules 2024; 14:1186. [PMID: 39334952 PMCID: PMC11430160 DOI: 10.3390/biom14091186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Glycosaminoglycans (GAGs) and proteoglycans (PGs) are essential components of the extracellular matrix (ECM) with pivotal roles in cellular mechanosensing pathways. GAGs, such as heparan sulfate (HS) and chondroitin sulfate (CS), interact with various cell surface receptors, including integrins and receptor tyrosine kinases, to modulate cellular responses to mechanical stimuli. PGs, comprising a core protein with covalently attached GAG chains, serve as dynamic regulators of tissue mechanics and cell behavior, thereby playing a crucial role in maintaining tissue homeostasis. Dysregulation of GAG/PG-mediated mechanosensing pathways is implicated in numerous pathological conditions, including cancer and inflammation. Understanding the intricate mechanisms by which GAGs and PGs modulate cellular responses to mechanical forces holds promise for developing novel therapeutic strategies targeting mechanotransduction pathways in disease. This comprehensive overview underscores the importance of GAGs and PGs as key mediators of mechanosensing in maintaining tissue homeostasis and their potential as therapeutic targets for mitigating mechano-driven pathologies, focusing on cancer and inflammation.
Collapse
Affiliation(s)
- Aikaterini Berdiaki
- Department of Histology-Embryology, Medical School, University of Crete, 712 03 Heraklion, Greece; (A.B.); (P.T.); (I.S.)
| | - Monica Neagu
- Immunology Department, “Victor Babes” National Institute of Pathology, 050096 Bucharest, Romania;
| | - Petros Tzanakakis
- Department of Histology-Embryology, Medical School, University of Crete, 712 03 Heraklion, Greece; (A.B.); (P.T.); (I.S.)
| | - Ioanna Spyridaki
- Department of Histology-Embryology, Medical School, University of Crete, 712 03 Heraklion, Greece; (A.B.); (P.T.); (I.S.)
| | - Serge Pérez
- Centre de Recherche sur les Macromolécules Végétales (CERMAV), Centre National de la Recherche Scientifique (CNRS), University Grenoble Alpes, 38000 Grenoble, France;
| | - Dragana Nikitovic
- Department of Histology-Embryology, Medical School, University of Crete, 712 03 Heraklion, Greece; (A.B.); (P.T.); (I.S.)
| |
Collapse
|
5
|
Liu Z, Hou P, Fang J, Shao C, Shi Y, Melino G, Peschiaroli A. Hyaluronic acid metabolism and chemotherapy resistance: recent advances and therapeutic potential. Mol Oncol 2024; 18:2087-2106. [PMID: 37953485 PMCID: PMC11467803 DOI: 10.1002/1878-0261.13551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/04/2023] [Accepted: 11/10/2023] [Indexed: 11/14/2023] Open
Abstract
Hyaluronic acid (HA) is a major component of the extracellular matrix, providing essential mechanical scaffolding for cells and, at the same time, mediating essential biochemical signals required for tissue homeostasis. Many solid tumors are characterized by dysregulated HA metabolism, resulting in increased HA levels in cancer tissues. HA interacts with several cell surface receptors, such as cluster of differentiation 44 and receptor for hyaluronan-mediated motility, thus co-regulating important signaling pathways in cancer development and progression. In this review, we describe the enzymes controlling HA metabolism and its intracellular effectors emphasizing their impact on cancer chemotherapy resistance. We will also explore the current and future prospects of HA-based therapy, highlighting the opportunities and challenges in the field.
Collapse
Affiliation(s)
- Zhanhong Liu
- Department of Experimental MedicineUniversity of Rome Tor VergataRomeItaly
- Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and ProtectionThe First Affiliated Hospital of Soochow University, Suzhou Medical College of Soochow UniversityChina
| | - Pengbo Hou
- Department of Experimental MedicineUniversity of Rome Tor VergataRomeItaly
- Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and ProtectionThe First Affiliated Hospital of Soochow University, Suzhou Medical College of Soochow UniversityChina
| | - Jiankai Fang
- Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and ProtectionThe First Affiliated Hospital of Soochow University, Suzhou Medical College of Soochow UniversityChina
| | - Changshun Shao
- Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and ProtectionThe First Affiliated Hospital of Soochow University, Suzhou Medical College of Soochow UniversityChina
| | - Yufang Shi
- Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and ProtectionThe First Affiliated Hospital of Soochow University, Suzhou Medical College of Soochow UniversityChina
| | - Gerry Melino
- Department of Experimental MedicineUniversity of Rome Tor VergataRomeItaly
| | - Angelo Peschiaroli
- Institute of Translational Pharmacology (IFT), National Research Council (CNR)RomeItaly
| |
Collapse
|
6
|
Gagneja S, Capalash N, Sharma P. Hyaluronic acid as a tumor progression agent and a potential chemotherapeutic biomolecule against cancer: A review on its dual role. Int J Biol Macromol 2024; 275:133744. [PMID: 38986990 DOI: 10.1016/j.ijbiomac.2024.133744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 06/27/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024]
Abstract
Hyaluronic acid is a major constituent of the extracellular matrix of vertebrate tissue that provides mechanical support to cells and acts as a mediator in regulation of necessary biochemical process essential for maintenance of tissue homeostasis. The variation in quantity of hyaluronic acid content in tissues is often associated with different pathological conditions. It is associated with tumor aggression and progression as it plays crucial role in regulating different aspects of tumorigenesis and several defined hallmarks of cancer. It assists in tumor progression by undergoing extracellular remodeling to establish tumor microenvironment which restricts the delivery of cytotoxic drugs to neoplastic cells due to increase in interstitial pressure. Hyaluronic acid catabolic and anabolic genes and low-molecular weight hyaluronic acid play significant role in the establishing tumor microenvironment by assisting in cell proliferation, metastasis and invasion. On the other hand, it is also used as an effective drug-delivery platform in cancer therapies as its biocompatibility and biodegradability lower the toxicity of chemotherapeutic drugs and increase drug retention. High-molecular weight hyaluronic acid-bioconjugates specifically bind with hyaladherins, facilitating targeted drug delivery and also exert anti-inflammatory properties. This review also highlights the market and patent trends in the development of effective chemotherapeutic hyaluronic acid formulations and the current scenario regarding clinical trials.
Collapse
Affiliation(s)
- Simran Gagneja
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Neena Capalash
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Prince Sharma
- Department of Microbiology, Panjab University, Chandigarh, India.
| |
Collapse
|
7
|
Vitale DL, Parnigoni A, Viola M, Karousou E, Sevic I, Moretto P, Passi A, Alaniz L, Vigetti D. Deciphering Drug Resistance: Investigating the Emerging Role of Hyaluronan Metabolism and Signaling and Tumor Extracellular Matrix in Cancer Chemotherapy. Int J Mol Sci 2024; 25:7607. [PMID: 39062846 PMCID: PMC11276752 DOI: 10.3390/ijms25147607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/04/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Hyaluronan (HA) has gained significant attention in cancer research for its role in modulating chemoresistance. This review aims to elucidate the mechanisms by which HA contributes to chemoresistance, focusing on its interactions within the tumor microenvironment. HA is abundantly present in the extracellular matrix (ECM) and binds to cell-surface receptors such as CD44 and RHAMM. These interactions activate various signaling pathways, including PI3K/Akt, MAPK, and NF-κB, which are implicated in cell survival, proliferation, and drug resistance. HA also influences the physical properties of the tumor stroma, enhancing its density and reducing drug penetration. Additionally, HA-mediated signaling contributes to the epithelial-mesenchymal transition (EMT), a process associated with increased metastatic potential and resistance to apoptosis. Emerging therapeutic strategies aim to counteract HA-induced chemoresistance by targeting HA synthesis, degradation, metabolism, or its binding to CD44. This review underscores the complexity of HA's role in chemoresistance and highlights the potential for HA-targeted therapies to improve the efficacy of conventional chemotherapeutics.
Collapse
Affiliation(s)
- Daiana L. Vitale
- Laboratorio de Microambiente Tumoral, Centro de Investigaciones Básicas y Aplicadas (CIBA), Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Junín B6000, Argentina; (D.L.V.); (I.S.); (L.A.)
- Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CITNOBA), UNNOBA-UNSAdA-CONICET, Junín 6000, Argentina
| | - Arianna Parnigoni
- Department of Medical Biochemistry and Microbiology, Uppsala University, SE-751 23 Uppsala, Sweden;
| | - Manuela Viola
- Dipartimento di Medicina e Chirurgia, Universitá degli Studi dell’Insubria, 21100 Varese, Italy; (M.V.); (E.K.); (P.M.); (A.P.)
| | - Evgenia Karousou
- Dipartimento di Medicina e Chirurgia, Universitá degli Studi dell’Insubria, 21100 Varese, Italy; (M.V.); (E.K.); (P.M.); (A.P.)
| | - Ina Sevic
- Laboratorio de Microambiente Tumoral, Centro de Investigaciones Básicas y Aplicadas (CIBA), Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Junín B6000, Argentina; (D.L.V.); (I.S.); (L.A.)
- Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CITNOBA), UNNOBA-UNSAdA-CONICET, Junín 6000, Argentina
| | - Paola Moretto
- Dipartimento di Medicina e Chirurgia, Universitá degli Studi dell’Insubria, 21100 Varese, Italy; (M.V.); (E.K.); (P.M.); (A.P.)
| | - Alberto Passi
- Dipartimento di Medicina e Chirurgia, Universitá degli Studi dell’Insubria, 21100 Varese, Italy; (M.V.); (E.K.); (P.M.); (A.P.)
| | - Laura Alaniz
- Laboratorio de Microambiente Tumoral, Centro de Investigaciones Básicas y Aplicadas (CIBA), Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Junín B6000, Argentina; (D.L.V.); (I.S.); (L.A.)
- Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CITNOBA), UNNOBA-UNSAdA-CONICET, Junín 6000, Argentina
| | - Davide Vigetti
- Dipartimento di Medicina e Chirurgia, Universitá degli Studi dell’Insubria, 21100 Varese, Italy; (M.V.); (E.K.); (P.M.); (A.P.)
| |
Collapse
|
8
|
Standing D, Dandawate P, Gunewardena S, Covarrubias-Zambrano O, Roby KF, Khabele D, Jewell A, Tawfik O, Bossmann SH, Godwin AK, Weir SJ, Jensen RA, Anant S. Selective targeting of IRAK1 attenuates low molecular weight hyaluronic acid-induced stemness and non-canonical STAT3 activation in epithelial ovarian cancer. Cell Death Dis 2024; 15:362. [PMID: 38796478 PMCID: PMC11127949 DOI: 10.1038/s41419-024-06717-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 05/28/2024]
Abstract
Advanced epithelial ovarian cancer (EOC) survival rates are dishearteningly low, with ~25% surviving beyond 5 years. Evidence suggests that cancer stem cells contribute to acquired chemoresistance and tumor recurrence. Here, we show that IRAK1 is upregulated in EOC tissues, and enhanced expression correlates with poorer overall survival. Moreover, low molecular weight hyaluronic acid, which is abundant in malignant ascites from patients with advanced EOC, induced IRAK1 phosphorylation leading to STAT3 activation and enhanced spheroid formation. Knockdown of IRAK1 impaired tumor growth in peritoneal disease models, and impaired HA-induced spheroid growth and STAT3 phosphorylation. Finally, we determined that TCS2210, a known inducer of neuronal differentiation in mesenchymal stem cells, is a selective inhibitor of IRAK1. TCS2210 significantly inhibited EOC growth in vitro and in vivo both as monotherapy, and in combination with cisplatin. Collectively, these data demonstrate IRAK1 as a druggable target for EOC.
Collapse
Affiliation(s)
- David Standing
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Prasad Dandawate
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Sumedha Gunewardena
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | | | - Katherine F Roby
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Dineo Khabele
- Department of Obstetrics and Gynecology, Washington University in St. Louis, St. Louis, MO, USA
| | - Andrea Jewell
- Department of Gynecologic Oncology, University of Kansas Medical Center, Kansas City, KS, USA
| | | | - Stefan H Bossmann
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Andrew K Godwin
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
- Kansas Institute for Precision Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Scott J Weir
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, USA
- Department of Pharmacology and Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
- Institute for Advancing Medical Innovation, University of Kansas Medical Center, Kansas City, KS, USA
| | - Roy A Jensen
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Shrikant Anant
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
9
|
Xu Y, Benedikt J, Ye L. Hyaluronic Acid Interacting Molecules Mediated Crosstalk between Cancer Cells and Microenvironment from Primary Tumour to Distant Metastasis. Cancers (Basel) 2024; 16:1907. [PMID: 38791985 PMCID: PMC11119954 DOI: 10.3390/cancers16101907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Hyaluronic acid (HA) is a prominent component of the extracellular matrix, and its interactions with HA-interacting molecules (HAIMs) play a critical role in cancer development and disease progression. This review explores the multifaceted role of HAIMs in the context of cancer, focusing on their influence on disease progression by dissecting relevant cellular and molecular mechanisms in tumour cells and the tumour microenvironment. Cancer progression can be profoundly affected by the interactions between HA and HAIMs. They modulate critical processes such as cell adhesion, migration, invasion, and proliferation. The TME serves as a dynamic platform in which HAIMs contribute to the formation of a unique niche. The resulting changes in HA composition profoundly influence the biophysical properties of the TME. These modifications in the TME, in conjunction with HAIMs, impact angiogenesis, immune cell recruitment, and immune evasion. Therefore, understanding the intricate interplay between HAIMs and HA within the cancer context is essential for developing novel therapeutic strategies. Targeting these interactions offers promising avenues for cancer treatment, as they hold the potential to disrupt critical aspects of disease progression and the TME. Further research in this field is imperative for advancing our knowledge and the treatment of cancer.
Collapse
Affiliation(s)
- Yali Xu
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff CF14 4XN, UK;
- School of Engineering, Cardiff University, Cardiff CF24 3AA, UK;
| | | | - Lin Ye
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff CF14 4XN, UK;
| |
Collapse
|
10
|
Ostrowska-Lesko M, Rajtak A, Moreno-Bueno G, Bobinski M. Scientific and clinical relevance of non-cellular tumor microenvironment components in ovarian cancer chemotherapy resistance. Biochim Biophys Acta Rev Cancer 2024; 1879:189036. [PMID: 38042260 DOI: 10.1016/j.bbcan.2023.189036] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 11/24/2023] [Accepted: 11/25/2023] [Indexed: 12/04/2023]
Abstract
The tumor microenvironment (TME) components play a crucial role in cancer cells' resistance to chemotherapeutic agents. This phenomenon is exceptionally fundamental in patients with ovarian cancer (OvCa), whose outcome depends mainly on their response to chemotherapy. Until now, most reports have focused on the role of cellular components of the TME, while less attention has been paid to the stroma and other non-cellular elements of the TME, which may play an essential role in the therapy resistance. Inhibiting these components could help define new therapeutic targets and potentially restore chemosensitivity. The aim of the present article is both to summarize the knowledge about non-cellular components of the TME in the development of OvCa chemoresistance and to suggest targeting of non-cellular elements of the TME as a valuable strategy to overcome chemoresistance and to develop new therapeutic strategies in OvCA patients.
Collapse
Affiliation(s)
- Marta Ostrowska-Lesko
- Chair and Department of Toxicology, Medical University of Lublin, 8b Jaczewskiego Street, 20-090 Lublin, Poland.
| | - Alicja Rajtak
- 1st Chair and Department of Oncological Gynecology and Gynecology, Medical University of Lublin, Poland
| | - Gema Moreno-Bueno
- Biochemistry Department, Universidad Autónoma de Madrid (UAM), Instituto de Investigaciones Biomédicas 'Sols-Morreale' (IIBm-CISC), Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Spain; Fundación MD Anderson Internacional (FMDA), Spain.
| | - Marcin Bobinski
- 1st Chair and Department of Oncological Gynecology and Gynecology, Medical University of Lublin, Poland.
| |
Collapse
|
11
|
Cirillo N. The Hyaluronan/CD44 Axis: A Double-Edged Sword in Cancer. Int J Mol Sci 2023; 24:15812. [PMID: 37958796 PMCID: PMC10649834 DOI: 10.3390/ijms242115812] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/21/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
Hyaluronic acid (HA) receptor CD44 is widely used for identifying cancer stem cells and its activation promotes stemness. Recent evidence shows that overexpression of CD44 is associated with poor prognosis in most human cancers and mediates therapy resistance. For these reasons, in recent years, CD44 has become a treatment target in precision oncology, often via HA-conjugated antineoplastic drugs. Importantly, HA molecules of different sizes have a dual effect and, therefore, may enhance or attenuate the CD44-mediated signaling pathways, as they compete with endogenous HA for binding to the receptors. The magnitude of these effects could be crucial for cancer progression, as well as for driving the inflammatory response in the tumor microenvironment. The increasingly common use of HA-conjugated drugs in oncology, as well as HA-based compounds as adjuvants in cancer treatment, adds further complexity to the understanding of the net effect of hyaluronan-CD44 activation in cancers. In this review, I focus on the significance of CD44 in malignancy and discuss the dichotomous function of the hyaluronan/CD44 axis in cancer progression.
Collapse
Affiliation(s)
- Nicola Cirillo
- Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, 720 Swanston Street, Carlton, VIC 3053, Australia
| |
Collapse
|
12
|
Price ZK, Lokman NA, Sugiyama M, Koya Y, Yoshihara M, Oehler MK, Kajiyama H, Ricciardelli C. Disabled-2: a protein up-regulated by high molecular weight hyaluronan has both tumor promoting and tumor suppressor roles in ovarian cancer. Cell Mol Life Sci 2023; 80:320. [PMID: 37815603 PMCID: PMC10564841 DOI: 10.1007/s00018-023-04972-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/13/2023] [Accepted: 09/19/2023] [Indexed: 10/11/2023]
Abstract
Although the pro-tumorigenic functions of hyaluronan (HA) are well documented there is limited information on the effects and targets of different molecular weight HA. Here, we investigated the effects of 27 kDa, 183 kDa and 1000 kDa HA on ES-2 ovarian cancer cells overexpressing the stem cell associated protein, Notch3. 1000 kDA HA promoted spheroid formation in ES-2 cells mixed with ES-2 overexpressing Notch3 (1:3). We report disabled-2 (DAB2) as a novel protein regulated by 1000 kDa HA and further investigated its role in ovarian cancer. DAB2 was downregulated in ovarian cancer compared to normal tissues but increased in metastatic ovarian tumors compared to primary tumors. High DAB2 expression was associated with poor patient outcome and positively correlated with HA synthesis enzyme HAS2, HA receptor CD44 and EMT and macrophage markers. Stromal DAB2 immunostaining was significantly increased in matched ovarian cancer tissues at relapse compared to diagnosis and associated with reduced survival. The proportion of DAB2 positive macrophages was significantly increased in metastatic ovarian cancer tissues compared to primary cancers. However, DAB2 overexpression significantly reduced invasion by both A2780 and OVCAR3 cells in vivo. Our research identifies a novel relationship between HA signalling, Notch3 and DAB2. We highlight a complex relationship of both pro-tumorigenic and tumor suppressive functions of DAB2 in ovarian cancer. Our findings highlight that DAB2 has a direct tumor suppressive role on ovarian cancer cells. The pro-tumorigenic role of DAB2 may be mediated by tumour associated macrophages and requires further investigation.
Collapse
Affiliation(s)
- Zoe K Price
- Reproductive Cancer Group, Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, Adelaide Health and Medical Sciences Building, The University of Adelaide, Level 5, North Terrace, Adelaide, SA, 5000, Australia
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Noor A Lokman
- Reproductive Cancer Group, Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, Adelaide Health and Medical Sciences Building, The University of Adelaide, Level 5, North Terrace, Adelaide, SA, 5000, Australia
| | - Mai Sugiyama
- Department of Obstetrics and Gynecology Collaborative Research, Bell Research Center, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshihiro Koya
- Department of Obstetrics and Gynecology Collaborative Research, Bell Research Center, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masato Yoshihara
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Martin K Oehler
- Reproductive Cancer Group, Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, Adelaide Health and Medical Sciences Building, The University of Adelaide, Level 5, North Terrace, Adelaide, SA, 5000, Australia
- Department of Gynaecological Oncology, Royal Adelaide Hospital, Adelaide, 5000, Australia
| | - Hiroaki Kajiyama
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Carmela Ricciardelli
- Reproductive Cancer Group, Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, Adelaide Health and Medical Sciences Building, The University of Adelaide, Level 5, North Terrace, Adelaide, SA, 5000, Australia.
| |
Collapse
|
13
|
Su MC, Nethi SK, Dhanyamraju PK, Prabha S. Nanomedicine Strategies for Targeting Tumor Stroma. Cancers (Basel) 2023; 15:4145. [PMID: 37627173 PMCID: PMC10452920 DOI: 10.3390/cancers15164145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/04/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
The tumor stroma, or the microenvironment surrounding solid tumors, can significantly impact the effectiveness of cancer therapies. The tumor microenvironment is characterized by high interstitial pressure, a consequence of leaky vasculature, and dense stroma created by excessive deposition of various macromolecules such as collagen, fibronectin, and hyaluronic acid (HA). In addition, non-cancerous cells such as cancer-associated fibroblasts (CAFs) and the extracellular matrix (ECM) itself can promote tumor growth. In recent years, there has been increased interest in combining standard cancer treatments with stromal-targeting strategies or stromal modulators to improve therapeutic outcomes. Furthermore, the use of nanomedicine, which can improve the delivery and retention of drugs in the tumor, has been proposed to target the stroma. This review focuses on how different stromal components contribute to tumor progression and impede chemotherapeutic delivery. Additionally, this review highlights recent advancements in nanomedicine-based stromal modulation and discusses potential future directions for developing more effective stroma-targeted cancer therapies.
Collapse
Affiliation(s)
- Mei-Chi Su
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Susheel Kumar Nethi
- Nanovaccine Institute, Department of Chemical & Biological Engineering, Iowa State University, Ames, IA 50011, USA;
| | - Pavan Kumar Dhanyamraju
- Fels Cancer Institute of Personalized Medicine, Lewis-Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA;
| | - Swayam Prabha
- Fels Cancer Institute of Personalized Medicine, Lewis-Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA;
- Department of Cancer and Cellular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Temple University, Philadelphia, PA 19111, USA
| |
Collapse
|
14
|
Arentz G, Mittal P, Klingler-Hoffmann M, Condina MR, Ricciardelli C, Lokman NA, Kaur G, Oehler MK, Hoffmann P. Label-Free Quantification Mass Spectrometry Identifies Protein Markers of Chemotherapy Response in High-Grade Serous Ovarian Cancer. Cancers (Basel) 2023; 15:cancers15072172. [PMID: 37046833 PMCID: PMC10093294 DOI: 10.3390/cancers15072172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/14/2023] Open
Abstract
Eighty percent of ovarian cancer patients initially respond to chemotherapy, but the majority eventually experience a relapse and die from the disease with acquired chemoresistance. In addition, 20% of patients do not respond to treatment at all, as their disease is intrinsically chemotherapy resistant. Data-independent acquisition nano-flow liquid chromatography-mass spectrometry (DIA LC-MS) identified the three protein markers: gelsolin (GSN), calmodulin (CALM1), and thioredoxin (TXN), to be elevated in high-grade serous ovarian cancer (HGSOC) tissues from patients that responded to chemotherapy compared to those who did not; the differential expression of the three protein markers was confirmed by immunohistochemistry. Analysis of the online GENT2 database showed that mRNA levels of GSN, CALM1, and TXN were decreased in HGSOC compared to fallopian tube epithelium. Elevated levels of GSN and TXN mRNA expression correlated with increased overall and progression-free survival, respectively, in a Kaplan-Meier analysis of a large online repository of HGSOC patient data. Importantly, differential expression of the three protein markers was further confirmed when comparing parental OVCAR-5 cells to carboplatin-resistant OVCAR-5 cells using DIA LC-MS analysis. Our findings suggest that GSN, CALM1, and TXN may be useful biomarkers for predicting chemotherapy response and understanding the mechanisms of chemotherapy resistance. Proteomic data are available via ProteomeXchange with identifier PXD033785.
Collapse
Affiliation(s)
- Georgia Arentz
- Adelaide Proteomics Centre, School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Parul Mittal
- Clinical & Health Sciences, University of South Australia, Adelaide, SA 5001, Australia
| | | | - Mark R Condina
- Future Industries Institute, Mawson Lakes Campus, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Carmela Ricciardelli
- Discipline of Obstetrics and Gynecology, Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide, SA 5000, Australia
| | - Noor A Lokman
- Discipline of Obstetrics and Gynecology, Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide, SA 5000, Australia
| | - Gurjeet Kaur
- Institute for Research in Molecular Medicine, University Sains Malaysia, Minden 11800, Pulau Pinang, Malaysia
| | - Martin K Oehler
- Discipline of Obstetrics and Gynecology, Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide, SA 5000, Australia
- Department of Gynecological Oncology, Royal Adelaide Hospital, Adelaide, SA 5005, Australia
| | - Peter Hoffmann
- Clinical & Health Sciences, University of South Australia, Adelaide, SA 5001, Australia
| |
Collapse
|
15
|
Ovarian Cancer—Insights into Platinum Resistance and Overcoming It. Medicina (B Aires) 2023; 59:medicina59030544. [PMID: 36984544 PMCID: PMC10057458 DOI: 10.3390/medicina59030544] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/26/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023] Open
Abstract
Ovarian cancer is the most lethal gynecologic malignancy. Platinum-based chemotherapy is the backbone of treatment for ovarian cancer, and although the majority of patients initially have a platinum-sensitive disease, through multiple recurrences, they will acquire resistance. Platinum-resistant recurrent ovarian cancer has a poor prognosis and few treatment options with limited efficacy. Resistance to platinum compounds is a complex process involving multiple mechanisms pertaining not only to the tumoral cell but also to the tumoral microenvironment. In this review, we discuss the molecular mechanism involved in ovarian cancer cells’ resistance to platinum-based chemotherapy, focusing on the alteration of drug influx and efflux pathways, DNA repair, the dysregulation of epigenetic modulation, and the involvement of the tumoral microenvironment in the acquisition of the platinum-resistant phenotype. Furthermore, we review promising alternative treatment approaches that may improve these patients’ poor prognosis, discussing current strategies, novel combinations, and therapeutic agents.
Collapse
|
16
|
Targeting LAYN inhibits colorectal cancer metastasis and tumor-associated macrophage infiltration induced by hyaluronan oligosaccharides. Matrix Biol 2023; 117:15-30. [PMID: 36805871 DOI: 10.1016/j.matbio.2023.02.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/30/2023] [Accepted: 02/06/2023] [Indexed: 02/19/2023]
Abstract
The accumulation of hyaluronan oligosaccharides (oHA) in colorectal cancer (CRC) is closely related to tumor metastasis, but the underlying mechanism remains unclear. In this study, we first described that LAYN, a novel HA receptor, was upregulated in CRC tissue. Aberrant LAYN expression correlated with CRC metastasis and poor prognosis and positively correlated with tumor-associated macrophage (TAM) infiltration and M2 macrophage polarization in the tumor environment. Both in vitro and in vivo studies demonstrated that LAYN is activated by oHA and subsequently induces CRC metastasis and macrophage infiltration. Mechanistic studies demonstrated that oHA activates LAYN by binding to the 60-68th amino acid region of the extracellular segment. oHA-induced LAYN activation promoted metastasis and CCL20 secretion through the NF-kB pathway in CRC cells. Furthermore, targeting LAYN using a blocking antibody prevented oHA-mediated tumor metastasis, TAM infiltration and M2 polarization. This study revealed the LAYN activation mechanism and identified a potential target for the treatment of CRC tumor exhibiting high oHA levels.
Collapse
|
17
|
Brown Y, Hua S, Tanwar PS. Extracellular Matrix in High-Grade Serous Ovarian Cancer: Advances in Understanding of Carcinogenesis and Cancer Biology. Matrix Biol 2023; 118:16-46. [PMID: 36781087 DOI: 10.1016/j.matbio.2023.02.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 01/20/2023] [Accepted: 02/08/2023] [Indexed: 02/13/2023]
Abstract
High-grade serous ovarian cancer (HGSOC) is notoriously known as the "silent killer" of post-menopausal women as it has an insidious progression and is the deadliest gynaecological cancer. Although a dual origin of HGSOC is now widely accepted, there is growing evidence that most cases of HGSOC originate from the fallopian tube epithelium. In this review, we will address the fallopian tube origin and involvement of the extracellular matrix (ECM) in HGSOC development. There is limited research on the role of ECM at the earliest stages of HGSOC carcinogenesis. Here we aim to synthesise current understanding on the contribution of ECM to each stage of HGSOC development and progression, beginning at serous tubal intraepithelial carcinoma (STIC) precursor lesions and proceeding across key events including dissemination of tumourigenic fallopian tube epithelial cells to the ovary, survival of these cells in peritoneal fluid as multicellular aggregates, and colonisation of the ovary. Likewise, as part of the metastatic series of events, serous ovarian cancer cells survive travel in peritoneal fluid, attach to, migrate across the mesothelium and invade into the sub-mesothelial matrix of secondary sites in the peritoneal cavity. Halting cancer at the pre-metastatic stage and finding ways to stop the dissemination of ovarian cancer cells from the primary site is critical for improving patient survival. The development of drug resistance also contributes to poor survival statistics in HGSOC. In this review, we provide an update on the involvement of the ECM in metastasis and drug resistance in HGSOC. Interplay between different cell-types, growth factor gradients as well as evolving ECM composition and organisation, creates microenvironment conditions that promote metastatic progression and drug resistance of ovarian cancer cells. By understanding ECM involvement in the carcinogenesis and chemoresistance of HGSOC, this may prompt ideas for further research for developing new early diagnostic tests and therapeutic strategies for HGSOC with the end goal of improving patient health outcomes.
Collapse
Affiliation(s)
- Yazmin Brown
- Global Centre for Gynaecological Diseases, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia.; Cancer Detection and Therapy Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia..
| | - Susan Hua
- Therapeutic Targeting Research Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia.; Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Pradeep S Tanwar
- Global Centre for Gynaecological Diseases, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia.; Cancer Detection and Therapy Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia..
| |
Collapse
|
18
|
Role of Hyaluronic Acid in Selected Malignant Neoplasms in Women. Biomedicines 2023; 11:biomedicines11020304. [PMID: 36830841 PMCID: PMC9953106 DOI: 10.3390/biomedicines11020304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
Hyaluronic acid (HA) is a significant glycosaminoglycan component of the extracellular matrix, playing an essential role in cell localization and proliferation. However, high levels of HA may also correlate with multidrug resistance of tumor cells, an increased tendency to metastasize, or cancer progression, and thus represent a very unfavorable prognosis for cancer patients. The purpose of this review article is to summarize the results of studies describing the relationship between HA, the main ligand of the CD44 receptor, or other components of the HA signaling pathway. In addition, we review the course of selected female malignancies, i.e., breast, cervical, endometrial, and ovarian cancer, with the main focus on the mechanisms oriented to CD44. We also analyze reports on the beneficial use of HA-containing preparations in adjuvant therapy among patients with these types of cancer. Data from the literature suggest that HA and its family members may be critical prognostic biomarkers of selected malignancies among women. Nevertheless, the results of the available studies are inconclusive, and the actual clinical significance of HA expression analysis is still quite enigmatic. In our opinion, the HA-CD44 signaling pathway should be an attractive target for future research related to targeted therapy in gynecological cancers.
Collapse
|
19
|
Ghasempour S, Freeman SA. The glycocalyx and immune evasion in cancer. FEBS J 2023; 290:55-65. [PMID: 34665926 DOI: 10.1111/febs.16236] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/27/2021] [Accepted: 10/18/2021] [Indexed: 01/14/2023]
Abstract
In order to establish malignant lesions, tumors must first evade their detection by immune cells. Tumors achieve this by embellishing and tailoring their glycocalyx, a network of polysaccharides and glycosylated proteins that refracts the phagocytic efforts of myeloid cells, shrouds neoantigens and other ligands from cells of the acquired immune system, and skews immune responses. The barriers imposed by the glycocalyx are biophysical and also linked to the inhibitory receptor signaling pathways of immune cells that engage tumor sialic acids as markers of healthy "self". This would explain the pressure for cancers to upregulate the synthases, transmembrane mucins, and other heavily sialylated glycoproteins involved in establishing a repulsive glycocalyx. Accordingly, individual tumor cells that are best capable of constructing a shielding glycocalyx on their surface show higher metastatic potential in immunocompetent mice. Reciprocally, therapeutics have recently been devised to edit and dismantle the glycocalyx barrier in an effort to invigorate an immune response aimed at tumor destruction. We discuss the features of the tumor-associated glycocalyx that afford immune evasion of cancers and how strategies that target this barrier may potentiate antitumor immunity.
Collapse
Affiliation(s)
- Sina Ghasempour
- Program in Cell Biology, Hospital for Sick Children, Toronto, Canada.,Department of Biochemistry, University of Toronto, Canada
| | - Spencer A Freeman
- Program in Cell Biology, Hospital for Sick Children, Toronto, Canada.,Department of Biochemistry, University of Toronto, Canada
| |
Collapse
|
20
|
Michalczyk M, Humeniuk E, Adamczuk G, Korga-Plewko A. Hyaluronic Acid as a Modern Approach in Anticancer Therapy-Review. Int J Mol Sci 2022; 24:ijms24010103. [PMID: 36613567 PMCID: PMC9820514 DOI: 10.3390/ijms24010103] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/11/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Hyaluronic acid (HA) is a linear polysaccharide and crucial component of the extracellular matrix (ECM), maintaining tissue hydration and tension. Moreover, HA contributes to embryonic development, healing, inflammation, and cancerogenesis. This review summarizes new research on the metabolism and interactions of HA with its binding proteins, known as hyaladherins (CD44, RHAMM), revealing the molecular basis for its distinct biological function in the development of cancer. The presence of HA on the surface of tumor cells is a sign of an adverse prognosis. The involvement of HA in malignancy has been extensively investigated using cancer-free naked mole rats as a model. The HA metabolic components are examined for their potential impact on promoting or inhibiting tumor formation, proliferation, invasion, and metastatic spread. High molecular weight HA is associated with homeostasis and protective action due to its ability to preserve tissue integrity. In contrast, low molecular weight HA indicates a pathological condition in the tissue and plays a role in pro-oncogenic activity. A systematic approach might uncover processes related to cancer growth, establish novel prognostic indicators, and identify potential targets for treatment action.
Collapse
|
21
|
DeVries AA, Dennis J, Tyrer JP, Peng PC, Coetzee SG, Reyes AL, Plummer JT, Davis BD, Chen SS, Dezem FS, Aben KKH, Anton-Culver H, Antonenkova NN, Beckmann MW, Beeghly-Fadiel A, Berchuck A, Bogdanova NV, Bogdanova-Markov N, Brenton JD, Butzow R, Campbell I, Chang-Claude J, Chenevix-Trench G, Cook LS, DeFazio A, Doherty JA, Dörk T, Eccles DM, Eliassen AH, Fasching PA, Fortner RT, Giles GG, Goode EL, Goodman MT, Gronwald J, Håkansson N, Hildebrandt MAT, Huff C, Huntsman DG, Jensen A, Kar S, Karlan BY, Khusnutdinova EK, Kiemeney LA, Kjaer SK, Kupryjanczyk J, Labrie M, Lambrechts D, Le ND, Lubiński J, May T, Menon U, Milne RL, Modugno F, Monteiro AN, Moysich KB, Odunsi K, Olsson H, Pearce CL, Pejovic T, Ramus SJ, Riboli E, Riggan MJ, Romieu I, Sandler DP, Schildkraut JM, Setiawan VW, Sieh W, Song H, Sutphen R, Terry KL, Thompson PJ, Titus L, Tworoger SS, Van Nieuwenhuysen E, Edwards DV, Webb PM, Wentzensen N, Whittemore AS, Wolk A, Wu AH, Ziogas A, Freedman ML, Lawrenson K, Pharoah PDP, Easton DF, Gayther SA, Jones MR. Copy Number Variants Are Ovarian Cancer Risk Alleles at Known and Novel Risk Loci. J Natl Cancer Inst 2022; 114:1533-1544. [PMID: 36210504 PMCID: PMC9949586 DOI: 10.1093/jnci/djac160] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/13/2022] [Accepted: 08/18/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Known risk alleles for epithelial ovarian cancer (EOC) account for approximately 40% of the heritability for EOC. Copy number variants (CNVs) have not been investigated as EOC risk alleles in a large population cohort. METHODS Single nucleotide polymorphism array data from 13 071 EOC cases and 17 306 controls of White European ancestry were used to identify CNVs associated with EOC risk using a rare admixture maximum likelihood test for gene burden and a by-probe ratio test. We performed enrichment analysis of CNVs at known EOC risk loci and functional biofeatures in ovarian cancer-related cell types. RESULTS We identified statistically significant risk associations with CNVs at known EOC risk genes; BRCA1 (PEOC = 1.60E-21; OREOC = 8.24), RAD51C (Phigh-grade serous ovarian cancer [HGSOC] = 5.5E-4; odds ratio [OR]HGSOC = 5.74 del), and BRCA2 (PHGSOC = 7.0E-4; ORHGSOC = 3.31 deletion). Four suggestive associations (P < .001) were identified for rare CNVs. Risk-associated CNVs were enriched (P < .05) at known EOC risk loci identified by genome-wide association study. Noncoding CNVs were enriched in active promoters and insulators in EOC-related cell types. CONCLUSIONS CNVs in BRCA1 have been previously reported in smaller studies, but their observed frequency in this large population-based cohort, along with the CNVs observed at BRCA2 and RAD51C gene loci in EOC cases, suggests that these CNVs are potentially pathogenic and may contribute to the spectrum of disease-causing mutations in these genes. CNVs are likely to occur in a wider set of susceptibility regions, with potential implications for clinical genetic testing and disease prevention.
Collapse
Grants
- P01 CA017054 NCI NIH HHS
- N01 CN025403 NCI NIH HHS
- UM1 CA176726 NCI NIH HHS
- R01 CA058860 NCI NIH HHS
- P50 CA105009 NCI NIH HHS
- R01-CA122443 NIH HHS
- 076113 Wellcome Trust
- G0401527 Medical Research Council
- U19-CA148112 NCI NIH HHS
- P50 CA136393 NCI NIH HHS
- C490/A10119 C490/A10124 Cancer Research UK
- 1000143 Medical Research Council
- R01-CA54419 NIH HHS
- C8221/A19170 Cancer Research UK
- R01 CA049449 NCI NIH HHS
- P50 CA159981 NCI NIH HHS
- T32 GM118288 NIGMS NIH HHS
- CA1X01HG007491-01 NIH HHS
- Z01-ES044005 NIEHS NIH HHS
- R01 CA106414 NCI NIH HHS
- R01 CA095023 NCI NIH HHS
- N01 PC067010 NCI NIH HHS
- P30 CA047904 NCI NIH HHS
- R01 CA058598 NCI NIH HHS
- U01 CA176726 NCI NIH HHS
- S10 RR025141 NCRR NIH HHS
- M01 RR000056 NCRR NIH HHS
- Department of Health
- 5T32GM118288-03 NIH HHS
- MR/N003284/1 Medical Research Council
- P30 CA014089 NCI NIH HHS
- K07-CA080668 NCI NIH HHS
- 14136 Cancer Research UK
- Worldwide Cancer Research
- MR_UU_12023 Medical Research Council
- R01 CA067262 NCI NIH HHS
- UM1 CA186107 NCI NIH HHS
- P30 CA015083 NCI NIH HHS
- G1000143 Medical Research Council
- R01 CA076016 NCI NIH HHS
- NHGRI NIH HHS
- P01 CA087969 NCI NIH HHS
- R01- CA61107 NCI NIH HHS
- R01-CA58598 NIH HHS
- U19 CA148112 NCI NIH HHS
- ULTR000445 NCATS NIH HHS
- R03 CA115195 NCI NIH HHS
- Wellcome Trust
- Breast Cancer Now
- R01 CA160669 NCI NIH HHS
- R01-CA058860 NIH HHS
- MC_UU_00004/01 Medical Research Council
- C570/A16491 Cancer Research UK
- R01-CA76016 NIH HHS
- R01-CA106414-A2 NIH HHS
- 001 World Health Organization
- Z01 ES049033 Intramural NIH HHS
- R01 CA126841 NCI NIH HHS
- MR/M012190/1 Medical Research Council
- 209057 Wellcome Trust
- R03 CA113148 NCI NIH HHS
- R01 CA149429 NCI NIH HHS
- National Institute of General Medical Sciences
- National Institutes of Health
- CSMC Precision Health Initiative
- Tell Every Amazing Lady About Ovarian Cancer Louisa M. McGregor Ovarian Cancer Foundation
- Ovarian Cancer Research Fund thanks
- National Cancer Institute
- National Human Genome Research Institute
- Canadian Institutes of Health Research
- Ovarian Cancer Research Fund
- European Commission’s Seventh Framework Programme
- Army Medical Research and Materiel Command
- National Health & Medical Research Council of Australia
- Cancer Councils of New South Wales, Victoria, Queensland, South Australia and Tasmania and Cancer Foundation of Western Australia
- Ovarian Cancer Australia
- Peter MacCallum Foundation
- University of Erlangen-Nuremberg
- National Kankerplan
- Breast Cancer Now, Institute of Cancer Research
- National Center for Advancing Translational Sciences
- European Commission
- International Agency for Research on Cancer
- Danish Cancer Society
- Ligue Contre le Cancer, Institut Gustave Roussy, Mutuelle Générale de l’Education Nationale
- Institut National de la Santé et de la Recherche Médicale
- German Cancer Aid; German Cancer Research Center
- Federal Ministry of Education and Research
- Hellenic Health Foundation
- Associazione Italiana per la Ricerca sul Cancro-AIRC-Italy
- National Research Council
- Dutch Ministry of Public Health, Welfare and Sports
- Netherlands Cancer Registry
- LK Research Funds
- Dutch Prevention Funds
- World Cancer Research Fund
- Nordforsk, Nordic Centre of Excellence programme on Food, Nutrition and Health
- Health Research Fund
- Regional Governments of Andalucía, Asturias, Basque Country, Murcia and Navarra
- Swedish Cancer Society, Swedish Research Council and County Councils of Skåne and Västerbotten
- German Federal Ministry of Education and Research, Programme of Clinical Biomedical Research
- German Cancer Research Center
- Rudolf-Bartling Foundation
- Helsinki University Hospital Research Fund
- University of Pittsburgh School of Medicine Dean’s Faculty Advancement Award
- Department of Defense
- NCI
- Swedish Cancer Society, Swedish Research Council, Beta Kamprad Foundation
- Danish Cancer Society, Copenhagen
- Mayo Foundation
- Minnesota Ovarian Cancer Alliance
- Fred C. and Katherine B. Andersen Foundation
- VicHealth and Cancer Council Victoria, Cancer Council Victoria
- National Health and Medical Research Council of Australia
- NHMRC
- DOD Ovarian Cancer Research Program
- Moffitt Cancer Center
- Merck Pharmaceuticals
- Radboud University Medical Centre
- UK National Institute for Health Research Biomedical Research Centres at the University of Cambridge
- National Institute of Environmental Health Sciences
- The Swedish Cancer Foundation
- the Swedish Research Council
- American Cancer Society
- Celma Mastry Ovarian Cancer Foundation
- Lon V Smith Foundation
- The Eve Appeal
- National Institute for Health Research University College London Hospitals Biomedical Research Centre
- California Cancer Research Program
- National Science Centre
- NIH
Collapse
Affiliation(s)
- Amber A DeVries
- Center for Bioinformatics and Functional Genomics, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Joe Dennis
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Jonathan P Tyrer
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Pei-Chen Peng
- Center for Bioinformatics and Functional Genomics, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Simon G Coetzee
- Center for Bioinformatics and Functional Genomics, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Alberto L Reyes
- Center for Bioinformatics and Functional Genomics, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jasmine T Plummer
- Center for Bioinformatics and Functional Genomics, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Applied Genomics, Computation and Translational Core, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Brian D Davis
- Center for Bioinformatics and Functional Genomics, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Applied Genomics, Computation and Translational Core, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Stephanie S Chen
- Center for Bioinformatics and Functional Genomics, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Applied Genomics, Computation and Translational Core, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Felipe Segato Dezem
- Center for Bioinformatics and Functional Genomics, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Katja K H Aben
- Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Netherlands Comprehensive Cancer Organisation, Utrecht, The Netherlands
| | - Hoda Anton-Culver
- Department of Medicine, Genetic Epidemiology Research Institute, University of California Irvine, Irvine, CA, USA
| | - Natalia N Antonenkova
- N.N. Alexandrov Research Institute of Oncology and Medical Radiology, Minsk, Belarus
| | - Matthias W Beckmann
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-European Metropolitan Region of Nuremberg, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany
| | - Alicia Beeghly-Fadiel
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Andrew Berchuck
- Department of Gynecologic Oncology, Duke University Hospital, Durham, NC, USA
| | - Natalia V Bogdanova
- N.N. Alexandrov Research Institute of Oncology and Medical Radiology, Minsk, Belarus
- Department of Radiation Oncology, Hannover Medical School, Hannover, Germany
- Gynaecology Research Unit, Hannover Medical School, Hannover, Germany
| | | | - James D Brenton
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Ralf Butzow
- Department of Pathology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Ian Campbell
- Cancer Genetics Laboratory, Research Division, Peter MacCallum Cancer Center, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Cancer Epidemiology Group, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Georgia Chenevix-Trench
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Linda S Cook
- Epidemiology, School of Public Health, University of Colorado, Aurora, CO, USA
- Community Health Sciences, University of Calgary, Calgary, AB, Canada
| | - Anna DeFazio
- Centre for Cancer Research, The Westmead Institute for Medical Research, Sydney, New South Wales, Australia
- Department of Gynaecological Oncology, Westmead Hospital, Sydney, New South Wales, Australia
- The Daffodil Centre, a joint venture with Cancer Council NSW, The University of Sydney, Sydney, New South Wales, Australia
| | - Jennifer A Doherty
- Huntsman Cancer Institute, Department of Population Health Sciences, University of Utah, Salt Lake City, UT, USA
| | - Thilo Dörk
- Gynaecology Research Unit, Hannover Medical School, Hannover, Germany
| | - Diana M Eccles
- Faculty of Medicine, University of Southampton, Southampton, UK
| | - A Heather Eliassen
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Peter A Fasching
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-European Metropolitan Region of Nuremberg, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany
- David Geffen School of Medicine, Department of Medicine Division of Hematology and Oncology, University of California at Los Angeles, Los Angeles, CA, USA
| | - Renée T Fortner
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Graham G Giles
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
| | - Ellen L Goode
- Department of Quantitative Health Sciences, Division of Epidemiology, Mayo Clinic, Rochester, MN, USA
| | - Marc T Goodman
- Samuel Oschin Comprehensive Cancer Institute, Cancer Prevention and Genetics Program, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jacek Gronwald
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Niclas Håkansson
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Chad Huff
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David G Huntsman
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, BC, Canada
- Department of Molecular Oncology, BC Cancer Research Centre, Vancouver, BC, Canada
| | - Allan Jensen
- Department of Lifestyle, Reproduction and Cancer, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Siddhartha Kar
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Section of Translational Epidemiology, Division of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Beth Y Karlan
- David Geffen School of Medicine, Department of Obstetrics and Gynecology, University of California at Los Angeles, Los Angeles, CA, USA
| | - Elza K Khusnutdinova
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, Russia
- Saint Petersburg State University, Saint Petersburg, Russia
| | - Lambertus A Kiemeney
- Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Susanne K Kjaer
- Department of Lifestyle, Reproduction and Cancer, Danish Cancer Society Research Center, Copenhagen, Denmark
- Department of Gynaecology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Jolanta Kupryjanczyk
- Department of Pathology and Laboratory Diagnostics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Marilyne Labrie
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Diether Lambrechts
- VIB Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Nhu D Le
- Cancer Control Research, BC Cancer, Vancouver, BC, Canada
| | - Jan Lubiński
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Taymaa May
- Division of Gynecologic Oncology, University Health Network, Princess Margaret Hospital, Toronto, Ontario, Canada
| | - Usha Menon
- MRC Clinical Trials Unit, Institute of Clinical Trials & Methodology, University College London, London, UK
| | - Roger L Milne
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
| | - Francesmary Modugno
- Women's Cancer Research Center, Magee-Womens Research Institute and Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Alvaro N Monteiro
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL, USA
| | - Kirsten B Moysich
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Kunle Odunsi
- Department of Oncology, University of Chicago Medicine Comprehensive Cancer Center, Chicago, IL, USA
- Department of Obstetrics and Gynecology, University of Chicago Medicine Comprehensive Cancer Center, Chicago, IL, USA
| | - Håkan Olsson
- Oncology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Celeste L Pearce
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Tanja Pejovic
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
- Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, OR, USA
| | - Susan J Ramus
- School of Women's and Children's Health, Faculty of Medicine and Health, University of NSW Sydney, Sydney, New South Wales, Australia
- Adult Cancer Program, Lowy Cancer Research Centre, University of NSW Sydney, Sydney, New South Wales, Australia
| | | | - Marjorie J Riggan
- Department of Gynecologic Oncology, Duke University Hospital, Durham, NC, USA
| | - Isabelle Romieu
- Nutrition and Metabolism Section, International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - Dale P Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Joellen M Schildkraut
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - V Wendy Setiawan
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Weiva Sieh
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Honglin Song
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Rebecca Sutphen
- Epidemiology Center, College of Medicine, University of South Florida, Tampa, FL, USA
| | - Kathryn L Terry
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Obstetrics and Gynecology Epidemiology Center, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Pamela J Thompson
- Samuel Oschin Comprehensive Cancer Institute, Cancer Prevention and Genetics Program, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Linda Titus
- Muskie School of Public Policy, Public Health, Portland, ME, USA
| | - Shelley S Tworoger
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL, USA
| | - Els Van Nieuwenhuysen
- Division of Gynecologic Oncology, Department of Gynecology and Obstetrics, Leuven Cancer Institute, Leuven, Belgium
| | - Digna Velez Edwards
- Division of Quantitative Sciences, Department of Obstetrics and Gynecology, Department of Biomedical Sciences, Women's Health Research, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Penelope M Webb
- Population Health Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Nicolas Wentzensen
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Alice S Whittemore
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA
| | - Alicja Wolk
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Anna H Wu
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Argyrios Ziogas
- Department of Medicine, Genetic Epidemiology Research Institute, University of California Irvine, Irvine, CA, USA
| | - Matthew L Freedman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Kate Lawrenson
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Women's Cancer Program at the Samuel Oschin Cancer Institute Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Paul D P Pharoah
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Douglas F Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Simon A Gayther
- Center for Bioinformatics and Functional Genomics, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Michelle R Jones
- Center for Bioinformatics and Functional Genomics, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
22
|
SNPs in 3'UTR miRNA Target Sequences Associated with Individual Drug Susceptibility. Int J Mol Sci 2022; 23:ijms232213725. [PMID: 36430200 PMCID: PMC9692299 DOI: 10.3390/ijms232213725] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/04/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
The complementary interaction of microRNAs (miRNAs) with their binding sites in the 3'untranslated regions (3'UTRs) of target gene mRNAs represses translation, playing a leading role in gene expression control. MiRNA recognition elements (MREs) in the 3'UTRs of genes often contain single nucleotide polymorphisms (SNPs), which can change the binding affinity for target miRNAs leading to dysregulated gene expression. Accumulated data suggest that these SNPs can be associated with various human pathologies (cancer, diabetes, neuropsychiatric disorders, and cardiovascular diseases) by disturbing the interaction of miRNAs with their MREs located in mRNA 3'UTRs. Numerous data show the role of SNPs in 3'UTR MREs in individual drug susceptibility and drug resistance mechanisms. In this review, we brief the data on such SNPs focusing on the most rigorously proven cases. Some SNPs belong to conventional genes from the drug-metabolizing system (in particular, the genes coding for cytochromes P450 (CYP 450), phase II enzymes (SULT1A1 and UGT1A), and ABCB3 transporter and their expression regulators (PXR and GATA4)). Other examples of SNPs are related to the genes involved in DNA repair, RNA editing, and specific drug metabolisms. We discuss the gene-by-gene studies and genome-wide approaches utilized or potentially utilizable to detect the MRE SNPs associated with individual response to drugs.
Collapse
|
23
|
Zheng A, Wei Y, Zhao Y, Zhang T, Ma X. The role of cancer-associated mesothelial cells in the progression and therapy of ovarian cancer. Front Immunol 2022; 13:1013506. [PMID: 36268019 PMCID: PMC9577001 DOI: 10.3389/fimmu.2022.1013506] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 09/15/2022] [Indexed: 11/13/2022] Open
Abstract
Ovarian cancer is currently one of the most common malignant tumors in females with poor survival rates around the world, killing about 200,000 women each year. Although great progress has been made in treatment, most patients receiving first-line therapy experience tumor recurrence. The tumor microenvironment plays an important role in regulating the progression and prognosis of ovarian cancer. Cancer-associated mesothelial cells are the main cell population in the tumor microenvironment, which affect the progression, prognosis and chemical resistance of ovarian cancer. Cancer-associated mesothelial cells can also interact with other microenvironmental components, such as exosomes, macrophages, and adipocytes. Some studies have developed drugs targeting cancer-associated mesothelial cells in ovarian cancer to evaluate the therapeutic efficiency. In this review we highlighted the key role of cancer-associated mesothelial cells in the progression and prognosis of ovarian cancer. We also described the progress of cancer-associated mesothelial cells targeted therapy for ovarian cancer. Continued insight into the role of cancer-associated mesothelial cells in ovarian cancer will potentially contribute to the development of new and effective therapeutic regiments.
Collapse
Affiliation(s)
- Aiping Zheng
- Division of Biotherapy, Cancer Center, West China Hospital, Cancer Center, Sichuan University, Chengdu, China
- Head & Neck Oncology Ward, Cancer Center, West China Hospital, Cancer Center, Sichuan University, Chengdu, China
| | - Yuhao Wei
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yunuo Zhao
- Division of Biotherapy, Cancer Center, West China Hospital, Cancer Center, Sichuan University, Chengdu, China
| | - Tao Zhang
- Division of Biotherapy, Cancer Center, West China Hospital, Cancer Center, Sichuan University, Chengdu, China
| | - Xuelei Ma
- Division of Biotherapy, Cancer Center, West China Hospital, Cancer Center, Sichuan University, Chengdu, China
- *Correspondence: Xuelei Ma,
| |
Collapse
|
24
|
Riecks J, Parnigoni A, Győrffy B, Kiesel L, Passi A, Vigetti D, Götte M. The hyaluronan-related genes HAS2, HYAL1-4, PH20 and HYALP1 are associated with prognosis, cell viability and spheroid formation capacity in ovarian cancer. J Cancer Res Clin Oncol 2022; 148:3399-3419. [PMID: 35767191 PMCID: PMC9587083 DOI: 10.1007/s00432-022-04127-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 06/08/2022] [Indexed: 11/25/2022]
Abstract
Purpose Hyaluronan modulates tumour progression, including cell adhesion, cohesion, proliferation and invasion, and the cancer stem cell phenotype. In ovarian cancer, high levels of stromal hyaluronan are associated with poor prognosis. In this work, hyaluronan synthases (HAS1-3) and hyaluronidases (HYAL1-4, PH-20, HYALP1) were examined with regard to different levels of gene expression and its influence on ovarian cancer patients’ survival. The impact of a siRNA depletion of HAS2 was investigated in vitro. Methods Using the Kaplan–Meier Plotter tool, we investigated the influence of hyaluronic synthases and hyaluronidases on the survival of a collective of 1435 ovarian cancer patients. Differences in gene expression between normal (n = 46) and cancerous (n = 744) ovarian tissue were examined using the TNMplot database. Following an evaluation of hyaluronan-related gene expression in the ATCC ovarian cancer panel, we studied SKOV3 and SW 626 ovarian cancer cells subjected to HAS2 siRNA or control siRNA treatment in terms of HAS1-3, HYAL2 and HYAL3 mRNA expression. We investigated the ability to form spheroids using the Hanging Drop method and the response to chemotherapy at different concentrations using the MTT Assay. By STRING analysis, interactions within the enzymes of the hyaluronic acid system and with binding partners were visualized. Results HAS1, HYAL1 and HYAL4 mRNA expression is significantly upregulated, whereas HAS2, HYAL2 and HYAL3 mRNA expression is significantly downregulated in ovarian cancer tissue compared to controls. HAS2 improves cell viability, the capability to form tumour spheroids and has a negative prognostic value regarding overall survival. Lower HAS2 expression and high expression of HYAL2 and HYAL3 favours the survival of ovarian cancer patients. HAS2 knockdown cells and control cells showed a moderate response to combinatorial in vitro chemotherapy with taxol and cisplatin. Conclusion In conclusion, our study shows that the hyaluronic acid system has a relevant influence on the survival of ovarian cancer patients and could therefore be considered as a possible prognostic factor.
Collapse
Affiliation(s)
- Jette Riecks
- Department of Gynecology and Obstetrics, Münster University Hospital, Albert-Schweitzer-Campus 1, 11, 48149, Münster, Germany
| | - Arianna Parnigoni
- Department of Gynecology and Obstetrics, Münster University Hospital, Albert-Schweitzer-Campus 1, 11, 48149, Münster, Germany
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Balázs Győrffy
- Department of Bioinformatics, Semmelweis University, Budapest, Hungary
- 2nd Department of Pediatrics, Semmelweis University, Budapest, Hungary
- TTK Momentum Cancer Biomarker Research Group, Budapest, Hungary
| | - Ludwig Kiesel
- Department of Gynecology and Obstetrics, Münster University Hospital, Albert-Schweitzer-Campus 1, 11, 48149, Münster, Germany
| | - Alberto Passi
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Davide Vigetti
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, Albert-Schweitzer-Campus 1, 11, 48149, Münster, Germany.
| |
Collapse
|
25
|
Wang W, Lokman NA, Noye TM, Macpherson AM, Oehler MK, Ricciardelli C. ABCA1 is associated with the development of acquired chemotherapy resistance and predicts poor ovarian cancer outcome. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2022; 4:485-502. [PMID: 35582032 PMCID: PMC9019266 DOI: 10.20517/cdr.2020.107] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/26/2021] [Accepted: 02/04/2021] [Indexed: 12/17/2022]
Abstract
Aim: This study investigated the ATP binding cassette (ABC) transporter (ABCA1, ABCB1, ABCB3, ABCC2 and ABCG2) expression in high grade serous ovarian cancer (HGSOC) tissues, cell lines and primary cells to determine their potential relationship with acquired chemotherapy resistance and patient outcome. Methods: ABC transporter mRNA and protein expression (ABCA1, ABCB1, ABCB3, ABCC2 and ABCG2) was assessed in publicly available datasets and in a tissue microarray (TMA) cohort of HGSOC at diagnosis, respectively. ABC transporter mRNA expression was also assessed in chemosensitive ovarian cancer cell lines (OVCAR-5 and CaOV3) versus matching cell lines with acquired carboplatin resistance and in primary HGSOC cells from patients with chemosensitive disease at diagnosis (n = 10) as well as patients with acquired chemotherapy resistance at relapse (n = 6). The effects of the ABCA1 inhibitor apabetalone in carboplatin-sensitive and -resistant cell lines were also investigated. Results: High ABCA1 mRNA and protein expression was found to be significantly associated with poor patient outcome. ABCA1 mRNA and protein levels were significantly increased in ovarian cancer cell lines (OVCAR-5 CBPR and CaOV3 CBPR) with acquired carboplatin resistance. ABCA1 mRNA was significantly increased in primary HGSOC cells obtained from patients with acquired chemotherapy resistance. Apabetalone treatment reduced ABCA1 protein expression and increased the sensitivity of both parental and carboplatin-resistant ovarian cancer cells to carboplatin. Conclusion: These results suggest that inhibiting ABCA1 transporter may be useful in overcoming acquired chemotherapy resistance and improving outcome for patients with HGSOC.
Collapse
Affiliation(s)
- Wanqi Wang
- Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide, SA 5000, Australia
| | - Noor A Lokman
- Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide, SA 5000, Australia
| | - Tannith M Noye
- Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide, SA 5000, Australia
| | - Anne M Macpherson
- Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide, SA 5000, Australia
| | - Martin K Oehler
- Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide, SA 5000, Australia.,Department of Gynaecological Oncology, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
| | - Carmela Ricciardelli
- Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide, SA 5000, Australia
| |
Collapse
|
26
|
Abstract
Glycosaminoglycans (GAGs) are an important component of the tumor microenvironment (TME). GAGs can interact with a variety of binding partners and thereby influence cancer progression on multiple levels. GAGs can modulate growth factor and chemokine signaling, invasion and metastasis formation. Moreover, GAGs are able to change the physical property of the extracellular matrix (ECM). Abnormalities in GAG abundance and structure (e.g., sulfation patterns and molecular weight) are found across various cancer types and show biomarker potential. Targeting GAGs, as well as the usage of GAGs and their mimetics, are promising approaches to interfere with cancer progression. In addition, GAGs can be used as drug and cytokine carriers to induce an anti-tumor response. In this review, we summarize the role of GAGs in cancer and the potential use of GAGs and GAG derivatives to target cancer.
Collapse
Affiliation(s)
- Ronja Wieboldt
- Laboratories for Cancer Immunotherapy and Immunology, Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland
| | - Heinz Läubli
- Laboratories for Cancer Immunotherapy and Immunology, Department of Biomedicine, University Hospital and University of Basel, Switzerland; Division of Oncology, Department of Theragnostics, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
27
|
Ghoneum A, Almousa S, Warren B, Abdulfattah AY, Shu J, Abouelfadl H, Gonzalez D, Livingston C, Said N. Exploring the clinical value of tumor microenvironment in platinum-resistant ovarian cancer. Semin Cancer Biol 2021; 77:83-98. [PMID: 33476723 PMCID: PMC8286277 DOI: 10.1016/j.semcancer.2020.12.024] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 12/20/2020] [Accepted: 12/30/2020] [Indexed: 12/13/2022]
Abstract
Platinum resistance in epithelial ovarian cancer (OvCa) is rising at an alarming rate, with recurrence of chemo-resistant high grade serous OvCa (HGSC) in roughly 75 % of all patients. Additionally, HGSC has an abysmal five-year survival rate, standing at 39 % and 17 % for FIGO stages III and IV, respectively. Herein we review the crucial cellular interactions between HGSC cells and the cellular and non-cellular components of the unique peritoneal tumor microenvironment (TME). We highlight the role of the extracellular matrix (ECM), ascitic fluid as well as the mesothelial cells, tumor associated macrophages, neutrophils, adipocytes and fibroblasts in platinum-resistance. Moreover, we underscore the importance of other immune-cell players in conferring resistance, including natural killer cells, myeloid-derived suppressive cells (MDSCs) and T-regulatory cells. We show the clinical relevance of the key platinum-resistant markers and their correlation with the major pathways perturbed in OvCa. In parallel, we discuss the effect of immunotherapies in re-sensitizing platinum-resistant patients to platinum-based drugs. Through detailed analysis of platinum-resistance in HGSC, we hope to advance the development of more effective therapy options for this aggressive disease.
Collapse
Affiliation(s)
- Alia Ghoneum
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC, 27157, USA
| | - Sameh Almousa
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC, 27157, USA
| | - Bailey Warren
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC, 27157, USA
| | - Ammar Yasser Abdulfattah
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC, 27157, USA; Alexandria University School of Medicine, Alexandria, Egypt
| | - Junjun Shu
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC, 27157, USA; The Third Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Hebatullah Abouelfadl
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC, 27157, USA; Department of Genetics, Animal Health Research Institute, Dokki, Egypt
| | - Daniela Gonzalez
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC, 27157, USA
| | - Christopher Livingston
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC, 27157, USA
| | - Neveen Said
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC, 27157, USA; Departments of Urology, Wake Forest University School of Medicine, Winston Salem, NC, 27157, USA; Comprehensive Cancer Center, Winston Salem, NC, 27157, USA.
| |
Collapse
|
28
|
NK Cell-Mediated Eradication of Ovarian Cancer Cells with a Novel Chimeric Antigen Receptor Directed against CD44. Biomedicines 2021; 9:biomedicines9101339. [PMID: 34680456 PMCID: PMC8533227 DOI: 10.3390/biomedicines9101339] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 09/17/2021] [Accepted: 09/21/2021] [Indexed: 12/09/2022] Open
Abstract
Ovarian cancer is the most common cause of gynecological cancer-related death in the developed world. Disease recurrence and chemoresistance are major causes of poor survival rates in ovarian cancer patients. Ovarian cancer stem cells (CSCs) were shown to represent a source of tumor recurrence owing to the high resistance to chemotherapy and enhanced tumorigenicity. Chimeric antigen receptor (CAR)-based adoptive immunotherapy represents a promising strategy to reduce the risk for recurrent disease. In this study, we developed a codon-optimized third-generation CAR to specifically target CD44, a marker widely expressed on ovarian cancer cells and associated with CSC-like properties and intraperitoneal tumor spread. We equipped NK-92 cells with the anti-CD44 CAR (CD44NK) and an anti-CD19 control CAR (CD19NK) using lentiviral SIN vectors. Compared to CD19NK and untransduced NK-92 cells, CD44NK showed potent and specific cytotoxic activity against CD44-positive ovarian cancer cell lines (SKOV3 and OVCAR3) and primary ovarian cancer cells harvested from ascites. In contrast, CD44NK had less cytotoxic activity against CD44-negative A2780 cells. Specific activation of engineered NK cells was also demonstrated by interferon-γ (IFNγ) secretion assays. Furthermore, CD44NK cells still demonstrated cytotoxic activity under cisplatin treatment. Most importantly, the simultaneous treatment with CD44NK and cisplatin showed higher anti-tumor activity than sequential treatment.
Collapse
|
29
|
Zhao C, Zhang Z, Hu X, Zhang L, Liu Y, Wang Y, Guo Y, Zhang T, Li W, Li B. Hyaluronic Acid Correlates With Bone Metastasis and Predicts Poor Prognosis in Small-Cell Lung Cancer Patients. Front Endocrinol (Lausanne) 2021; 12:785192. [PMID: 35154001 PMCID: PMC8826575 DOI: 10.3389/fendo.2021.785192] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/24/2021] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Hyaluronan (HA) is one of the essential elements of the extracellular matrix (ECM), involved in the onset of metastasis in various tumors. The interaction and binding of the ligand-receptor HA/cluster of differentiation-44 (CD44) regulate the physical and biochemical properties of the ECM, which correlates with an increased propensity toward metastasis and poor survival outcome. Our study aimed to explore HA for predicting metastasis and survival rate in patients with small-cell lung cancer (SCLC). MATERIALS AND METHODS This prospective cohort study recruited 72 patients with SCLC. Plasma HA and CD44 levels were assayed by enzyme-linked immunosorbent assay (ELISA) for 72 cases before initial systematic treatment (baseline samples), and plasma HA was detected via after-2-cycle-chemotherapy (A-2-C-CT) in 48 samples. Logistic regression analysis and the Cox proportional risk model were used to determine the independent predictors of distant metastasis and survival rate of patients. RESULTS Baseline plasma HA was notably associated with bone metastasis (BM) [OR (95% CI = 1.015 (1.006-1.024), p = 0.001]. Multivariate logistic regression analysis showed that baseline plasma HA was chosen as an independent predictor of BM. Either baseline HA or CD44 or both were associated with BM. Dynamic alteration of HA was notably associated with A-2-C-CT clinical efficacy. Multivariate Cox regression analysis in forward likelihood ratio showed that A-2-C-CT HA was an independent predictor of progression-free survival (PFS) and overall survival (OS). CONCLUSIONS HA appears to be used as an independent predictive factor for BM, and the dynamic detection of HA can predict prognosis in SCLC patients. The mechanism of the HA/CD44 axis in BM of SCLC deserves further exploration.
Collapse
Affiliation(s)
- Cong Zhao
- Department of Cellular and Molecular Biology, Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Beijing, China
- General Department, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Zhiyun Zhang
- Department of Cellular and Molecular Biology, Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Beijing, China
- General Department, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Xingsheng Hu
- Department of Medical Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lina Zhang
- Department of Cellular and Molecular Biology, Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Beijing, China
| | - Yanxia Liu
- Department of Cellular and Molecular Biology, Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Beijing, China
- General Department, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Ying Wang
- General Department, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Yi Guo
- Department of Cellular and Molecular Biology, Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Beijing, China
- General Department, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Tongmei Zhang
- General Department, Beijing Chest Hospital, Capital Medical University, Beijing, China
- *Correspondence: Weiying Li, ; Tongmei Zhang, ; Baolan Li,
| | - Weiying Li
- Department of Cellular and Molecular Biology, Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Beijing, China
- *Correspondence: Weiying Li, ; Tongmei Zhang, ; Baolan Li,
| | - Baolan Li
- General Department, Beijing Chest Hospital, Capital Medical University, Beijing, China
- *Correspondence: Weiying Li, ; Tongmei Zhang, ; Baolan Li,
| |
Collapse
|
30
|
Zare N, Kefayat A, Javanmard SH. Evaluation of Radiation and Ammonium Lactate Effects on Hyaluronic Acid Expression as a Pro-cancerous Factor in Supernatant and Exosome Isolated from Supernatant of Primary Mouse Fibroblast Cell Culture. Int J Prev Med 2020; 11:125. [PMID: 33088453 PMCID: PMC7554551 DOI: 10.4103/ijpvm.ijpvm_135_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 03/22/2020] [Indexed: 11/04/2022] Open
Abstract
Background: Previous studies show that aberrant synthesis of Hyaluronan accelerates tumor growth, angiogenesis, and metastasis. The fibroblasts are probably responsible for most of the hyaluronic acid (HA) accumulation in tumor microenvironment after radiotherapy. Our goal is to investigate and compare radiation and lactate effects on HA levels in supernatant and exosome isolated from supernatant of primary mouse fibroblast cell culture. Methods: Fibroblast cells were prepared from skin of C57BL6 mouse. These cells were divided into three groups (no treatment, cells treated with 10 mM ammonium lactate, and irradiated cells). Then supernatant was harvested from FBS-free culture media after 48 h. Exosomes were purified by differential centrifugation (300 × g for 10 min, 2000 × g for 30 min, 16500 g for 30 min) and were pelleted by ultracentrifugation (150,000 × g for 180 min). Size of exosomes was determined using a Zetasizer. HA concentration measured using a HA ELISA Kit. Data were analyzed using one-way ANOVA. Results: There was a significant increase in HA-coated exosomes isolated from supernatants of irradiated cells compared to untreated cell and cells treated with 10 mM ammonium lactate (P < 0.001). As well, there was a significant increase in the HA concentration in the supernatants of cells treated with 10 mM ammonium lactate relative to untreated cells and irradiated cells (P < 0.05). Conclusions: It seems that routine radiation therapy leads to massive shedding of HA-coated exosomes by normal fibroblast cells and thus exosomes-HA may contribute to tumor promotion and induce of the premetastatic niche.
Collapse
Affiliation(s)
- Nasrin Zare
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Amirhosein Kefayat
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran.,School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shaghayegh Haghjooy Javanmard
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran.,Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
31
|
Lorusso G, Rüegg C, Kuonen F. Targeting the Extra-Cellular Matrix-Tumor Cell Crosstalk for Anti-Cancer Therapy: Emerging Alternatives to Integrin Inhibitors. Front Oncol 2020; 10:1231. [PMID: 32793493 PMCID: PMC7387567 DOI: 10.3389/fonc.2020.01231] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 06/16/2020] [Indexed: 12/11/2022] Open
Abstract
The extracellular matrix (ECM) is a complex network composed of a multitude of different macromolecules. ECM components typically provide a supportive structure to the tissue and engender positional information and crosstalk with neighboring cells in a dynamic reciprocal manner, thereby regulating tissue development and homeostasis. During tumor progression, tumor cells commonly modify and hijack the surrounding ECM to sustain anchorage-dependent growth and survival, guide migration, store pro-tumorigenic cell-derived molecules and present them to enhance receptor activation. Thereby, ECM potentially supports tumor progression at various steps from initiation, to local growth, invasion, and systemic dissemination and ECM-tumor cells interactions have long been considered promising targets for cancer therapy. Integrins represent key surface receptors for the tumor cell to sense and interact with the ECM. Yet, attempts to therapeutically impinge on these interactions using integrin inhibitors have failed to deliver anticipated results, and integrin inhibitors are still missing in the emerging arsenal of drugs for targeted therapies. This paradox situation should urge the field to reconsider the role of integrins in cancer and their targeting, but also to envisage alternative strategies. Here, we review the therapeutic targets implicated in tumor cell adhesion to the ECM, whose inhibitors are currently in clinical trials and may offer alternatives to integrin inhibition.
Collapse
Affiliation(s)
- Girieca Lorusso
- Experimental and Translational Oncology, Department of Oncology Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Curzio Rüegg
- Experimental and Translational Oncology, Department of Oncology Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - François Kuonen
- Department of Dermatology and Venereology, Hôpital de Beaumont, Lausanne University Hospital Center, Lausanne, Switzerland
| |
Collapse
|
32
|
Sarwar M, Sykes PH, Chitcholtan K, Evans JJ. Extracellular biophysical environment: Guilty of being a modulator of drug sensitivity in ovarian cancer cells. Biochem Biophys Res Commun 2020; 527:180-186. [PMID: 32446364 DOI: 10.1016/j.bbrc.2020.04.107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 04/21/2020] [Indexed: 01/10/2023]
Abstract
The roles of the extracellular biophysical environment in cancer are barely studied. This study considers the possibility that cell-like topography of a cancer cell environment may influence chemo-responses. Here, a novel bioimprinting technique was employed to produce cell-like topography on the polystyrene substrates used for cell culture. In this work, we have shown that extracellular biophysical cues generated from the topography alter the chemosensitivity of ovarian cancer cells. The three-dimensionality of the bioimprinted surface altered the cell-surface interaction, which consequently modulated intracellular signalling and chemoresponses. Sensitivity to platinum was altered more than that to paclitaxel. The effect was largely mediated through the integrin/focal adhesion system and the Rho/ROCK pathway. Moreover, the results provided evidence that biophysical cues also modulate MAPK signalling associated with chemo-resistance in ovarian cancer. Therefore, the novel findings from of this study revealed for the first time that the effects of the biophysical environment, such as substrate topography, influences ovarian cancer cell responses to clinical drugs. These observations suggest that a full clinical understanding of ovarian cancer will include biophysical aspects of tumour microenvironment.
Collapse
Affiliation(s)
- Makhdoom Sarwar
- Department of Obstetrics and Gynaecology, University of Otago, Christchurch, 2 Riccarton Avenue, Christchurch, 8011, New Zealand.
| | - Peter H Sykes
- Department of Obstetrics and Gynaecology, University of Otago, Christchurch, 2 Riccarton Avenue, Christchurch, 8011, New Zealand
| | - Kenny Chitcholtan
- Department of Obstetrics and Gynaecology, University of Otago, Christchurch, 2 Riccarton Avenue, Christchurch, 8011, New Zealand
| | - John J Evans
- Department of Obstetrics and Gynaecology, University of Otago, Christchurch, 2 Riccarton Avenue, Christchurch, 8011, New Zealand; MacDiarmid Institute of Advanced Materials and Nanotechnology, Christchurch, New Zealand
| |
Collapse
|
33
|
ISG15 suppresses translation of ABCC2 via ISGylation of hnRNPA2B1 and enhances drug sensitivity in cisplatin resistant ovarian cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118647. [PMID: 31926942 DOI: 10.1016/j.bbamcr.2020.118647] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 12/30/2019] [Accepted: 01/07/2020] [Indexed: 12/11/2022]
Abstract
Cisplatin-based chemotherapies have long been considered as a standard chemotherapy in ovarian cancer. However, cisplatin resistance restricts beneficial therapy for patients with ovarian cancer. The ubiquitin-like protein interferon-stimulated gene 15 (ISG15) encodes a 15-kDa protein, that is implicated in the post-translational modification of diverse proteins. In this work, we found that ISG15 was downregulated in cisplatin resistant tissues and cell lines of ovarian cancer. Functional studies demonstrated that overexpression of wild type (WT) ISG15, but not nonISGylatable (Mut) ISG15 increased cell responses to cisplatin in resistant ovarian cancer cells. Furthermore, we found that WT ISG15 decreased ABCC2 expression at the protein level. Importantly, overexpression of ABCC2 blocked sensitizing effect of ISG15 on cisplatin. In addition, we identified that hnRNPA2B1 was recruited to 5'UTR of ABCC2 mRNA and promoted its translation, which was blocked by ISG15. We further demonstrated that hnRNPA2B1 could be ISGylated, and ISGylation blocked its recruitment to ABCC2 mRNA, thereby suppressed translation of ABCC2. Altogether, our data support targeting ISG15 might be a potential therapeutic strategy for patients with cisplatin-resistant ovarian cancer.
Collapse
|
34
|
Abstract
The extracellular matrix is part of the microenvironment and its functions are associated with the physical and chemical properties of the tissue. Among the extracellular components, the glycosaminoglycan hyaluronan is a key component, defining both the physical and biochemical characteristics of the healthy matrices. The hyaluronan metabolism is strictly regulated in physiological conditions, but in the tumoral tissues, its expression, size and binding proteins interaction are dysregulated. Hyaluronan from the tumor microenvironment promotes tumor cell proliferation, invasion, immune evasion, stemness alterations as well as drug resistance. This chapter describes data regarding novel concepts of hyaluronan functions in the tumor. Additionally, we discuss potential clinical applications of targeting HA metabolism in cancer therapy.
Collapse
|
35
|
Lokman NA, Price ZK, Hawkins EK, Macpherson AM, Oehler MK, Ricciardelli C. 4-Methylumbelliferone Inhibits Cancer Stem Cell Activation and Overcomes Chemoresistance in Ovarian Cancer. Cancers (Basel) 2019; 11:cancers11081187. [PMID: 31443261 PMCID: PMC6721459 DOI: 10.3390/cancers11081187] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/07/2019] [Accepted: 08/11/2019] [Indexed: 01/01/2023] Open
Abstract
We have recently shown that the extracellular matrix molecule hyaluronan (HA) plays a role in the development of ovarian cancer chemoresistance. This present study determined if HA production is increased in chemotherapy-resistant ovarian cancers and if the HA inhibitor 4-methylubelliferone (4-MU) can overcome chemoresistance to the chemotherapeutic drug carboplatin (CBP) and inhibit spheroid formation and the expression of cancer stem cell (CSC) markers. We additionally assessed whether 4-MU could inhibit in vivo invasion of chemoresistant primary ovarian cancer cells in the chicken embryo chorioallantoic membrane (CAM) assay. The expression of the HA synthases HAS2 and HAS3 was significantly increased in chemoresistant compared to chemosensitive primary ovarian cancer cells isolated from patient ascites. 4-MU significantly inhibited HA production, cell survival, and spheroid formation of chemoresistant serous ovarian cancer cells. In combination with CBP, 4-MU treatment significantly decreased ovarian cancer cell survival and increased apoptosis of chemoresistant primary cells compared to CBP alone. 4-MU significantly reduced spheroid formation, expression of CSC markers ALDH1A1 and ABCG2 in primary cell spheroid cultures, and ALDH1 immunostaining in patient-derived tissue explant assays following treatment with CBP. Furthermore, 4-MU was very effective at inhibiting in vivo invasion of chemoresistant primary cells in CAM assays. Inhibition of HA is therefore a promising new strategy to overcome chemoresistance and to improve ovarian cancer survival.
Collapse
Affiliation(s)
- Noor A Lokman
- Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide, SA 5000, Australia
| | - Zoe K Price
- Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide, SA 5000, Australia
| | - Emily K Hawkins
- Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide, SA 5000, Australia
| | - Anne M Macpherson
- Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide, SA 5000, Australia
| | - Martin K Oehler
- Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide, SA 5000, Australia
- Department of Gynaecological Oncology, Royal Adelaide Hospital, Adelaide, SA 5005, Australia
| | - Carmela Ricciardelli
- Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide, SA 5000, Australia.
| |
Collapse
|
36
|
Arnold JM, Gu F, Ambati CR, Rasaily U, Ramirez-Pena E, Joseph R, Manikkam M, San Martin R, Charles C, Pan Y, Chatterjee SS, Den Hollander P, Zhang W, Nagi C, Sikora AG, Rowley D, Putluri N, Zhang XHF, Karanam B, Mani SA, Sreekumar A. UDP-glucose 6-dehydrogenase regulates hyaluronic acid production and promotes breast cancer progression. Oncogene 2019; 39:3089-3101. [PMID: 31308490 PMCID: PMC6960374 DOI: 10.1038/s41388-019-0885-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 04/25/2019] [Accepted: 07/03/2019] [Indexed: 11/09/2022]
Abstract
An improved understanding of the biochemical alterations that accompany tumor progression and metastasis is necessary to inform the next generation of diagnostic tools and targeted therapies. Metabolic reprogramming is known to occur during the epithelial-mesenchymal transition (EMT), a process that promotes metastasis. Here, we identify metabolic enzymes involved in extracellular matrix remodeling that are upregulated during EMT and are highly expressed in patients with aggressive mesenchymal-like breast cancer. Activation of EMT significantly increases production of hyaluronic acid, which is enabled by the reprogramming of glucose metabolism. Using genetic and pharmacological approaches, we show that depletion of the hyaluronic acid precursor UDP-glucuronic acid is sufficient to inhibit several mesenchymal-like properties including cellular invasion and colony formation in vitro, as well as tumor growth and metastasis in vivo. We found that depletion of UDP-glucuronic acid altered the expression of PPAR-gamma target genes and increased PPAR-gamma DNA-binding activity. Taken together, our findings indicate that the disruption of EMT-induced metabolic reprogramming affects hyaluronic acid production, as well as associated extracellular matrix remodeling and represents pharmacologically actionable target for the inhibition of aggressive mesenchymal-like breast cancer progression.
Collapse
Affiliation(s)
- James M Arnold
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.,Alkek Center for Molecular Discovery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Franklin Gu
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.,Alkek Center for Molecular Discovery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Chandrashekar R Ambati
- Alkek Center for Molecular Discovery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Uttam Rasaily
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.,Alkek Center for Molecular Discovery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Esmeralda Ramirez-Pena
- Department of Translational Molecular Pathology, MD Anderson Cancer Center, Houston, TX, 77030, USA.,Division of Cancer Prevention, National Cancer Institute, Rockville, MD, 20850, USA
| | - Robiya Joseph
- Department of Translational Molecular Pathology, MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Mohan Manikkam
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Rebeca San Martin
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Christy Charles
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.,Alkek Center for Molecular Discovery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Yinghong Pan
- Seq-N-Edit Core, Department of Biology and Biochemistry, University of Houston, Houston, TX, 77004, USA.,UPMC Genome Center, Pittsburgh, PA, 15232, USA
| | - Sujash S Chatterjee
- Seq-N-Edit Core, Department of Biology and Biochemistry, University of Houston, Houston, TX, 77004, USA
| | - Petra Den Hollander
- Department of Translational Molecular Pathology, MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Weijie Zhang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.,Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.,Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Chandandeep Nagi
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Andrew G Sikora
- Department of Otolaryngology-Head and Neck Surgery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - David Rowley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Nagireddy Putluri
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.,Alkek Center for Molecular Discovery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Xiang H-F Zhang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.,Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | | | - Sendurai A Mani
- Department of Translational Molecular Pathology, MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Arun Sreekumar
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA. .,Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA. .,Alkek Center for Molecular Discovery, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
37
|
Vitale D, Kumar Katakam S, Greve B, Jang B, Oh ES, Alaniz L, Götte M. Proteoglycans and glycosaminoglycans as regulators of cancer stem cell function and therapeutic resistance. FEBS J 2019; 286:2870-2882. [PMID: 31230410 DOI: 10.1111/febs.14967] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/29/2019] [Accepted: 06/19/2019] [Indexed: 12/22/2022]
Abstract
In contrast to the bulk of the tumor, a subset of cancer cells called cancer stem cells (CSC; or tumor-initiating cells) is characterized by self-renewal, unlimited proliferative potential, expression of multidrug resistance proteins, active DNA repair capacity, apoptosis resistance, and a considerable developmental plasticity. Due to these properties, CSCs display increased resistance to chemo- and radiotherapy. Recent findings indicate that aberrant functions of proteoglycans (PGs) and glycosaminoglycans (GAGs) contribute substantially to the CSC phenotype and therapeutic resistance. In this review, we summarize how the diverse functions of the glycoproteins and carbohydrates facilitate acquisition and maintenance of the CSC phenotype, and how this knowledge can be exploited to develop novel anticancer therapies. For example, the large transmembrane chondroitin sulfate PG NG2/CSPG4 marks stem cell (SC) populations in brain tumors. Cell surface heparan sulfate PGs of the syndecan and glypican families modulate the stemness-associated Wnt, hedgehog, and notch signaling pathways, whereas the interplay of hyaluronan in the SC niche with CSC CD44 determines the maintenance of stemness and promotes therapeutic resistance. A better understanding of the molecular mechanisms by which PGs and GAGs regulate CSC function will aid the development of targeted therapeutic approaches which could avoid relapse after an otherwise successful conventional therapy. Chimeric antigen receptor T cells, PG-primed dendritic cells, PG-targeted antibody-drug conjugates, and inhibitory peptides and glycans have already shown highly promising results in preclinical models.
Collapse
Affiliation(s)
- Daiana Vitale
- Centro de Investigaciones Básicas y Aplicadas (CIBA), CIT NOBA, Universidad Nacional del Noroeste de la Pcia. de Bs. As. Consejo Nacional de Investigaciones Científicas y Técnicas (UNNOBA-CONICET), Junín, Argentina
| | | | - Burkhard Greve
- Department of Radiotherapy - Radiooncology, Münster University Hospital, Germany
| | - Bohee Jang
- Department of Life Sciences, The Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, Korea
| | - Eok-Soo Oh
- Department of Life Sciences, The Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, Korea
| | - Laura Alaniz
- Centro de Investigaciones Básicas y Aplicadas (CIBA), CIT NOBA, Universidad Nacional del Noroeste de la Pcia. de Bs. As. Consejo Nacional de Investigaciones Científicas y Técnicas (UNNOBA-CONICET), Junín, Argentina
| | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, Germany
| |
Collapse
|
38
|
Bourguignon LYW. Matrix Hyaluronan-CD44 Interaction Activates MicroRNA and LncRNA Signaling Associated With Chemoresistance, Invasion, and Tumor Progression. Front Oncol 2019; 9:492. [PMID: 31293964 PMCID: PMC6598393 DOI: 10.3389/fonc.2019.00492] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 05/24/2019] [Indexed: 12/11/2022] Open
Abstract
Tumor malignancies involve cancer cell growth, issue invasion, metastasis and often drug resistance. A great deal of effort has been placed on searching for unique molecule(s) overexpressed in cancer cells that correlate(s) with tumor cell-specific behaviors. Hyaluronan (HA), one of the major ECM (extracellular matrix) components have been identified as a physiological ligand for surface CD44 isoforms which are frequently overexpressed in malignant tumor cells during cancer progression. The binding interaction between HA and CD44 isoforms often stimulates aberrant cellular signaling processes and appears to be responsible for the induction of multiple oncogenic events required for cancer-specific phenotypes and behaviors. In recent years, both microRNAs (miRNAs) (with ~20–25 nucleotides) and long non-coding RNAs (lncRNAs) (with ~200 nucleotides) have been found to be abnormally expressed in cancer cells and actively participate in numerous oncogenic signaling events needed for tumor cell-specific functions. In this review, I plan to place a special emphasis on HA/CD44-induced signaling pathways and the presence of several novel miRNAs (e.g., miR-10b/miR-302/miR-21) and lncRNAs (e.g., UCA1) together with their target functions (e.g., tumor cell migration, invasion, and chemoresistance) during cancer development and progression. I believe that important information can be obtained from these studies on HA/CD44-activated miRNAs and lncRNA that may be very valuable for the future development of innovative therapeutic drugs for the treatment of matrix HA/CD44-mediated cancers.
Collapse
Affiliation(s)
- Lilly Y W Bourguignon
- Endocrine Unit (111N2), Department of Medicine, San Francisco Veterans Affairs Medical Center, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
39
|
Tammi MI, Oikari S, Pasonen-Seppänen S, Rilla K, Auvinen P, Tammi RH. Activated hyaluronan metabolism in the tumor matrix — Causes and consequences. Matrix Biol 2019; 78-79:147-164. [PMID: 29709595 DOI: 10.1016/j.matbio.2018.04.012] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 03/13/2018] [Accepted: 04/25/2018] [Indexed: 02/08/2023]
|
40
|
Brown Y, Hua S, Tanwar PS. Extracellular matrix-mediated regulation of cancer stem cells and chemoresistance. Int J Biochem Cell Biol 2019; 109:90-104. [DOI: 10.1016/j.biocel.2019.02.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 02/03/2019] [Accepted: 02/05/2019] [Indexed: 12/12/2022]
|
41
|
Lokman NA, Ho R, Gunasegaran K, Bonner WM, Oehler MK, Ricciardelli C. Anti-tumour effects of all-trans retinoid acid on serous ovarian cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:10. [PMID: 30621740 PMCID: PMC6325857 DOI: 10.1186/s13046-018-1017-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 12/19/2018] [Indexed: 12/16/2022]
Abstract
Background Annexin A2 is increased in serous ovarian cancer and plays an essential role in ovarian cancer invasion and metastasis. In combination with S100A10, annexin A2 plays an important role in the plasminogen activator system regulating plasmin production. The aim of this study was to investigate the potential utility of all-trans retinoid acid (ATRA), an inhibitor of the annexin A2-S100A10 signalling pathway, as a new therapeutic against serous ovarian cancer. Methods In this study we determined the effects of ATRA treatment (1-5 μM) on annexin A2 and S100A10 expression, plasmin activation, and the ability of ATRA to inhibit serous ovarian cancer cell survival, motility and invasion in vitro. We also employed an ex vivo tissue explant assay to assess response to ATRA treatment in serous ovarian cancers. Cryopreserved serous ovarian cancer tissues were cultured on gelatin sponges for 72 h with ATRA (1 μM). Effects on apoptosis and proliferation were assessed by immunohistochemistry using antibodies to cleaved caspase 3 or Ki67, respectively. Results Survival of serous ovarian cancer cells (OVCAR-3, OV-90, & OAW28) was significantly decreased by ATRA treatment (1-5 μM). ATRA (1 μM) also significantly decreased proliferation (Ki67 positivity, p = 0.0034), S100A10 protein levels (p = 0.0273), and increased cell apoptosis (cleaved caspase-3 positivity, p = 0.0024) in serous ovarian cancer tissues using the ex vivo tissue explant assay. In OAW28 cells, reduced cell survival following ATRA treatment was associated with a reduction of S100A10 mRNA and protein levels, S100A10 and annexin A2 membrane localization, plasmin generation, motility and invasion. In contrast, ATRA inhibited OV-90 cell survival and invasion but did not affect plasmin activation or S100A10 and annexin A2 expression or membrane localization. Conclusions These findings suggest that ATRA inhibits serous ovarian cancer proliferation and invasion via both S100A10 dependant and S100A10 independent mechanisms. Our results show that ATRA has promising potential as a novel therapy against serous ovarian cancer that warrants further evaluation. Electronic supplementary material The online version of this article (10.1186/s13046-018-1017-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Noor A Lokman
- Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide, South Australia, 5000, Australia
| | - Rachel Ho
- Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide, South Australia, 5000, Australia
| | - Kavyadharshini Gunasegaran
- Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide, South Australia, 5000, Australia
| | - Wendy M Bonner
- Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide, South Australia, 5000, Australia
| | - Martin K Oehler
- Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide, South Australia, 5000, Australia.,Department of Gynaecological Oncology, Royal Adelaide Hospital, Adelaide, South Australia, 5005, Australia
| | - Carmela Ricciardelli
- Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide, South Australia, 5000, Australia.
| |
Collapse
|
42
|
Price ZK, Lokman NA, Ricciardelli C. Differing Roles of Hyaluronan Molecular Weight on Cancer Cell Behavior and Chemotherapy Resistance. Cancers (Basel) 2018; 10:E482. [PMID: 30513961 PMCID: PMC6316154 DOI: 10.3390/cancers10120482] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/28/2018] [Accepted: 11/29/2018] [Indexed: 02/07/2023] Open
Abstract
Hyaluronan (HA), a glycosaminoglycan located in the extracellular matrix, is important in embryo development, inflammation, wound healing and cancer. There is an extensive body of research demonstrating the role of HA in all stages of cancer, from initiation to relapse and therapy resistance. HA interacts with multiple cell surface receptors, including CD44, receptor for hyaluronan mediated motility (RHAMM) and intracellular signaling pathways, including receptor tyrosine kinase pathways, to promote the survival and proliferation of cancer cells. Additionally, HA promotes the formation of cancer stem cell (CSC) populations, which are hypothesized to be responsible for the initiation of tumors and therapy resistance. Recent studies have identified that the molecular weight of HA plays differing roles on both normal and cancer cell behavior. This review explores the role of HA in cancer progression and therapy resistance and how its molecular weight is important in regulating CSC populations, epithelial to mesenchymal transition (EMT), ATP binding cassette (ABC) transporter expression and receptor tyrosine kinase pathways.
Collapse
Affiliation(s)
- Zoe K Price
- Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, University of Adelaide, South Australia 5000, Australia.
| | - Noor A Lokman
- Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, University of Adelaide, South Australia 5000, Australia.
| | - Carmela Ricciardelli
- Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, University of Adelaide, South Australia 5000, Australia.
| |
Collapse
|
43
|
Yeldag G, Rice A, Del Río Hernández A. Chemoresistance and the Self-Maintaining Tumor Microenvironment. Cancers (Basel) 2018; 10:E471. [PMID: 30487436 PMCID: PMC6315745 DOI: 10.3390/cancers10120471] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 11/24/2018] [Accepted: 11/27/2018] [Indexed: 12/15/2022] Open
Abstract
The progression of cancer is associated with alterations in the tumor microenvironment, including changes in extracellular matrix (ECM) composition, matrix rigidity, hypervascularization, hypoxia, and paracrine factors. One key malignant phenotype of cancer cells is their ability to resist chemotherapeutics, and elements of the ECM can promote chemoresistance in cancer cells through a variety of signaling pathways, inducing changes in gene expression and protein activity that allow resistance. Furthermore, the ECM is maintained as an environment that facilitates chemoresistance, since its constitution modulates the phenotype of cancer-associated cells, which themselves affect the microenvironment. In this review, we discuss how the properties of the tumor microenvironment promote chemoresistance in cancer cells, and the interplay between these external stimuli. We focus on both the response of cancer cells to the external environment, as well as the maintenance of the external environment, and how a chemoresistant phenotype emerges from the complex signaling network present.
Collapse
Affiliation(s)
- Gulcen Yeldag
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London, UK.
| | - Alistair Rice
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London, UK.
| | - Armando Del Río Hernández
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London, UK.
| |
Collapse
|
44
|
Vitale DL, Spinelli FM, Del Dago D, Icardi A, Demarchi G, Caon I, García M, Bolontrade MF, Passi A, Cristina C, Alaniz L. Co-treatment of tumor cells with hyaluronan plus doxorubicin affects endothelial cell behavior independently of VEGF expression. Oncotarget 2018; 9:36585-36602. [PMID: 30564299 PMCID: PMC6290962 DOI: 10.18632/oncotarget.26379] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 11/07/2018] [Indexed: 12/24/2022] Open
Abstract
Hyaluronan, the main glycosaminoglycan of extracellular matrices, is concentrated in tissues with high cell proliferation and migration rates. In cancer, hyaluronan expression is altered and it becomes fragmented into low-molecular-weight forms, affecting mechanisms associated with cell proliferation, invasion, angiogenesis and multidrug resistance. Here, we analyzed the effect of low-molecular-weight hyaluronan on the response of T lymphoma, osteosarcoma, and mammary adenocarcinoma cell lines to the antineoplastic drug doxorubicin, and whether co-treatment with hyaluronan and doxorubicin modified the behavior of endothelial cells. Our aim was to associate the hyaluronan-doxorubicin response with angiogenic alterations in these tumors. After hyaluronan and doxorubicin co-treatment, hyaluronan altered drug accumulation and modulated the expression of ATP-binding cassette transporters in T-cell lymphoma cells. In contrast, no changes in drug accumulation were observed in cells from solid tumors, indicating that hyaluronan might not affect drug efflux. However, when we evaluated the effect on angiogenic mechanisms, the supernatant from tumor cells treated with doxorubicin exhibited a pro-angiogenic effect on endothelial cells. Hyaluronan-doxorubicin co-treatment increased migration and vessel formation in endothelial cells. This effect was independent of vascular endothelial growth factor but related to fibroblast growth factor-2 expression. Besides, we observed a pro-angiogenic effect on endothelial cells during hyaluronan and doxorubicin co-treatment in the in vivo murine model of T-cell lymphoma. Our results demonstrate for the first time that hyaluronan is a potential modulator of doxorubicin response by mechanisms that involve not only drug efflux but also angiogenic processes, providing an adverse tumor stroma during chemotherapy.
Collapse
Affiliation(s)
- Daiana L Vitale
- Laboratorio de Microambiente Tumoral-Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CIT NOBA, UNNOBA-CONICET), Junín, Buenos Aires, Argentina
| | - Fiorella M Spinelli
- Laboratorio de Microambiente Tumoral-Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CIT NOBA, UNNOBA-CONICET), Junín, Buenos Aires, Argentina
| | - Daiana Del Dago
- Laboratorio de Microambiente Tumoral-Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CIT NOBA, UNNOBA-CONICET), Junín, Buenos Aires, Argentina
| | - Antonella Icardi
- Laboratorio de Microambiente Tumoral-Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CIT NOBA, UNNOBA-CONICET), Junín, Buenos Aires, Argentina
| | - Gianina Demarchi
- Laboratorio de Fisiopatología de la Hipófisis-Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CIT NOBA, UNNOBA-CONICET), Junín, Buenos Aires, Argentina
| | - Ilaria Caon
- Dipartimento di Medicina e Chirurgia, Universitá degli Studio dell'Insubria, Varese, Italia
| | - Mariana García
- Laboratorio de Terapia Génica, IIMT-CONICET, Universidad Austral, Derqui-Pilar, Buenos Aires, Argentina
| | - Marcela F Bolontrade
- Laboratorio de Células Madre-Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Alberto Passi
- Dipartimento di Medicina e Chirurgia, Universitá degli Studio dell'Insubria, Varese, Italia
| | - Carolina Cristina
- Laboratorio de Fisiopatología de la Hipófisis-Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CIT NOBA, UNNOBA-CONICET), Junín, Buenos Aires, Argentina
| | - Laura Alaniz
- Laboratorio de Microambiente Tumoral-Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CIT NOBA, UNNOBA-CONICET), Junín, Buenos Aires, Argentina
| |
Collapse
|
45
|
Epigenetic silencing of miR-200b is associated with cisplatin resistance in bladder cancer. Oncotarget 2018; 9:24457-24469. [PMID: 29849953 PMCID: PMC5966259 DOI: 10.18632/oncotarget.25326] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 04/17/2018] [Indexed: 12/21/2022] Open
Abstract
In this study, we identified microRNAs (miRNAs) involved in cisplatin (CDDP) resistance in bladder cancer (BCa). After establishing CDDP-resistant BCa cell lines (T24RC and EJ138RC), TaqMan arrays revealed that members of the miR-200 family (miR-200b, miR-200a and miR-429) were downregulated in T24RC as compared to parental T24 cells. miR-200b was associated with CDDP sensitivity in BCa cells, and its downregulation was associated with CpG island hypermethylation. Pharmacological demethylation using 5-aza-2’-deoxycytidine restored miR-200b expression, and the combination of 5-aza-2’-deoxycytidine + CDDP strongly inhibited T24RC cell proliferation. Microarray analysis revealed that miR-200b + CDDP induced genes involved in CDDP sensitivity or cytotoxicity, including IGFBP3, ICAM1 and TNFSF10, in the resistant cells. Expression and DNA methylation of miR-200b were inversely associated in primary BCa, and low expression/high methylation was associated with poor overall survival. These results suggest downregulation of miR-200b is associated with CDDP resistance in BCa. Epigenetic silencing of miR-200b may be a marker of CDDP resistance and a useful therapeutic target for overcoming CDDP resistance in BCa.
Collapse
|
46
|
Knox B, Wang Y, Rogers LJ, Xuan J, Yu D, Guan H, Chen J, Shi T, Ning B, Kadlubar SA. A functional SNP in the 3'-UTR of TAP2 gene interacts with microRNA hsa-miR-1270 to suppress the gene expression. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2018; 59:134-143. [PMID: 29205500 PMCID: PMC5811321 DOI: 10.1002/em.22159] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 09/26/2017] [Accepted: 10/27/2017] [Indexed: 05/24/2023]
Abstract
The transporter associated with antigen processing 2 (TAP2) is involved in the development of multidrug resistance and the etiology of immunological diseases. In this study, we investigated whether the expression of TAP2 can be perturbed by single nucleotide polymorphisms (SNPs) located in 3'-untranslated region (3'-UTR) of the gene via interactions with microRNAs. Using a series of in silico assays, we selected the candidate microRNAs (miRNAs) with the potential to interact with functional SNPs of TAP2. The SNP rs241456-located in the 3'-UTR of TAP2-resides in a potential binding site for hsa-miR-1270 and hsa-miR-620. HEK 293 cells, from a human kidney cell line, were used to characterize the extent of binding of miRNAs to each polymorphic allele of the SNP by a luciferase reporter gene assay. RNA electrophoretic mobility shift assays were used to evaluate the interaction between the miRNAs and each allele sequence of the SNP. We found that hsa-miR-1270 inhibited luciferase activity by binding to the T allele of the SNP in an allele-specific manner. A negative correlation was also found between the expression of hsa-miR-1270 and the T allele of the SNP in kidney tissues. Our findings support the hypothesis that hsa-miR-1270 suppresses the production of TAP2 by binding to this SNP in the 3'-UTR of this gene. Environ. Mol. Mutagen. 59:134-143, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Bridgett Knox
- US Food and Drug Administration, National Center for Toxicological Research, Jefferson, Arkansas
| | - Yong Wang
- US Food and Drug Administration, National Center for Toxicological Research, Jefferson, Arkansas
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Lora J. Rogers
- University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Jiekun Xuan
- US Food and Drug Administration, National Center for Toxicological Research, Jefferson, Arkansas
| | - Dianke Yu
- US Food and Drug Administration, National Center for Toxicological Research, Jefferson, Arkansas
| | - Huaijin Guan
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Jiwei Chen
- School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Tieliu Shi
- School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Baitang Ning
- US Food and Drug Administration, National Center for Toxicological Research, Jefferson, Arkansas
| | | |
Collapse
|
47
|
Ricciardelli C, Lokman NA, Sabit I, Gunasegaran K, Bonner WM, Pyragius CE, Macpherson AM, Oehler MK. Novel ex vivo ovarian cancer tissue explant assay for prediction of chemosensitivity and response to novel therapeutics. Cancer Lett 2018; 421:51-58. [PMID: 29425684 DOI: 10.1016/j.canlet.2018.02.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 12/14/2017] [Accepted: 02/03/2018] [Indexed: 10/18/2022]
Abstract
The majority of ovarian cancer patients present with advanced disease and despite aggressive treatment, prognosis remains poor. Response to first-line carboplatin-containing chemotherapy is usually good, however, recurrence rates and subsequent chemoresistance are very high and ultimately responsible for the fatal outcome of the disease. To improve treatment outcomes pre-clinical models that can predict individual patient response to 1st line chemotherapy and novel therapeutics are urgently required. In this study, we employed an ex vivo ovarian cancer tissue explant assay to assess response to carboplatin and an inhibitor of the extracellular matrix molecule, hyaluronan (4-methylubelliferone, 4-MU), shown to inhibit cancer metastasis. Cryopreserved ovarian cancer tissues were cultured on gelatine sponges for 48-120 h with increasing concentrations of carboplatin (0-400 μM) or 4-MU (1 mM) alone or the combination of both drugs. Effects on apoptosis and proliferation were assessed by immunohistochemistry using antibodies to cleaved caspase 3 or Ki67, respectively. The ex vivo tissue explant assay maintained viable tumor cells in an intact tumor microenvironment similar to the in vivo situation over the 120 h culture period. Carboplatin treatment promoted apoptosis in chemosensitive (P = 0.0047) but not chemoresistant cancer tissues. The combination of 4-MU (1 mM) and carboplatin (100 μM) significantly increased apoptosis (P = 0.0111) and reduced proliferation (P = 0.0064) in chemoresistant tissues. Overall, our results show that the ex vivo explant assay is a robust and cost effective model to assess chemosensitivity and the effect of novel therapeutics in ovarian cancer.
Collapse
Affiliation(s)
- Carmela Ricciardelli
- Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia.
| | - Noor A Lokman
- Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Ilhamjan Sabit
- Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Kavyadharshini Gunasegaran
- Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Wendy M Bonner
- Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Carmen E Pyragius
- Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Anne M Macpherson
- Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Martin K Oehler
- Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia; Department of Gynaecological Oncology, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| |
Collapse
|
48
|
Bohaumilitzky L, Huber AK, Stork EM, Wengert S, Woelfl F, Boehm H. A Trickster in Disguise: Hyaluronan's Ambivalent Roles in the Matrix. Front Oncol 2017; 7:242. [PMID: 29062810 PMCID: PMC5640889 DOI: 10.3389/fonc.2017.00242] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 09/22/2017] [Indexed: 02/04/2023] Open
Abstract
Hyaluronan (HA) is a simple but diverse glycosaminoglycan. It plays a major role in aging, cellular senescence, cancer, and tissue homeostasis. In which way HA affects the surrounding tissues greatly depends on the molecular weight of HA. Whereas high molecular weight HA is associated with homeostasis and protective effects, HA fragments tend to be linked to the pathologic state. Furthermore, the interaction of HA with its binding partners, the hyaladherins, such as CD44, is essential for sustaining tissue integrity and is likewise related to cancer. The naked mole rat, a rodent species, possesses a special form of very high molecular weight (vHMW) HA, which is associated with the extraordinary cancer resistance and longevity of those animals. This review addresses HA and its diverse facets: from HA synthesis to degradation, from oligomeric HA to vHMW-HA and from its beneficial properties to the involvement in pathologies. We further discuss the functions of HA in the naked mole rat and compare them to human conditions. Though intensively researched, this simple polymer bears some secrets that may hold the key for a better understanding of cellular processes and the development of diseases, such as cancer.
Collapse
Affiliation(s)
- Lena Bohaumilitzky
- Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, Heidelberg, Germany
| | - Ann-Kathrin Huber
- Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, Heidelberg, Germany
| | - Eva Maria Stork
- Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, Heidelberg, Germany
| | - Simon Wengert
- Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, Heidelberg, Germany
| | - Franziska Woelfl
- Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, Heidelberg, Germany
| | - Heike Boehm
- CSF Biomaterials, Max Planck Institute for Medical Research, Heidelberg, Germany.,Department of Biophysical Chemistry, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
49
|
Park GB, Ko HS, Kim D. Sorafenib controls the epithelial‑mesenchymal transition of ovarian cancer cells via EGF and the CD44‑HA signaling pathway in a cell type‑dependent manner. Mol Med Rep 2017. [PMID: 28627617 PMCID: PMC5561797 DOI: 10.3892/mmr.2017.6773] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cluster of differentiation (CD) 44 and epidermal growth factor (EGF) are closely involved in cellular migration and have been used as stem cell markers. Although the hyaluronan (HA)‑binding CD44 is responsible for enhanced cellular motility, the mechanism underlying its actions in various cell types and clinical conditions have yet to be elucidated. In the present study, the multikinase inhibitor sorafenib was used to investigate the diverse effects of EGF stimulation on epithelial‑mesenchymal transition (EMT) in ovarian cancer cells using immunoblotting and reverse transcription‑polymerase chain reaction. In addition, the association between EGF and CD44/HA signaling pathways in the control of mesenchymal phenotype was determined by gene silencing with small interfering RNA transfection. EGF stimulation of ovarian cancer cells increased cellular migration, mesenchymal transition, CD44 expression and the activation of matrix metalloproteinase (MMP)‑2 and MMP‑9. Sorafenib effectively suppressed the loss of epithelial characteristics in EGF‑treated SK‑OV‑3 ovarian cancer cells, via targeting the mitogen‑activated protein kinase (MAPK)/extracellular signal‑regulated kinase (ERK) pathway. Although treatment of Caov‑3 ovarian cancer cells with sorafenib blocked the expression of mesenchymal phenotypes following EGF stimulation, EGF‑activated Caov‑3 cells exhibited reduced MAPK/ERK signaling. Furthermore, EGF‑activated Caov‑3 cells increased the expression of hyaluronan synthase 2 and HA‑CD44 ligation in EGF‑exposed Caov‑3 cells, which resulted in the activation of the Ras/Raf/MEK signaling pathway, amplification of migratory activity and the expression of mesenchymal markers, including N‑cadherin and vimentin. Furthermore, silencing EGFR in SK‑OV‑3 cells and CD44 in Caov‑3 cells suppressed their migratory activity, through inhibition of the MAPK/ERK pathway. The present results suggested that EGF‑mediated signaling may regulate metastasis and invasion of ovarian cancer cells, in a cancer cell type‑dependent manner.
Collapse
Affiliation(s)
- Ga Bin Park
- Department of Biochemistry, Kosin University College of Medicine, Busan 49267, Republic of Korea
| | - Hyun-Suk Ko
- Department of Anatomy, Inje University College of Medicine, Busan 47392, Republic of Korea
| | - Daejin Kim
- Department of Anatomy, Inje University College of Medicine, Busan 47392, Republic of Korea
| |
Collapse
|
50
|
Tian J, Xu YY, Li L, Hao Q. MiR-490-3p sensitizes ovarian cancer cells to cisplatin by directly targeting ABCC2. Am J Transl Res 2017; 9:1127-1138. [PMID: 28386339 PMCID: PMC5376004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Accepted: 06/03/2016] [Indexed: 06/07/2023]
Abstract
Cisplatin (CDDP) resistance becomes a large obstacle of the beneficial therapy for patients with ovarian cancer. MicroRNAs (miRNAs) act as post-transcriptional regulators of multiple genes' expression and have been reported to be involved in multi-drug resistance. The purpose of this study was to determine the roles and molecular mechanism of miR-490-3p in the CDDP resistance in ovarian cancer. We found that miR-490-3p was downregulated in CDDP-resistant OVCAR3/CDDP and SKOV3/CDDP cells, which was due to the hypermethylation of miR-490-3p promoter. Functional studies demonstrated that miR-490-3p increased the cell response to CDDP in OVCAR3, SKOV3 and CDDP-resistant cells, while miR-490-3p inhibition resulted in opposite effects. Luciferase assay, real-time PCR and Western blot as well as immunohistochemistry validated that ABCC2 was a direct target of miR-490-3p and miR-490-3p downregulated ABCC2 expression via binding to its 3'UTR. Importantly, silencing of ABCC2 alleviated CDDP resistance induced by miR-490-3p inhibition, while ABCC2 overexpression restored CDDP resistance inhibited by miR-490-3p. In vivo study showed that miR-490-3p enhanced the cytotoxicity of CDDP. Finally, we found that miR-490-3p was downregulated in CDDP-resistant ovarian cancer tissues, while ABCC2 was upregulated. In conclusion, our data indicate that miR-490-3p enhances CDDP sensitivity of ovarian cancer cells through downregulating ABCC2 expression, and suggest that delivery of miR-490-3p might be a potential therapeutic strategy for patients with CDP-resistant ovarian cancer.
Collapse
Affiliation(s)
- Jing Tian
- Department of Gynecology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and TherapyHuan-Hu-Xi Road, Ti-Yuan-Bei, He Xi District, Tianjin 300060, China
| | - Yan-Ying Xu
- Department of Gynecology, The Second Hospital of Tianjin Medical UniversityTianjin 300060, China
| | - Lian Li
- Department of Epidemiology and Biostatistics, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and TherapyHuan-Hu-Xi Road, Ti-Yuan-Bei, He Xi District, Tianjin 300060, China
| | - Quan Hao
- Department of Gynecology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and TherapyHuan-Hu-Xi Road, Ti-Yuan-Bei, He Xi District, Tianjin 300060, China
| |
Collapse
|